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Abstract During the post-production stage of film making, the film editor is faced

with large amounts of unedited raw material, called rushes. Developing tools to view

and organize this material is an important component of video processing. This paper

describes an approach for summarizing rushes video based on the detection of repet-

itive sequences, using a variant of the Smith-Waterman algorithm to find matching

subsequences. We rely on the evaluation methodology that has been introduced in

the TRECVID BBC Rushes Summarization Task. We propose an automation of the

manual trecvid evaluation using machine learning techniques to train an automatic

assessor. We compare the automatic assessor evaluation to the evaluations provided by

the TRECVID manual assessors.

Keywords Video Summarization · Rushes Video · TRECVID

1 Introduction

The technology of digital video is making rapid progress and powerful technologies now

exist to create, play, store and transmit video data. Still, the analysis of video content

remains an open and active research challenge. In this paper, we focus on video film

making tools. Film making is a long process, starting from an initial story idea, followed

by scriptwriting, shooting, and editing. Shooting a film involves recording video scenes,

as indicated in the script. A scene is typically recorded several times, with variations

indicated by the director. The result of the shooting is the rushes, video tapes which

contain several takes of various scenes from the film. During post-production, the film

editor first builds a rough cut, by selecting and ordering the best takes (shots) of each
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scene. Then, he creates a fine cut by arranging all the shots to flow smoothly in a

seamless story.

Automatic video summarization is a powerful tool which allows synthesizing the

entire content of a video while preserving the most important or most representative

sequences. For this purpose, the content of the video sequence is analyzed, and its

structure is identified, so that the most relevant video segments can be selected.

In this paper, we focus on the analysis and summarization of video rushes, as

used in the TRECVID BBC Rushes Summarization Task [1]. As mentioned previously,

rushes videos are the raw recordings from a camera, taken during the preparation of

a movie or a documentary. Rushes exhibit a very specific structure. The recording of

a movie is organized in scenes, where each scene represents a given piece of action.

Typically, a scene will be recorded several times, each recording being a different take,

because the director will ask for variations of the presentation within the action, or

sometimes because some recordings are disturbed with unexpected mistakes. In rushes

videos, a take will be a continuous recording from the camera, and, for short takes, it

may happen that several takes are recorded continuously in the same video sequence.

Furthermore, rushes videos will also contain auxiliary data such as test patterns, to

calibrate the camera colors, or clapper sequences which identify the take and scene

number in the recording and facilitate the alignment of the soundtrack with the video.

The TRECVID BBC Rushes Summarization campaign has defined a task where,

given a video from the rushes test collection, one has to automatically create a MPEG-1

video summary with a maximum duration of 2%. The summary should show the main

objects and events of the original video, in a way that maximizes the usability of the

summary and the speed of objects/event recognition. The evaluation is performed by

human assessors who watch the summaries and provide various indicators on the qual-

ity and coverage of their content.

As mentioned previously, the content of rushes videos is very specific. Rushes videos

contain a lot of repetitions, often with minor variations. They may also contain long

segments in which the camera is fixed on a given scene or barely moving, and reusable

shots of people, objects, events, locations, that are sometimes used to fill gaps during

the final editing. Although many techniques have already been proposed to automati-

cally process the content of general videos [14] and [5], the specific structure of rushes

videos require an adaptation of these techniques, and sometimes, the development of

new approaches for an efficient parsing.

2 Summarization approach

In previous work [11] and [7], we have already built a first version of the rushes

summarization system based on the following steps:

– detection and removal of junk frames, such as test patterns and clapper boards,

– hierarchical classification of one-second video segments, using a video similarity

measure,

– selection of relevant segments for the final summary, using a criterion of maximal

coverage.
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In this paper, we use the specific structure of rushes video and introduce a new step

in the process in which we use a sub-sequence alignment algorithm to structure the

video into scenes and takes. In order to use the specific structure of rushes video, we

now introduce a new step in the process in which we use a sub-sequence alignment

algorithm to structure the video into scenes and takes. With this algorithm, we can

detect similar video subsequences, which are likely to represent the different takes of

a given scene. This detection allows us to identify the different scenes that appear in

the rushes video, and to select for each scene the take that seems to be the most rep-

resentative. Figure 1 shows the main steps of this process.

Fig. 1 General approach of video parsing

Rushes contain a lot of uninteresting sequence of frames called junk frames, for

example test pattern frames, uniform color frames, clapper sequences, etc... After re-

moving the junk frames, the rushes video is decomposed into one-second segments.

Those segments are clustered using a hierarchical classification strategy. Hierarchical

classification allows to tune the notion of visual similarity by selecting different levels

in the hierarchy. Then a Video Sequence Alignment algorithm (VSA) finds repetitive

sequences. Repetitive sequences are likely to be the different takes of the same scene,

so that by grouping repetitive sequences, we can identify the various scenes occurring

in the video. The comparison between the different takes allows excluding uncomplete

takes and selecting the longest one as the most representative. Finally, the rushes video

summary can be constructed by concatenating an accelerated copy of the best take of

each scene.
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A major problem to develop summaries is the fact that evaluation is difficult, in

the sense that it is hard to judge the quality of a summary, or, when a performance

measure is available, it is hard to understand what its interpretation is. So, in the

field of automatic summarization, most papers suggest their own evaluation technique,

chosen appropriately for their own task. This makes the comparison of different sys-

tems difficult, if not impossible, and creates an urgent need for a commonly accepted

evaluation methodology.

Our approach is to search for an automation of the evaluation procedure proposed

in trecvid 2008 using the same quality criteria. We decided to focus on the main

indicator: the percentage of topics found in the summary IN , because other subjec-

tive measures are correlated with it [6]. Previous work already tackled this problem.

In [7] and [8] authors automated evaluation with a basic and efficient method: a topic

is found by the automatic evaluator if a frame sequence of summary overlaps with

one of the occurrences of this topic in the original video during one second. The work

presented here is an extension of these approaches, in particular [9]. Authors proposed

an automation of the manual trecvid evaluation using machine learning techniques.

The main difference is the definition of objects used to predict the topic presence and

then, results are improved.

3 Video Sequence Alignment

3.1 Sequence Alignment Algorithms

In 1966, Levenshtein introduced the notion of edit distance by the question: ”What is

the minimal number of edit operations to transform a string into another?”. He also

proposed a dynamic programming algorithm that allows a very fast computation of

this distance. The Levenshtein distance has since become a very popular metric for

measuring the amount of difference between two sequences. The Levenshtein distance

between two strings is given by the minimum number of operations needed to transform

one string into the other, where an operation is either an insertion, deletion, or scoring

of a single character. In 1970, Needleman-Wunsch [15] proposed a similar algorithm

to perform a global alignment over two protein sequences. To find the alignment with

the highest score, a two-dimensional matrix is allocated, with one column for each

character in the first sequence, and one row for each character in the second sequence.

Thus, if we are aligning sequences of sizes n and m, the running time of the algorithm

is O(nm) and the amount of memory used is in O(nm). The memory requirement can

be reduced to O(min(m,n)) if back-tracking is not needed.

In 1981, Smith-Waterman [16] proposed a variation of this algorithm to perform

local sequence alignment (see figure 2): instead of looking at the total sequence, the

Smith-Waterman algorithm compares segments of all possible lengths and optimizes

the similarity measure. This is done by creating a scoring matrix where cells indicate

the cost of changing a sub-sequence of one sequence into one of the sub-sequences of

the other sequence. The main difference with the Needleman-Wunsch algorithm is that

negative scores are thresholded to zero, so that the positively scoring local alignments

become visible. Back-tracking starts at the highest scoring matrix cell and proceeds

until a cell with a score of zero is encountered, yielding the highest scoring local align-

ment. Figure 3 shows an example of the scoring matrix between HEAGAWGHEE and
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Given : Two sequences A = a1a2...an B = b1b2...bm

– Compute (n + 1) ∗ (m + 1) scoring matrix Ml where Ml[i][j] represents the cost
of the sub-sequence alignment ending with segments si and sj .
– initialize Ml[i][0] = 0, Ml[0][j] = 0 for all 0 ≤ i ≤ m,0 ≤ j ≤ n
– compute Ml[i][j], for all 1 ≤ i ≤ m,1 ≤ j ≤ n by:

Ml[i][j] = max




0
Ml[i− 1][j − 1] + match cost(i, j)
Ml[i][j − 1] + gap cost
Ml[i− 1][j] + gap cost




– Find the best sub-sequence alignment from the maximal value Ml[i][j].

Fig. 2 Smith-Waterman algorithm

PAWHEAE, where the best local alignment (in bold) is AWGHE with AW-HE. The

complexity requirements of the Smith-Waterman algorithms are similar to those of the

Needleman-Wunsch algorithm.

Fig. 3 Example of scoring matrix

Sequence alignment algorithms have already been used in the summarization of

rushes videos. For example, Chasanis et al. [12] decompose a video into shots and

then perform a global alignment between all pairs of shots. In [13] Liu et al. per-

form a local alignment between successive shots, and they obtain an alignment score

which is used to classify shots. In [10] Bailer et al. use Longest Common Subsequence

Algorithms to find the various takes of a shot. Although these algorithms share the

dynamic programing approach of the Smith-Waterman algorithm, to the best of our

knowledge, our work is the first time where the Smith-Waterman algorithm is used

for rushes video summarization. The advantage of using this algorithm is that local

alignments are automatically found without the need for a prior segmentation of the
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video sequence.

3.2 Video Sequence Alignment algorithm

We adapt the Smith-Waterman algorithm to find repetitive sequences in a video: this

is the VSA (Visual Sequence Alignment) algorithm. In order to detect similarities be-

tween sub-sequences of the video, we partition the video into small segments, and these

segments are hierarchically clustered by visual similarity. So for a clustering level, we

represent a video by a list of clusters like a list of strings. The hierarchical classification

is useful because it can easily provide various similarity thresholds, so that we can adapt

the degree of similarity to the variability of the visual content. Then, we search visu-

ally similar video sub-sequences for different degree of similarity. In Smith-Waterman

algorithm, similarities are searched into two different sequences but our case, we search

similarities into the same sequence: the global video.

The video is decomposed into non-overlapping segments of minimal temporal unit

duration. This unit is the shortest sequence that could be perceived by a human. A

study showed that one second is the minimal length to see a concept in a video se-

quence [8]. Another showed that 20.5 frames is required to see a concept [9]. We have

therefore chosen to use this temporal unit of one second and decompose the rushes

video into one-second segments (25 frames).

Each one-second segment is represented by a feature vector built from the average

HSV histogram (18 bins for H, 3 for S and V) of the frames it contains. The clustering

algorithm starts with as many clusters as there are one-second segments, then at each

step of the clustering, the number of clusters is reduced by one by merging the closest

two clusters, until all segments are finally in the same cluster. The distance between

two one-second segments is computed as the Euclidean distance, and the distance be-

tween two clusters is the average distance across all possible pairs of segments of each

cluster.

3.2.1 Scoring matrix

We search for local alignments between a video sequence and itself. We use the following

definitions and assumptions to compute the scoring matrix:

– A video sub-sequence S = s1s2...sn is a list of one-second segments.

– Two one-second segments s1 and s2 are aligned if some sub-sequences containing

s1 and s2 are aligned.

– Two aligned sub-sequences cannot contain the same one-second segment.

– A pair of one-second segments can be aligned only once.

– Two aligned sub-sequences should not contain another pair of aligned sub-sequences

(only minimal alignments are considered).

The video sequence is represented as a list of one-second segment clusters Sl = c1c2...cm
where ci corresponds to the cluster of the segment i at the clustering level l. The
(m+1)∗(m+1) scoring matrix Ml[i][j] at level l is computed as : Ml[i][0] = 0, Ml[0][i] =
0 and Ml[i][i] = 0 ∀i ∈ 0, ..., n
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Ml[i][j] = max




0
Ml[i− 1][j − 1] + match cost(i, j)
Ml[i][j − 1] + gap cost
Ml[i− 1][j] + gap cost




where match cost is the cost of aligning two segments (the distance between their

clusters) and gap cost is the cost to add a gap in the alignment. When Ml[i][j] > 0, the

alignment of two sub-sequences ending in position i and j can be found by recursively

adding the antecedent (u, v) which realizes the maximum of M starting from Ml[i][j],

until a zero value is found for Ml[u][v]. In the case where several antecedents realize

the maximum, the diagonal is preferred. The number of antecedents is the length of

the alignment length(i, j).

To favor alignment quality rather than alignment length, so we normalize the scor-

ing matrix Ml by the length of the alignments: M̄l[i][j] =
Ml[i][j]

length(i,j)
.

3.2.2 Visual Sequence Alignment

The Smith-Waterman algorithm can be applied iteratively to find all repetitive se-

quences in a video. We propose to use a varying clustering level allows to have a coarser

or finer definition of the visual similarity. We start with a finer visual similarity, to de-

tect the most similar sub-sequences first, and continue with a coarser similarity to find

weaker alignments. The complete Visual Sequence Alignment algorithm is described in

figure 4.

Given : A video sequence S is defined as a list of m one-second segments: S =
s1s2...sm

– Hierarchical clustering: Sl = c1c2...cm where ci is the cluster of segment si of
the clustering level l.

– l = 0.
– Compute (m+1)∗(m+1) normalized scoring matrix M̄l where M̄l[i][j] represents

the cost of the sub-sequence alignment ending with segments si and sj .
– Iteratively: find the best sub-sequence alignment, i.e. the maximal value M̄l.

– If M̄l > threshold, we store this alignment and we update the scoring matrix.
– Else l = l + 1 and we update the scoring matrix.

Output: An ordered list of aligned sub-sequences.

Fig. 4 VSA: Video Sequence Alignment algorithm

The result of the VSA is an ordered list of aligned sub-sequences, where the order

corresponds to the confidence that we can assign to the alignment, the best alignments

being found first. As we let the algorithm run, erroneous alignments may be introduced.

Those will be filtered in the next processing step, where scene detection is performed.

4 Rushes video parsing

Every scene is generally recorded in several takes, which are variations for the same

scene. The takes for a scene will occur contiguously in the video. Scenes can be iden-
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tified from the alignments that have been found by the VSA by searching for sets

of contiguous subsequences which are (almost) all aligned together and (almost) not

aligned with subsequences of other sets. During this process, we may remove some false

alignments when two aligned sub-sequences do not belong to the same scene.

4.1 Alignment matrix

The alignment matrix is a matrix of scores which express the confidence of the align-

ment between two frames. We now work at the frame level where a video sequence is

defined as a list of frames V = f1...fn. We construct a n ∗n alignment matrix A where

A[fi][fj ] is the rank of the alignment between segments which contain frames fi and

fj , if one exists. If no such alignment exists, the value of A[fi][fj ] is set to the total

number of alignments found plus one.

4.2 Scene detection

Figure 5 shows a picture of the alignment matrix, where black areas correspond to the

best alignments (with lowest rank), and white areas to the worse or no alignment. We

assume that the different takes of the same scene are visually very similar. So, in the

alignment matrix, they should correspond to a black square area along the diagonal.

Since two scenes are presumably visually different, we can detect the boundary between

scenes by searching for white rectangle areas in the upper right corner of the alignment

matrix. More precisely, we compute the confidence rect(f) of a frame f to be a scene

transition on the video sequence beginning at the frame first and finishing at the

frame last by:

rect(f) =

∑f1=f
f1=first

∑f2=last
f2=f A[f1][f2]

(f + 1− first)(last + 1− f)

We search the frame f ∈ [first, last] which maximizes the value of rect(f). If this

value is greater than a threshold, f delimits a scene transition. We apply this process re-

cursively on both sides of f to find the other scene boundaries. At the beginning, we fix

first = 0∧ last = F (F is the number of frames in the video). The process is continued

as long as we can find rectangles with values greater than the threshold. The threshold

has been manually adjusted, and is the same for every video sequence. rect(f) is a value

between 0 and 1, so we tested {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.90, 0.95, 0.98}.
When no rectangle can be found, the decomposition into scenes is complete. We can

then detect the false alignments as the alignments between subsequences from different

scenes. Figure 5 shows a picture of the video scene decomposition process.

4.3 Take selection

Each alignment identifies two takes of the same scene. Among all takes, we would like

to select the take that is most representative of the scene content. We can make the

following remarks:
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Fig. 5 Video scene decomposition

– The different takes of a given scene presumably contain very similar content, there-

fore it is likely that different takes (or parts of different takes) will appear in the

list of aligned sub-sequences. A take should be a sequence of frames which do not

contain aligned frames.

– Some takes may be shorter, for example when an unexpected event happens that

does not allow a full recording of the action. The longest take is therefore a good

candidate for being the best representative for the scene.

Based on these remarks, we do not search for a precise decomposition of the scene into

takes, but rather we search for the longest take by searching the longest contiguous

sequence of frames which do not contain frames that have been aligned together. This

sequence is kept as the reference take for the scene.

4.4 Visual Sequence Alignment evaluation

We experimented our approach on videos used in the TRECVID BBC Rushes Summa-

rization Tasks for 2008: 6 for the development and 8 for the test. It consists of unedited

video footage, shot mainly for five series of bbc drama programs and was provided to

trecvid for research purposes by bbc archive.

In the ground truth, the important information to evaluate our system is the video

decomposition in scenes and takes: a scene is decomposed into takes and a take can

be decomposed into consecutive take fragments, (not all take fragments are present in

all takes, since some takes may have been shortened). Take fragments are delimited by

frame numbers. We constructed the ground truth data by manually defining the various

scenes, takes and take fragments, as illustrated in figure 6. The ground truth shows the

take fragments of the different scenes that can be aligned together. So, from the ground

truth data, we can easily infer the ground truth alignment matrix of the video sequence.

Figure 7 compares the ground truth alignment (left) with the scene structure found

by VSA (right) for some example videos. At the bottom of the matrix, the recall - pre-

cision values for our method and for JRS method [10].

Table 1 shows results on the 8 test videos. We evaluate the quality of the alignment

detection by measuring the black surface of the alignment matrix. With this measure,

the recall rate varies between 0.154 and 0.444, and the precision between 0.422 and

0.762. For scene detection, for a measure also based on the area, precision varies be-

tween 0.771 and 0.978, and the recall between 0.554 and 0.932. This shows that our

proposed method is able to perform a sensible decomposition of the rushes video into
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Fig. 6 Ground truth of video MRS044500, and alignment matrix corresponding with sample
of aligned sub-sequences.

(a) MRS025913
recall=0.63 - precision=0.88
jrsrecall=0.30 - jrsprecision=0.74

(b) MRS07063
recall=0.80 - precision=0.85
jrsrecall=0.87 - jrsprecision=0.40

(c) MRS144760
recall=0.89 - precision=0.87
jrsrecall=0.46 - jrsprecision=0.94

(d) MRS044500
recall=0.61 - precision=0.98

jrsrecall=na - jrsprecision=na

(e) MRS157475
recall=0.79 - precision=0.90
jrsrecall=0.47 - jrsprecision=0.61

(f) MS216210
recall=0.49 - precision=0.94
jrsrecall=0.42 - jrsprecision=0.91

Fig. 7 Matrix alignment of ground truth (below diagonal) versus video parsing found by VSA
(above diagonal) in black, and surface area of scenes in gray.

scenes.
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VSA Recall 0.23 0.28 0.30 0.28 0.44 0.15 0.24 0.16
VSA Precision 0.75 0.76 0.61 0.60 0.69 0.42 0.58 0.46

SD Recall 0.72 0.93 0.57 0.75 0.55 0.68 0.77 0.80
SD Precision 0.92 0.81 0.88 0.94 0.92 0.77 0.98 0.77

Table 1 Evaluation on test data

5 TRECVID manual evaluation

Automatic video summarization is a challenge. It requires decisions about the semantic

content and importance of each segment in a video. This explains the difficulty of the

development of automatic video summarization systems and in particular, of evalua-

tion methods. Much of the complexity of summary evaluation arises in the fact that it

is difficult to specify what one really needs to measure, without a precise formulation

of what the summary is aimed to capture. The TRECVID evaluation campaign has

defined an evaluation procedure where human assessors watch the summaries to eval-

uate the amount of content that they contain.

The ground truth is a list of important video segments, each identified by means of a

distinctive object or event occurring in the segment with qualifications concerning cam-

era angle, distance, or some other information to make each item description unique. A

complete description can be found in [1]. The ground truth provided by trecvid is a

simple chronological list of topics. The average number of ground truth topics for each

video is more than 20. In trecvid, this was considered too large for human evalua-

tors, so that the evaluation was only performed for a random list of 12 topics per video.

Each submitted summary was judged by three different human judges (assessors).

An assessor was given the summary and a corresponding list of up 12 topics from the

ground truth. The assessor viewed the summary in a 125mmx102mm mplayer window

at 25 frames per second using only play and pause controls and then was asked which

of the designated topics appeared in the summary. The percentage of topics found

by each assessor determines the fraction of important segments from the full video

included. The total score for a summary is the average of the scores given by the three

assessors: IN . Figure 8 depicts the video summary evaluation process. The results of

the manual evaluation were statistically analyzed in [1], and in conclusion authors found

that there was a good agreement between assessor judgments based on the comparison

of the topics detected by two assessors in a summary.

6 Summary Automatic evaluation

In order to automate the evaluation process, we propose to automate the decision on

topic detection by creating an automatic assessor which predicts the topic presence in

a summary based on topic, video and summary features. Figure 9 is an overview of the
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Fig. 8 trecvid 2008 manual evaluation processus

process.

Fig. 9 Process overview

For this purpose, we need to augment the TRECVID ground truth to include the

precise time boundaries for each occurrence of each topic in the videos. This augmen-

tation was done manually, and allows us to precisely compute how many frames of a

topic have been included in the summary. In other words, the summary features are

automatically comptuted, but the video features are manually detected.

6.1 Modelling topic assessment

For our modeling of the automatic assessment, we define a topic instance i as a couple

(xi, yi) where:

– xi ∈ X is a vector containing measurements on the occurrence of the topic,

– yi ∈ {presence, absence} is the result of the decision on the occurrence of the topic,

based on the values in xi.
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A topic can have repeated occurrences in a video. We call each of these occurrences

a topic sequence. The decision of detecting a topic or not depends on the occurrences of

the topic in the original video, and on its occurrences in the proposed summary. There-

fore, the vector xi hopefully contains all values necessary to take a decision on a topic

presence. It contains information coming from the original video and the ground truth,

as well as information coming from the proposed summary. In our proposed model, we

include the following measurements in the description of a topic instance. The following

information is obtained from the augmented ground truth and the original video:

x1 : Does the topic contain camera motion

x2 : Does the topic contain an event

x3 : Number of topic sequences in the video

x4 : Minimal length of a topic sequence in the video

x5 : Maximal length of a topic sequence in the video

x6 : Mean length of a topic sequence in the video

x7 : Mean activity of topic sequences in the video

x8 : Mean entropy of topic sequences in the video

The other measurements are obtained automatically from the content of the proposed

summary:

x9 : Number of topic sequences in the summary

x10 : Minimal length of a topic sequence in the summary

x11 : Maximal length of a topic sequence in the summary

x12 : Mean length of a topic sequence in the summary

With this formulation, an automatic assessor will decide on the presence or absence yi

of a topic based on the values of the measurements in xi.

6.2 Training an automatic assessor

An automatic assessor will define a function prediction that predicts the presence or

absence of a topic. If a topic is present, the function returns 1, else the function returns

0. So, once this prediction function is defined by a machine learning technique, we

can compute automatically the IN indicator, the percentage of topics found in the

summary, for a video v by the following formula:

IN(v) =
1

N

N∑

i=1

prediction(i)

where N is the number of topics in the video. We can also rank summaries according

IN .

From the detailed submission results to the trecvid summarization task, we can

create training data in the form of a set of topic instances (xi, yi). This list contains the

various decisions yi made by the assessors on proposed summaries, together with the

corresponding measurements xi on the occurrences of the corresponding topic. Based

on this training data, we compare various machine learning techniques to construct

an automated assessor, with the objective of providing decisions that are as close as

possible to those of the human assessors.
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6.3 Assessor evaluation

In statistics, the Pearson product-moment correlation coefficient r is a common measure

of the correlation between two variables. For our problem, Pearson’s correlation reflects

the degree of linear relationship between manual evaluation and automatic evaluation.

It ranges from +1 to −1. A correlation of +1 means that there is a perfect positive

linear relationship between evaluations. A correlation of −1 means that there is a

perfect negative linear relationship between evaluations. A correlation of 0 means there

is no linear relationship between evaluations.

r =
cov(X, Y )√
(V (X)V (Y ))

where cov(X, Y ) denotes the covariance between X and Y , and V (X), V (Y ) respec-

tively the variance of X, and the variance of Y . We evaluate the correlation at 3

different levels :

– Topic: we compute the correlation of the prediction of the topic presence between

our automatic assessor and the manual assessors.

– IN : we compute the correlation of the IN evaluation between our automatic eval-

uation and the manual evaluation.

– Ranking: we rank summaries based on their IN value, and compute the correlation

between our automatic evaluation and the manual evaluation.

7 Automatic Assessor evaluation

We experimented our approach on 8 videos proposed by bbc Rushes Task 2008 in

trecvid. It consists of unedited video footage, shot mainly for five series of bbc drama

programs and was provided to trecvid for research purposes by bbc archive. The

training instances are obtained from results of trecvid 2008 evaluation for 10 sum-

marization systems kindly sent to us by various participants.

In order to have the training data and the training test completely independent, we

choose to use a leave-one-out technique: for each video and for each system, we train

the model on 7 videos x 9 systems and we test the model on the last video and system.

Figure 10 shows the Pearson correlation between manual assessors and our automatic

assessor at 3 levels (topic, IN and ranking) for different machine learning methods

using the weka sotfware [17].

These experimental results show that the best performing classifier type is the

decision stump, although Bayes networks have a very close performance (in previous

experiments with less data, Bayes networks were the best classifier). A decision stump

is a weak machine learning model consisting of a decision tree with only a single node.

To better understand the automatic assessor, we identified the decision stumps that

worked best based on the leave-one-out method. We obtain only 4 different decision

stumps, shown in figure 11.

This shows that simple rules are able to provide a reasonable prediction of the

occurrence of a topic, based on simple measurements.
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Fig. 10 Pearson correlation between manual and automatic assessors.

Fig. 11 Decision stumps found.
At the top, the ratio of occurence of the decision stump.

The table 2 shows the correlation between the manual prediction and the auto-

matic prediction of topic presence. The Pearson correlation coefficient is 0.54, which

indicates a moderate correlation.

Classified as Absence Presence
Absence 390 116
Presence 45 313

Table 2 Confusion matrix of the topic presence prediction.

Figure 12 shows the manual evaluation of IN and ranking according to the auto-

matic evaluation. At these levels, the Pearson correlation is 0.88 and 0.91, which shows

a high correlation.

In practice, manual assessors do not always agree, because of the subjective inter-

pretation of topic occurrence. We would like a classifier that shows a close agreement

with manual evaluation, if possible as close as between two human assessors. We eval-

uate the quality of our automatic assessor in comparison to an human assessor. We use

all manual evaluations done by trecvid. For each pair of assessors, we compute the

correlation between their evaluations at the 3 levels. We average coefficients for each

assessor, table 3 shows the results.
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(a) IN level (b) Ranking level

Fig. 12 Pearson correlation between manual assessor and our automatic assessor

Assessor Topic IN Ranking

Assessor 1 0.755961 0.878687 0.914713
Assessor 2 0.789278 0.875702 0.917511
Assessor 3 0.770808 0.870860 0.911205
Assessor 4 0.775011 0.860053 0.895711
Assessor 5 0.790169 0.865818 0.897900
Assessor 6 0.750509 0.805306 0.833046
Assessor 7 0.715957 0.781069 0.824572
Assessor 8 0.702580 0.804130 0.811149
Assessor 9 0.726755 0.855810 0.892882
Assessor 10 0.790546 0.901866 0.926379

DecisionStump 0.535261 0.875906 0.913306

Table 3 Assessor correlation.

These experiments show that the automatic evaluation is at a similar level than

manual evaluation for the IN and Ranking criteria: the correlation between automatic

and human is as high as the correlation between manual evaluations. But at the topic

level, the automatic assessor has only a moderate correlation with the manual evalu-

ation. So, these experiments demonstrate that our automatic evaluation technique is

suitable for comparing and evaluating summaries using IN indicator.

8 Conclusion

In this paper, we have introduced a Video Sequence Alignment algorithm, VSA, which

uses a dynamic programming approach to identify similar sub-sequences in a video se-

quence. This algorithm is used to parse rushes video and structure them into scenes and

takes. We have described the details of the algorithm and evaluated its performance

on the TRECVID BBC Rushes Summarization task videos. VSA is a useful step in

the construction of summaries for rushes video. In the future, we plan to extend it to

other video processing applications, for example, to structure more general videos by

detecting similar sub-sequences.

We have also proposed an approach to automate the summary evaluation by training

a decision stump in order to remove the human interaction that was required in the

trecvid evaluation campaign. Through experiments, we showed a high correlation be-
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tween the manual evaluation proposed by trecvid2008 and our automatic evaluation.

In further work, it would be interesting to generalize our approach on a larger data

set including more videos and more summarization systems to improve the prediction

quality.
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