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The Ff-Family of Protocols for
RFID-Privacy and Authentication

Erik-Oliver Blass, Anil Kurmus, Refik Molva, Guevara Noubir, and Abdullatif Shikfa

Abstract—In this paper, we present the design of the lightweight Ff family of privacy-preserving authentication protocols for RFID-
systems. Ff results from a systematic design based on a new algebraic framework focusing on the security and privacy of RFID
authentication protocols. Ff offers user-adjustable, strong authentication and privacy against known algebraic attacks and recently
popular SAT-solving attacks. In contrast to related work, Ff achieves these security properties without requiring an expensive
cryptographic hash function. Ff is designed for a challenge-response protocol, where the tag sends random nonces and the results
of HMAC-like computations of one of the nonces together with its secret key back to the reader. In this paper, the authentication and
privacy of Ff is evaluated using analytical and experimental methods.

Index Terms—Lightweight RFID security, authentication, privacy, algebraic attacks, SAT-solving, LPN

✦

1 INTRODUCTION

NOWADAYS, Radio-Frequency-Identification (RFID) is
used for a variety of applications, ranging from simple

library borrowing systems and access-control to Supply-Chain-
Management. The general setup consists of tiny, chip-like
“tags” and “readers”. Tags are wirelessly identified by the
readers using some identification protocol executed by tags
and readers. The pervasive use of RFID-systems, however,
raises new security and privacy issues. Recently, it has been
shown that currently deployed RFID-systems, e.g., London’s
underground ticketing system “Oyster Card” or the keyless
car entry system “KeeLoq” are insecure and allow fraudulent
usage, cf., Courtois et al. [1]. Further to fraudulent service
usage or illegal access, the privacy of RFID users is also at
risk, as RFID-tags can be wirelessly scanned and tracked.
For RFID-systems to become widely accepted by industry
and end-users, secure and privacy-preserving authentication
protocols are thus required.

Di Pietro and Molva [2] introduced a privacy-preserving
authentication protocol for RFID tags called “DPM”. DPM
introduces an iterative identification technique whereby the
tag sends several randomized hash results of its secret key,
and the reader identifies the tag by successively eliminating
entries in its database that do not match the hash results. While
one advantage of the DPM-protocol is reduced complexity
on the reader-side during authentication, a major drawback of
the DPM-protocol, and many others, lies in the requirement
to evaluate a strong, cryptographic hash function, e.g., SHA-
1, on the tag. Such cryptographic primitives are in general
too “costly” for tags in most RFID-applications, as they
alone already require ≈ 10, 000 gate equivalents. To minimize
production costs, tags are typically assumed to feature only
around 1, 000 to 10, 000 gate equivalents available for the
entire security protocol [3–7]. In addition, the DPM-protocol
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suffers from some weaknesses: based on an algebraic ap-
proach, an adversary is able to compute 2

3
of the secret key

bits shared between reader and tag and also break the tag’s
privacy [8, 9].

Inspired by the iterative identification technique introduced
by DPM, we propose a family of new low-cost authentication
protocols for RFID tags that provide key secrecy and privacy.
The new family of protocols called Ff is secure against
algebraic attacks, statistical attacks, LPN attacks [10], and
the recently highlighted SAT-solving approach [11]. To reason
about Ff ’s security, we present an universal, algebraic lin-
earization attack-framework. We investigate this framework’s
theoretical and practical efficiency by exploiting weaknesses
in DPM to compute secret key bits. Furthermore, the Ff

family of protocols features major advantages over related
approaches, as follows:

• Low-cost tags: As oppposed to a common assumption
in related work, e.g., Di Pietro and Molva [2], Tsudik
[12], Weis et al. [13], Molnar and Wagner [14], Avoine
et al. [15], Ohkubo et al. [16], our scheme does not
rely on complex cryptographic hash functions like SHA-
1. This results in reduced hardware complexity and
lower cost for tags. Ff itself achieves the purpose of
an extremely lightweight hash function. Similarly, the
reader does not need to be able to compute SHA-1, but
can also be resource restricted, e.g., an embedded device.
Nevertheless with Ff , authentication and privacy can be
assured with an arbitrary, user-adjustable level of security.

• Stateless tags: Contrary to, related work, e.g., Tsudik
[12], Molnar and Wagner [14], Avoine et al. [15], Ohkubo
et al. [16], Ff does not require the existence of a non-
volatile state on tags, again resulting in cheaper tags.

• No false negatives: Finally, the Ff -protocols are “com-
plete”, i.e., a valid, legitimate tag will always be identified
by the reader as a valid tag – in contrast to, for example,
HB+ [6] and variants, where this is only guaranteed
within a certain probability.
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This paper presents the Ff family of protocols in a “pro-
gressive” manner. First, we introduce the basic idea underlying
the protocols, i.e., the round-based identification of tags in
Section 3.1. Then, we present one instance of round-based
identification using the generic Ff function in Section 3.2.
A concrete implementation of Ff , called Ff∆ , is presented in
detail in Section 3.3. The remainder of the paper is dedicated to
a detailed analysis of Ff and Ff∆ . Section 4 discusses statisti-
cal properties such as key equivalence, indistinguishability and
distribution of output. Section 5 analyzes algebraic properties
with respect to specific features of Ff such as key linearization
and Ff ’s resistance against common algebraic attacks as well
as SAT-solving and LPN attacks. Besides theoretical results,
the paper evaluates the feasibility of attacks in an experimental
setting in Section 5.2.2.

2 SYSTEM MODEL AND ASSUMPTIONS
An RFID-“system” consists of n tags and a single reader. For
the sake of simplicity, we call a tag TID, i.e., TID is the unique
name or ID of a tag. Each tag TID shares a different secret
KTID with the reader. The reader stores n different tuples
(TID,KTID) as entries in its database D, n = |D|. For better
comparison, we set n to a typical value, i.e., n = 2

16 as Di
Pietro and Molva [2].

The setup, i.e., the simple application, used in this paper is
a reader in front of locked door. The reader will unlock and
open the door, if and only if it can identify a tag TID ∈ D
using a communication protocol. As soon as a tag is within
the reader’s wireless communication range, the reader starts
a protocol run with the tag. Here, a protocol run is a single
execution of the protocol, i.e., a pass through one instance
of the protocol. During the protocol run, the reader uses its
database D, to finally identify the tag’s ID at the end of the
protocol run.

RFID tags are severely restricted in terms of computational
resources, cf., EPC Global Gen. 2 Class 1 tags [17]. They
feature only a couple of thousands Gate Equivalents (GE) [6,
7], thus the implementation of complex hash functions like
SHA-1 (requiring 10, 641 GE [3]) is impossible. Tags are read-
only and assumed to be passive, without a battery.

As opposed to prior work, we also assume the reader to be
resource restricted: in many real world application scenarios, a
reader is neither permanently connected to a high-performance
back-end system to forward a tag’s reply for authentication to,
nor does the reader feature a high-performance CPU. Instead,
we assume the reader to be equipped with a microcontroller-
based CPU. So, the reader is not capable of doing complex
computations, e.g., SHA-1 computations, on all elements of
its database. As a result, strong, cryptographic hash functions
are not available for RFID protocol design.

2.1 Adversary model
The adversary model in this paper is based on the definitions
of Vaudenay [18], referring in particular to the non-narrow
strong adversary. We assume an active, man-in-the-middle-like
adversary. The adversary can not only listen to all wireless
communication between reader and tags, but also block,

exchange, or modify ongoing communication. He can also
temporarily put a tag into a quality time [19] phase, by drawing
a tag into possession.

More formally, the non-narrow strong adversary of Vau-
denay [18] has access to a set of oracles that can be called
multiple times. He can do a DRAWTAG oracle-call. This will
give him, out of the set of all possible tags, access to one
tag TID, but temporarily anonymized to Tvtag . The oracle
randomly chooses TID out of the total set of all tags. The
adversary can only draw one tag at a time. Before he can draw
another tag, he has to FREE the current tag. Note that with
subsequent calls to DRAWTAG, the oracle might by chance
choose the same tag TID. However, each time Tvtag given to
the adversary might differ from each other.

A tag Tvtag that is drawn into quality time can be queried
with a finite number of additional calls to oracles in any
interleaved fashion. A call to LAUNCH initializes a new
protocol run, i.e., resets and prepares the reader and Tvtag

for a new execution of a protocol. Also, LAUNCH returns
the first message, e.g., an initial nonce sent by the reader.
With a call to SENDTAG, the adversary sends data to Tvtag

and receives its response from the oracle. Similarly with a
call to SENDREADER, the adversary can send data to the
reader and therewith finish a protocol run. Finally, if the
adversary called SENDREADER, a query to the RESULT-oracle
will tell the adversary, whether the reader accepted the data
it received, apparently identified a tag, and opened the door,
“1”, or not, “0”. With EXECUTE, a complete protocol instance
is run through, and the adversary receives from the oracle all
communication between Tvtag and the reader.

The adversary has access to the above oracles a finite,
reasonable number of times. Reasonable means that the ad-
versary cannot exceed more operations than typical “security
margins”. For example, he can query oracles � 2

64 times.
Tag Compromise and Destruction. Theoretically, the ad-

versary might also compromise tags, i.e., read-out their secrets,
re-program them, and even destruct tags. However, we assume
tags to be stateless, and in the Ff family of protocols, tags do
not share any keys or secret information, not even partially.
Consequently, there is no gain in compromising or destroying
tags for the adversary. If the adversary compromises (or steals)
a tag, he can use this tag to open the door at a reader, and
no RFID authentication protocol can protect against this. In
the sequel of this paper, we will therefore not consider tag
compromise or destruction.

2.2 Security Goals
In our RFID-system, we want to provide two security goals:
(1) Authentication and (2) Privacy.

2.2.1 Authentication
Authentication means that, after execution of the protocol,
i.e., one protocol run, the reader can identify a legitimate
tag with certainty. By corollary, authentication means that an
adversary cannot impersonate any legitimate tag at the reader.
To successfully impersonate a tag, the adversary is can access
the above mentioned oracles a reasonable number of times.
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The adversary thus should succeed only with negligible
probability in making the reader authenticate some tag TID ∈
D in a protocol execution, without that TID takes part in this
protocol execution, and the adversary only relays communica-
tion. We call this soundness [20].

Similar, completeness means that if some valid tag TID ∈ D
has been returned as Tvtag after a call to DRAW, and the
adversary simply relays data from LAUNCH, SENDTAG, and
SENDREADER calls, the reader should never reject this tag,
i.e., always authenticate TID and open the door.

Note that authentication, i.e., secure identification of a cer-
tain tag is a stronger requirement than completeness. Clearly,
if a reader can identify a certain tag TID, it can decide
whether TID ∈ D. Depending on the scenario, completeness
might be sufficient. Yet, in this paper, Ff will provide both:
completeness and soundness.

Also note that we do not focus on any form of agreement
or mutual authentication. There is no application or need
to do further communication besides protocol execution for
authentication in the RFID-system.

2.2.2 Privacy
While authentication aims at protecting the tag identification,
the privacy property of a protocol focuses on not revealing
the identity of a tag to an adversary. Generally, an adversary
should not be able to tell which tag exactly has been drawn
into quality time. He must not find out the ID of some tag
Tvtag . This can also be called anonymity. Furthermore, two
subsequently drawn tags Tvtag and Tvtag� must not be linked
together: the adversary should not be able to decide whether
Tvtag = Tvtag� .

If, after having access to and querying Tvtag, Tvtag� one
after another, the probability of the adversary doing the right
decision is only negligible higher than simple 50% guessing,
we call the protocol private.

3 PRIVACY-PRESERVING AUTHENTICATION
The scope of this paper is a family of RFID protocols that
allow for the identification of tags by readers in a privacy-
preserving manner. The basic idea behind the family or frame-
work of protocols we focus on is described in the following.
(1) A tag TID provides the reader with a series of one-way
results computed over its key KTID . (2) The reader compares
these one-way results with the entries of its database D: using
the key included in each entry, the reader identifies the entry
in its database whose series of one-way results matches all the
one-way results received by the tag.

The reason for such a setup is to keep the complexity for
tag and reader low while trying to make the reader quickly
“converge” to a single entry in its database. Instead of one
pass through the whole database D with a very expensive hash
function, our scheme is based on multiple passes, “rounds”, on
a database of decreasing size with a lightweight hash function.

3.1 Overview: Round-Based Identification
Figure 1 depicts a typical message flow based on this protocol
framework. In the first protocol message, the reader transmits



























Fig. 1. Round-based tag identification

the random challenge N as required for replay protection. In
the second message, the tag TID replies with q pairs (Ri,wi)
whereby Ri is a random number, wi := F (Ri, N, KTID) is the
result of a one-way function computed over Ri, N , and the
tag’s identification key is KTID . We call each pair (Ri, wi =

F (Ri, N, KTID)) a round in this context. In order to identify
the tag, the reader computes w�

i
:= F (Ri, N, K �

) using the
identification key K � of tag T � included in each tag’s entry of
its database. The entry (T �,K �

) ∈ D for which the received
values wi and the one computed by the reader w�

i
matches for

all {1, . . . q} yields the tag’s identity.
As it is the core of this family of protocols, function F has

to fulfill some critical requirements:
1.) Efficiency: F must be less complex than a strong hash

function, because if F were comparable to a strong hash
function, there would not be an advantage over simple hash-
based authentication protocols.

2.) Security and Privacy: even though F discloses some
information about the secret key of the tag as all one-way
hash functions do, retrieving the key and doing impersonation
(authentication), identifying a tag, or guessing the link between
two different protocol runs (privacy) with the same tag should
be practically infeasible.

3.) Identification Rate: the received value of F and the
one computed by the reader should be different with a non-
negligible probability for the entries in the reader’s database
that do not match the tag; in other words: if KTID �= K �,
then F (Ri, N, KTID) �= F (Ri, N, K �

) with a non-negligible
probability. Ideally, this probability should be close to 50%

to give good identification rate and to protect the privacy of
tags. If two tags reply to one query with the same outputs or
different outputs in half of the cases, the adversary does not
gain any information whether the tags are the same or not.

3.2 The Ff Protocol Family
Referring to the above overview on round-based identification,
we now present Ff in more detail. With Ff , reader and tag
TID share not only one key KTID , but also a second key K �

TID
.

Consequently, the reader stores tuples (TID, {KTID ,K �
TID

}) in
its database D. (Parameters {d, l, t, q} mentioned below are
system security parameters and will be discussed later.)

1) Each protocol run, i.e., single execution of the protocol,
starts with the reader sending a nonce.
Reader→ Tag: N0 ∈ GF (2

lt
)

2) The tag (TID) replies with a single message that is split
into q rounds as follows: Tag → Reader:
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1. (R1

1
, R2

1
, . . . , Rd

1
),

Ff (KTID , R
a1
1

) + Ff (K �
TID

, N1)

2. (R1

2
, R2

2
, . . . , Rd

2
),

Ff (KTID , R
a2
2

) + Ff (K �
TID

, N2)

· · ·
q. (R1

q , R
2

q , . . . , R
d
q),

Ff (KTID , R
aq
q ) + Ff (K �

TID
, Nq),

with Rv
u, Nu,KTID ,K �

TID
∈ GF (2

lt
), ai ∈ {1 . . . d}, q ∈ IN,

Ff : GF (2
lt
)×GF (2

lt
)→ GF (2

t
).

In every round i, ai is chosen randomly by the tag. So,
TID sends in each round i, 1 ≤ i ≤ q, not only one random
value Ri, but each time d random values R1

i
, . . . , Rd

i
. Also

per round, TID randomly selects one of these values, R
ai
i

,
1 ≤ ai ≤ d and sends Ff (KTID , R

ai
i

) + Ff (K �
TID

, Ni) along
with the random values to the reader. So you can see that in
the Ff protocol family, wi = F (Ri, N, KTID) of Fig. 1 is split
into wi = Ff (KTID , R

ai
i

)+Ff (K �
TID

, Ni), and Ri of Fig. 1 is
split into (R1

i
, . . . , Rd

i
). Here, tag and reader derive Ni from

the initial N0 as explained later.

3.2.1 Reader-Side Identification of a Tag
After sending N0, the reader receives a message from TID

containing q tuples ((R1

i
, . . . , Rd

i
), wi). Using these tuples,

the reader “strikes out” keys in D to eventually reduce D to one
single key, similar to Fig. 1. For each i, 1 ≤ i ≤ q, the reader
verifies all remaining keys as follows: for the jth remaining
entry (Tj , {KTj ,K

�
Tj

}) ∈ D, he computes the equations:

Ff (KTj , R
1

i ) + F (K
�
Tj

, Ni)
?
= wi

Ff (KTj , R
2

i ) + F (K
�
Tj

, Ni)
?
= wi

· · ·
Ff (KTj , R

d

i ) + F (K
�
Tj

, Ni)
?
= wi

If and only if all of the above equations are invalid, the
entry (Tj , {KTj , K �

Tj
}) is removed from D and the reader

continues with the next round i+1 and the reduced database.
The idea is that after q-rounds, there will be only 1 tag
remaining in D. We call this kind of identification of a single
tag converging to a single entry. You can already see that Ff

provides completeness: for data sent from a valid tag, at least
one equation will always hold. Therefore, a valid tag will never
be removed from D and never be rejected by the reader.

3.2.2 Replay-Protection
The reason behind not simply sending wi = Ff (KTID , R

ai
i

),
but wi = Ff (KTID , R

ai
i

)+Ff (K �
TID

, Ni) to the reader during
round i is to protect against replay attacks. The reader expects
wi to depend on the original nonce N0 sent at the beginning
of the protocol run. Thus, the adversary cannot simply store
the tag’s response of a previous, successful protocol run using
EXECUTE and replay the data during a subsequent run with
SENDREADER.

3.2.3 Using a PRNG
Sending (R1

i
, . . . , Rd

i
) to the reader in every round i will

generally give an adversary the opportunity to mount chosen-
plaintext-attacks on the tag’s key by modifying the answer he

receives from SENDTAG and calling the SENDREADER oracle
with modified data.

Also, as a tag is in communication range only for a limited
time, the amount of data that can be transferred is limited.
Depending on system parameters q, d, l, t, this limit might
be exceeded such that the tag can not authenticate itself. To
overcome both problems, we therefore derive subsequent R

j

i

from previous R
j

i
using a pseudo-random-number-generator

PRNG. More formally: R
j

i
:= PRNG(R

j−1

i
) for j > 1, and

R1

i
:= PRNG(Rd

i−1
).

Now, the tag only needs to draw and send one single
(real) random number, Rd

0
, to the reader. This reduces the

opportunity for the adversary to precisely modify subsequent
Rs, as he is able to choose only the first random Rd

0
. Also,

data volume that is wirelessly sent to the reader shrinks from
(qd) · |R| bits to |R| bits. Still within the protocol, the tag
computes all pseudo-random numbers R

j

i
, 1 ≤ j ≤ d for each

round i and then (really) randomly, i.e., indeterministically,
chooses one ai and computes wi := Ff (K, R

ai
i

)+F (K �, Ni).
In conclusion, the second Ff protocol message, TID’s reply,

now looks as follows: (Rd
0
, w1, w2, . . . , wq). Using received

Rd
0

and PRNG, the reader can also compute the subsequent
pseudo-random numbers.

Note: We do not care about the secrecy or predictability of
the internal state of PRNG, but only require pseudo-random
properties for the Rs for statistical purposes as discussed in
sections 4 and 5. Therefore, we can safely use a cheap LFSR
to derive R with “good enough randomness”. Both, the tag
and the reader will use Rd

0
as the seed, the first internal state

of the LFSR and derive subsequent R
j

i
from it.

The above also holds for the Ni required for replay-
protection: Ni+1 := PRNG(Ni), with the original N0 re-
ceived from the reader. This also protects against chosen-
plaintext attacks where the adversary would choose N on
subsequent calls to SENDTAG. Tag and reader will not accept
(0, . . . , 0) for N0 or Rd

0
, avoiding trivial pseudo-randomness.

3.2.4 Relation between Ff and f

Furthermore in our family of protocols, Ff is made of small
fan-in functions f , f : GF (2

t
) × GF (2

t
) → GF (2

t
), as

follows:

Ff (K, R) =

l�

i=1

f(ki, ri)

Here, “+” equals the XOR “⊕”. Generally, keys K and
random nonces R (or N ) are each of size (l·t) bits. Throughout
this paper, we will group subsequent bits of a key or nonce
into l so called symbols: K = (k1, . . . , kl), R = (r1, . . . , rl).
Each of the l symbols consists of t bits. By writing ki,j or
ri,j , we denote the jth bit of the ith key symbol or random
symbol, respectively. These relations are shown in Fig. 2. For
the security and privacy reasoning in the following sections, let
us also not consider Ff (K, R

ai
i

)+Ff (K �, Ni) in each round,
but focus only on Ff (K, R

ai
i

). For the discussion on statistical
and algebraic properties of Ff and its strength against attacks,
this is sufficient.
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Fig. 2. Overview of Ff∆(K, R)

3.3 Implementation Proposal: Ff∆

One suitable instance of the f function could be f∆(ki, ri)

as proposed in the following. System parameters are d = 8,
t = 4, l = 64, q = 60, and the LFSR for PRNG has
an internal state of σ = 64 bits. The exchanged N0 and
Rd

0
will be used as the LFSR’s initial internal state. So, f∆

works on inputs ki, ri ∈ GF (2
4
) and outputs an element in

GF (2
4
), f∆ : GF (2

4
) × GF (2

4
) → GF (2

4
). The output

of f∆ is represented as 4 output bits, i.e., f∆(ki, ri) =

{f∆1 , f∆2 , f∆3 , f∆4}. These output bits are separately defined:

f∆1(ki, ri) := ri,1ki,1 + ri,2ki,2 + ri,3ki,3 + ri,4ki,4

+ri,1ri,2ki,1ki,2 + ri,2ri,3ki,2ki,3

+ri,3ri,4ki,3ki,4

f∆2(ki, ri) := ri,4ki,1 + ri,1ki,2 + ri,2ki,3 + ri,3ki,4

+ri,1ri,3ki,1ki,3 + ri,2ri,4ki,2ki,4

+ri,1ri,4ki,1ki,4

f∆3(ki, ri) := ri,3ki,1 + ri,4ki,2 + ri,1ki,3 + ri,2ki,4

+ri,1ri,2ki,1ki,4 + ri,2ri,3ki,2ki,4

+ri,3ri,4ki,1ki,3

f∆4(ki, ri) := ri,2ki,1 + ri,3ki,2 + ri,4ki,3 + ri,1ki,4

+ri,1ri,3ki,3ki,4 + ri,2ri,4ki,2ki,3

+ri,1ri,4ki,1ki,2

We choose f∆ to be non-linear in both, the bits of the key
symbol and the bits of the random symbol, and to hold all
other required security properties as discussed in sections 4
and 5. Also, computation of f∆(ki, ri) can be implemented
quite efficiently: per output bit of f∆, 13 multiplications in
GF (2) (boolean AND) and 6 additions (boolean XOR) are
required. Using figures as stated by Batina et al. [21], one
output bit can be implemented in 34.5 GE, so f∆ can be
implemented using a total of 138 GE. To compute Ff∆ out of
the outputs of f∆, we need a 4 bit register to store temporary
data, which comes in at 48 GE. The LFSR with σ = 64 bits of
state requires 768 GE. We can get along with only one LFSR
to derive the Rs and Ns, if we use the LFSR alternately.
Therefore, we have to store both, the current Rd

i
and Ni, 1 ≤

i ≤ q of round i, in RAM. So, a total of 128 bits of RAM,
i.e., 192 GE are required for this. Finally, K and K � need to
be wired to f∆, which uses a total of 512 GE.

The above sums up to a total of 1, 658 GE. This is far
less than current implementations of strong hash functions

alone, e.g., SHA-1 with already ≈ 10, 000 [3], not even taking
storage of the secret key into account. We clearly confirm that
our computation of Ff∆ with 1, 658 GE is naive, because one
typically needs some kind of “multiplexing” logic around Ff∆ ,
but we estimate the total gate count to be ≈ 2, 000. Note that
this gate count does not only include the Ff∆ function, but
also all storage for keys, nonces, and random numbers. In
conclusion, the implementation of Ff∆ is perfectly feasible
with low cost RFID tags using current technology.

With an assumed data rate of ≈ 70 Kbps [22] between
and EPC-class tag and a reader, the tag can send up to 70
kbit to the reader if it is in the reader’s distance for ≈ 1

second. The tag’s message to the reader consists of Rd
0

and
w1, . . . , wq. With σ = 64, |Rd

0
| = 64 bit, and q · t = 240 bit

are required for the wi. In total, the tag needs to send 304
bit to the reader which, in conclusion, should be feasible for
today’s RFID communication.

The rest of this paper will argue for Ff ’s security in general
and Ff∆ ’s security in particular.

Note. DPM [2] can be seen as one special instance of Ff ,
i.e., FfDPM , with d = 1, t = 3, l = 39. However, all 3 output
bits of fDPM are the same – or simply: fDPM can be seen as
an output to GF (2) instead of GF (2

3
). More precisely, fDPM

computes the majority of the bits of ki + ri: fDPM(ki, ri) =

(ki,1 + ri,1)(ki,2 + ri,2) + (ki,1 + ri,1)(ki,3 + ri,3) + (ki,2 +

ri,2)(ki,3 + ri,3).

4 STATISTICAL PROPERTIES OF Ff

In this section, we discuss the required properties of “low-cost”
or “low-complexity” hash functions Ff to prevent classical
statistical attacks and to protect tags’ privacy: we discuss key
in-distinguishability and balanced output. For the sake of read-
ability, we moved all mathematical proofs to Appendix A 1.

4.1 Key Equivalence
Two keys K, K � are said to be equivalent, if they can never
be distinguished when hashed with any random input. To
guarantee that an RFID tag can be uniquely identified and
“distinguished” from other tags, it is important to guarantee
the non-existence of equivalence classes of keys with respect
to Ff .

Theorem 4.1: A hashing function Ff has no indistinguish-
able keys (no equivalent keys) if the underlying t bit elemen-
tary hashing function f satisfies conditions (1). More formally
stated:






∀ki �= kj ∈ GF (2
t
)

∃h1, h2 ∈ GF (2
t
), h1 �= h2

∃r ∈ GF (2
t
) s.t. f(ki, r) + f(kj , r) = h1

∃r� ∈ GF (2
t
) s.t. f(ki, r

�
) + f(kj , r

�
) = h2





(1)

⇒
∀K �= K � ∈ GF (2

lt
)∃R ∈ GF (2

lt
) s.t.

F (K, R) �= F (K �, R)

See Appendix A 1 for the proof.
Ff∆ : The f∆-function holds the property above. Consider

any two key symbols k �= k� ∈ GF (2
4
) of larger keys K �=
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K �, then we will show that there exists at least one pair of
random numbers r, r� such that f∆(k, r) + f∆(k�, r) = h1,
f∆(k, r�) + f∆(k�, r�) = h2, and h1 �= h2.

If k �= k�, then they differ in at least one bit, i.e., the ith bit.
Consider r to be r := (0, 0, 0, 0), all bits are zero. Looking
only at the ith output bit f∆i the following equation holds,
f∆i(k, r) + f∆i(k

�, r) = h1i = 0. The ith bit of h1 is 0.
Consider r� to be r�

1
:= 1, r�

j
:= 0, j �= 1, so the first bit of

r� is 1, the rest is 0. Looking only at the ith output bit f∆i

the following equation holds, f∆i(k, r�)+f∆i(k
�, r�) = h2i =

ki + k�
i
= 1 �= h1i . So, h1 �= h2. In conclusion, there are no

equivalent keys in Ff∆ .

4.2 Probability of (In-)Distinguishability
It is quite important that the probability for which two different
keys can be distinguished from each other with any R is close
to 50%: on the one hand, this helps the reader to identify a
tag in its database much more quickly. On the other hand,
it is important to have Ff produce the same output for two
different keys with 50% for each R, to protect tags’ privacy:
the adversary must not be able to distinguish between two
tags. Let fi denote the restriction of f to its ith output bit
(1 ≤ i ≤ t), HD denotes the Hamming distance.

Theorem 4.2: The set of random values for which two keys
are indistinguishable is bounded as follows. fi denotes the ith

output bit of f .

∃δ ∈ [0,
1

2
)∀k �= k� ∈ GF (2

t
)∀i, 1 ≤ i ≤ t

1

2
− δ ≤ Pr[fi(k, r) �= fi(k

�, r)] ≤ 1

2
+ δ

⇒
∀K �= K � ∈ GF (2

lt
)

1

2
− (2δ)t·HD(K,K

�
) ≤ Pr[F (K, R) �= F (K �, R)]

≤ 1

2
+ (2δ)t·HD(K,K

�
)

Note that the probability on the left hand side of the
implication is computed over r, while the ride hand side
probability is computed over R.
See Appendix A 1 for the proof.

In conclusion, this means that with a sufficient key-length,
the probability of Ff to have a different output between two
keys or not is bound to 50% for any R. This allows the reader
to eventually distinguish between two tags and “converge”
during its identification process to a single tag, providing
completeness.

Ff∆ : Function f∆ holds the left hand side of the implication
in Theorem 4.2: looking at each output bit i, we computed the
bias of output f∆i over all 16 possible inputs to be ≤ 25%. So,
δ = 0.25. In Ff∆ , with two completely random keys K, K �,
each of size lt = 256 bit, t = 4, the term (2δ)t·HD(K,K

�
) be-

comes negligible small, 2
−512, so Pr[F (K, R) �= F (K �, R)]

is very close to 50%.

4.3 Balanced Output
Balanced output is an important statistical property that Ff

needs to satisfy. Even a slight imbalance or bias in the output
allows an adversary to characterize a tag based on the proba-
bility distribution of it’s output. A tag can be characterized by

pi, 1 ≤ i ≤ t, i.e., the probability of outputting value 1 (or 0)
at output bit i. A secure function Ff should have equal values
of pi =

1

2
.

The family of Ff that we are considering converges towards
a balanced output as the key length is increased. This derives
from a similar argument as used in Theorem 4.2. First,
consider, one-bit of output. From Theorem 4.2, it is easy
to see that there is at most one key symbol ki that leads
to a constant output f(ki, r) independently of the random
input. Any other key k should have a bound δ0 on its bias:
Pr[f(k, r) = 0 ∈ [

1

2
−δ0,

1

2
+δ0] (and similarly for 1 output).

Let Ki = (ki, . . . , ki) be the l-symbol repetition of ki. Then,
Pr[Ff (K, R) = 0 ∈ [

1

2
− (δ0)

HD(K,Ki),
1

2
+ (δ0)

HD(K,Ki)]

(and similarly for output 1). For t > 1, if f provides sufficient
balance and independence for each of the bits, XORing over
a large number of f outputs allows the bias to converge to
0. To insure output balance with high probability, we require
that the following sufficient condition should hold for a non-
negligible fraction of the key symbols ki: for any given key
symbol ki, the dimension of the vector space spanned by the
elements {f(ki, r)|r ∈ GF (2

t
)}, is equal to t.

Ff∆ : Consider the 4 key symbols ki, k1 = (1, 0, 0, 0),
k2 = (0, 1, 0, 0), k3 = (0, 0, 1, 0), k4 = (0, 0, 0, 1) – they
make of 25% of all 16 possible key symbols. We construct the
4 random symbols r�

ki
, r��

ki
, r���

ki
, r����

ki
: with r�

ki
, all bits are 0, and

the ith bit is 1. With r��
ki

, all bits are 0, and the (ith−1) mod 4

bit is 1. With r���
ki

, all bits are 0, and the (ith−2) mod 4 bit is 1.
With r����

ki
, all bits are 0, and the (ith−3) mod 4 bit is 1. Con-

sequently, {f∆(ki, r
�
ki

), f∆(ki, r
��
ki

), f∆(ki, r
���
ki

), f∆(ki, r
����
ki

)}
gives {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} , a basis
spanning a t = 4-dimensional vector-space. With l = 64,
Ff∆ ’s output is balanced.

4.4 Convergence-Rate and Anti-Impersonation
A mandatory property of Ff should be to allow the reader
to converge to a single key in his database quickly, generally
accept valid tags (completeness), but still prevent an adversary
to do an impersonation attack.

As shown before, the output of Ff is balanced. So, for
each tuple of random numbers R1

i
, . . . , Rd

i
and hash output

Ff (K, R
ai
i

) that is sent during each of the q rounds of the
protocol from the tag, the probability that a key K � �= K in the
reader’s database D is removed is: Premove(t, d) := (

2
t−1

2t )
d.

With the original size of the database n = |D|, the number
of invalid keys K � �= K that are still valid after q rounds
shrinks to n�, i.e., every invalid key is still valid with (1 −
Premove(t, d))

q. So, n� = (n − 1) · (1 − Premove(t, d))
q and

therewith n� = (n− 1) · (1− (1− 1

2t )
d
)
q.

Note that with the Ff protocols, a valid tag will never be
removed from D. Thus, Ff is complete.

The adversary might try to randomly impersonate at least
one tag, e.g., to open a door, by randomly impersonating any
valid key in the database with calls to SENDREADER and
just sending random data. The probability that he successfully
impersonates any tag, Psuccess(t, d, q, n), can be computed by
using the probability Pinvalid(t, d, q) that one key in D is not
valid after q rounds of sending random data, i.e., it fails on
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at least one round: Pinvalid(t, d, q) := 1− (1−Premove(t, d))
q

= 1− (1− (1− 1

2t )
d
)
q, and finally Psuccess(t, d, q, n) := 1−

Pinvalid(t, d, q)n.
Ff∆ : With Ff∆ , t = 4, d = 8, q = 60, n = 2

16, so all
invalid keys have been removed after q = 60 rounds with high
probability. Also, Psuccess ≈ 2

−64, so statistical impersonation
is unlikely.

5 ALGEBRAIC PROPERTIES OF Ff

In this section, we present a framework for algebraic reasoning
about the Ff family. The efficiency of this framework is
demonstrated by successfully breaking privacy and comput-
ing secret key bits of the DPM protocol. We also use this
framework to indicate, why the Ff -family is able to withstand
typical algebraic linearization attacks. Additionally, we dis-
cuss why recent SAT-solving and LPN attacks are ineffective
against Ff . We present theoretical and practical results.

5.1 Key Linearization and “Expansion-Compaction”
Small fan-in keyed hash functions can be expanded-
compacted, i.e., first expanded into a linearized expression and
then compacted in a smaller expression capturing all security
properties of the original keyed hash function.

Lemma 5.1: Any function f : GF (2
t
) × GF (2

t
) →

GF (2
t
) can be linearized into:

(1) f(k, r) =
�s

j=1
uj(r)vj(k) where s ≤ 2

t, and uj(r),
vj(k) are polynomials from GF (2

t
)→ GF (2

t
),

(2) the vectors (u1(r), · · · , us(r)) generate a vector space
of dimension s,

(3) it is sufficient for an adversary to know the linearized
key (v1(k), · · · , vs(k)) to compute f(k, r).
See Appendix A 1 for the proof.

Lemma 5.1 can be generalized to Ff functions composed of
l functions f as follows. Note that now the dimension of the
vector space V becomes (ls) or l(s−1)+1 (if one uj0(r) is a
constant independent of r then the contribution from all the Ff

subkeys can be grouped resulting in a dimension l(s−1)+1).
Theorem 5.2: Let Ff (K, R) be a t bit keyed-hashing func-

tion (GF (2
t
)×GF (2

t
))

l → GF (2
t
) defined as Ff (K, R) =�l

i=1
f(ki, ri), where f : GF (2

t
)×GF (2

t
)→ GF (2

t
), and

K = (k1, . . . , kl), R = (r1, . . . , rl) ∈ (GF (2
t
))

l. Ff (K, R)

can be linearized into:
(1) Ff (K, R) =

�L

j=1
ERjEKj where L = ls or L =

l(s−1)+1, s ≤ 2
t, ERj = u(rj) ∈ GF (2

t
), EKj = v(kj) ∈

GF (2
t
),

(2) the vectors (ER1, . . . , ERL) generate a vector space of
dimension L,

(3) it is sufficient for an adversary to know the expanded
key (EK1, . . . , EKL) to compute Ff (K, R).
See Appendix A 1 for the proof.

(EK1, . . . , EKL) is called the expanded-compacted key of
a tag’s original secret key K.

5.2 Attacks on Ff Protocols
As of Theorem 5.2, we now can (without loss of generality)
focus on linearized Ff functions, i.e., any function can be
rewritten as the dot product K · R, Ff (K, R) = K · R,

with K, R ∈ GF (2
Lt

). Let K, R be two such vectors of L

symbols of t bits each. K denotes a key and R a random
input. (K · R) ∈ GF (2

t
) denotes the dot product. Algebraic

attacks now work as follows: an adversary eavesdropping to
communication can derive the following type and only the
following type of equations.

(K · R1
1 − w1) · (K · R2

1 − w1) · · · (K · Rd
1 − w1) = 0

(K · R1
2 − w2) · (K · R2

2 − w2) · · · (K · Rd
2 − w2) = 0

...
...

(K · R1
q − wq) · (K · R2

q − wq) · · · (K · Rd
q − wq) = 0

(2)
(Note that with multiple calls to SENDTAG, the adversary will
usually get more than q rounds of output and derive more than
q equations.)

The set of equations (2) holds, because for any round i at
least one of the (K · Rj

i
−w1) is equal to zero. Any equation

that an adversary can obtain from observing the tag-reader
communication can be derived from (2): we are operating in a
finite field, therefore for each round i, (K ·R1

i
−wi) ·(K ·R2

i
−

wi) · · · (K · Rd
i
− wi) = 0 implies that at least one (K · R

j

i
)

is equal to wi, which completely captures all the information
leaked by the authentication round and allows to derive any
equations the adversary can setup.

Generally, the adversary can compute K by solving this
system of equations. However, we will now show that with
a careful choice of L, t, d solving this system of equations
becomes computationally infeasible. Each equation of sys-
tem (2) can be expanded in a sum of monomials of degree
at most d. Each equation in round i can be rewritten as:�

1≤j≤d

1≤c1≤c2≤···≤cj≤L

Ci,c1c2···cj kc1kc2 · · · kcj = (wi)
d

The adversary linearizes monomials of degree > 1, by
substituting each with a new variable, i.e., a new monomial
of degree 1. We now call Γ the matrix of coefficients Ci,c∗ ,
and W is the vector of (wi)

d. By ordering the linearized
monomials according to a lexicographic order and renaming
their vector as Y , we obtain the following equation: Γ·Y = W

To get the key bits K, the adversary computes Y by
inverting matrix Γ. The complexity of inversion depends on
the number of (linearized) monomials. Theorem 5.3 bounds
the total number of possible monomials U . Here, U represents
the number of columns (unknowns) in Γ.

Theorem 5.3:
d�

j=1

�
L

j

�
≤ U ≤

d�

j=1

�
L + j − 1

j

�
(3)

See Appendix A 1 for the proof.
Corollary 5.4: As long as d ≤ L/2, U increases exponen-

tially with d. So, an adversary needs an exponential number (in
d) of equations and spends exponential computational effort
to compute the tag’s key.
See Appendix A 1 for the proof.

5.2.1 Algebraic and SAT-solving Attacks against Ff∆

For better readability we dedicate Appendix A 2 to analyze
and explain all the details of Ff∆ ’s security with respect
to algebraic attacks and also against SAT-solving attacks –
and compare with DPM’s security. Here, we will only give
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Fig. 3. Time to break privacy of DPM and Ff∆

a conclusive summary: With U ≈ 2
55, Ff∆ offers 165 bit

security against algebraic attacks. Also, SAT-solving [11] turns
out to be useless against Ff∆ , as the systems of equations
derivable by the adversary are very “dense”.

5.2.2 Experimental Evaluation
To back up our claims, we also experimentally evaluated alge-
braic and SAT-solving attacks against Ff∆ and for comparison
against FDPM. Figure 3 shows the results of algebraic and
SAT-based attacks on FfDPM (DPM) and Ff∆ using an Intel
Xeon, 1.86GHz, 16GByte RAM (RAM is not an issue during
the attacks, even with MiniSat). For the algebraic attack,
which is mainly Gaussian-Elimination, we use MatLab, the
SAT-attack uses MiniSat. The x-axis shows the number of
key bits. The y-axis shows the required time (in minutes) to
break privacy, i.e., an adversary can decide Tvtag

?
= Tvtag� .

Per sampling point, there are 20 different instances. Relative
standard deviation is < 20% with the algebraic attack and,
due to its indeterministic nature, < 80% with MiniSat.

SAT Parameters: For reproducibility of our results, this
paragraph lists the SAT-parameters used, see Appendix A 2.3.
The optimal grouping threshold p is p = 77%, the optimal
cutting number is 4. We also shuffle [11] each input to MiniSat
16 times, to get good performance results. Interestingly, neither
guessing of variables, nor elimination of single variables have
a positive impact on performance. We can only explain this
by pointing at the very dense system of equations we have in
FfDPM and Ff∆ , e.g., “random matrices” with β ≈ 50%, while
Bard et al. [11] and Courtois and Bard [23] assume density
of equations to be very low with β ≤ 1%. We also overdefine
the system of equations as proposed by Bard et al. [11], i.e.,
provide more than |K| = Lt equations. MiniSat performs best
with 2 · Lt equations.

FfDPM : Even with 256 key bits, you can compute an
(equivalent) key and break privacy of DPM in a couple of
minutes using the algebraic attack. MiniSat, however, does
not perform well: already with key sizes > 57 bits, MiniSat
does not finish in a “reasonable” amount of time (> 2h). We
infer from this that SAT-solving appears not to be appropriate
for computing keys of HMAC-like systems where the system
of equations is very dense. This was also mentioned by Bard
et al. [11]. With DPM sparsity/density is β ≈ 50%.

To compute all secret key bits, and not only an equivalent
key, there is also the additional SHA-1 brute-forcing step of

Section A 2.1.3.1 necessary to finally compute the “ right”
key. On average, 2

l−2 SHA-1 computations are required for
this step. With 117 key bits and l = 39, 2

37 SHA-1 operations
are necessary. On our machine running OpenSSL 0.9.8b,
2
37 SHA-1 HMAC-operations h(K|R1|N |K) with a total

4 · 117 = 468 bits of input can be executed in around 2 days.
This shows that computing the secret key is totally feasible
with the DPM-protocol, allowing not only to break privacy,
but also do impersonation.

Ff∆ : As shown in Fig. 3, with key sizes > 24 bits, MiniSat
did not finish in any reasonable amount of time (> 2h). For the
algebraic attack with 12 bits of key size, U ≈ 2

19 linearized
equations have to be solved with 2

19 monomials – this does not
finish in any reasonable amount of time. For a 256 bit key,
there will be U ≈ 2

55 monomials and equations in matrix
Γ. The computational complexity of inverting this matrix is
≈ 2

55·3
= 2

165. We claim that this will render attacks against
the key to break authenticity or privacy infeasible.

Note: The setup Ff∆(K, R
ai
i

) + Ff∆(K �, Ni) used in this
paper does not increase security against attacks on K com-
pared to simply using Ff∆(K, R

ai
i

). As already mentioned in
Section 3.1, adding Ff∆(K �, Ni) serves for replay protection
only. An adversary could repeatedly use SENDTAG to send the
same initial N to Tvtag during subsequent protocol runs. As
a result, all Ff∆(K �, Ni), 1 ≤ i ≤ q can be taken as constant
and do not increase the number of monomials in Γ.

5.2.3 Learning Parity with Noise (LPN)
The adversary might look at each of the t output bits of Ff ,
generate a Learning Parity with Noise Problem [6], and then
use an efficient method to compute key bits: sending d random
numbers R and one output(-bit) of Ff (K, R

ai
i

) on one of these
Rs in each round is similar to sending Rs as well as output
bits that are randomly flipped with a certain bias. However,
we are convinced that by carefully choosing an appropriate
key size (lt) and picking a non-linear function f such as f∆

will make attacks as proposed by Levieil and Fouque [10]
infeasible for the following reason: generally, the time and
memory complexity of these attacks rise with 2

O(
|K|

log |K| ), |K|
being the key size. However to apply LPN-based attacks, the
adversary will have to linearize a non-linear f first. This will
introduce new monomials such that the key size “virtually”
increases – in the case of Ff , if you rewrite a non-linear f as
a linear one, f(k, r) =

�s

j=1
uj(r)vj(k), as shown above, key

size |K| will become |K| = l · s, s < 2
t. Given a non-linear

f , this key size can become much higher than |K| = (lt),
making LPN-attacks infeasible.

Ff∆ : With Ff∆ , the LPN-bias � = 1− (
1

d
+

1

2

d−1

8
) ≈ 44%.

Linearization of f∆ will introduce 3 new monomials per key
symbol, so |K| rises to 64 · (4 + 3) = 448 bits. This will
result in a time- and memory complexity between � 2

66 and
� 2

130, cf., Levieil and Fouque [10]. So, we are convinced
that Ff∆ is secure against LPN attacks.

6 SECURITY IMPLICATIONS
We will briefly summarize the last sections’ implications on
authentication and privacy.
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6.1 Authentication
In conclusion, it is impossible for the adversary to fake
authentication and impersonate as a valid tag. We have shown
in Section 5 that the adversary cannot compute K, K � with
known attacks, such as algebraic attacks, SAT-attacks, and
LPN-attacks. To still successfully impersonate any tag, the
adversary would need to respond to a random reader’s nonce
N with q = 60 valid Ff∆(K, R

ai
i

) + Ff∆(K �, Ni) pairs.
Section 4 has shown that this is statistically impossible.

6.2 Privacy
As the adversary cannot compute K, he has to analyze the
output of SENDTAG oracle calls to characterize tags. Here,
the two properties indistinguishability and balanced output
of Section 4 provide privacy against statistical attacks: the
adversary is not able to statistically distinguish or characterize
any two tags.

Still, the adversary might try to exploit algebraic properties
of the SENDTAG output he sees. After querying two tags
Tvtag, Tvtag� , he has gathered two sets of equations S1, S2

of the form of (2) in Section 5.2. Assume that within each
set there are λ linearly independent equations, respectively.
If the adversary mixes equations between S1, S2 and the
resulting matrix contains results in a contradiction (i.e., the
left hand side of one equation is a linear combination of other
equations, but the right hand side does not match), he knows
Tvtag �= Tvtag� , otherwise he cannot conclude anything.

A necessary, but not sufficient condition for this is to find
at least one linear independent equation in the mix of S1, S2 –
which is unlikely: given that the maximum achievable rank of
matrices S1, S2 derived from observing the protocol execution
is extremely high, cf., Section 5.3, then the probability that
the 2 · λ equations will be linearly independent is extremely
high. For the computationally bound adversary, to be able to
compute a linear dependent equation in a 2 · λ × U matrix,
2 · λ � U . Yet, already a (n − 5) × n matrix has with high
probability rank (n − 5), so the 2 · λ × U matrix has rank
2 ·λ with high probability, see Cooper [24]. So, the adversary
cannot reach a conclusion on the relation between S1, S2.

7 RELATED WORK

Many recently proposed solutions for RFID authentication and
privacy require usage of a strong, but expensive hash function
on the tag. Also, most of these protocols have been shown to
be insecure or leak privacy.

For example Tsudik [12] just sends the HMAC of the
reader’s challenge, keyed with the pairwise secret key, back to
the reader. To protect against replay attacks, challenges need to
be of ascending order, otherwise the tag rejects the challenge.
So in addition to an HMAC, a non-volatile state is required
on the tag which, in many scenarios, might not be feasible or
simply too expensive for a tag. This protocol is prone against
DoS-attacks and has been shown to leak privacy [7].

Weis et al. [13] use a strong and expensive hash function
and an HMAC-like computation for identification of a tag.
This, however, does not protect against replay attacks from

the adversary: as there is no nonce from the reader involved in
the protocol, an adversary receives always the same response
on subsequent interactions with the same tag. This helps the
adversary to identify a single tag breaking privacy, cf., [14].

Using a tree-based setup, Molnar and Wagner [14] distribute
O(log n) secret keys to each tag. This authentication with
O(log n) complexity, i.e., “walking down” the tree of secrets
until one tag is uniquely defined. Yet, besides requiring a
complex hash function, the amount of memory required on
a tag for this scheme might be infeasible in many scenarios.
Also, privacy of this scheme is weak [15]. Finally in contrast
to Ff this scheme is not secure against tag compromise, as
tags share some of the secrets of other tags. To overcome these
weaknesses, Avoine et al. [15] propose the OSK/AO protocol
using hash-chains, also proposed by Ohkubo et al. [16]. Yet,
OSK/AO is known to leak privacy [7], requires an expensive
hash function and a state on the tag.

With the HB+ protocol by Juels and Weis [6], the tag
XORs a biased “noise-bit” to the response before sending the
response to the reader. The reader can then compute the tag’s
original response by solving the Learning Parity with Noise
(LPN) problem. Yet, this scheme and also many variants are
known to be insecure or leak privacy [10, 25]. Also note that
with HB+ and all variants based on LPN-schemes [26], there
will always be a potentially non-negligible probability that a
valid tag gets rejected by the reader – HB+ is not complete.

In van Deursen et al. [9], an algebraic technique to compute
2

3
of all key bits is proposed. Soos [8] independently discov-

ered the 2
2m+1 equivalence classes in DPM. These papers can

be seen as special cases of the algebraic reasoning provided in
this paper to indicate the security of Ff . The paper at hand is
a generalization of the above papers, additionally discussing
security against SAT-solving and LPN applying to all variants
of DPM-like privacy-preserving authentication protocols.

8 CONCLUSION
This paper presented the Ff family of privacy-preserving
authentication protocols. Ff uses a simple, round-based setup,
where tags send the results of evaluating random numbers
using small fan-in functions to the reader. The main advantage
of Ff is its extreme low cost: compared to related work, it
does not require a cryptographically strong, expensive hash
function. One sample instance Ff∆ can be implemented on a
tag using less than 2, 000 gates, yet offering 64 bit security
against statistical impersonation attacks, � 66 bit against
LPN, and 165 bit against algebraic attacks. Also, experiments
indicate that SAT-solving attacks are computationally infea-
sible. Generally, Ff offers arbitrary, user-adjustable levels of
soundness, identification rate, and even completeness.

Acknowledgments: The authors wish to thank Olivier Billet
for pointing at and discussing LPN attacks.
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APPENDIX
A 1 PROOFS OF SECTIONS 4 AND 5
For additional information and annotations, please refer to the
technical report [27] published in conjunction with this paper.

Proof of Theorem 4.1: Assume that there are two keys,
K, K � ∈ GF (2

lt
) such that ∀R ∈ GF (2

lt
), F (K, R) =

F (K �, R), we will show that K = K �. Looking at the ith

symbols ki and k�
i
, we can rewrite F (K, R) = F (K �, R):

∀ri ∈ GF (2
t
),∀rj ∈ GF (2

t
)�

f(ki, ri) + f(k�
i
, ri) =�

j �=i
f(kj , rj) +

�
j �=i

f(k�
j
, rj)

�
(4)

By construction, we know that for function f , if ki �= k�
i
,

then ∃h1, h2, r, r
� ∈ GF (2

t
), h1 �= h2 such that f(ki, r) +

f(k�
i
, r) = h1 and f(ki, r

�
) + f(k�

i
, r�) = h2. However, from

Equation (4), this implies
�

j �=i
f(kj , rj) +

�
j �=i

f(k�
j
, rj)

being equal to h1 and h2 simultaneously, which is impossible.
So, ki has to be equal to k�

i
.

Proof of Theorem 4.2: We first consider one bit output
functions (t = 1). The proof is by induction on l.

Case t = 1, Induction Basis (l = 1): In this case, K = k1

and K �
= k�

1
, F (K, R) = f(k, r), and F (K �, R) = f(k�, r).

If k1 = k�
1
, the interval bounding the distinguishability

probability becomes [− 1

2
,

3

2
], which is always true. If k1 �= k�

1
,

HD(K, K �
) is equal to 1, and the theorem hypothesis gives

Pr[F (K, R) �= F (K �, R)] ∈ [
1

2
− δ,

1

2
+ δ] ⊆ [

1

2
−2δ,

1

2
+2δ].

Case t = 1, Inductive Step: Let the induction hypothesis
be that the theorem is true for l, and let K, K � be two keys of
length l + 1 symbols. Denote by Kl (resp. K �l), the subkeys
(k1, . . . , kl) and (k�

1
, . . . , k�

l
), respectively.

If kl+1 = k�
l+1

: then HD(K, K �
) = HD(Kl,K �l

) and
Pr[F (K, R) �= F (K �, R)] = Pr[F (Kl, R) �= F (K �l, R)].
Since, from the induction hypothesis Pr[F (Kl, Rl

) �=
F (K �l, Rl

)] ∈ [
1

2
− (2δ)HD(K

l
,K

�l
),

1

2
+ (2δ)HD(K

l
,K

�l
)
], then

it is trivial that the desired property is true for l + 1.
If kl+1 �= k�

l+1
: from the initial assumption about the

function f , ∃�1 ∈ [−δ, δ] such that Pr[f(kl+1, rl+1) �=
f(k�l+1, rl+1)] =

1

2
+�1. From the induction hypothesis, ∃�2 ∈

[−(2δ)HD(K
l
,K

�l
), (2δ)HD(K

l
,K

�l
)
] such that Pr[F (Kl, Rl

) �=
F (K �l, Rl

)] =
1

2
+�2. We also have (from the definition of F ):

Pr[F (K, R) �= F (K �, R)] = Pr[F (Kl, Rl
)+f(kl+1, rl+1) �=

F (K �l, R) + f(k�
l+1

, r�
l+1

)].

Because F and f functions take only 0 and 1 values, and
the ri are independent random variables, the following holds:

Pr[F (K, R) �= F (K�, R)] =

Pr[F (Kl, Rl) �= F (K�l, R)] · Pr[f(kl+1, rl+1) = f(k�l+1, rl+1)]

+
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Pr[F (Kl, Rl) = F (K�l, R)] · Pr[f(kl+1, rl+1) �= f(k�l+1, rl+1)]

= ( 1
2 + �2)( 1

2 − �1) + ( 1
2 − �2)( 1

2 + �1) = 1
2 − 2�1�2

Since �1 ∈ [−δ, δ], �2 ∈ [−(2δ)HD(K
l
,K

�l
), (2δ)HD(K

l
,K

�l
)
],

and HD(K, K �
) = HD(Kl,K �l

) + 1, then we obtain the final
result: Pr[F (K, R) �= F (K �, R)] ∈ [

1

2
− (2δ)HD(K,K

�
), 1

2
+

(2δ)HD(K,K
�
)
].

Case t > 1. The generalization to t > 1 is straightforward,
since it is sufficient that F (K, R) differs from F (K �, R) on
at least one out of t bits of output. With t output bits, the
bounding interval tightens by a power of t. Note that a tighter
bound on the distinguishability probability can be obtained, if
we consider the output as a single symbol of t bits.

Proof of Lemma 5.1: The function f(k, r) can be
interpolated into a multivariate polynomial of degree (2

t − 1)

in k and r. In case of t = 1, this is the same as the Algebraic
Normal Form (ANF) of f . One way to make it explicit would
be by Lagrange interpolation. Developing the polynomial into
a sum of monomials in k and r, we obtain:

f(k, r) =

�

0≤i,i�≤2t−1

Ci,i� · ri
�
k

i (5)

where Ci,i� is uniquely defined by function f .
This expression can be rewritten as: f(k, r) =�

0≤i≤2t−1
(
�

0≤i�≤2t−1
Ci,i�r

i
�
) · ki. This is basically the

dot product (
�

0≤i�≤2t−1
Ci,i�r

i
�
)i=0···2t−1 · (ki

)
T

i=0···2t−1
.

Now consider E, the space generated by vectors V =

(
�

0≤i�≤2t−1
Ci,i�r

i
�
)i=0···2t−1, whose coordinates are the co-

efficients of monomials ki. V has 2
t coordinates. Let s ≤ 2

t

be the dimension of E and (u1(r), · · · , us(r)) be a basis.
Therefore, V can be rewritten as a linear combination of
the basis vector defined by a matrix A, such that: V =

(u1(r), · · · , us(r)) · A. We can then reformulate f(k, r):

f(k, r) = V · (ki
)
T

i=0···2t−1

= [(u1(r), · · · , us(r)) · A] · (ki
)
T

i=0···2t−1

= (u1(r), · · · , us(r)) · [(ki
)i=0···2t−1 · AT

]
T (6)

Let (v1(k), · · · vs(k)) denote [(ki
)i=0···2t−1·AT

] and replac-
ing it in (6), we then conclude that f(k, r) can be compacted
into a sum of s terms:

f(k, r) =

s�

j=1

uj(r)vj(k) (7)

where vj(k) results from the linear combination of the mono-
mials in (5). Finally using Equation (7), it is clear that
knowledge of the key k is equivalent to knowledge of its
expanded form (v1(k), . . . , vs(k)).

Proof of Theorem 5.2: From Lemma 5.1, we have:
f(k, r) =

�s

j=1
uj(r)vj(k). For a given f function, we

consider the following two cases: (1) one function uj(r) = c

is a constant function of r, (2) all function uj(r) are non-
constants. These are the only two possible cases, because if
two (or more) functions uj , and uj� were constants, then:
uj(r)vj(k) + uj�(r)vj�(k) = [cvj(k) + c�vj�(k)] = u��

j
(r) ·

v��(k), where u��(r) is a constant function of the key, and

more importantly, the f would have been compacted to (s−1).
Therefore, at most one uj function is a constant.

In case (1), w.l.o.g, we can assume that function us(r) = c

is the constant function. Thus,

Ff (K, R) =

l�

i=1

f(ki, ri) =

l�

i=1

s�

j=1

uj(ri)vj(ki)

=

l�

i=1

s−1�

j=1

uj(ri)vj(ki) + c ·
l�

i=1

vs(ki)

We can write Ff (K, R) =
�L

h=1
ERhEKh, where L = l(s−

1)+1, ERh = uj(ri) and EKh = vj(ki), for h = (i−1)(s−
1) + j, and ERl(s−1)+1 = 1; EKl(s−1)+1 = c ·

�l

i=1
vs(ki).

In case (2),

Ff (K, R) =

l�

i=1

f(ki, ri) =

l�

i=1

s�

j=1

uj(ri)vj(ki)

We can write Ff (K, R) =
�L

h=1
ERhEKh, where L = ls,

ERh = uj(ri) and EKh = vj(ki), for h = (i− 1)s + j.
In both cases, from the properties of ui(ri), we can deduce

that (ER1, . . . , ERL) generate a vector space of dimension
L. Finally, knowing the values of vector (EK1, . . . , EKL),
would allow an adversary to compute function Ff , because
the ERh are public and depend only on the publicly known
random input.

Proof of Theorem 5.3: The number of monomials of
degree j, 1 ≤ j ≤ d, where each key symbol is used at
most once, e.g., k1 · · · kj , is

�
L

j

�
. This number can already

be reached in a field where the maximum order of an element
is 1, e.g., in GF (2). Thus, this is a lower bound.

The number of monomials of degree j, 1 ≤ j ≤ d, where
each key symbol is used at most j times, e.g., k1 is used 3
times in k3

1
· k2 · · · kj−2, is

�
L+j−1

j

�
. In the general case, this

is an upper bound. In conclusion, we derive these bounds on
U :

�d

j=1

�
L

j

�
≤ U ≤

�d

j=1

�
L+j−1

j

�
.

Proof of Corollary 5.4: A lower bound on
�
L

d

�
is given

by:
�
L

d

�
=

d−1�
i=0

L−i

d−i
≥

�
L

d

�d (because ∀i, d, L : 0 ≤ i ≤

d− 1 < L⇒ (L− i) ·d ≥ (d− i) ·L). This inequality and (3)

imply U ≥
�d

j=1

�
L

j

�
≥

�d

j=1

�
L

j

�j

, hence the number of
monomials of the system rises exponentially with d. On a side
note, inverting matrix Γ will require U linearly independent
observations. Assuming that the random input values R

j

i
lead

to a random matrix Γ, then using only a small number of extra
equations, e.g., less than 5, we can obtain with overwhelming
probability a maximum rank matrix Γ [24].

A 2 APPLYING ATTACKS TO DPM AND Ff∆

We attack DPM and Ff∆ using our general algebraic frame-
work and SAT-attacks for three purposes:

(1) to show the effectiveness of this framework and alge-
braic attacks against “weak” instances of Ff , in particular
FfDPM (“DPM”).
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(2) to indicate why “good” instances of Ff , in particular
Ff∆ , are secure.

(3) indicate why SAT-solving attacks are infeasible of
breaking “good” instances of Ff , in particular Ff∆ .

For better understanding, the following sections will focus
on applying the attacks on FfDPM first. Afterwards, extending
the attack to Ff∆ and showing its computational infeasibility
is straightforward.

A 2.1 Algebraic Attacks on FfDPM

We will show that the adversary will be able to compute a
tag’s expanded-compacted key, which is sufficient to spoil
authenticity, soundness, and privacy of FfDPM .

A 2.1.1 Expanding-Compacting fDPM
FfDPM(K, R) is used during authentication, with

fDPM(ki, ri) =

M(ki,1 + ri,1, ki,2 + ri,2, ki,3 + ri,3) =

(ri,2 + ri,3)ki,1 + (ri,1 + ri,3)ki,2 + (ri,1 + ri,2)ki,3+

ki,1ki,2 + ki,1ki,3 + ki,2ki,3 + ri,1ri,2 + ri,1ri,3 + ri,2ri,3 =

(ri,2 + ri,3)ki,1 + (ri,1 + ri,3)ki,2 + (ri,1 + ri,2)ki,3+

M(ki,1, ki,2, ki,3) + M(ri,1, ri,2, ri,3).

As mentioned in Section 3.3, ki, ri ∈ GF (2
3
), but

fDPM outputs in GF(2). M is the majority function. The
coefficients of the fDPM(ki, ri) polynomial with unknowns
(ki,1, ki,2, ki,3) form vectors generating a space of dimen-
sion 3: coefficient (ri,1 + ri,2) of ki,3 is a linear combi-
nation of coefficients (ri,2 + ri,3) of ki,1 and (ri,1 + ri,3)

of ki,2: (ri,1 + ri,2) = (ri,2 + ri,3) + (ri,1 + ri,3) and
thus (ri,2 + ri,3)ki,1 + (ri,1 + ri,3)ki,2 + (ri,1 + ri,2)ki,3 =

(ri,2 + ri,3)(ki,1 + ki,3) + (ri,1 + ri,3)(ki,2 + ki,3).

One of the coefficients, M(ki,1, ki,2, ki,3), is indepen-
dent of ri,1, ri,2, ri,3 and therefore always equal to 1.
Finally, M(ri,1, ri,2, ri,3) is a constant term independent
from (ki,1, ki,2, ki,3). Therefore, the dimension of the
space generated by the coefficients of FfDPM(K, R) :=�l

i=1
fDPM(ki, ri) =

�L

i=1
ERi · EKi, with

ER1 · EK1 := (r1,2 + r1,3)(k1,1 + k1,3)

ER2 · EK2 := (r1,1 + r1,3)(k1,2 + k1,3)

. . .

ER2l−1 · EK2l−1 := (rl,2 + rl,3)(kl,1 + kl,3)

ER2l · EK2l := (rl,1 + rl,3)(kl,2 + kl,3)

ER2l+1 · EK2l+1 := 1 ·
lX

i=1

M(ki,1, ki,2, ki,3)

is L = (2l + 1).
Computation of a tag’s expanded-compacted key is done by

setting up and solving a system of linear equations as follows.

A 2.1.2 Computing Keys in DPM
With DPM, in each round of the q rounds of identification,
the tag sends the pair Ai = (Ri ⊕ K), bi = FfDPM(K, Ai),
with Ai = ((αi)1 = (ri)1 ⊕ k1, . . . , (αi)l = (ri)l ⊕ kl) ∈
GF (2

lt
), (αi)j ∈ GF (2

t
) to the reader that can therewith

identify the tag’s key K step-by-step. Note that there is no
replay-protection in DPM during these identification rounds.
Di Pietro and Molva [2] propose a key size of 117 bits for
good security.

First, note that there are equivalent keys with fDPM and
therefore FfDPM : the output of fDPM(ki, ri) is the opposite
of the output of all bits of ki inverted, i.e., fDPM(ki, ri) =

fDPM(ki, ri). Thus if a key K has an even number of symbols
ki which bits are inverted compared to another key K �, then
K and K � are equivalent, ∀R,FfDPM(K, R) = FfDPM(K �, R).
As a result, the adversary can never compute the “whole” key,
but only 2

3
of the key bits. However, we will see later that the

remaining key bits can be easily brute-forced.
A 2.1.2.1 Setting up and Solving Equations: The ad-

versary calls LAUNCH multiple times during quality time
to initiate new protocol runs with some randomly drawn
tag Tvtag . To behave in compliance with the protocol, he
gives Tvtag some nonce N in each protocol run by calling
SENDTAG. The oracle returns with the Tvtag’s reply, i.e., q

pairs {Ai, bi} from each protocol round. Now, the adversary
sets up a system of equations using these pairs with K the
unknown key bits:

FfDPM(K, A1) = b1

FfDPM(K, A2) = b2

. . .

FfDPM(K, Aj) = bj .

This system of equations can be simplified to a system of
linear equations, using the linearization and expanding-com-
paction technique as described above. So, for one observation
(Ai, bi), FfDPM(K, Ai) =

�l

j=1
(ERi)jEKj = bi holds.

Here, EK = EK1, . . . , EKL is the expanded-compacted
key of the Tvtag’s original key K. For the ithth observation
(Ai, bi), the adversary has

PL
j=1 (ERi)jEKj =

((αi)1,2 + (αi)1,3) · (k1,1 + k1,3)

+((αi)1,1 + (αi)1,3) · (k1,2 + k1,3)

+1 · M(k1,1, k1,2, k1,3) + M((αi)1,1, (αi)1,2, (αi)1,3)

+

((αi)2,2 + (αi)2,3) · (k2,1 + k2,3)

+((αi)2,1 + (αi)2,3) · (k2,2 + k2,3)

+1 · M(k2,1, k2,2, k2,3) + M((αi)2,1, (αi)2,2, (αi)2,3)

+ · · · +
((αi)l,2 + (αi)l,3) · (kl,1 + kl,3)

+((αi)l,1 + (αi)l,3) · (kl,2 + kl,3)

+1 · M(kl,1, kl,2, kl,3) + M((αi)l,1, (αi)l,2, (αi)l,3)

=
Pl

j=1 ((αi)j,1 + (αi)j,3)(kj,1 + kj,3)

+
Pl

j=1 ((αi)j,1 + (αi)j,3)(kj,2 + kj,3)

+1 ·
Pl

j=1 M(kj,1, kj,2, kj,3)

+
Pl

j=1 M((αi)j,1, (αi)j,2, (αi)j,3) = bi

Now, the adversary solves the following system of linear
equations M ·EK = B. Here, M is the matrix of coefficients
of EK. As of Theorem 5.2 (and Theorem 5.3 as d = 1 with
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FfDPM ), M can only have rank L = (2l + 1). Therefore, the
adversary collects L = (2l+1) linear independent observations
to make up a (2l+1)× (2l+1) matrix M, with j = {1 . . . l},

Mi,2(j−1)+1 := (αi)j,2 + (αi)j,3,

Mi,2(j−1)+2 := (αi)j,1 + (αi)j,3

Mi,2l+1 := 1.

So, column Mi,2(j−1)+1 represents (ki,1 + ki,3),
Mi,2(j−1)+2 represents (ki,2 + ki,3), and Mi,2l+1 represents�l

j=1
M(kj,1, kj,2, kj,3). Finding and guaranteeing a

total of L = (2l + 1) linear independent observations
turns out to be simple: See the proof of Corollary 5.4
and Cooper [24]. Using SENDTAG, the adversary queries
the tag only a little bit more than L times, e.g., (L + 5)

times, to get L linear independent observations with
overwhelming probability. B is a vector of dimension (2l+1),
Bi := bi +

�l

j=1
M((αi)j,1, (αi)j,2, (αi)j,3), 1 ≤ i ≤ 2l + 1.

This system of linear equations can be solved using sim-
ple Gaussian elimination. This results in computing (k1,1 +

k1,3), (k1,2 + k1,3), . . . , (kl,1 + kl,3), (kl,2 + kl,3) and B =�l

j=1
M(kj,1, kj,2, kj,3).

A 2.1.2.2 Computing an Equivalent Key: Finally, to
compute an equivalent key K � of Tvtag’s original key, the
adversary sets the first (l − 1)t third key bits of every key
symbol to 0: {k1,3 := 0, k2,3 := 0, . . . , kl−1,3 := 1}.
This yields key bits {k1,1, k1,2, k2,1, k2,2, . . . , kl,1, kl,2}.
Now all key bits, besides the last key bit kl,3, are known.
This last bit is set to either 1, iff

�l−1

j=1
M(kj,1, kj,2) +

M(kl,1, kl,2, 1) =
�l

j=1
M(kj,1, kj,2, kj,3) = B, or 0, iff�l−1

j=1
M(kj,1, kj,2) + M(kl,1, kl,2, 0) = B.

So, this attack allows the adversary to compute an equivalent
key K � of a tag’s original key K.

A 2.1.3 Breaking Privacy
According to the privacy definition of Section 2.2.2, the
adversary should not have a more than negligible probability
over guessing (50%) of linking subsequent protocol runs of
two tags to one tag.

The adversary calls DRAWTAG to receive one tag Tvtag

for quality time. During this quality time, he computes an
equivalent key K for Tvtag using the above attack. Afterwards,
he calls FREE Tvtag to free this tag, he again calls DRAWTAG
to receive a second tag Tvtag� for quality time and computes
an equivalent key K � for Tvtag� . If keys K and K � are not-
equivalent, i.e., by inverting an even number of 3 bit symbols,
he knows for sure (100%) that Tvtag was not the same tag
as Tvtag� . If the keys are equivalent, he guesses with 50%

whether Tvtag is the same as Tvtag� .
There are 2

l−1 equivalent keys in each of the 2
2l+1 equiv-

alence classes of FfDPM . So, in n
2

l−1

23l out of n cases, Tvtag�

gives a key K � which is equivalent to K. In these cases, the
adversary wins with 50%. In the remaining n

2
3l−2

l−1

23l out of
n cases, Tvtag� is a non-equivalent tag, and the adversary wins

with 100%. More formally, Pwin =
n

2l−1

23l

n
· 50% +

n
23l−2l−1

23l

n
·

100% = 1 − 1

22l+2 . For l ≥ 1, this is much better than a
guessing adversary with 50%. With l = 39 as proposed by Di
Pietro and Molva [2], Pwin = 1− 1

280 ≈ 100%.

A 2.1.3.1 Finding the “Right” Key: In the original
DPM-protocol proposal, there is an additional step required
after q identifications rounds with FfDPM to protect against
replay attacks. The HMAC h(K|R1|N |K) is sent from the
tag to the reader, with N being the nonce received from the
tag, R1 the first random number of the tag, and h a strong hash
function (e.g., SHA-1). The reader compares h(K|R1|N |K)

with the HMAC computed using the key(s) he identified in his
database during the preceding q rounds. So, if the adversary
computes only an equivalent key K � of the tag’s original key
K, the reader’s verification of above HMAC fails, and the
adversary will be rejected, RESULT will be 0.

Still, the adversary can easily brute-force K using K �: two
keys K �= K � are equivalent for FfDPM , if an even number of
key symbols is inverted from K to K �. There are 2

l−1 keys
equivalent to K, including K itself. To find out the correct K,
the adversary has to additionally do 2

l−2 SHA-1 computations
on average for all equivalent keys K �

equiv
of K �. Each of

the generated equivalent keys K �
equiv

of K � is hashed with
h(K �

equiv
|R1|N |K �

equiv
) and presented to the reader with a

call to SENDREADER – until RESULT= 1, i.e., if K �
equiv

= K.
Conclusion: Breaking privacy with FfDPM is equal to

solving a system linear equations with U = L = (2l + 1)

unknowns and has ≈ L3 computational complexity. With the
originally proposed 117 bit key size (l = 39), computational
complexity is ≈ 2

19. Experimental results on breaking privacy
and computing key-bits of Ff∆ are presented in Section 5.2.2.

A 2.2 Algebraic Attacks on Ff∆

The same attacks can be applied against Ff∆ : every output bit
of f∆(ki, ri) captures all random and key bits ri,j , ki,j , 1 ≤
j ≤ 4. So for simplicity, the adversary can set up equations
only by looking at one, w.l.o.g., the first output bit Ff∆1

. This
will be sufficient for him to compute all key bits.

By its design, expanding-compacting f∆1 adds three new
monomials per key symbol which results in s = 7 and L =

l · s = 448. Using the attack setup of Section 5.2 with d = 8,
this results in a system of linear equations with U unknowns,�

8

j=1

�
64·7

j

�
≈ 2

55 ≤ U ≤
�

8

j=1

�
64·7+j−1

j

�
≈ 2

55. The ad-
versary needs to set up 2

55 equations and thus requires ≈ 2
165

computational complexity for matrix inversion to compute key
bits. Ff∆ therefore has 165 bits of security against algebraic
impersonation. So, Ff∆ is safe against algebraic attacks. While
there might be optimizations to such attacks, we believe they
will not significantly improve the computational complexity.

A 2.3 SAT-Solving
Recently, a lot of attention has been drawn to the use of SAT-
solvers in cryptography [1, 11, 23, 28, 29, 31, 32]. In theory,
the problem of solving a system of multivariate equations is
transformed into an equivalent boolean Satisfiability (SAT)
problem. If there is a satisfying solution for the SAT-problem’s
variables, then this is also a solution for the variable assign-
ments of the original system of multivariate equation. So, the
idea is to convert ANF-equations into boolean Conjunctive
Normal Form (CNF) and then use a SAT-solver.
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The anticipated benefit of transforming multivariate alge-
braic equations to a SAT-problem for cryptography is to
get a “good” instance of a SAT-problem that can be solved
by an indeterministic SAT-solver quickly. Therefore, we also
attacked FfDPM and Ff∆ using the SAT-solver MiniSat [33].

The sequel describes all main theoretical properties of our
SAT-solving attacks on FfDPM and Ff∆ , in particular details
required for the conversion to CNF. For further technical
details, refer to the list of papers cited. Sections 5.2.2 presents
experimental evaluation results.

Linearization: Based on plain- and ciphertext observations,
an adversary can potentially make, linearized equations in
ANF are set up using a simple substitution technique [11]. All
ANF equations are of the form

�
i
ui = 1, for all linearized

monomials ui that have coefficients 1. The set S of left-hand-
side expressions of above equations will be converted to CNF.

Grouping: Before the actual conversion of S, it is sug-
gested [28] to replace frequently re-appearing groups of mono-
mials in S by introducing new variables. If there is a group of
monomials ui + · · ·+uj in many expressions of S, this group
is substituted in S by a new variable t, and the expression
{1 + t + ui + · · · + uj} is added to S. We implemented
this by replacing groups of monomials appearing more often
than a certain percentage p in the equations. The results
in an increased sparsity of expressions. Sparse expressions,
consisting only of a small amount of monomials, reduce CNF
clause-length, number of clauses, and SAT-solving time.

Elimination of Variables: It is also suggested to replace
some of the variables in S by their definition [11]. If there is an
expression {ui+ui+1+· · · +uj} ∈ S, then, e.g., ui is replaced
inside every other expression in S by 1 + ui+1 + · · · + uj .
This effectively eliminates ui from SAT-solving speeding up
the solving process. However, as this reduces the sparsity of
the expression and might have negative effects on computation
time, cf., Section 5.2.2.

Guessing: Experiments [29, 31] indicate that it is worth-
while to systematically bute-force (“guess”) some of the
variables, i.e., key bits, before using SAT-solvers. With lt being
the total key size, the adversary randomly picks (u� lt) key
bits ki, . . . , ki+u−1. The adversary iterates over all possible
2

u assignments for these key bits. If the SAT-solver returns
unsatisfiable for an assignment, the adversary knows that this
assignment was wrong and proceeds with the next iteration
until the right solution is found. It is expected that 2

u invo-
cations of a SAT-solver with (lt− t) key bits is faster than 1
invocation with lt key bits.

Cutting: Finally, S is converted to a boolean CNF, us-
ing the convention 1 ≡ True, 0 ≡ False. As the
conversion of XORs in ANF expressions has exponential
complexity in terms of CNF clause-length, ANF expres-
sions are typically cut before conversion: an expression
u1 + u2 + · · · + uk + uk+1 + · · · + ua is split into multiple
expressions {u1 + u2 + · · ·+ t1, 1 + t1 + uk+1 + · · ·+ u2k−2,
1 + t2 + u2k−1 + · · · }, where each expression consists of at
most k monomials, and new variables ti are introduced [11].
Here, k is called the cutting number.

Please refer to Section 5.2.2 for practical evaluation results
of algebraic and SAT-attacks.
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