
Secret Interest Groups (SIGs) in Social Networks with an
Implementation on Facebook

Alessandro Sorniotti
SAP Research and Institut Eurécom

Mougins, France
alessandro.sorniotti@eurecom.fr

Refik Molva
Institut Eurécom
Valbonne, France

refik.molva@eurecom.fr

ABSTRACT
In this paper we present the first framework that allows the
creation of Secret Interest Groups (SIGs) in Online Social
Networks; SIGs are self managed groups formed outside of
the social network, around secret, sensitive or private topics.
Members exchange credentials that can be used inside the
social network to authenticate upon friendship requests or
to secure user-generated content. To this end we present a
set of cryptographic algorithms leveraging on well-studied
primitives, and we describe a java implementation of the
framework for Facebook.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

Keywords
Social Networks, Secret Interest Groups, Secret Handshakes

1. INTRODUCTION
Ever received a friendship request on Facebook reading

”Hi, I’m John Smith, add me as a friend, we were classmates
at university“, remaining clueless about who this person is?
Or ever been told that there is a profile under your name on
a given social network, except you have never created such
profile? If you are avid social network users, the answer to
the first question is most likely yes, and a good percentage
will answer yes to the second question too.

Indeed Online Social Networks (OSN) are becoming one
of the most prominent communication technologies. Plat-
forms as Facebook now count millions of users that are shar-
ing information every day. Since the content is in many
cases hosted on the OSN provider, OSN users can be pro-
filed and offered detailed advertisement to support the OSN
provider’s revenues from advertisement.

A problem which is particularly felt among social network
users is identity theft and identity spoofing [1, 2]. The root

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

of the problem is that in many OSNs there is little or no
verification that a person that joins the social network is re-
ally who he or she claims to be. This shortcoming needs to
be combined to a second one: social network users base the
decision on whether to accept a friendship request on name,
pictures and fragments of text, information that is often
easily retrievable elsewhere on the internet. It is therefore
relatively simple [5] for an attacker to set-up a profile on
an OSN, pretending to be somebody else, and then to con-
vince other users to accept friendship request, consequently
sharing their private information with the attacker.

To improve the security of this process, users could be
asked to provide credentials along with the friendship re-
quest. However to be meaningful, credentials cannot be self-
generated, but need to be generated and maintained after
verification by a third party: this task is cumbersome and
expensive and on the one hand, it is unrealistic to expect a
central entity (the social network provider for example) to
attend to it for free, and on the other hand, users are not
likely to pay for such service.

A viable solution consists on users creating ad-hoc, trusted
groups outside of the social network, issuing group member-
ship credential and presenting such credentials upon friend-
ship invitations within the social network.

A natural evolution of the aforementioned trusted friends
groups are Secret Interest Groups (SIG), user-created groups
with particular attention to confidential or simply privacy-
sensitive topics. Indeed users of online social networks are
often also exchanging personal and sensitive material; more-
over, OSNs are more and more the theater of political, reli-
gious debate, often used as means to exchange confidential
material that cannot go through official channels. It has
been the case for instance in Iran during the recent post-
electoral turmoils [3].

Our goal in this paper is therefore the creation of a frame-
work that supports the formation and evolution of Secret In-
terest Groups. With our framework, users are able to handle
the joining and leaving of members, to revoke or grant ad-
ministration privilege to members, and to grant credentials
that members can use to secure their relationship with other
members in a social network. The challenges in the design
of the framework are mainly two: it should (i) suit the re-
quirements of ad-hoc groups, namely, it should not require
a centralized entity but operate in a distributed fashion and
(ii) it should be possible to implement it in a real OSN,
with all the constraints thereof, for instance, impossibility
of direct connections between users, all the communications
going through OSN servers and the fact that users are not

necessarily online simultaneously.
The SIG framework that we have designed and imple-

mented, supports the aforementioned technical requirements
along with the high security requirements typical of secret
groups. These groups are secret in the sense that mem-
bership to a SIG is a sensitive information that users are
reluctant to expose publicly. A SIG can be for instance cen-
tered around religious, political, sexual interests, such that
users are very interested to interact with other users that
share the same interest, but extremely reluctant to admit
publicly that they belong to such an interest group. This
notwithstanding, a SIG can be centered around less secret
topics, that still represent privacy-sensitive topics requiring
a certain degree of security or privacy. The proposed frame-
work therefore addresses the more complex case of secret
groups, but can be used for simple private user groups too.

Our contribution In this paper we first study the op-
erational and security requirements of a generic SIG frame-
work; then, we propose the complete set of cryptographic
algorithms and protocols that describe the operations of
our SIG framework, respecting the aforementioned require-
ments. Last, we have implemented the SIG framework to
make it usable in the ever growing OSN platform Facebook.
To the best of our knowledge ours represents the first effort
in the field.

In the design of the cryptographic part of the solution, as
we shall see later, we have relied on Secret Handshakes [4]
as one of the main pillars. From this perspective, our work
also represents one of the first realistic use cases for secret
handshakes. In addition and even more interestingly, the
Secret Handshake scheme that we propose is the first one
to relax the need for a centralized entity to issue creden-
tials; finally, it is the first secret handshake scheme to use
signatures and Oblivious Signature-Based Envelopes as cre-
dentials (although the possibility of using them has been
hinted in [16]).

2. DESIGN OF THE SIG FRAMEWORK
The SIG framework can be split into two main parts: OSN

external and OSN internal. As the names suggest, the main
difference is that some of the algorithms of the SIG frame-
work will operate outside of the social network, indepen-
dently of it, while other algorithms will be executed in the
social network, using the social network itself as a transport,
in order to secure further communications among the social
network users.

OSN external algorithms deal with the creation and main-
tenance of the Secret Interest Group outside of the social
network: as real friendship happens outside of the social
network and is then used to create some links inside of it,
a secret group is created outside of the social network and
it is used to secure friendship links established within. OSN
internal algorithms instead deal with authentication, hand-
shaking and encryption of content among users of the social
network, using the social network as a transport layer for
cryptographic messages.

2.1 OSN external
All OSN external algorithms must take into account that

the SIG is an ad-hoc group. We will therefore adopt three
design guidelines: (i) there should be no central entity, (ii)
any entitled user should be able to act as a central entity
and (iii) algorithms should be “thresholdized”, in the sense

that to be performed successfully they need the cooperation
of at least a minimum number of entitled users. Respecting
these guidelines results in the role of the central entity being
split and spread among entitled users.

We assume that the creation of a new SIG group is the
task of an initial set of SIG managers, that creates the group
and handles the joining of the first SIG members. The ini-
tial set of SIG managers may reserve the ability of handling
the joining of other users to themselves only, or may en-
dorse other users with this capability as well. The difference
between SIG managers and SIG members is substantially
that SIG managers are normal SIG members who are also
responsible for appointing new SIG managers and to allow
new members to join the SIG. From this, we derive the first
two requirements of SIG Join:

• RExt1: at any point in time, the set of SIG managers
must be non-empty;

• RExt2: only a subset of SIG managers can appoint
new SIG managers;

To enhance the security of SIGs, we require that one SIG
manager alone is not able to perform either tasks: both pro-
cedures require instead a minimum number of SIG managers
to be involved in their execution.

• RExt3: appointing new SIG managers and handling
the joining of new members are distributed tasks, that
no SIG manager alone can handle; instead, a joint ef-
fort of a minimum number of t SIG managers is re-
quired;

Prior to be allowed to join the SIG, a user must undergo
offline verification carried out by a SIG manager; the pur-
pose of this verification is to ensure that all members are
consistent with the SIG join policy. This procedure is group-
specific and requires different controls depending on the na-
ture of the SIG: for example, in a SIG revolving around polit-
ical militancy, party membership, background check or face-
to-face interview could be the check that a user is required
to pass before being admitted in the group; for a SIG repre-
senting a project consortium, it may be instead sufficient to
send the membership credentials using the consortium email
address. The same must be true for SIG managers.

• RExt4: SIG managers will admit new SIG members
or new SIG managers only after checking their compli-
ance to the SIG join policy;

SIG members and SIG managers receive membership cre-
dentials and managership credentials to certify their roles.
An additional requirement aims at making sure that these
credentials cannot be forged or modified:

• RExt5: no coalition of less then t SIG members or
SIG managers is able to forge a new credential (both
membership or managership);

The existence of credentials comes along with the require-
ment for revocation. We will treat the revocation of SIG
managership credential differently from simple SIG member-
ship ones. There are mainly two well-known techniques to
revoke credentials: proactive and reactive techniques. The
first embeds time-limits in the credentials, or forces periodic
updates of the credentials. The second singles out revoked
credentials publishing a revocation handle to an authenti-
cated public list.

The fact that single SIG manager credentials fall into the
hand of an attacker is not so dangerous, thanks to require-
ment RExt3: an attacker would indeed need to get hold

of at least t SIG managership credentials, and since t is a
parameter of the system, this threshold can be set based
to meet the desired degree of security. The most suitable
solution to counter the theft of SIG manager credentials is
therefore a proactive strategy: managership credentials can
be periodically updated so as to make sure that the probabil-
ity that an attacker gets hold of at least t valid managership
credentials is arbitrarily low.

As for SIG membership credentials, revocation is required
when either a SIG member got his membership token stolen
or when he no longer qualifies for membership. The loss
of a SIG membership credential is somewhat thornier then
the loss of SIG managership credentials, since SIG mem-
bership credentials can be used directly to authenticate to
another SIG member or to access content of a SIG member,
as we shall see in the next Section; therefore a reactive re-
vocation approach is required. Promptly detecting that a
credential has fallen in the hands of an attacker is a vital
requirement: for stolen credentials this is quite straightfor-
ward, since the legitimate user that suffered the theft can
realize it and report it (the situation is a bit more complex
in case credentials are stolen due to a virus/trojan compro-
mising the system but leaving the attacker unaware, but this
aspect is out of our scope). Much more complex is the case
of detecting a once legitimate user betraying his allegiance
to the SIG and colluding with an attacker, or becoming one
himself: however this aspect is orthogonal to our work and
represents a separate area of research. We therefore assume
that the following assumption holds:

• RExt6: stolen SIG membership credentials or creden-
tials belonging to a user that has become malicious are
eventually detected as such;

2.2 OSN internal
A SIG member eventually wants to add another alleged

SIG member to his list of friends through the standard so-
cial network invitation process, exchange content or chat in
a secure way, both operations that occur within the social
network. Two main algorithms are therefore required: mu-
tual authentication of two SIG members and encryption of
content for fellow SIG members. The first requirement is
then straightforward:

• RInt1: only a legitimate SIG member can successfully
authenticate to another SIG member or receive content
from the latter;

Keeping in mind that SIGs are by definition secret or pri-
vacy sensitive, the invitation process is crucial, because a
legitimate member (the inviter, the invitee or both) does
not yet know whom he is interacting with. Indeed, sending
a friendship request on the grounds of common SIG mem-
bership would imply admitting to belong to the SIG for the
inviter; accepting the request would mean the same for the
invitee. Inviter and invitee have no incentive in disclosing
their SIG membership unless they can be sure that they are
interacting with another SIG member.

Such authentication problem can be solved by Secret Hand-
shakes. Secret Handshakes have first been introduced in
2003 by Balfanz et al. [4] as mechanisms designed to prove
group membership between fellow group members. Addi-
tional properties are that non-members must not be able
to either impersonate group members or to recognize legiti-
mate group members. Besides, the communications between
group members are designed so as to provide untraceability

of any two protocol exchanges. The purpose of these proto-
cols is to model in cryptography the folklore of real hand-
shakes between members of exclusive societies, or guilds.
Upon handshake between two SIG members, due to the na-
ture of SIGs, users are reluctant to disclose their affiliation
to the SIG: they want to do so just when they are sure to
be interacting to another legitimate SIG member. From this
observation, we derive the following requirement:

• RInt2: when two OSN users are trying to authenti-
cate as SIG members, either both learn that they both
belong to the SIG or they do not learn anything at all;

This implies that proof of membership and verification of
membership happen simultaneously and atomically. Revo-
cation should respect this requirement, in that revocation
of a SIG membership credential should forbid its owner to
both prove or verify membership to the SIG.

2.3 Security and Adversarial Model
There are mainly four different actors in our SIG frame-

work: the OSN provider, the OSN user who is not a SIG
member, the OSN user who is a simple SIG member and
finally the OSN user who is a SIG manager. Each of these
actors have different goals and different capabilities.

The OSN provider can be modeled as a Dolev-Yao type of
intruder: although unlikely to meddle with the users’ con-
tent, the OSN provider effectively controls the network and
in theory has the possibility to read, modify and drop each
and every message that is being exchanged in the OSN.
In reality, the OSN provider is more likely to behave as
a Honest-But-Curious adversary, whose goal is to perform
data-mining and to profile users so as to gather data that –
depending on the regulations of the country where the OSN
provider has its legal body – can be sold to third parties, or
to simply use this information to offer specific ads to users
thus gaining revenues from advertising. Seen from a SIG
point of view, the OSN provider is interested in passive,
monitoring attacks, such as discovering whether a user is
part of a SIG, in discovering the nature of a SIG and the type
of content that is being protected before exchange among
SIG members. The OSN provider can of course spawn fake
OSN users, but cannot become a SIG member since SIG
membership is given only after compliance check with the
SIG join policy (RExt4). Under the assumption of perfect
cryptography, the main goals of this type of attacker are
therefore linkability and traceability; linkability refers to the
ability of linking different users to the same SIG, therefore
create a list of SIG members; traceability refers instead to
the ability of tracing the same member over multiple execu-
tions of SIG related operations.

Simple OSN users can also be modeled as Dolev-Yao in-
truders for the following reason: the OSN provider (a Dolev-
Yao attacker by definition) can both spawn OSN users or
collude with real OSN users. This type of intruder’s objec-
tives are similar to the OSN provider, with the addition of
active attacks, where the attacker engages in the authenti-
cation protocol with legitimate SIG users with the objective
of passing off as a legitimate SIG user.

A SIG manager/member has already access to the infor-
mation a simple OSN user/OSN provider is after. Under
the assumption that the revocation mechanisms hold, a SIG
member/manager that loses or maliciously gives away cre-
dentials is eventually caught. The goal of such type of at-
tacker is therefore to generate fresh SIG membership cre-

dentials to circumvent revocation, or to appoint new SIG
managers without the consent of a majority of managers.

3. THE SIG FRAMEWORK
In order to build a scheme that satisfies the aforemen-

tioned requirements, we leverage on a number of well estab-
lished cryptographic primitives. First, we use mechanisms
for Secret Sharing and Secret Redistributions to allow SIG
managers to share a secret and perform joint computations.
Then, we leverage on threshold signatures to allow a set of
SIG managers to jointly compute a signature. The signa-
ture will be the membership token allowing its possessor to
prove its membership to the group. Finally, we use Oblivi-
ous Signature-Based Envelopes (OSBEs) to allow two users,
owning a signature computed as discussed above, to perform
a secret handshake and share a key iff they both own the sig-
nature of the same message under the same public key. In
the next section we briefly illustrate these three techniques.

3.1 Preliminaries
At first, let us introduce some terminology that will be

used in the rest of the section. Let p and q be large prime
numbers such that q divides p − 1 and let g be a generator
of the subgroup of order q of Zp; let h be a one-way hash
function in the range {1, . . . , q − 1}.

Secret sharing allows a set of n parties to possess shares
of a secret value, such that any t shares can be used to
reconstruct the secret, yet any t− 1 shares provide no infor-
mation about the secret. Secret sharing was first proposed
by Shamir [22] and independently by Blakley [6]. This ini-
tial idea has been extended in a number of works [12, 13,
14, 20, 19]. For the objectives of our scheme, we will use
two different algorithms: Share [20, 19], used by n users to
share a random secret without a dealer, so that t are in prin-
ciples able to reconstruct it; and Redistribute [12], used by
t shareholders to compute n′ new, unrelated shares of the
same secret, so that t′ new shareholders can reconstruct the
secret. In both algorithms, the secret is actually never recon-
structed, and – since there is no dealer – none of the share-

holders knows the secret. We call Γ
(n,t)
P the access structure

wherein a secret is shared among a population of users in

the set P, with |P| = n so that any subset B ∈ Γ
(n,t)
P , with

|B| = t can reconstruct that secret.

Share : this algorithm is executed by each Pi belonging to

an authorised set B ∈ Γ
(n,t)
P with cardinality t. Each

Pi picks a random ri
R← Zq, forms a random polyno-

mial fi(u) = ri+ai,1u+. . .+ai,t−1u
t−1 and sends fi(j)

mod q to each Pj ∈ P/Pi; the (unknown) shared se-
cret is R =

∑
j∈P rj . Every Pi ∈ P computes its share

of the secret Ri =
∑

j∈B fj(i); additionally, each Pi

broadcasts gri mod p; this way, everybody can com-
pute gR mod p;

Redistribute : this algorithm is executed by each Pi belong-

ing to an authorized set B ∈ Γ
(n,t)
P with cardinality

t. The objective is to generate new shares for the

new access structure Γ
(n′,t′)
P′ . Each Pi computes a ran-

dom polynomial formed as fi(u) = Ri + ai,1u + . . . +

ai,t′−1u
t′−1, where Ri is the local share of the secret

possessed by Pi; each Pi sends fi(j) mod q to each
Pj ∈ P ′/Pi; then, each Pi can locally generate its new
share R′i by Lagrange interpolation;

Using these two algorithms, we can generate threshold
signatures. At first we describe a variant [18] of the famous
DSS signature scheme [9]. Let the secret signing key be
x ∈ Zq and the public key be gx mod p. The scheme has
two algorithms:

Sign : given the message m and a random number e
R←

Zq, compute the signature (w, v) such that w = (ge

mod p) mod q and v = wx + h(m)e mod q;

Verify : (w, v) is a valid signature on the message m iff w =(
gvh(m)−1

(gx)−wh(m)−1
mod p

)
mod q;

A threshold signature scheme [8, 10, 11] leverages on the
aforementioned secret sharing techniques in order to share
the secret key among n parties, thus distributing the signing
capabilities over n parties, so that any subset of t can jointly
compute a signature, whereas no t − 1 subset can. In [18],
Park and Kurosawa propose a threshold version of the afore-
mentioned DSS signature variant. The variant assumes that
the Share algorithm has been executed to create an access

structure Γ
(n,t)
P and that any principal in P has a share xi

of the (unknown) private key x. In addition, the public key
gx is publicly known. The Verify algorithm stays the same,
whereas the Sign algorithm is modified as follows:

Sign : this algorithm is executed by each Pi belonging to

an authorized set B ∈ Γ
(n,t)
P with cardinality t; each

Pi has a local share xi of the secret signing key x. All
the Pi engage in the Share algorithm, generating the
value ge mod q and a local share ei of the (unknown)
random value e; then, each Pi sends the value vi =
gexi +h(m)ei mod q to the requester of the signature,
along with the value ge mod q; the first part of the
signature is w = ge mod q; given the set of shares
{vi, i ∈ B}, the second part of the signature v can be
computed through Lagrange interpolation;

As we can see, the Share algorithm is executed twice, once
prior to signing to generate the public key and shares of the
private key, and a second time, to generate the first part of
the signature and shares of its discrete log.

Finally, we introduce Oblivious Signature-Based Envelopes
(OSBEs) as our building block for our OSN internal algo-
rithms. OSBEs have been introduced by Li, Du and Boneh
in [15]. An OSBE scheme allows two parties to share a key
iff a predefined party among the two possesses a signature
on an agreed-upon message. Nasserian and Tsudik have pre-
sented – among others – an OSBE scheme [16] based on the
DSS variant mentioned in the previous section.

At first a message m is chosen; the OSBE round happens
between a party P1 who might have a signature (w, v) on m
and P2. The OSBE round proceeds as follows:

OSBERound : P1 sends w to P2; P2 generates r
R← Zq,

sends gr to P1 and computes K2 =
(

(gx)wwh(m)
)r

;

P1 computes K1 = (gr)v; K1 = K2, i.e. P1 and P2
will share a key iff P1’s signature on m was correct;

3.2 Putting it all together
In this Section we describe our SIG framework based on

its algorithms. At first let us describe three OSN external
algorithms that are executed to populate and manage the
SIG. As we have already mentioned in the previous sections,
there are two different types of SIG users: regular members
and initiators/managers; the following algorithms focus in
issuing credentials for these two roles:

InitiateSIG : this algorithm is executed by a set of n SIG ini-
tiators; each SIG initiator jointly engages in the Share

algorithm, forming the access structure Γ
(n,t)
P , com-

puting the SIG public key PKSIG = gx and shares
of the private key SKSIG = x that we represent as
SKi
SIG = xi; the public parameters are the SIG pub-

lic key PKSIG = gx and a message MSIG ; SKi
SIG

represents the SIG managership credential;
UpdateSIGManagers : this algorithm is executed by a set of

t SIG managers; each SIG manager jointly engages in
the Redistribute algorithm, forming a new access struc-

ture Γ
(n′,t′)
P′ computing new shares of the private key

SKi
SIG = xi and giving them to the new set of SIG

managers P ′;
GrantSIGMembership : this algorithm is executed by a set of

t SIG managers out of the n total; each SIG manager
checks the requesting users’ conformity to the SIG join
policy; after a successful check, each of the t SIG man-
agers engages in the Sign algorithm, forming a new
signature on message MSIG , that verifies correctly un-
der the SIG public key PKSIG ; the signature is then
issued to the supplicant user; the signature represents
the SIG membership credential;

The SIG starts with the invocation of InitiateSIG by the
initial set of n SIG managers, the SIG initiators. At the end
of the algorithm, the SIG managers have picked a message
that will be used later on for the handshake between two
users on the social network, they have agreed on a known
public key and they have distributed secret shares of an
(unknown) private key, representing the SIG managership
token. Notice that the actual private key is unknown; it
could be known if at least t SIG managers colluded and
reciprocally revealed their shares, however the threshold t
can be set accordingly in order to discourage such attempts.
In situations where hierarchy of SIG managers is important,
each SIG managers can be supplied a different number of
shares according to their importance.

The algorithm UpdateSIGManagers can be invoked by at
least t SIG managers to redistribute different shares of the
same SIG private key to a different set of SIG managers,
fixing a new threshold t′. The reasons for invoking the
UpdateSIGManagers are mainly twofold: (i) if the group
grows, new SIG managers need to be appointed and there-
fore receive shares SKi

SIG of the private key; (ii) when a
group of (less then t) SIG managers needs to be revoked1,
t other SIG managers can generate a different set of shares,
not related with the old set, and distribute the new shares
to all managers but the ones whose manager rights need
to be revoked, thus effectively preventing the latter from
further executing SIG manager tasks. Regular invocations
of UpdateSIGManagers can be scheduled so that new shares
are proactively being distributed and the population of SIG
managers can be both purged of elements that are no longer
trustworthy and enriched with new trusted ones.

t SIG managers can also issue SIG membership tokens,
that users can use to authenticate on the social network.
To this end, t SIG managers execute GrantSIGMembership,
issuing to the new SIG member a signature representing the
SIG membership token.
1Notice that revoking SIG managership to t SIG managers
or more is not feasible since in principles they can recon-
struct the SIG secret key SKSIG ; this can be countered by
appropriately setting t.

U1 −→ U2 w1 = ge1 , gr1

U2 −→ U1 gr2 , w2 = ge2

U1 computes K1 =
(

(gx)w2 w
h(MSIG)
2

)r1

K′1 = (gr2)v1 and k1 = H(K1||K′1)

U2 computes K′2 =
(

(gx)w1 w
h(MSIG)
1

)r2

K2 = (gr1)v2 and k2 = H(K2||K′2)
U2 −→ U1 Ek2(N)
U1 −→ U2 Ek1(N + 1)

Figure 1: SIGMembersHandshake and relative
challenge-response upon friendship invitation.

Once group members receive their membership tokens,
they can interact more securely on the social network plat-
form, using the following algorithms:

EncryptForSIGMember : this algorithm is executed by a SIG
member (sender) that wants to encrypt some content
prior to its publication on the social network platform,
to be received by a second SIG member (receiver);
receiver and sender engage in the OSBERound algo-
rithms, acting as P1 and P2 respectively; output of
OSBERound is a key that the sender will use to en-
crypt the content before its publication on the social
network. Only if the receiver is a legitimate SIG mem-
ber, will he be able to reconstruct the key and therefore
decrypt the content of the message;

SIGMembersHandshake : this algorithm is executed by two
SIG members that want to authenticate one another as
members of the SIG; the two members engage in two
separate instances of the OSBERound algorithms, act-
ing in turn as both P1 and P2 over the two executions,
at the end of which, each party obtains two keys; the
two parties then have to prove one another knowledge
of both keys simultaneously; if this is successful, the
Handshake is successful;

EncryptForSIGMember can be used for instance when try-
ing to send a message or to post some content that is stored
in the OSN servers and displayed to the recipient upon its ac-
cess to the OSN; SIGMembersHandshake instead is the ideal
candidate for securing the friendship invitation process in
the OSN, but can also be used to secure synchronous events
like chat sessions. For clarity’s sake, SIGMembersHandshake
is summarized in Figure 1: two users, U1 (holding the sig-
nature (w1, v1)) and U2 (holding the signature (w2, v2)) en-
gage in two OSBERound sessions establishing two keys each.
Then, they engage in a challenge-response protocol to prove
to one another knowledge of the keys computed: as an exam-
ple for the latter, we have decided to use a challenge-response
protocol similar to the one used in Kerberos [17], with the
addition that E is an authenticated encryption mode of op-
eration for cryptographic block ciphers, such as OCB [21]
(Offset Codebook Mode): this way U1, upon receipt of the
last message, is already able to tell whether he is interacting
with a legitimate SIG member.

Of crucial importance is the possibility to revoke SIG
membership tokens. There are two possible ways in which
this can be achieved: one, suggested by Boneh and Franklin
in [7], consists in periodically updating MSIG . For exam-
ple, concatenating the current year to MSIG = “abc” would
make sure that only SIG members owning a signature on
the message “abc || 2009” are able to successfully perform
EncryptForSIGMember and SIGMembersHandshake. At the

Figure 2: Operations of the proxy upon a friendship request.

expiration date, a SIG member simply needs to apply for
GrantSIGMembership and, if it is still eligible, get a new sig-
nature for the next time period, in the example, for the next
year.

The second approach for revocation is a reactive one, sim-
ilar to the one proposed in [4]. This approach is based on
the fact that upon execution of both EncryptForSIGMember
and SIGMembersHandshake algorithms, users exchange part
of their SIG membership credential, in particular, the first
component w of their signature (w, v). w is formed by the t
SIG managers that engage in the GrantSIGMembership, who
know this value. Consequently, should this credential be re-
voked, the t SIG managers can just forge a new signature
on the message “w is a revoked SIG membership token”
and broadcast it to all SIG members. This signature can be
posted by any means chosen by the users so as to speed up
its diffusion, as it does not represent secret information.

4. IMPLEMENTATION IN FACEBOOK
In this Section we describe the implementation of a work-

ing proof-of-concept of the SIG framework. We have chosen
to focus our implementation efforts only to the OSN internal
part, and have picked Facebook as our target OSN. These
choices are motivated by the fact that the implementation
of the OSN external algorithms does not raise any interest-
ing challenge; the choice of Facebook as OSN platform is
motivated by its extreme popularity, which could ease the
adoption and diffusion of our SIG framework.

The OSN internal part of our SIG framework has been
implemented as a java http proxy. The intended use is the
following: a SIG member runs the proxy, which intercepts
only requests toward Facebook servers. The proxy modi-
fies requests and responses, running the secret handshake
protocol upon membership invitation and chat events; noti-
fication of the success or failure of the protocol is provided

to the user through modifications of the html that is dis-
played in the browser. Among the features that still need
to be implemented, on which we are concentrating our im-
plementation efforts, the two most prominent ones are the
encryption of messages and the porting of the software to a
standard Facebook application.

The main challenge to face when implementing the OSN
internal algorithms in a real social network, is that users of
a social network are not always online, and cannot commu-
nicate directly, whilst the secret handshake protocol – for
instance – is an interactive protocol. The challenge is there-
fore to adapt an interactive protocol to a non-interactive
environment. In the rest of this Section we will therefore
describe in details how the proxy operates upon a friendship
invitation event at both inviter and invitee’s side.

In Figure 2 we can see how the proxy operates upon a
friendship request, triggered by message 1. The message is
not forwarded immediately to the Facebook servers; instead
the proxy looks up the profile of the invitee, extracting from
the “About me” field of the profile the invitee’s handshake
(messages 2 and 3). Then the proxy creates its own hand-
shake message, derives the key which is used to encrypt a
random nonce N. Handshake message and encrypted nonce
are then serialized and base64’ed, and added as the POST
parameter “message” of message 1. The resulting message
is finally forwarded to the Facebook servers (message 4).
Let us assume that the invitee eventually accepts the re-
quest; the inviter is notified in a number of ways depending
on whether he is online or not at the moment of the ac-
ceptance: the proxy intercepts this event in all its possible
forms; as an example, in message 5 and 6, the browser is
notified through the response to an infinite javascript loop
that originates AJAX requests to fetch the updates. As can
be seen, the message confirmation is not sent back directly

Figure 3: Operations of the proxy upon a friendship response.

to the browser. Instead, the proxy searches in the Facebook
inbox for a message from the invitee with the response to the
challenge (messages 7 to 10). If none is found or the mes-
sage (after base64 decoding and deserialization) cannot be
decrypted to be N +1, then the standard acceptance of mes-
sage 6 is forwarded back to the client; otherwise a modified
confirmation message that highlights the SIG membership
of the invitee, like the one of message 12, is fed back to the
browser.

Figure 3 shows instead how the proxy operates on the in-
vitee’s side. At first, the proxy publishes the invitee’s hand-
shake message in the “About me” section of the invitee’s
profile (messages 1 and 2). The operations begin with the
client visiting the page with the pending requests (message
3). The page is fetched and the message that the inviter has
included in the invitation is decoded and deserialized to the
handshake message and the inviter’s challenge M . Then the
proxy, using the handshake message that had been serial-
ized an base64’ed in the “About me” section of the profile
(message 4), derives the key and attempts the decryption
of M into N ; since the encryption scheme – AES OCB –
provides authenticity, a successful decryption implies that
the inviter is a certified SIG member. In this case, the html
that is sent back to the client (message 5) is modified so as
to notify that one of the inviters is a SIG member. At this
point, the user may decide to accept a friendship request.
If so, the acceptance message is not forwarded right away;
before it, a Facebook message is composed, with the string
“AAAProxy” as subject, and with the encryption of N + 1
in the body (message 6). Facebook uses captcha to prevent
proxies like ours to perform automated actions (message 7);
the proxy cannot clearly solve the captcha challenge, but
can nevertheless forward the request back to the client to

have it solved instead. The message, with the solution to
the captcha is then sent to the Facebook server (message
8). Upon receipt of the confirmation (message 9), the proxy
finally accepts the original friendship request and forwards
the response of the server back to the client (messages 10 to
12). Right after the friendship acceptance has been sent, the
steps of messages 1 and 2 are repeated, thus creating a new
handshake message to be used for a new request. An arbi-
tration protocol needs to be devised in case two invitations
use the same handshake message.

5. SECURITY ANALYSIS
Due to space restrictions, we are only able to sketch the

security analysis, since we have focused mainly on the gath-
ering of the requirements and on the design and implemen-
tation of the framework.

The framework has been built intentionally on well-studied
cryptographic primitives, in order to leverage on their secu-
rity to guarantee that of the whole framework. In Section 2.3
we have identified three main typologies of adversary among
the four actors of the framework: passive adversary (trac-
ing and linking), active outsider (engaging in authentication
without credential) and active insider (engaging in authen-
tication with credential bypassing revocation).

Let us start with the requirements of untraceability and
unlinkability in the context of passive adversaries; both al-
gorithms EncryptForSIGMember and SIGMemberHandshake
provide unlinkability, since the only group-wide value x,
present in public key, private key and its shares, is only used
in the computation of the keys output of the handshake; the
keys are randomized, and only ciphertext encrypted with
them is actually transmitted: assuming that a ciphertext
does not reveal anything about the key used for encryption,

both protocols are unlinkable. Untraceability can easily be
achieved by providing users with a number of one-time-use
signature pairs (w, v). w is indeed the randomizer for the
signature: since protocol Share guarantees that w is chosen
at random in presence of an honest majority (and there are
alternative protocols in case of dishonest players), then both
protocols provide untraceability too. However, once proto-
cols are implemented in the OSN, the requirements become
harder to satisfy: in particular, untraceability is unpracti-
cal to be achieved since OSN users are tagged with OSN
profile ID and profile names, that can be used for tracing.
Notice that situations in which it is theoretically possible to
provide untraceability, but then practical implementations
provide tracing facilities at lower layers (the OSN in our
case) happens frequently in security. Unlinkability instead
is preserved: provided that there is a significant number of
other SIGs in the OSN, it is not possible to link users to a
given SIG.

Active outsiders’ goal is to authenticate as a SIG member
without owning a membership token. Such an adversary has
a number of options to achieve the goal: tricking SIG man-
agers into issuing them a SIG membership token is not fea-
sible, since it would require tricking more then t managers,
whereas t can be made big enough to counter such attempts;
collecting t shares of the private key is not feasible either for
the same reason and also due to the fact that shares can
be proactively revoked; finally, SIG membership tokens are
DSS signatures, whose security has been studied extensively
in the literature [9]; this signature scheme guarantees resis-
tance to existential forgery, therefore an active outsider has
no possibility of forging membership tokens. Without a valid
credential, users cannot engage in successful authentication;
this follows from the property of semantic security against
the receiver, which is guaranteed by OSBEs [16].

Active insiders have similar goals as active outsiders, with
the difference that they dispose of a number of valid creden-
tials; this fact can be modeled with an oracle that generates
a number of signatures on MSIG , with the attacker then try-
ing to generate a new signature with a different randomizer
(thus circumventing revocation). However, the same con-
siderations mentioned for active outsiders apply here: resis-
tance to existential forgery includes this oracle, and therefore
its existence does not impact the security of the scheme; the
same applies for the semantic security against the receiver
of OSBEs.

6. CONCLUSION AND FUTURE WORK
In this paper we have focused our attention on the problem

of securing user interaction in online social network, mainly
through the creation of self-managed user groups that hand
out credentials to their members. Then, secret-handshake
based authentication and content encryption are used in the
social network. To this end we have defined a set of require-
ments, sketched a security model, presented a framework of
cryptographic protocols and introduced a proof-of-concept
java implementation, working in the ever growing Facebook
platform.

This paper leaves two major items for future work: first of
all, a more thorough security analysis is required, although
its bases have been sketched in Section 5. Finally, the java
prototype should be extended to become an actual Face-
book application, to support all the functionalities of the
framework, and to be usable in other OSN platforms.

7. ACKNOWLEDGEMENTS
This work has been partially supported by the SOCIAL-

NETS project, grant agreement number 217141, funded by
the EC seventh framework programme.

8. REFERENCES
[1] http://cryptoblog.wordpress.com/2009/07/08/

social-networks-and-social-security-numbers/.

[2] http://chris.pirillo.com/

pownce-social-networks-arent-identity-networks/.

[3] http://www.guardian.co.uk/world/2009/jun/22/

neda-soltani-death-iran.

[4] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters,
J. Staddon, and H.-C. Wong. Secret handshakes from
pairing-based key agreements. In IEEE Symposium on
Security and Privacy, 2003.

[5] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All
your contacts are belong to us: automated identity
theft attacks on social networks. In WWW, 2009.

[6] G. Blakley. Safeguarding cryptographic keys. In
AFIPS Conference Proceedings, volume 48, pages
313–317, 1979.

[7] D. Boneh and M. Franklin. Identity-based encryption
from the weil pairing. SIAM J. Comput., 32(3), 2003.

[8] C. Boyd. Digital multisignatures. Cryptography and
Coding, 1986.

[9] R. H. Brown and A. Prabhakar. Digital signature
standard (dss).

[10] Y. Desmedt. Society and group oriented cryptography:
A new concept. In CRYPTO, pages 120–127, 1987.

[11] Y. Desmedt and Y. Frankel. Threshold cryptosystems.
In CRYPTO, 1989.

[12] Y. Desmedt and S. Jajodia. Redistributing secret
shares to new access structures and its applications,
1997.

[13] P. Feldman. A practical scheme for non-interactive
verifiable secret sharing. In FOCS, 1987.

[14] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing or: How to cope with
perpetual leakage. In CRYPTO, 1995.

[15] N. Li, W. Du, and D. Boneh. Oblivious
signature-based envelope. Distributed Computing,
17(4):293–302, 2005.

[16] S. Nasserian and G. Tsudik. Revisiting oblivious
signature-based envelopes. In Financial Cryptography,
pages 221–235, 2006.

[17] B. Neuman and T. Ts’o. Kerberos: an authentication
service for computer networks. Communications
Magazine, IEEE, 32(9), Sep 1994.

[18] C. Park and K. Kurosawa. New elgamal type
threshold digital signature scheme. 1996.

[19] T. P. Pedersen. Distributed provers with applications
to undeniable signatures. In EUROCRYPT, 1991.

[20] T. P. Pedersen. A threshold cryptosystem without a
trusted party. In EUROCRYPT, volume 547, pages
522–526. Springer-Verlag, 1991.

[21] P. Rogaway, M. Bellare, J. Black, and T. Krovetz.
Ocb: A block-cipher mode of operation for efficient
authenticated encryption. 2001.

[22] A. Shamir. How to share a secret. Commun. ACM,
22(11), 1979.

