
A Provably Secure Secret Handshake with Dynamic
Controlled Matching

1. Introduction

Parties cooperating in hostile networked environments often need to estab-

lish an initial trust. Trust establishment can be very delicate when it involves

the exchange of sensitive information, such as affiliation to a secret society or

to an intelligence agency. Two mechanisms, Secret Handshakes and Secure

Matchmaking, have tackled this problem, coming up with solutions for secure

initial exchange between mistrusting principals. The relevance of this problem

as a research topic is evidenced by the number of recent publications on the

subject [1, 10, 11, 15, 16].

A Secret Handshake, first introduced by Balfanz et al. in [3], is a mechanism

devised for two users to simultaneously prove to each other possession of a prop-

erty, for instance membership to a certain group. The ability to prove and verify

is strictly controlled by a certification authority, that issues property credentials

and matching references respectively allowing to prove to another user, and to

verify another user’s, possession of a property. Users are not able to perform

a successful handshake without the appropriate credentials and matching ref-

erences; in addition protocol exchanges are often untraceable and anonymous.

Most of the Secret Handshake schemes available in the literature only allow for

the matching of own group membership: we will refer to this class of protocols

as own-group membership secret handshakes.

Matchmaking protocols, presented first in [2], solve the same problem in a

slightly different setting: users express “wishes” about the property expected

from the other communicating party, and the communication is established only

Preprint submitted to Elsevier November 17, 2009



if both users’ wishes are mutually matched. The main difference from Secret

Handshakes, is the ability of a Matchmaking user to set credential and matching

reference, thus freely choosing the properties object of the match.

Recently, Ateniese et al. presented in [1] a scheme that allows Secret Hand-

shake with dynamic matching, lifting the own-group limitation by allowing to

verify the presence of properties different from the user’s own. This scheme is

somewhat in between Secret Handshakes and Secure Matchmaking protocols. It

inherits from secret handshake the need for credentials issued by an authority;

however, the choice of the property to be verified in the other party is left at

the discretion of the verifying user, as in Secure Matchmaking.

In this paper, we present the first Secret Handshake scheme with dynamic

controlled matching : users are required to possess credentials and matching ref-

erences issued by a trusted certification authority in order to be able to prove

and to verify possession of a given property. Therefore the certification author-

ity retains the control over who can prove what and who can disclose which

credentials. However verification is dynamic, in that it is not restricted to own

property, as opposed to [3, 7, 13, 16, 17].

This new scheme is of clear practical use. For instance, it fulfills the require-

ments identified by the EU Project R4EGov [9]. In one of the project’s use cases,

EU justice forces cooperate with one another in order to solve cross-boundary

criminal cases. EU regulations define official processes that must imperatively

be followed by operating officers: in particular, these processes mandate which

institutions must cooperate upon each particular case. During such collabora-

tion, for instance, a member of France’s Ministère de la Défense must cooperate

with a member of the Bundesnachrichtendienst, Germany’s intelligence service,

to investigate on an alleged internal scandal. The two officers may need to meet

secretly, and authenticate themselves on-the-fly. Both are definitely reluctant

to disclose their affiliation and purpose to anybody but the intended recipient.

It is evident that they cannot use matchmaking or plain secret handshake:

the former does not offer any certification on the exchanged properties, the latter

only allows matching within the same organization. Handshakes with dynamic

2



matching too fall short of providing a suitable solution for the problem. The

freedom of matching any property gives too much liberty to the officials, who

must instead strictly abide by EU regulations that mandate which institution

must cooperate on a case-by-case basis. Indeed, these officials are acting on

behalf of the State and of the people: they must follow rules and ought not

make personal choices.

To this end, we propose a novel cryptographic scheme, called SecureMatching,

that allows an authorized prover to convince an authorized verifier that she owns

a property (such as group membership). Our work thus addresses requirements

that are not met by existing Secret Handshake and Matchmaking protocols, by

combining the mandatory control of a third party over credentials and matching

references – akin to Secret Handshakes – with the dynamic matching features

of Matchmaking. In Section 4 we show, by means of reductionist proofs, that

this primitive is secure under the random oracle model, under the assumption

that the Bilinear Decisional Diffie-Hellman (BDDH) problem is hard. Finally,

we show how to use SecureMatching to build a full-fledged Secret Handshake

scheme with dynamic controlled matching.

2. Related Work

Secret Handshakes are first introduced in 2003 by Balfanz et al. [3] as mech-

anisms designed to prove group membership, and share a secret key, between

two fellow group members. The purpose of these protocols is – as pointed out

in [16] – to model in a cryptographic protocol the folklore of real handshakes

between members of exclusive societies, or guilds.

Since this early work, many papers have further investigated the subject,

considerably advancing the state of the art. New schemes have been intro-

duced, achieving for instance reusable credentials (the possibility to generate

multiple protocol exchanges out of a single credential with no loss in untrace-

ability) and dynamic matchings (the ability to verify membership for groups

different from one’s own). Castelluccia et al. in [7] introduce the concept of

CA-Oblivious encryption and show how to build a Secret Handshake scheme

3



from such a primitive. Users are equipped with credentials and matching ref-

erences (in this particular case embodied by a public key and a trapdoor) that

allow them to pass off as a group member and to detect one. In [13], Meadows

introduces a scheme that is similar to Secret Handshakes, despite the fact that

the security requirements are slightly different – for instance, untraceability is

not considered. In [10], Hoepman presents a protocol, based on a modified Diffie-

Hellman key exchange, to test for shared group membership, allowing users to

be a member of multiple groups. In [16], Vergnaud presents a secret handshake

scheme based on RSA. In [17], Xu and Yung present the first secret handshake

scheme that achieves unlinkability with reusable credentials: previous schemes

had to rely upon multiple one-time credentials being issued by the certifica-

tion authority. However, the presented scheme only offers a weaker anonymity.

In [11], Jarecki, Kim and Tsudik introduce the concept of affiliation-hiding au-

thenticated key exchange, very similar to group-membership secret handshakes;

the authors study the security of their scheme under an interesting perspective,

allowing the attacker to schedule protocol instances in an arbitrary way, thus

including MITM attacks and the like. However their scheme is not suitable in

our context, since it only allows to verify own group membership and does not

consider untraceability of protocol exchanges.

A closely related topic is secure Matchmaking, introduced by Baldwin and

Gramlich in [2]. In [18], Zhang and Needham propose a protocol for on-

line matchmaking, based on an on-line database service available to all users.

In [15], Shin and Gligor present a new matchmaking protocol based on password-

authenticated key exchanges [5].

In [1], Ateniese et al. present the first Secret Handshake protocol that allows

for matching of properties different from the user’s own. Property credentials

are issued by a certificate authority. However, the authors study the protocol

in the Matchmaking setting, where the matching reference is a low entropy

keyword that can be set at each user’s discretion.

A related topic is represented by oblivious signature-based envelopes (OS-

BEs), introduced by Li et al. in [12]; using OSBE, a sender can send an envelope

4



to a receiver, with the assurance that the receiver will only be able to open it

if he holds the signature on an agreed-upon message. Nasserian and Tsudik

in [14] argue – albeit with no proofs – that two symmetric instances of OSBE

may yield a Secret Handshake. The scheme we introduce in Section 3.2 shares

some similarities with OSBE, although some substantial differences are present:

OSBE does not consider unlinkability and anonymity, as it requires the explicit

agreement on a signature beforehand.

3. The Scheme

In this Section we introduce SecureMatching, a novel cryptographic scheme

that allows a user to convince a verifier that she owns a given property. We

afterward leverage on this building block to create a Secret Handshake proto-

col used to secure the mutual exchange of property credentials and to share a

common key in case of mutual successful verification of properties.

3.1. Preliminaries

We assume that the system includes users from a set of users U . Each

user can possess properties drawn from a set of properties P. Given a security

parameter k, let (G1,+) and (G2, ∗) be two groups of order q for some large

prime q, where the bit-size of q is determined by the security parameter k. Our

scheme uses a computable, non-degenerate bilinear map ê : G1 × G1 → G2 for

which the Computational Diffie-Hellman Problem (CDH) is assumed to be hard.

Modified Weil or Tate pairings on supersingular elliptic curves are examples

of such maps. We recall that a bilinear pairing satisfies the following three

properties:

• Bilinear: for P,Q ∈ G1 and for a, b ∈ Z∗q , ê(aP, bQ) = ê(P,Q)ab

• Non-degenerate: ê(P, P ) 6= 1 is a generator of G2

• Computable: an efficient algorithm exists to compute ê(P,Q) for all P,Q ∈

G1

5



We also introduce a one-way hash function H : P → G1. A suitable imple-

mentation is the MapToPoint function introduced in [6].

3.2. SecureMatching

SecureMatching is a prover-verifier protocol wherein a prover can convince

a verifier that she owns a property. Provers receive credentials for a given

property, allowing them to convince a verifier that they possess that property.

Verifiers in turn receive matching references for a given property, which allow

them to detect possession of that property after the protocol exchange.

Let P ∈ G1 be a random generator of G1. Let r, s, t, v ∈ Z∗q be random

values. We set P̃ ← rP , S ← sP , T ← tP and V ← vrP . The system public

parameters are {q, P, P̃ , S, T, V, ê,G1,G2, H}. The system secret parameters are

the values r, s, t and v.

When a user u ∈ U joins the system, a secret value xu
R← Z∗q is drawn. Then,

the value Xu = xus
−1rP is issued to u through a secure channel; this value is

kept secret by the user. Users receive their credentials and matching references

through these algorithms, run by a certification authority:

• Certify is executed by the certification entity upon a user’s request. The

certification entity verifies that the supplicant user u ∈ U possesses the

property p ∈ P she will later claim to have during the protocol execution;

after a successful check, the certification entity issues to u the appro-

priate credential credp = vH(p). The user verifies that ê(credp, P̃ ) =

ê(H(p), V ). If the verification succeeds, she accepts the credential; other-

wise she aborts;

• Grant is executed by the certification entity upon a user’s request. First

of all the certification entity verifies that – according to the policies of

the system – the user u is entitled to verify that another user possesses

property p ∈ P. If the checking is successful, the certification entity issues

the appropriate matching reference matchu,p = t−1r(credp +xuP ), where

xu is the secret value associated with user u; the user verifies that

6



ê(matchu,p, T ) = ê(H(p), V ) · ê(Xu, S)

If the verification is not successful, she aborts;

Let A be a prover and B a verifier. A has credpA
to prove possession of

property pA; B holds matchB,pB
to detect property pB . The protocol proceeds

as follows:

1. B picks n R← Z∗q , and sends N1 = nP and N2 = nP̃ to A;

2. A checks whether ê(N1, P̃ ) = ê(N2, P ); if so, she picks r1, r2
R← Z∗q and

sends to B the tuple disguisedCredpA
=< r1credpA

, r2N2, r1r2S, r1r2T >;

3. B checks whether

K =
ê(r1credpA

, r2N2)n
−1 · ê(r1r2S,XB)

ê(r1r2T,matchB,pB
)

(1)

equals to one; if so, B concludes that A possesses property pB (or similarly

that pA and pB are the same). XB is the secret value associated to B.

3.3. From SecureMatching to Secret Handshake

In order to use SecureMatching to perform secret handshakes, we need two

additional characteristics: (i) the capability of establishing a session key out of

the protocol exchange and (ii) the assurance that the key is mutually established

only if SecureMatching is successful at both sides. If the key is successfully shared

by both users, each of them is certain that the other possesses the expected

property as defined by the local matching reference. Note that the properties

verified by both users need not be identical.

A −→ B nAP, nAP̃

A ←− B nBP, nBP̃ , r1B(credP2 + r3BP ), r2B(nAP̃ ), r1Br2BS, r1Br2BT
A −→ B r1A(credP1 + r3AP ), r2A(nBP̃ ), r1Ar2AS, r1Ar2AT

Figure 1: Using SecureMatching to build a Secret Handshake

Let us assume two users, Alice and Bob, want to perform a Secret Hand-

shake and share a key if the Handshake is successful. Alice owns the tuple

(credP1,matchA,P2, XA) and Bob owns the tuple (credP2,matchB,P1, XB).

7



Alice and Bob can draw four random values each, r1A, r2A, r3A, nA for Alice

and r1B , r2B , r3B , nB for Bob. Then – as we can see in Figure 1 – each per-

forms the steps of SecureMatching, with the only exception that Alice sends

r1A(credP1 + r3AP ) instead of sending r1AcredP1. The same applies to Bob,

who sends r1B(credP3 + r3BP ).

The addition of a random value to the credential, prevents Alice and Bob

from checking whether K, as defined in Equation 1, equals to one in case of

successful matching. Indeed, KBob, the value K computed by Bob, equals to

ê(P, P )r1Ar2Ar3Ar; similarly, KAlice, the value K computed by Alice, equals to

ê(P, P )r1Br2Br3Br.

However, Alice can compute the values K ′ = (KAlice)
r1Ar2Ar3A ; similarly,

Bob can compute K ′′ = (KBob)
r1Br2Br3B , and – in case of successful simulta-

neous matching – K ′ = K ′′. This value can be subsequently used to derive a

secret key, shared between Alice and Bob only if the matching is successful.

4. Security Analysis

The security requirements of the SecureMatching protocol and of the Secret

Handshake based on it can be effectively resumed as follows. With the focus

on properties, an attacker can perform three different types of actions: linking,

knowing and forging. Linking refers to the ability of an attacker to recognize

a common property in two separate instances of the protocol, without the ap-

propriate matching references. Knowing refers to the unfeasibility of a verifier

to detect a prover’s property without the appropriate matching reference. Fi-

nally, forging refers to the unfeasibility of a prover to convince a verifier that

she possesses a given property without the appropriate property credential.

Before the actual analysis, let us spend a few words on untraceability. Un-

traceability refers to the unfeasibility for a verifier to link any two protocol

executions to the same prover. In particular, the verifier should not be able to

tell apart users she has interacted with, by running a successful matching for a

common property. The satisfaction of this requirement by the presented scheme

is trivially proved: given any property p ∈ P, the associated credential credp,

8



from which the disguised credential is derived, does not contain any information

other than the master secret v and the hash of the property H(p). None of this

information can be used to identify a user among those that possess the same

property.

In the rest of this section we introduce three games, Trace, Detect and

Impersonate, that capture the essence of the attacks mentioned above, and we

show the impossibility of these attacks. A complete description of the security

definition and attacker model can be found in [1, 3].

Notice that we prove the security of our scheme in the exact same setting

as the one chosen in the closest state-of-the-art paper by Ateniese et al. [1],

which in turn is similar to the one chosen by Balfanz et al. in [3]. To estimate

the success probability of the attacker, we can use the same technique used by

Balfanz et al. in [3]; we therefore omit the detailed probability estimation here.

Before proceeding further, we state the well-known BDDH problem:

Definition 1 (Bilinear Decisional Diffie-Hellman Problem). We say that the
Bilinear Decisional Diffie-Hellman Problem (BDDH) is hard if, for all proba-
bilistic, polynomial-time algorithms B,

AdvBDDHB := Pr[B(P, aP, bP, cP, xP ) = true if x = abc]− 1
2

is negligible in the security parameter.

This probability is taken over random choice of P ∈ G1, a, b, c and x ∈ Z∗q .

This problem has been extensively used in the literature, for instance in [8]. The

security proofs for the scheme follow from the hardness of the BDDH problem in

the random oracle model, as introduced by Bellare and Rogaway in [4], whereby

the hash function H is considered a truly random oracle.

4.1. Security of SecureMatching

In this Section we are going to investigate one by one the identified security

requirements, showing proofs for each, focusing our analysis on SecureMatching.

4.1.1. Untraceability

Consider an adversary A whose goal is – given any two disguised credentials

– to trace them to having been generated from the same credential, so as to

9



prove possession of the same property. The attacker cannot decide whether

there is a property that both credentials can be matched to.

A can receive valid credentials and matching references of his choice and can

engage in SecureMatching protocol execution with legitimate users. A is then

challenged as follows: she is given disguisedCred1 and disguisedCred2, for

which she has not received a matching reference, and she returns true if she can

decide that a property p ∈ P exists, to which both credentials can be matched

to. This implies that K = 1 for both credentials with matching references in

the set Smatch,p = {matchui,p : ui ∈ U}. We call this game Trace.

Lemma 1. If an adversary A has a non-null advantage

AdvTraceA := Pr[A wins the game Trace]

then a probabilistic, polynomial time algorithm B can create an environment
where it uses A’s advantage to solve any given instance of the Bilinear Decisional
Diffie-Hellman problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP ) of the
BDDH problem and wishes to use A to decide if x = abc. The algorithm B
simulates an environment in which A operates, using A’s advantage in the game
Trace to help compute the solution to the BDDH problem. In particular, B acts
as an oracle for H.

Setup Here is a description of how the algorithm B works. B picks
s, t, v

R← Z∗q , sets P̃ ← (bP ), S ← sP , T ← tP and V ← v(bP ). She then
publishes the public parameter according to the rules of the protocol.

Queries At first, A queries B for an arbitrary number of tuples < H(pi),
credpi , Xui and matchui,pi > for any given pairs (ui, pi) ∈ U × P. The queries
can be adaptive. B answers as follows: if ui has never been queried before, B
picks xui

R← Z∗q and stores the pair (ui, xui) in a table. If pi has never been

queried before, B picks hi
R← Z∗q , storing the pair (pi, hi) in a table.

Then, B looks up in the table for the values hi and xui
, and answers: H(pi) =

hiP , credpi
= vhiP , Xui

= xui
s−1(bP ) and matchui,pi

= t−1(vhi+xui
)(bP ). A

can check that both ê(credpi , P ) = ê(H(pi), V ) and ê(T,matchui,pi) = ê(H(pi), V )·
ê(Xui , S) hold.

Challenge At the end of this phase, A inputs two nonce pairs N1 =
n1P,N

′
1 = n1P̃ and N2 = n2P,N

′
2 = n2P̃ according to the specification of the

protocol. B then produces two hidden credentials constructed as follows:{
disguisedCred1 =< r1v(aP ), r2N ′1, r1r2S, r1r2T >

disguisedCred2 =< v(xP ), r3N2, r3s(cP ), r3t(cP ) >

where r1, r2, r3 are random values ∈ Z∗q . Then, A outputs her decision.

10



Analysis of A’s answer It is straightforward to verify that, if A wins
the game, B can give the same answer to solve the BDDH problem. Indeed, if
A wins the game, she is able to decide if ∃α ∈ Z∗q such that{

r1r2vab+ r1r2bxu1 = r1r2b(xu1 + vα)
r3vx+ r3cbxu2 = r3cb(xu2 + vα)

(2)

are both verified for any user u1, u2 ∈ U . Since this system of equations is by
definition valid for any value of xu1 and xu2, we can rewrite 2 as{

r1r2vab = r1r2bvα

r3vx = r3cbvα
(3)

and solve the first equation as α = a. If A wins the game and decides that the
two disguised credentials can be matched to the same property, then we can
solve the second equation as x = abc, which is the positive answer to BDDH.
Conversely, x 6= abc, which is the negative answer to BDDH.

4.1.2. Detector Resistance

Consider an adversary A whose goal is to verify presence of a property of

his choice without owning the corresponding matching reference. At first, A

queries the system for an arbitrary number of tuples < H(pi), credpi , Xui and

matchui,pi
> for any given pairs (ui, pi) ∈ U × P. She is free to engage in the

SecureMatching protocol execution with legitimate users.

A then choses a property p∗ ∈ P, not yet queried in the previous phase,

which will be the object of the challenge. She receives H(p∗) and credp∗ . Finally

she receives a disguised credential. She is then challenged to tell whether K,

as defined in Equation 1, equals to one for any matching reference in the set

Smatch,p∗ = {matchui,p∗ : ui ∈ U} for the property p∗ ∈ P object of the

challenge. A clearly does not posses any of the matching references in Smatch,p∗ .

We call this game Detect.

Lemma 2. If an adversary A has a non-null advantage

AdvDetectA := Pr[A wins the game Detect]

then a probabilistic, polynomial time algorithm B can create an environment
where it uses A’s advantage to solve any given instance of the Bilinear Decisional
Diffie-Hellman problem (BDDH).

11



Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP ) of the
BDDH problem and wishes to use A to decide if x = abc. The algorithm B
simulates an environment in which A operates, using A’s advantage in the game
Detect to help compute the solution to the BDDH problem. In particular, B
will run for A an oracle for the hash function H.

Setup Here is a high-level description of how the algorithm B will work.
B picks s, t, v R← Z∗q and sets P̃ ← (bP ), S ← sP , T ← tP and V ← v(bP ). She
then publishes the public parameter according to the rules of the protocol.

Queries At first, A queries B for an arbitrary number of tuples < H(pi),
credpi , Xui and matchui,pi > for any given pairs (ui, pi) ∈ U × P. The queries
can be adaptive. B answers as follows: if ui has never been queried before, B
picks xui

R← Z∗q and stores the pair (ui, xui) in a table. If pi has never been

queried before, B picks hi
R← Z∗q , storing the pair (pi, hi) in a table.

Then, B looks up in the table for the values hi and xui
, and answers: H(pi) =

hiP , credpi = vhiP , Xui = xuis
−1(bP ) and matchui,pi = t−1(vhi+xui)(bP ). A

can check that both ê(credpi
, P̃ ) = ê(H(pi), V ) and ê(T,matchui,pi

) = ê(H(pi), V )·
ê(Xui

, S) hold.
Challenge A then chooses the property p∗ ∈ P which is object of the

challenge among the ones not queried in the previous phase. She then queries
B for H(p∗) and credp∗ . B’s response is H(p∗) = (aP ) and credp∗ = v(aP ). A
can check that ê(credp∗ , P ) = ê(H(p∗), V ) holds.

Then A sends to B a pair of nonces N1 = nP, n2 = nP̃ according to the
specifications of the protocol. B answers by sending the disguised credential

disguisedCred =< v(xP ), r1N1, r1s(cP ), r1t(cP ) > (4)

Analysis of A’s answer Let’s assume x = abc. For every user u∗ ∈ U ,
we can then write

K =
ê(v(abcP ), r1nP )n

−1 · ê(r1s(cP ), Xu∗)
ê(r1t(cP ), t−1(credp∗ + xu∗)(bP ))

= 1 (5)

which implies a successful matching for the disguised credential of Expression 4.
Indeed

r1vx+ r1bcxu∗ − r1c(vab+ xu∗b) = 0 (6)

is satisfied ∀xu∗ ∈ Z∗q if and only if x = abc.
Therefore, if A wins the game and is able to match the disguised credential,

thus detecting property p∗, B can give the same answer to the BDDH.

4.1.3. Impersonation Resistance

An adversary A has as its goal to impersonate a user owning a given cre-

dential, which she does not dispose of. At first, A queries the system for an

arbitrary number of tuples < H(pi), credpi
, Xui

and matchui,pi
> for any given

12



pairs (ui, pi) ∈ U×P. She is free to engage in SecureMatching protocol execution

with legitimate users.

A then choses a property p∗ ∈ P, not yet queried in the previous phase, which

will be the object of the challenge. A queries the system for many matching

references for property p∗ and users uj ∈ U of his choice. A is then challenged

in the following way: she receives a nonce value, and she has to produce a

valid handshake message, able to convince a user u∗ ∈ U , among the ones not

queried before, with a valid matching reference for property p∗, that she owns

the credential credp∗ . We call this game Impersonate.1

Lemma 3. If an adversary A has a non-null advantage

AdvImpersonateA := Pr[A wins the game Impersonate]

then a probabilistic, polynomial time algorithm B can create an environment
where it uses A’s advantage to solve a given instance of the Bilinear Decisional
Diffie-Hellman Problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP ) of the
BDDH problem and wishes to use A to decide if x = abc. The algorithm B
simulates an environment in which A operates: B will in particular act as an
oracle for H.

Setup B picks random values r, s, t and v ∈ Z∗q and sets P̃ = rP , S = sP ,
T = t(bP ) and V = vr(bP ). She then publishes the public parameter according
to the rules of the protocol.

Queries At first, A queries B for an arbitrary number of tuples < H(pi),
credpi

, Xui
and matchui,pi

> for any given pairs (ui, pi) ∈ U × P. The queries
can be adaptive. B answers as follows: if ui has never been queried before, B
picks xui

R← Z∗q and stores the pair (ui, xui) in a table. If pi has never been

queried before, B picks hi
R← Z∗q , storing the pair (pi, hi) in a table.

Then, B looks up in the table for the values hi and xui
, and answers: H(pi) =

hiP , credpi = vhi(bP ), Xui = xuirs
−1(bP ) and matchui,pi = t−1r(vhiP +

xui
P ). A can check that both ê(credpi

, P̃ ) = ê(H(pi), V ) and ê(T,matchui,pi
) =

ê(H(pi), V ) · ê(Xui
, S) hold.

A then chooses the property p∗ ∈ P which is object of the challenge among
the ones not queried in the previous phase. She then queries B for H(p∗).

1Notice that this game does not prevent an attacker from stealing legitimate users’ creden-
tials and claiming to possess their properties. This is common to many Secret Handshakes
schemes in the literature, for instance [1]. We could require credentials to be stored on
password-protected, tamper resistant hardware; an algorithmic solution however would re-
quire an efficient revocation method, which we do not investigate here and leave as a major
item for future work.

13



B’s response is aP . A choses many users uj ∈ U of her choice and asks B for
matchuj ,p∗ . After picking the values xuj as in the previous phase, B’s response is
matchuj ,p∗ = t−1r(v(aP ) + xuj

P ) along with Xuj
= xuj

rs−1(bP ). A can easily
check that it is a valid matching reference by verifying that the equivalence
ê(T,matchuj ,p∗) = ê(H(p∗), V ) · ê(Xuj

, S) holds.
Challenge After this phase, B sends to A nonces cP, r(cP ) according

to the protocol, and challenges A to produce disguisedCredp∗ for which K of
Equation 1 equals to one with matching reference matchu∗,p∗ and Xu∗ of a user
u∗ ∈ U not queried in the previous phase.

A answers the challenge with (A,B,C,D) ∈ G4
1, and wins the game if K

equals to one, which implies ê(A,B)c
−1 · ê(Xu∗ , C) = ê(D,matchu∗,p∗).

Analysis of A’s response Let us write A = αP , B = βP , C = γP and
D = δP . Let us assume that A wins the game; then we can write

αβc−1 + γs−1rxu∗b = δ(t−1rva+ t−1rxu∗) (7)

If A wins the game, she should be able to convince a user u∗ that she owns
the credentials for property p∗. B can choose any value for xu∗ , since user
u∗ has never been object of queries before, and this value is unknown to A.
Consequently, αβc−1 and δt−1rva must be independent of xu∗ . We can then
rewrite Equation 7 as {

αβc−1 = δt−1rva

γs−1rxu∗b = δt−1rxu∗
(8)

Solving the second equation as δ = γs−1tb and substituting the resulting expres-
sion of δ in the first, yields αβ = γs−1rvabc. Therefore if A wins the game, B can
decide whether x = abc based on the outcome of ê(A,B)sr

−1v−1
= ê(C, xP ).

4.2. Security of Secret Handshake

In this Section we focus our attention on the security of the secret handshake

scheme presented in Section 3.3. We omit the proof for unlinkability because it

is a trivial adaptation of the proof of Lemma 1.

As for detection and impersonation resistance instead, we present two new

games, ImpersonateSH and DetectSH, inspired on Impersonate and Detect, cov-

ering these attacks in the Secret Handshake scenario; in particular, instead of

asking the adversary to perform the detection of the property or the imperson-

ation of a user owning a credential, challenger and adversary engage in a Secret

Handshake protocol run, at the end of which the adversary receives a key; the

adversary is then asked to tell whether the key is the correct key associated

14



to that instance of the handshake or not. This approach is the standard ap-

proach used in the proof of authenticated key exchange schemes, requiring key

indistinguishability. We stress that this requirement is the strongest possible;

other works such as [1, 3] prove resilience to attacks with weaker adversaries: in

particular, in the games presented in [1, 3], the attacker is required to actually

produce the correct key instead of only distinguish it from a random value.

4.2.1. Impersonation Resistance

An adversary A has as its goal to impersonate a user owning a given cre-

dential, which she does not dispose of. At first, A queries the system for an

arbitrary number of tuples < H(pi), credpi
, Xui

and matchui,pi
> for any given

pairs (ui, pi) ∈ U × P. She is free to engage in Secret Handshakes protocol

execution with legitimate users.

A then choses a property p∗ ∈ P, not yet queried in the previous phase, which

will be the object of the challenge. A queries the system for many matching

references for property p∗ and users uj ∈ U of his choice. A also picks a property

p◦; this property is the one the challenger will use to generate its side of the

handshake. This is required because what is being tested is the ability of the

adversary to impersonate, so the detection part of the handshake should be

successful. A is then challenged in the following way: she has to engage in

secret handshake with the challenger, she receives a key and she has to tell

whether it is the key linked to a successful detection of p◦ by the adversary and

a successful detection of p∗ by the challenger, or a random bit string of the same

length. We call this game ImpersonateSH.

Lemma 4. If an adversary A has a non-null advantage

AdvImpersonateSHA := Pr[A wins the game ImpersonateSH]

then a probabilistic, polynomial time algorithm B can create an environment
where it uses A’s advantage to solve a given instance of the Bilinear Decisional
Diffie-Hellman Problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP ) of the
BDDH problem and wishes to use A to decide if x = abc. The algorithm B
simulates an environment in which A operates: B will in particular act as an
oracle for H.

15



Setup B picks random values r, s, t and v ∈ Z∗q and sets P̃ = rP , S = sP ,
T = t(bP ) and V = vr(bP ). She then publishes the public parameter according
to the rules of the protocol.

Queries At first, A queries B for an arbitrary number of tuples < H(pi),
credpi

, Xui
and matchui,pi

> for any given pairs (ui, pi) ∈ U × P. The queries
can be adaptive. B answers as follows: if ui has never been queried before, B
picks xui

R← Z∗q and stores the pair (ui, xui
) in a table. If pi has never been

queried before, B picks hi
R← Z∗q , storing the pair (pi, hi) in a table.

Then, B looks up in the table for the values hi and xui
, and answers: H(pi) =

hiP , credpi
= vhi(bP ), Xui

= xui
rs−1(bP ) and matchui,pi

= t−1r(vhiP +
xui

P ). A can check that both ê(credpi
, P̃ ) = ê(H(pi), V ) and ê(T,matchui,pi

) =
ê(H(pi), V ) · ê(Xui

, S) hold.
A then chooses the property p∗ ∈ P which is object of the challenge among

the ones not queried in the previous phase. She then queries B for H(p∗).
B’s response is aP . A choses many users uj ∈ U of her choice and asks B
for matchuj ,p∗ . After picking the values xuj as in the previous phase, B’s
response is matchuj ,p∗ = t−1r(v(aP ) + xuj

P ) along with Xuj
= xuj

rs−1(bP ).
A can easily check that it is a valid matching reference by verifying that the
equivalence ê(T,matchuj ,p∗) = ê(H(p∗), V ) · ê(Xuj

, S) holds. Finally, A chooses
the property p◦ that B will use in his matching reference.

Challenge After this phase, A and B engage in a secret handshake
instance; in particular A sends nonces nP and nP̃ ; B verifies that the nonces
are compliant, sends to A nonces cP, r(cP ) according to the protocol, sends the
handshake tuple (r1(vH(p◦) + r3cP ), r2nP̃ , r1r2S, r1r2T ) and challenges A to
produce disguisedCredp∗ ; A answers the challenge with (A,B,C,D) ∈ G4

1. B
then sends A a key formed as follows:

K =
(

ê(A,B)
ê(C, xP )s−1rv

)r1r2r3
and challenges A to distinguish the correct key from a random string of the
same length. Correct key means the key the challenger computes with matching
reference matchu∗,p∗ and Xu∗ of a user u∗ ∈ U not queried in the previous phase.
A answers the challenge with a bit b; A wins the game if b = 0 iff the key is a
random bit string, and b = 1 iff the key is correct.

Analysis of A’s response Let us write A = αP , B = βP , C = γP and
D = δP . Let us assume that A wins the game and his answer is b = 1; B can
then write

K =
(

ê(A,B)
ê(C, xP )s−1rv

)r1r2r3
=

(
ê(A,B)c

−1 · ê(C,Xu∗)
ê(D,matchu∗,p∗)

)r1r2r3c
(9)

This follows from how the key in the handshake is computed, see Section 3.3.
From Equation 9 we can rewrite

αβ − γrs−1vx = αβ + γxu∗rs
−1bc− δt−1rc(va+ xu∗) (10)

16



Notice that, as in the proof of Lemma 3, B can choose any value for xu∗ ,
since user u∗ has never been object of queries before, and this value is unknown
to A. Consequently, γrs−1vx and δt−1rvac must be independent of xu∗ . We
can then rewrite Equation 7 as{

γrs−1vx = δt−1rvac

γxu∗rs
−1bc = δt−1rcxu∗

(11)

Solving the second equation as δ = γs−1tb and substituting the resulting ex-
pression of δ in the first, yields x = abc, which is the positive answer to the
BDDH problem. If instead A answers b = 0, through the same calculation we
conclude that x 6= abc, which is the negative answer to the BDDH problem.
Therefore if A wins the game, B can solve the BDDH problem by answering
with b.

4.2.2. Detector Resistance

Consider an adversary A whose goal is to verify presence of a property of

his choice without owning the corresponding matching reference. At first, A

queries the system for an arbitrary number of tuples < H(pi), credpi
, Xui

and

matchui,pi > for any given pairs (ui, pi) ∈ U ×P. She is free to engage in Secret

Handshakes protocol execution with legitimate users.

A then choses a property p∗ ∈ P, not yet queried in the previous phase,

which will be the object of the challenge. She receives H(p∗) and credp∗ . A also

picks a property p◦; this property is the one the adversary will use to generate

its side of the handshake. This is required because what is being tested in this

game is the ability of the adversary to detect, so the impersonation part of

the handshake should be successful. A is then challenged in the following way:

she has to engage in secret handshake with the challenger and she receives a

key, and she has to tell whether it is the key linked to a successful detection of

p◦ by the challenger and a successful detection of p∗ by the adversary, or just

a random bit string of the same length A clearly does not posses any of the

matching references in Smatch,p∗ . We call this game DetectSH.

Lemma 5. If an adversary A has a non-null advantage

AdvDetectSHA := Pr[A wins the game DetectSH]

then a probabilistic, polynomial time algorithm B can create an environment
where it uses A’s advantage to solve any given instance of the Bilinear Decisional
Diffie-Hellman problem (BDDH).

17



Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP ) of the
BDDH problem and wishes to use A to decide if x = abc. The algorithm B
simulates an environment in which A operates, using A’s advantage in the game
Detect to help compute the solution to the BDDH problem. In particular, B
will run for A an oracle for the hash function H.

Setup Here is a high-level description of how the algorithm B will work.
B picks s, t, v R← Z∗q and sets P̃ ← (bP ), S ← sP , T ← tP and V ← v(bP ). She
then publishes the public parameter according to the rules of the protocol.

Queries At first, A queries B for an arbitrary number of tuples < H(pi),
credpi , Xui and matchui,pi > for any given pairs (ui, pi) ∈ U × P. The queries
can be adaptive. B answers as follows: if ui has never been queried before, B
picks xui

R← Z∗q and stores the pair (ui, xui) in a table. If pi has never been

queried before, B picks hi
R← Z∗q , storing the pair (pi, hi) in a table.

Then, B looks up in the table for the values hi and xui
, and answers: H(pi) =

hiP , credpi = vhiP , Xui = xuis
−1(bP ) and matchui,pi = t−1(vhi+xui)(bP ). A

can check that both ê(credpi
, P̃ ) = ê(H(pi), V ) and ê(T,matchui,pi

) = ê(H(pi), V )·
ê(Xui

, S) hold.
A then chooses the property p∗ ∈ P which is object of the challenge among

the ones not queried in the previous phase. She then queries B for H(p∗) and
credp∗ . B’s response is H(p∗) = (aP ) and credp∗ = v(aP ). A can check that
ê(credp∗ , P ) = ê(H(p∗), V ) holds.

Challenge After this phase, A and B engage in a secret handshake in-
stance; in particular, A sends to B a pair of nonces N1 = nP,N2 = nP̃ according
to the specifications of the protocol. B verifies that the nonces are compliant,
sends to A nonces n′P, n′P̃ according to the protocol, sends the handshake
tuple (v(xP ) + r1bP, r2N1, r2s(cP ), r2t(cP )) and receives disguisedCredp◦ =
(A,B,C,D) ∈ G4

1 from A; B then sends A a key formed as follows:

K = K ′r1r2 = ê(P, P̃ )r1r2µ such that K ′ = ê(P, P̃ )µ =
ê(A,B)n

′−1 · ê(C,Xu◦)
ê(D,matchu◦,p◦)

and challenges A to tell whether K is the correct key or a random string of
the same length. Correct key means the key the adversary computes detecting
property p∗. A answers the challenge with a bit b; A wins the game if b = 0 iff
the key is a random bit string, and b = 1 iff the key is correct.

Analysis of A’s answer Let us at first notice that B computes the key by
generating at first the value K ′ by matching property p◦ from disguisedCredp◦ ,
and then raising the result to the power r1r2.

If A wins the game and answers b = 1, it means that the key B generated
was correct. Every user u∗ ∈ U owning a matching reference matchu∗,p∗ should
be able to compute the same key; we can therefore write(

ê(v(xP ) + r1bP, r2nP )n
−1 · ê(r2s(cP ), xu∗s

−1(bP ))
ê(r2t(cP ), t−1(va+ xu∗)(bP ))

)µ
= K = ê(P, P̃ )r1r2µ

18



From this expression we notice that

(r2vx+ r1r2b+ r2xu∗bc− r2bc(va+ xu∗))µ = r1r2bµ (12)

is satisfied ∀xu∗ ∈ Z∗q if and only if x = abc. Therefore, if A wins the game B
can give the same answer to the BDDH.

4.3. A Word on Man-In-The-Middle Attacks

In this section we focus on man-in-the-middle attacks and investigate their

applicability to the secret handshake scheme. At first let us notice that, upon a

successful Secret Handshake protocol run, two users Alice and Bob establish a

common secure channel. This channel ensures for Alice that at the other hand

there is a user whose credentials match her matching reference; the same holds

for Bob. No man-in-the-middle attack can break this assurance: this has been

demonstrated by the proofs of Lemma 4 and 5, that assure that an adversary –

without the appropriate credential and matching reference – cannot distinguish

between a correct key and a random bit string.

However the protocol does not give any information about the identities of

the communicating parties. Let us see with a few examples the consequences of

this feature. Let us imagine that Alice, Bob and Mallory are equipped with cre-

dentials and matching references for property p. This scenario is consistent with

group-only secret handshakes introduced in [3]. In this scenario the following

attack is possible: Alice and Bob try to run a secret handshake on a channel con-

trolled by Mallory; Mallory runs two parallel secret handshakes, one with Alice

and another with Bob, establishing two keys – and consequently two channels.

At this point, Mallory is in the condition of acting as the man-in-the-middle in

the conversation between Alice and Bob.

First of all, let us underline that this attack does not compromise what the

protocol guarantees: at the end of the handshake, both Alice and Bob are indeed

on a secure channel with another member of their group. In addition, group

pressure would ensure that a group member would not mount such an attack

to a fellow group member: indeed group membership tokens (credentials and

matching references) are issued after a check of the compliance of the user to

the group policies, so it can be refused to not-trusted members.

19



This problem is usually thwarted including identity enforcement in the pro-

tocol; this however requires drastic changes to the protocol, because Secret

Handshake by definition requires untraceability, unlinkability and anonymity,

whereas if the credentials carry a reference to the identity of their possessor,

these requirement cannot be easily fulfilled. Indeed, either users reveal their

identities upfront, thus losing their anonymity, or they do not know who they

are interacting with until the secret handshake is successful.

An apparent solution is represented by the use of pseudonyms together with

an efficient revocation mechanism: this way the anonymity of users is not vio-

lated and the certification authority can still revoke credentials of misbehaving

users. This is the approach adopted by Balfanz et al. [3]. This approach is still

not perfect since pseudonyms by definition do not provide users with informa-

tion on the real identity of the carrier of the credentials; in addition, detecting

misbehaving users is not a straightforward task, given that these types of attack

are quite stealthy; we argue that the pressure of secret groups is a strong enough

argument in favor of the security of our scheme, given that in addition, the most

viable alternative solution, pseudonym, does not solve completely the problem.

A different scenario occurs when our scheme is used in a dynamic controlled

matching scenario, where users are equipped with credentials and matching

references potentially for different properties. The man-in-the-middle attack

presented earlier on in this section does not apply any longer; let us see it with

an example: Alice is equipped with a credential for p1 and a matching reference

form p2; Bob is equipped with a credential for p2 and a matching reference

form p1. To perpetrate the same attack as before, Mallory would be required to

possess credentials for both p1 and p2 and matching references for both p1 and

p2. The certification authority can restrict this kind of attacks by refusing to

issue credentials and matching references for two different properties; or it can

explicitly allow this to particular users that are allowed to act as proxies in the

communications of two other users.

20



5. Conclusion and Future Work

In this paper we have proposed a prover-verifier protocol and a two-party Se-

cret Handshake protocol using bilinear pairings. Our work studies the problem

of Secret Handshakes under new requirements, different than the ones consid-

ered before in the state of the art, thus completing the landscape of available

techniques in the field. As future work, we intend to extend the protocol, allow-

ing the certification authority to revoke credentials formerly issued, in order to

cope with compromised users and we intend to study the security of the protocol

in the more complete setting suggested in [11].

References

[1] G. Ateniese, M. Blanton, and J. Kirsch. Secret handshakes with dynamic

and fuzzy matching. In Network and Distributed System Security Sympo-

suim, pages 159–177. The Internet Society, 02 2007. CERIAS TR 2007-24.

[2] R. W. Baldwin and W. C. Gramlich. Cryptographic protocol for trustable

match making. In IEEE Symposium on Security and Privacy, Los Alamitos,

CA, USA, 1985. IEEE Computer Society.

[3] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-C.

Wong. Secret handshakes from pairing-based key agreements. In IEEE

Symposium on Security and Privacy, pages 180–196, 2003.

[4] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In ACM Conference on Computer and

Communications Security, 1993.

[5] S. Bellovin and M. Merritt. Encrypted key exchange: password-based pro-

tocols secure against dictionary attacks. In IEEE Computer Society Sym-

posium on Research in Security and Privacy, pages 72–84. IEEE Computer

Society, May 1992.

21



[6] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.

SIAM J. Comput., 32(3):586–615, 2003.

[7] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-

oblivious encryption. In ASIACRYPT, pages 293–307, 2004.

[8] H. Chabanne, D. H. Phan, and D. Pointcheval. Public traceability in traitor

tracing schemes. In EUROCRYPT, pages 542–558, 2005.

[9] Europol and Eurojust and Thomas Van Cangh and Ab-

delkrim Boujraf. Wp3-cs2: The Eurojust-Europol Case Study.

http://www.r4egov.eu/resources, 2007.

[10] J.-H. Hoepman. Private handshakes. In F. Stajano, C. Meadows, S. Cap-

kun, and T. Moore, editors, ESAS, volume 4572 of Lecture Notes in Com-

puter Science. Springer, 2007.

[11] S. Jarecki, J. Kim, and G. Tsudik. Beyond secret handshakes: Affiliation-

hiding authenticated key exchange. In CT-RSA, pages 352–369, 2008.

[12] N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In 22nd

ACM Symposium on Principles of Distributed Computing (PODC 2003),

pages 182–189. ACM Press, 2003.

[13] C. Meadows. A more efficient cryptographic matchmaking protocol for use

in the absence of a continuously available third party. In IEEE Symposium

on Security and Privacy, pages 134–137, 1986.

[14] S. Nasserian and G. Tsudik. Revisiting oblivious signature-based envelopes:

New constructs and properties. In Financial Cryptography and Data Secu-

rity (FC06), 2006.

[15] J. S. Shin and V. D. Gligor. A new privacy-enhanced matchmaking proto-

col. In Network and Distributed System Security Symposuim. The Internet

Society, 02 2007.

[16] D. Vergnaud. Rsa-based secret handshakes. In WCC, pages 252–274, 2005.

22



[17] S. Xu and M. Yung. k-anonymous secret handshakes with reusable creden-

tials. In CCS ’04: Proceedings of the 11th ACM conference on Computer

and communications security.

[18] K. Zhang and R. Needham. A private matchmaking protocol.

http://citeseer.nj.nec.com/71955.html, 2001.

23


