
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 1

Exploring Second Life
Matteo Varvello,Stefano Ferrari, Ernst Biersack, Christophe Diot

Abstract—Social virtual worlds such as Second Life are digital
representations of the real world where human-controlled avatars
evolve and interact through social activities. Understanding the
characteristics of virtual worlds can be extremely valuable in
order to optimize their design. In this work we perform an
extensive analysis of Second Life (SL). We exploit standard avatar
capabilities to monitor the virtual world, and we emulate avatar
behaviors in order to evaluate user experience. We make several
surprising observations. We find that 30% of the regions are
never visited during the six day monitoring period, whereas less
than 1% of the regions have large peak populations. Moreover,
the vast majority of regions are static, i.e., objects are seldom
created or destroyed. Interestingly, we show that avatars interact
similarly to humans in real life, gathering in small groups of 2
to 10 avatars. We also show that user experience is poor. Most of
the time avatars have an incorrect view of their neighbor avatars
and inconsistency can last several seconds, impacting interactivity
among avatars.

Index Terms—Second Life, virtual worlds, measurement, peer-
to-peer.

I. INTRODUCTION

A Networked Virtual Environment (NVE) is a computer-
generated world where users interact through the In-

ternet [1]. NVEs were introduced in the 80s for military
simulators, and then applied to on-line games. World of
Warcraft [2] is the most popular on-line game with nearly 14
Millions subscribers. Social virtual worlds are a new type of
NVE where people can meet, play, trade and even contribute to
the development of the NVE. Second Life [3] (SL), launched
in 2003 by Linden Lab, has become the most popular social
virtual world, reaching 16 million registered users in June
2009.

SL consists of a virtual land, divided into fixed-size regions,
where users interact via their digital representation called
avatars. Avatars participate in the development of the virtual
environment by creating objects such as cars, walls, trees, and
buildings. SL has created a full-blown economy, attracting
companies that have invested millions of dollars in order to
build their own virtual products and advertisements.

Despite the widespread interest that SL has generated from
both users and companies, very little is known about its
characteristics. In fact, SL provides only limited statistics such
as the total number of regions, registered accounts, and online
avatars. Some authors have analyzed in details the SL client [4]

Manuscript received September 22, 2009; revised April 5, 2010. Approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor X. First pub-
lished X X, X; current version published July X, 2010.

Matteo Varvello is with Alcatel-Lucent (matteo.varvello@alcatel-
lucent.com). Stefano Ferrari is with Cisco System (fstefano@cisco.com).
Ernst Biersack is with Eurecom (ernst.biersack@eurecom.fr). Christophe
Diot is with Technicolor (christophe.diot@technicolor.com).

and the network traffic it generates [5], [6], [7], while others
have characterized avatar mobility [8], [9]. To the best of
our knowledge, the work in [10] is the only large scale data
collection performed in SL. Nevertheless, we are not aware
of research work that has investigated yet the user Quality of
Experience (QoE) in SL.

This work extends the results published in [10]. Our mo-
tivation is twofold: (1) understand avatar behavior and object
characteristics in order to allow further improvements of the
SL architecture, (2) understand user QoE in SL.

To conduct this study, we design and deploy a crawler
and a player. Our crawler is an application that connects to
SL servers and exploits standard avatar capabilities to collect
information about the virtual world. Our player emulates the
behavior of an avatar in SL, while collecting traces about
avatars and objects encountered.

We use the crawler to explore SL at different time and space
resolutions. (i) We monitor the object composition of around
13, 000 public regions during one month. (ii) We collect server
statistics of the public regions over one week. (iii) We track
avatar distribution in the entire virtual world (i.e., public and
private regions) over one week.

We then use the player to explore user QoE. We execute
several instances of the player over multiple Planetlab [11]
machines in order to populate a SL region only with our
controlled avatars. In this way, we have complete control on
the local view of each avatar that interacts in the region as
well as its behavior. We then study user QoE comparing the
local view of each avatar with the “ground truth” defined
by avatar behaviors. We replay avatar mobility traces [10] in
order to make our measurements realistic. We conduct these
measurements in three SL regions characterized by a different
object composition.

We find that the number of objects per region is roughly
constant over one month period. The active population at any
point of time is between 30, 000 and 50, 000 avatars, i.e., about
0.3% of the registered avatars. Quite surprisingly, about 30%
of the regions are never visited during six days. Avatars tend
to organize in small groups of 2 to 10 avatars, suggesting that
the human “attention budget” theory [12], [13] may also hold
in social virtual worlds. Large groups of avatars are very rare,
and are driven by the presence of events such as concerts and
shows.

From a user perspective, we observe that the object compo-
sition of a region can have a negative impact on the QoE:
in a region crowded with virtual objects, avatars have an
inconsistent view of their neighbor avatars half of the time,
i.e., either they do not see them or they see them at a wrong
location. Moreover, in 50% of the cases this inconsistency lasts
more than one second. Since acceptable values of interactivity

0000–0000/00$00.00 c©2010 IEEE

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 2

in on-line games varies between 300 ms and 1 sec [14],
these results indicate poor user QoE under the current SL
architecture.

Based on our observations, we identify several mechanisms
to improve SL’s design. Given the highly static object dis-
tribution and predictable nature of avatar behavior, caching
and prefetching techniques could be particularly useful. In
addition, we believe that Peer-to-Peer technologies could be
an interesting addition to the current SL design. In the end
of the paper, we discuss some results obtained via a modified
SL client that allows direct communications between its end-
users.

II. RELATED WORK

Given the lack of information released by Linden Labs,
recent work has focused on studying some of its aspects.
Fernandes et al. [5] perform the first study related to SL.
They collect the traffic exchanged between client and server
in a typical SL session in order to measure bandwidth con-
sumption, packet size and packet inter-arrival times. They
conclude that SL requires much more network resources than
existing applications for virtual worlds such as on-line games.
Moreover, they show that the down-link traffic is strongly
impacted by avatar actions: an avatar that simply stands in
SL consumes about 20 Kbps in the down-link, whereas as
soon as the avatar moves the down-link traffic grows up to
110 Kbps.

Kinicky et al. [6] extend the SL traffic analysis proposed
in [5] by focusing on regions with different objects composi-
tions. They reproduce some of the results obtained in [5] and
they show that regions with high avatar and object density
require a bandwidth 10 times larger than empty regions. In an
extension [7], the same authors develop traffic models for SL.

Kumar et al. [4] analyze the CPU performance of a high-
end desktop machine running the SL client. They find that
sorting translucent objects and decompressing textures stored
as JPEG are the most CPU expensive operations. Similarly
to [5] they analyze the network traffic exchanged between
client and server. Their results confirm the high bandwidth
requirements of SL, and also underline the benefits of objects
caching to reduce network traffic. Finally, they analyze server
performance. They show that the management of a region
with only 5, 000 rigid-body objects requires about 72% of the
total server computational power. As SL-like virtual worlds
are expected to become more complex and realistic, e.g.,
supporting object fracturing and deformation, several CPU
cores will be required.

La and Michiardi [8] use a different approach and retrieve
information directly from SL servers. They deploy a crawler
application that monitors avatar movements for short periods
of time. The analysis of their traces reveals that avatars tend
to interact similarly to their human counterpart, e.g., the
distribution of avatar contact-times is similar to that observed
in real-world experiments.

Liang et al. [9] extend the analysis of avatar mobility
proposed in [8]. They use a crawler application to collect
mobility traces of 84, 208 avatars spanning 22 SL regions

over two months. Based on their observations, the authors
suggest an hybrid avatar mobility model that incorporates both
random way-point mobility model (for regions that contain few
objects) and pathway mobility model (for regions that contain
many objects).

Although the methodology used in [8], [9] is similar to
ours, these works focus only on studying avatar mobility.
Conversely, our work is a comprehensive study of SL.

III. SECOND LIFE

The innovative features of SL are world-building and virtual
economy. World-building is the possibility to participate in
the deployment and modification of the virtual environment
through the creation of user-generated objects. A virtual econ-
omy is the possibility to buy and sell objects, services and
lands. These feature make SL very different to classic NVEs
such as World of Warcraft [2]. The reader can find a detailed
comparison of SL with other NVES in [5]. In the following,
we describe in details the SL features that are of interest for
the understanding of the paper.

A. Virtual World

The virtual world of SL is composed of regions, which are
independent lands of size 256x256 meters. Each region has a
maximum of four adjacent regions and can be either public or
private. The public regions are owned by Linden Lab, while
the private regions are purchased by individuals or companies.
Owners of private regions have total control on their virtual
land. They can, for instance, limit access to a selected set
of avatars. Both types of regions run on Linden Lab servers,
which are called “Simulators”.

The appearance of a region is defined by the objects it
contains. Each region has a specific policy on object creation
and destruction. For instance, “Sandbox” regions are used by
avatars to test new objects, which are automatically destroyed
shortly after their creation.

SL provides a map of the virtual world, i.e., a compact
visual representation of both public and private regions. The
map shows the number of avatars connected to each region
by displaying points located at the avatar coordinates. Avatar
identities are not visible on the map.

B. Client/Server Architecture

The SL design is based on a Client/Server architecture: each
region is managed by a dedicated server, and users run “thin”
clients which simply perform the three-dimensional rendering
of the virtual world and eventually cache the virtual objects
located in recently visited regions [4]. The SL Client/Server
protocol is not public, however reverse engineering efforts are
underway, e.g., libsecondlife [15]. The project released a set
of C# libraries that allow third party applications to interact
with SL servers.

Since our crawler interacts with SL servers, we now shortly
describe the server-side of SL. A more complete description
of the SL architecture can be found in [5] and [7].

The Login Server is the entry point in SL, and handles
username and password verifications. The Login Server is also

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 3

responsible of granting or denying access to the regions (e.g.,
access may be denied during servers failures or maintenance
operations). It maintains the following statistics: number of
connected users and number of logins in the last 24 hours.

Simulators are the servers responsible for SL regions. Each
simulator maintains the state of a region and performs the
visibility computation [4], i.e., identify for each avatar located
in the region the information about objects, land features and
avatars that need to be transmitted to the clients. It also man-
ages chat among avatars located within the region. A Simulator
handles a maximum of 100 avatars [16]. However, larger
population are possible by mirroring the region server [4]. For
clarity, we refer to simulators as servers.

We do not know the total number of servers in SL, nor
whether SL employs load balancing techniques among servers.
Moreover, SL does not mention protective measures against
Denial of Services attacks and crawling operations.

C. Avatar Capabilities
A user creates an avatar by registering at the SL website [2].

This registration requires filling out an on-line form with
personal information and a valid e-mail address. We now give
a short description of the avatar capabilities that are used by
our crawler to monitor SL.

A user entering SL must perform a login procedure. After
authentication, its avatar joins the virtual world. The region
where the avatar appears is either specified in the login request
or derived from the avatar coordinates at its last connection. An
avatar can walk,run and fly within a region, and also directly
move to adjacent regions provided they are public. It is also
possible to perform a teleport operation to rapidly cover large
distances. The target destination of the teleport can be within
either the same region, or any other region selected from the
map.

Avatars have a limited visibility area called Area of Interest
(AoI). This area corresponds roughly to a sphere with a radius
of 35 meters. Avatars teleporting to a region are informed by
the server about the locations and identifiers of all objects
in the region. In the following, we refer to this event as
“initialization phase”. Finally, an avatar can request several
region statistics to a server. A complete description of these
statistics can be found at wiki.secondlife.com.

Automated avatars called bots are frequently used by region
owners to show some activity in their regions or simply to
welcome visitors. In order to prevent the usage of bots, SL
disconnects avatars that have not moved during the last 15
minutes. Not surprisingly, simple scripts allow bots to perform
repetitive actions, such as head movements, which is enough
to circumvent SL’s bot detection mechanism. Thus, we can
assume that avatars that barely move and remain connected for
a long time are most likely bots. We recognize that this strategy
may incorrectly identify some human-controlled avatars as
bots, but it still intuitively captures the presence of bots in
SL.

D. Message Types
Second Life currently uses 473 different message types in

the communication between servers and clients [4]. However,

Fig. 1. Architecture of the crawler.

three main packet types can be identified: control, region and
avatar packets.

• The control packets are used to enforce security in SL
and to check the state of the client connections.

• The region packets carry information about a region ap-
pearance and its object composition. The region packets
received by a user contain the description of the portion
of the region crossing its avatar AoI.

• The avatar packets carry information about the state, i.e.,
position and body appearance, of an avatar, and about the
chat messages exchanged by avatars. The avatar packets
received by a user refer to the state of the avatars located
within its avatar AoI.

IV. METHODOLOGY

We use two different methodologies to study SL. First, we
crawl all the information publicly available in SL. Second,
we “play” SL and monitor the performance experienced by
several controlled players. We first describe the crawler and
the player, and then discuss the limitations and problems we
encountered in our study.

A. Crawler

The main idea behind the crawler is to exploit standard
avatar capabilities to obtain information about the virtual
world. Our crawler is composed of multiple subcrawlers, each
specialized in a different monitoring task (Figure 1). The rea-
sons for this are twofold. First, different types of information
can be collected using different crawling techniques. Second,
splitting the crawling into different tasks allows us to control
the temporal resolution of each type of information we collect.
For instance, tracing the avatar distribution among SL regions
should be done frequently (e.g., every 15 minutes), whereas
determining the total number of objects in the system can be
done much less often (e.g., once per day).

Each subcrawler is a modified SL client implemented using
the libsecondlife [15] libraries. A subcrawler must be associ-
ated to an avatar registered on the SL website in order to be
able to enter the virtual world. We use multiple instances of
each subcrawler (associated to different avatar identities) in
order to parallelize the crawling.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 4

For each subcrawler, we describe its role, crawling tech-
nique and relationship with the other subcrawlers.

• The Region subcrawler monitors SL to maintain an
up-to-date list of its regions. The region discovery is
performed via a random walk among adjacent regions (we
use a list of regions obtained at http://stats.slbuzz.com/
to bootstrap). The Region subcrawler teleports to each
region in the list to retrieve the set of adjacent regions.
As new regions are discovered they are added to the list.
In addition, region accessibility is verified to determine
whether a region is public or private.

• The Object subcrawler tracks the evolution of objects
in all public regions. It teleports to a public region and
accomplishes the initialization phase, during which it is
informed by the server of the coordinates and identifiers
of all objects on the region. Then, it dumps this informa-
tion and teleports to a new region.

• The Statistics subcrawler collects the statistics main-
tained by the servers of the public regions. It teleports
to a public region, queries its server, dumps the results,
and then moves to another public region. We collect the
following server statistics: number of connected avatars,
time dilation, which expresses the load on the server, and
total number of packets going in and out from the server.

• The Map subcrawler monitors the location of avatars as
shown on the SL map. For each public and private region,
the subcrawler locates it on the map, and collects the
coordinates of all the avatars currently connected to it.
This task simply requires logging in to SL. Unfortunately,
the Map subcrawler cannot identify the avatar identities
as they are not shown on the map.

Note that the Statistics and Map subcrawlers collect partially
redundant information. We exploit this redundancy to validate
the correctness of our data.

B. Player

We reproduce avatar behaviors via controlled SL clients in
order to evaluate user QoE. To do so, we use libsecondlife [15]
to implement a player that emulates and automates avatar
behavior while collecting traces related to user QoE.

The player performs the login of an avatar to a target region
and moves the avatar in the region according to an input
mobility pattern. Figure 2 shows the architecture of the player,
which consists of the following components.

• The libsecondlife module handles the communication
between an avatar and a server. It contains the API that
allows an avatar to perform actions such as login or
movements.

• The movement engine manages the movements of an
avatar according to a given mobility pattern. It uses the
libsecondlife module to inform a server of the avatar
behavior, e.g., movements in the region.

• The AoI table is a data structure that contains positions
and names of all avatars within an avatar AoI. The AoI
table is updated according to the information received
from the server. A snapshot of the AoI table is copied

Fig. 2. Architecture of the player.

20 40 60 80 100 120
4000

6000

8000

10000

12000

C
ra

w
lin

g
F

re
qu

en
cy

[#

 R
eg

io
ns

 p
er

 h
ou

r]

No. of Instances [#]

Measured Values
Average

Fig. 3. Crawling Performance [Statistic subcrawler ; 18 hrs experience].

to the disk every 200 ms or when a modification of its
content occurs.

• The traffic analyzer records all the incoming and outgoing
packets exchanged between client and server. Subse-
quently, it parses each packet to extract information about
its content, e.g., avatar, region or control traffic (Section
III-D), and volume.

C. Problems and Limitations

To collect data in a scalable and accurate way, we had to
solve several problems. We now discuss these problems as
well as the limitations of our crawling strategies.

1) Crawling Performance: We refer to crawling perfor-
mance as the number of regions a subcrawler monitors in a
given time. As mentioned in Section IV-A, we run multiple
instances of each subcrawler in parallel in order to increase the
crawling performance. However, we observed that increasing
the number of parallel instances does not necessarily improve
performance. Figure 3 shows that the performance of the
Statistics subcrawler degrades beyond 60 concurrent instances.
We suspect that SL employs a rate-limiting policy against IP
addresses that generate a large amount of traffic.

2) Experimental Challenges: Officially, SL does not men-
tion any banning policies against avatars with unusual be-
haviors. However, many of the avatars associated to our
subcrawlers were banned. The banning procedure consists of
an exclusion due to “account verification”. If a banned avatar
attempts to login several times, its IP address is blacklisted. To
avoid getting blacklisted, each of our subcrawler detects when
it has been banned and automatically replaces the associated
avatar identity with a new one.

Finally, we also observed a high degree of instability in SL.
During a period of one month, the service was down multiple

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 5

times due to maintenance, server updates, or crashes [17].
While our short traces were mostly unaffected, outages had
an impact on our long-term ones (see gap in Figure 6(b)).

3) Realism of the player: Libsecondlife implements a sim-
plified Client/Server communication protocol compared to the
official SL protocol [15]. Analyzing the incoming traffic at
the player, we notice that many packets are ignored since they
are unknown to the libsecondlife libraries. For this reason, the
traffic volume exchanged between our player and the servers is
generally smaller than what we would observe with the official
client [5], [6]. However, a fine comparison of the libsecondlife
and official SL client showed that the libsecondlife client can
correctly handle all packets that refer to avatars and objects.
Thus, we believe that the differences between the libsecondlife
and the official SL client do not impact our measurements.
Moreover, building a player with the official SL client would
have the following limitations: (i) need of real users to control
the avatars (ii), limited access to the data retrieved by the
clients.

Finally, we measure user QoE “re-playing” real (monitored)
avatar behaviors using bots. Intuitively, avatar behavior on a
region changes according to factors such as the performance
perceived by its user, user interest in the region and objects
encountered. Our methodology cannot capture these factors.
We also use bots that do not have any customization (e.g.,
fancy clothes) and that perform only simple movements.
However, creating SL sessions that involve real players is a
hard task, and does not allow a fair comparison of different
regions.

V. A GLOBAL VIEW OF SECOND LIFE

We focus on the data collected by our crawler and on some
data provided by SL through their website and Login Server
in order to analyze SL-wide characteristics. When possible,
we compare our results with these two sources to check their
consistency. Finally, we use visual inspection to confirm some
of our observations and interpretations.

A. Data Collection

Each subcrawler collects data at different time resolutions.
In addition, some subcrawlers can traverse a set of regions
much faster than others, according to the technique they use to
collect information. We call crawling frequency, the frequency
at which a subcrawler completely monitors a set of target
regions. Finally, some subcrawlers require more resources than
others (e.g., IP addresses, avatar identities), and are therefore
executed for shorter periods of time.

We monitored the evolution of all regions and objects in SL
during 28 days with a crawling frequency of 24 hours. We used
three instances of the Region subcrawler and five instances of
the Object subcrawler. Traces were collected between March
29, 2008 and April 25, 2008, except for April 4 and 5 when
the SL service was down [17].

We ran 60 concurrent instances of the Statistic subcrawler,
as this yields the highest crawling performance (Figure 3).
With this configuration, the Statistic subcrawler can crawl
about 11, 000 regions in one hour. On March 29, 2008, the

Region subcrawler identified 12, 765 public regions, so we
set the crawling frequency of the Statistic subcrawler to 90
minutes to be able to monitor all public regions with a safe
time margin. Traces were collected for 6 days between March
29, 2008, and April 4, 2008.

We monitored the SL map with 40 instances of the Map
subcrawler and a crawling frequency of 15 minutes. Traces
were collected between April 18, 2008 and April 21, 2008.
The traces refer to the total 17, 526 regions identified by the
Region subcrawler on April 18, 2008.

Table I summarizes each subcrawler configuration, trace
length, and crawling frequency.

TABLE I
SECOND LIFE CRAWLING SUMMARY.

Subcrawler Instances IP@s Regions Frequency Days

Region 3 1 - 1/24 hrs 28
Object 5 1 - 1/24 hrs 28

Statistics 60 1 12,765 1/90 min 6
Map 40 1 17,526 1/15 min 3

B. Regions

Table II summarizes the total number of regions discovered
by the Region subcrawler, as well as the official number
reported by the SL website.

We observe that the Region subcrawler discovered a larger
number of regions compared to official figures. These ad-
ditional regions are not reachable and were discovered as
adjacent of active ones. Therefore, they are probably a fraction
of the virtual world reserved for future customers, and thus do
not count in the official statistics.

TABLE II
NUMBER OF REGIONS IN SL (RS=REGION SUBCRAWLER, SLW=SECOND

LIFE WEBSITE).

March 29 April 18 April 25

Public regions (RS) 12,765 13,220 13,261
Total regions (RS) 17,280 17,526 17,573

Total regions (SLW) 13,693 N/A 14,150

The 6-day trace collected by the Statistics subcrawler shows
that many regions experienced periods of unavailability. There
are two possible causes for this: (i) the region server was down,
or (ii) the maximum number of avatars per server has been
reached.

We compute the region availability as the probability that
a server accepts a connection from the Statistics subcrawler,
i.e., the number of times it accepts a connection divided
by the total number of connection attempts during 6 days.
Figure 4 shows the Cumulative Distribution Function (CDF)
of region availability. We observe that 90% of the regions
have an availability of 0.9 or more, but only 1% show a
high availability of 0.99 or higher. This is probably due to
short maintenance operations or failures. The bottom 1% of
the regions have an availability of 0.7 or lower. Our traces
show that these highly unstable regions are not among the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 6

0 0.1 0.3 0.5 0.7 0.9 1

0.001

0.01

0.1

1

Availability [0−1]

F
ra

ct
io

n
of

 R
eg

io
ns

w
ith

 ≤
 x

 A
va

ila
bi

lit
y

Fig. 4. CDF of Region availability [Statistics subcrawler].

8 13 18 0 8 13 18 0 8 13 18
0

9268

26000

47000

60000
65040

Time [UTC−5]

C
on

ne
ct

ed
 A

va
ta

rs
 [#

]

SL Login Server
Map Crawler

Fri. Sat. Sun.

Fig. 5. Active population over time [Map subcrawler; SL Login Server;
Coordinated Universal Time - 5].

most popular ones (Section V-F). This means that it is very
unlikely that these region servers refuse the connection attempt
from our crawler due to the 100 concurrent avatars limit. This
suggests that the server unavailability more likely due to server
failures.

C. Users

Figure 5 shows the evolution over time of the number of on-
line users, as measured by the Map subcrawler and reported
by the Login Server (this data is obtained by monitoring the
Login Server [18]). Both curves exhibit the same daily cycle.
However, the Login Server reports 10,000-20,000 more users
than the Map subcrawler. This means that the data reported
by the Login Server is not consistent with the data contained
in the SL map. Moreover, during a major SL outage on
Friday at 14:00, the Login Server reported a drop of 10,000
avatars, while our Map subcrawler observed a decrease by
20,000. Based on this observation, we conjecture that the
values provided by the Login Server may be averaged over
long time periods.

D. Server Traffic

The Statistics subcrawler collects information about the rate
of outgoing server packets as reported by the SL servers.
Although not shown for space reasons, the curve of the
aggregate traffic generated by all servers shows a daily cycle
ranging from 1.7 to 3.2 million packets per second. Moreover,
the traffic’s daily cycle closely follows that of Figure 5,
which is to be expected for a Client/Server architecture. The
correlation coefficient between the number of avatars in a
region and the traffic volume is 0.8.

Knowing that the mean packet size in SL is 500 bytes [5],
the aggregate traffic generated by all servers at peak time can
be estimated to be around 13 Gbps. The peak number of
users is 47, 000 measured on Sunday at 18:00, which yields
an average bandwidth consumption of 280 kbps per client.
This confirms the results reported in [5] and shows the high
bandwidth consumption of the SL service.

E. Object Distribution and Dynamics

We analyze the 28-day trace collected by the Object sub-
crawler with a crawling frequency of 24 hours in order to
understand SL object characteristics.

1) Object Distribution: We identified about 7 million
unique user-generated objects across all public regions. Figure
6(a) shows the CCDF of the number of objects. Since the
distribution did not significantly change over 4 weeks, we only
plot the data for the first day (March 29, 2008) and for the last
day (April 25, 2008). 30% of the regions are almost empty,
containing less than 100 objects. Around 65% of the regions
contain a relatively low object count, between 100 to 1, 000,
while only 5% of the regions have 1, 000 objects or more. The
richest region contains nearly 13, 000 objects. We would like
to recall that the Object subcrawler cannot collect information
about object sizes as this would take too much time and make
the crawl operation very slow. Therefore, it is possible that
some regions with a low object count actually have a more
complex environment (e.g., bigger objects) compared to other
regions with a larger object count [19].

2) Object Dynamics: We now analyze the evolution of the
number of objects over time. For each region, we compute
the difference between the number of objects it contains at
day i, and its initial object count observed at day 1, i.e.,
the first day of the monitoring (March 29, 2008). Figure 6(b)
shows some significant percentiles of the distribution of these
differences measured for all regions (the gap between days 6
and 9 is due to a SL outage). We observe that 50% of the
regions (between the 25th and 75th percentiles) are almost
completely static, showing a small variation between ±50
objects after 28 days. The 10th and 90th percentiles remain
between ±250 objects, showing modest object variation rates
in most regions. The median value is nearly zero, and the
percentiles are almost symmetrical, indicating a similar object
creation and destruction rate. In fact, our traces show that the
total number of objects in SL remains approximately constant
over time. Notice the presence of two drops between days 20-
25 and 25-27. During these days, the SL website reported that
their servers were being updated. Thus, we believe that these
drops correspond to objects being lost during server updates
and then slowly recovered. Finally, although not shown in
Figure 6(b), we observed minimum and maximum variations
close to ±4000 objects. This implies that the regions at the
bottom and top 10% of the distribution show a highly unstable
behavior, with a large number of objects being continuously
created and destroyed. These are mostly regions where users
test their objects (e.g., sandbox regions), and which typically
erase objects soon after they are created.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 7

1 10 100 1000 10000

0.001

0.01

0.1

1

No. of Objects [#]

F
ra

ct
io

n
of

 R
eg

io
ns

w
ith

 >
 x

 O
bj

ec
ts

March 29
April 25

(a) CCDF of the Object distribution across
regions ; [Object subcrawler]

2 5 10 15 20 25 28
−400

−200

0

200

400

Day (relative to the beginning of the trace)

V
ar

ia
tio

n
of

 th
e

N
o.

 o
f O

bj
ec

ts
 [#

]

10th 25th 50th 75th 90th

(b) Percentiles of the variation of the no. of
objects per region ; [Object subcrawler]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n
of

 R
eg

io
ns

 w
ith

P
op

ul
at

io
n

P
er

ce
nt

ile
 P

 >
 x

 A
va

ta
rs

No. of Avatars [#]

P=100th
P=75th
P=50th
P=25th
P=0th

(c) CCDF of several percentiles of the pop-
ulation CDFs ; [Statistics subcrawler]

Fig. 6. Object and Avatar characteristics.

F. Region Popularity

We use the 6-day trace collected by the Statistic subcrawler
in order to analyze the popularity of regions in terms of the
number of avatars that visit them.

As the number of avatars in a given region is highly
dynamic, we study for each region the evolution of the popu-
lation with time. For each region we calculate the population
CDF, i.e., the Cumulative Distribution Function (CDF) of the
number of avatars observed during the 6-day period. Since we
cannot plot the population CDFs for the 12, 765 monitored
regions, we will take a few meaningful percentiles and plot
their distribution among all regions.

Figure 6(c) shows the distribution among regions of the
0th, 25th, 50th, 75th, and 100th percentiles of the population
CDFs. Note that the 100th and the 0th percentile correspond
respectively to the maximum and minimum population ob-
served for a given region. Similarly, the 75th percentile may
be interpreted as a peak population, the 50th percentile as
a median or typical population, and the 25th percentile as
a residual population. Accordingly, Figure 6(c) shows that
30% of the regions are empty all the time, while around
45% of the regions have always less than 5 avatars. The
75th percentile curve overlaps with the 100th percentile one
between 0 and 4 avatars. As a consequence, regions whose
population is small most of the time have a small population all
the time with no exception. The 0th percentile curve indicates
that about 30% of the regions are never completely empty.
However, the curve rapidly goes to zero, showing that regions
with continuous activity are rare, e.g., less than 1% of the
regions have a minimum population of 10 avatars. Focusing
now on larger populations, we observe that around 5% of
regions have at least 30 avatars as a maximum population,
but that this number drops to 18 avatars for a peak population
(75th percentile) and to 12 avatars for a typical population
(50th percentile). Hence, although a non-negligible number
of regions are occasionally densely populated, they usually
contain few avatars. These results indicate that different SL
regions have different population characteristics, and may
necessitate different resource provisioning according to their
popularity profile.

G. Virtual Groups

We are interested in determining to what degree avatars
concentrate in groups, i.e., aggregation of avatars where each
avatar is within visibility range from each other (35 meters as
defined by SL). The rationale is that avatars located within
such virtual groups are highly likely to interact with each
other. The results we present in this Section are obtained from
the analysis of the 3-day trace collected by the Map subcrawler
with a crawling frequency of 15 minutes.

We estimate the number of virtual groups in a region by
using the k-means clustering algorithm [20] to partition avatars
in circles of radius r ≤ 35 meters. We proceed as follows. Let
n be the number of avatars in a region. The algorithm takes the
avatar coordinates ai(t) = (xi, yi) at a time t with 1 ≤ i ≤ n,
and a number of target partitions k. It then clusters the avatars
into k circular areas with center coordinates cj = (xj , yj) and
radius rj , where 1 ≤ j ≤ k. We run the algorithm iteratively
for increasing values of k until all circles have a radius rj ≤ 35
meters. The final value of k gives the number of virtual groups
in the region, and cj the coordinates of the group center.

We use the k-means clustering algorithm since it minimizes
the distance of avatars from the center of the virtual group.
Note that this algorithm does not track groups that move across
the region. However, since avatars in SL tend to have a static
behavior [10], this limitation only has a minor impact on our
clustering scheme.

1) Virtual Group Sizes: Figure 7 shows the CDF of virtual
group sizes across all regions. We observe that 50% of the
avatars don’t form groups. Surprisingly, 45% of the virtual
groups are made of only 2-10 avatars. This could be explained
by the budget of attention theory [12], which suggests that
human beings can only focus their attention to a maximum of
5-9 entities at the same time. Finally, we observe a negligible
number of virtual groups with more than 20 avatars. Note that
large avatar crowds which extend beyond 35 meters may be
split by our algorithm into smaller groups.

2) Points of Interest (POIs): Regions usually contain
Points-of-Interest (POIs), i.e., spots which attract several av-
atars. In order to detect the presence of POIs, we look for
virtual groups that are stable with respect to time and location.
Therefore, we use a metric that we call the group’s spot
lifetime, which is defined as follows. For every new group,
we record its initial center coordinates. Since the group may

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 8

1 2 3 4 5 10 20 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of Avatars [#]

F
ra

ct
io

n
of

 v
irt

ua
l g

ro
up

s
w

ith
 ≤

 x
 A

va
ta

rs

Fig. 7. CDF of virtual group sizes [Map subcrawler].

move or dissolve, we compute its spot lifetime as the time
elapsed from its creation until we observe no virtual groups
centered within 35 meters (the avatar visibility area) from its
initial center coordinates. If the center of a group moves more
than 35 meters from its original position, we consider that a
new group has formed at the new center coordinates.

Figure 8 shows the CDF of spot lifetimes for all groups and
for different ranges of S, the average group size. We notice
that groups with large sizes tend to have a larger lifetime. This
suggests the presence of POIs near the center of groups with
high spot lifetimes. We also observe that 50% of the large
virtual groups (S > 10) have a rather short spot lifetime.
These groups can be event-driven groups, i.e., located near
short-lived POIs.1 Conversely, the remaining 50% have a very
long spot lifetime. Intuitively, the area around popular POIs
is unlikely to become empty, especially in popular regions,
resulting in very long spot lifetimes.

Figure 8 also provides some interesting insight on isolated
avatars. Around 40% of these avatars have a spot lifetime
of a few minutes. These avatars are most likely exploring a
region. Thus, the area traversed by these avatars are unlikely
to be POIs. However, 10% have a lifetime between 5 and 32
hours, i.e., they stay at the same spot for a very long time
without interacting with any other avatar. It is unlikely that
this behavior is coming from human beings, so we suspect
that these avatars are computer controlled, i.e., bots. Given that
50% of the virtual groups are composed by a single avatar (see
Figure 7), we conjecture that at least 5% (i.e., the 10% with
lifetime between 5 and 32 hours) of the entire SL population
consists of bots. A similar result is described by Varvello and
Voelker in [21] via a complete analysis of bot behaviors in
SL.

VI. PLAYING SECOND LIFE

In the previous Section, we have passively measured SL
characteristics. This methodology does not allow us to evaluate
the Quality of Experience (QoE) perceived by SL users, i.e.,
how fast and correctly they obtain information about avatars
and objects located in their avatar surroundings. In fact, passive
measurement misses two fundamental information to capture
user QoE: (1) avatar locations at any point in time constructed

1We visually inspected some of the regions where we found these short-
lived POIs, and we verified the presence of concerts and shows.

0 6 12 30 48 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spot Lifetime [hrs]

F
ra

ct
io

n
of

 v
irt

ua
l g

ro
up

s

w

ith
 ≤

 x
 S

po
t L

ife
tim

e

S=1
S=2
2< S ≤ 5
5< S ≤ 10
S>10

Fig. 8. CDF of spot lifetimes for different average group size S [Map
subcrawler].

according to real user inputs (i.e., not filtered from the eye of
the server), and (2) the local view of each avatar, i.e., the
evolution over time of the avatar and object updates each user
receives from the server. We now adopt an active measurement
strategy in order to collect this information. In the reminder of
this Section, we describe how the measurement is performed,
and we introduce the metrics to evaluate user QoE.

A. Experimental Setting

Our QoE measurement methodology consists in: (1) col-
lecting avatar traces in a popular SL region, and (2) replaying
these traces in empty regions that we use as test-bed. Each time
we replay a trace, we collect the local view of each avatar
and compare it to the ground truth (i.e., the original trace).
We use the player in order to automate the behavior of an
avatar within a test-bed region while collecting information
about avatars and objects that intersect its AoI. We launch
the player from multiple Internet end-points (using Planetlab)
and we teleport our controlled avatars into a target SL region.
Note that we require that no external avatars, i.e., real SL
users, interfere during our experiments to correctly evaluate
user QoE. This is why we perform our controlled experiments
in unused regions (remember from Section V-F that 30% of
SL regions are unused).

We execute the SL player on several Planetlab [11] ma-
chines located worldwide in order to emulate realistic network
conditions. We select stable Planetlab machines in terms of
CPU load, free memory and network activity. Our reference
trace is collected in the Japan Resort region which is one
of the most popular SL region. Trace collection is described
in [10]. We use the one hour period where we observe the
maximum number of avatars, i.e., 84 concurrent avatars for a
total of 207 different avatars. We build the trajectory of each
avatar in the reference trace. Intermediate trajectory position
are interpolated from measured positions (every 30 seconds)
and avatar speed.

We run our experiments in three unused regions, i.e.,
generally empty of avatars, and that represent the diversity
in object composition observed in SL (Figure 6(a)). We select
respectively a low density (6 objects), a normal density (130
objects) and a high density (541 objects) region according to
the number of objects they contain. During the experiments,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 9

we also continuously check that no external user connects to
the region and interfere with our measurements.

Note that the presence of objects in these test-bed regions
may cause avatars to be blocked in their movements as avatar
trajectories do not match object location in the testbed region.
We solve this issue by making our avatars deviate their
mobility pattern before coming back to their original trajectory.
While this strategy avoids having avatars stuck in a wall, it
also bias the avatar mobility pattern we are injecting in the
regions. We analyze the impact of these modifications in avatar
mobility when comparing user QoE in the three regions.

B. Metric Definition

The providers of existing Networked Virtual Environments
(NVEs) often characterize user QoE by looking at the cancel-
lation rate, i.e., the number of user accounts canceled during
a given period of time, and/or Mean Opinion Score2 which is
based on user feedback. Given that we cannot compute these
two metrics, we choose to compute instead three metrics that
we formally define next: the inconsistency, the inconsistency
duration and the discovery latency.

1) Inconsistency: An avatar Area of Interest (AoI)3 is
inconsistent when it contains wrong information about closeby
avatars. Inconsistency can be caused by temporarily missing
information as well as incorrect information. AoI inconsis-
tency severely detracts from the user experience as it creates
inconsistent views of the world among users.

We call A(t) the set of avatars connected to a region at
time t. For an avatar i, we denote with ID(i) its identity and
with ai(t) its coordinates in the region at time t. Remember
that we know the exact location of each avatar at any point in
time. Therefore, we can determine AoI(A, t), i.e., the set of
avatars that should be included in the AoI of an avatar A at
time t, for any A and t. We define AoI(A, t) as follows:

AoI(A, t) = {i ∈ A(t) s.t. dist(i, A) ≤ 35 meters} (1)

Each player continuously logs the information about avatars
in its surrounding as informed by the region server. We
use this data to compute SAoI (A, t), i.e., the set of avatars
that intersect A’s AoI at time t, for ∀A and ∀t, given the
information transmitted by the region server.

The information contained in the AoI of an avatar A at time
t is correct if the perception of A’s neighbor avatars given the
data received by the server (i.e., SAoI (A, t)) is consistent with
the ground truth given by the mobility traces (i.e., AoI(A, t)).
This happens if the two sets SAoI (A, t) and AoI(A, t) are
identical. Precisely, the following conditions need to hold: (i)
SAoI (A, t) and AoI(A, t) have the same size, and (ii) each
avatar that intersects A’s AoI has the correct identifier and
coordinates given the ground truth defined by AoI(A, t). More
formally:

2http://en.wikipedia.org/wiki/Mean opinion score
3AoI=sphere with a 35 meters radius as defined in Section III-C.

(i) |AoI(A, t)| = |SAoI (A, t)|
(ii) ∀i ∈ SAoI (A, t) ∃i′ ∈ AoI(A, t)

s.t. ID(i) = ID(i
′
) ∧ ai(t) = ai′ (t)

(2)

We say that an avatar AoI is inconsistent when Condition
2 is violated. Violation occurs if AoI(A, t) and SAoI (A, t)
differ, i.e., when an avatar is in one set but not in the other
one. Violation also occurs if an avatar is in both sets but not
at the same position. Formally, we define the number of errors
Nerr(A, t) as:

Nerr(A, t) =| {(AoI(A, t) ∪ SAoI (A, t)) s.t.
(i ∈ AoI(A, t) ∧ i /∈ SAoI (A, t))∨
(i /∈ AoI(A, t) ∧ i ∈ SAoI (A, t))∨
(i ∈ AoI(A, t) ∧ i

′ ∈ SAoI (A, t) ∧ ID(i) = ID(i
′
)∧

ai(t) 6= ai′ (t))} |
(3)

Then, the inconsistency is computed as:

Nerr(A, t)

|(AoI(A, t) ∪ SAoI (A, t)|
(4)

The inconsistency as defined in 4 takes values between 0
and 1 where 0 means that all the information contained in an
avatar AoI is correct, and 1 means that all the information
contained in an avatar AoI is wrong.

2) Inconsistency Duration: Avatars in NVEs require to be
constantly updated about changes in the nearby avatar states.
This is fundamental in order to guarantee NVE interactiv-
ity [14]. We introduce the inconsistency duration as a measure
of interactivity. We define the inconsistency duration as the
time an avatar needs to achieve a consistent view of the
avatars in its AoI. We compute the inconsistency duration
as follows: we start a timer whenever an inconsistency is
detected in SAoI (A, t) (i.e., inconsistency greater than 0) and
we stop it as soon as SAoI (A, t) becomes consistent again
(i.e., inconsistency equals 0).

3) Discovery Latency: AoI changes as a consequence of
avatar movements. Thus, new avatars and objects can enter
or leave the AoI. In SL, the region servers transfer the virtual
object descriptions over the Internet. Intuitively, this download
time should be kept small in order to guarantee a smooth
rendering of the virtual world. We call discovery latency the
time an avatar needs to retrieve the virtual objects contained
in its AoI.

We measure the discovery latency by parsing the traffic
received by a player in order to isolate the packets that refer
to the virtual objects. When a region packet (Section III-D)
is received, we detect that the server is currently updating the
avatar AoI and we start a timer. We stop this timer when no
more region packets are received, indicating that all objects
that intersect the avatar AoI have been correctly received. In
fact, lost or corrupted packets trigger retransmissions at the
SL servers. In case the avatar moves before it has correctly
received a description of all virtual objects in its AoI, we
simply stop the timer. Then, we re-start the timer as soon as
the avatar stops at a new place. Thus, we do not estimate the
discovery latency during the time an avatar moves across the
region.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 10

5 10 15 20 25 30 35 40 45 50 55 60
0

0.25

0.5

0.75

1

Time [min]

In
co

ns
is

te
nc

y
[0

−
1]

0

10

20

30

40

50

60

70

80

90

C
on

ne
ct

ed
 A

va
ta

rs
 [#

]

N

25th

50th

75th

90th

99th

(a) low density

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Time [min]

In
co

ns
is

te
nc

y
[0

−
1]

0

10

20

30

40

50

60

70

80

90

C
on

ne
ct

ed
 A

va
ta

rs
 [#

]

N

25th

50th

75th

90th

99th

(b) normal density

5 10 15 20 25 30 35 40 45 50 55 60
0

0.25

0.5

0.75

1

Time [min]

In
co

ns
is

te
nc

y
[0

−
1]

0

10

20

30

40

50

60

70

80

90

C
on

ne
ct

ed
 A

va
ta

rs
 [#

]

N

25th

50th

75th

90th

99th

(c) high density

Fig. 9. Percentiles of the avatar inconsistency over time.

C. User QoE in SL

1) Inconsistency: We evaluate the inconsistency for each
avatar every 200 ms or anytime a modification of the AoI
occurs. Figure 9 plots the evolution over time of the 25th,
50th, 75th, 90th and 99th percentiles of the inconsistency
distribution among avatars. Each plot also shows the evolution
over time of the number of avatars connected to the region.

We observe in Figure 9 that the inconsistency values mea-
sured in the low density region are very stable over time: 99%
of the time, the consistency of avatars is higher than 70%. This
is probably because the server resources are not fully utilized
and so user QoE is not impacted by the variation in the number
of concurrent users. Conversely, in both the normal and high
density regions the inconsistency curves vary significantly over
time. SL users that interact in these two regions suffer from
more inconsistency periods. For example, the median value of
inconsistency reaches 0.4-0.5 in the high density region. As
expected, the number of objects contained within a region has
a significant impact on the SL server capability to maintain
consistent information for all users. This is due to the effort
required for a SL server to manage virtual objects [4], that
leaves to a server only few free resources to perform the
visibility computation (Section III-B) for each avatar.

The increase of inconsistency we measure in the high
density region could also be due to the high density of objects
that prevent avatar to move exactly as indicated by the mobility
traces (Section VI-A). For example, larger avatar groups may
be created, causing additional load at the server and making the
comparison with other regions unfair. We compare the number
of avatars intersecting each avatar AoI during the experiments.
We find out that in the high density region avatars have in
average less than 10% more avatars intersecting their AoIs
than in the low and normal density region. We believe that
such a small variation of the avatar mobility does not justify
the increase in avatar inconsistency we measured in the normal
and high density regions. Thus, the increase in inconsistency
is not due to the variation of avatar mobility caused by the
high density of objects.

We now want to understand how frequently inconsistency
events affect an avatar during its journey in SL. Figure 10(a)
plots the CCDFs of the ratio between the sum of the durations
of an avatar inconsistency periods and the total time the avatar
stays in a region. We observe again that in the high density

region, avatars are more often inconsistent than in the other
two regions. For example, in the high density region more
than 90% of the avatars suffer from inconsistency, whereas this
number is divided by three in both the low and normal density
region. Interestingly, Figure 10(a) shows that avatars with
an almost completely inconsistent SL experience are equally
likely in the three regions, e.g., about 8% of the avatars have an
inconsistent AoI during about 80-90% of their SL journey. The
reason beyond this phenomenon is that the SL server spends
a lot of time to correctly accomplish avatar login/logout as
we will investigate next. Subsequently, avatars with very short
session times have an inconsistent AoI most of the time.

2) Interactivity: We now analyze the inconsistency duration
measured in the three regions in order to understand how fast
SL servers react to avatar inconsistencies. Figure 10(b) shows
the CDFs of the inconsistency duration values measured in
the three regions. We notice that avatar inconsistency periods
last for more than one second in 40%-50% of the cases. Even
worse, 5% to 10% of the inconsistency periods last for more
than 5 seconds. These inconsistency duration values are very
long if we consider that acceptable latency values in virtual
worlds vary between 300 ms and 1 sec [14], unveiling that SL
servers provide poor interactivity to their avatars. Figure 10(b)
also shows that the inconsistency duration measured in the
three regions can reach up to 20 seconds. These extremely high
values of inconsistency duration are measured in presence of
churn, i.e., avatar login and logout operations, and they are due
to the fact that SL servers spend several seconds to accomplish
these operations. Surprisingly, Figure 10(b) shows that the
number of objects contained within a region does not impact
the inconsistency duration, e.g., 50% of the inconsistency
values measured in the normal density region are lower than
the values measured in the low density region. In the absence
of official information from Linden Labs, we conjecture that
SL servers choose, when over-loaded, to increase the number
of inconsistencies but to shorter their durations.

3) Discovery Latency: Finally, we analyze how fast avatars
retrieve the objects located in their surroundings. Figure 10(c)
shows the CDFs of the discovery latency measured in the
three regions. Not surprisingly, the higher the density of
content in a region, the longer it takes for an avatar to
reconstruct the virtual world. The median discovery latency
grows from about 4 seconds in the low and normal density
region to about 30 seconds in the high density region. In

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Inconsistency Time/Session Time [0−1]

C
D

F

low density
normal density
high density

(a) CCDFs of the fraction of time an avatar
is inconsistent

0.2 0.4 1 2 3 4 5 10 20
0

0.1

0.25

0.5

0.75

0.9

1

Inconsistency duration [sec]

C
D

F

low density
normal density
high density

(b) CDF of the duration of inconsistencies

6 60 600 3600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discovery latency [sec]

C
D

F

low density
normal density
high density

(c) CDFs of the discovery latency

Fig. 10. Inconsistency Analysis.

our experiments, we verify that the user’s network connection
is not a bottleneck. Therefore, this result indicates that the
longer discovery latency measured in the high density region
is due to the fact that the server limits its outgoing traffic rate.
However, Figure 10(c) also shows that the curves for the low
and normal density region overlap for latency values larger
than 20 seconds, i.e., high discovery latency values are more
likely in the low density region than in the normal density
region, which is counter-intuitive. This phenomenon is due
to the fact that object density is not uniform in a region.
Therefore, these high values of discovery latency measured
in the low density region happen in portions of the region
where the local density is much higher than the average object
density of the normal density region.

Finally, Figure 10(c) shows that the discovery latency can
reach extremely high values, e.g., a couple of minutes in both
the low and normal density region and up to one hour in the
high density region. This means that some avatars are never
able to correctly render the virtual world in their surroundings
during their entire SL journey.

VII. ENHANCEMENTS TO SECOND LIFE

This Section proposes several improvements to SL’s design.
Our suggestions are motivated by the observed characteristics
of the virtual world, not by the specific implementation of
the SL protocol. Therefore, they may be useful for other
Networked Virtual Environments (NVEs) that show object and
avatar characteristics similar to SL.

A. Object Management

Currently, SL servers transfer virtual objects to the users
according to the location of their avatars in the virtual world.
Moreover, users can activate a client side cache for recently
visited places that greatly reduces network traffic [4].

The social aspect of SL encourages users to spend their time
together: they organize in groups (Figure 7) and they make
friends [10], [21]. This means that there is a high chance that
every time an avatar connects to SL it will interact with a set
of avatars it has repeatedly encountered before. This suggests
that the SL caching system can be enhanced by taking into
account the presence of highly synchronized avatars.

The main idea is to build a distributed cache using the
information provided by the social network, i.e., that some

avatars meet frequently in the virtual world. Therefore, avatars
could first attempt to download data from their friends, and
only resort to contacting the server when no friends are
available. Moreover, having each friend store a different piece
of content would reduce the size of the client cache.

Several Points-of-Interest (POIs) can be easily identified
within each Region (Figure 8). These POIs are portions of
the virtual world that avatars are most likely to visit. Thus,
the objects located close to these POIs are very likely to be
transmitted from the server to the clients.

The server could use the statistics about POIs to predict
avatar behaviors. When an avatar enters a region, the server
first transmits the data about its immediate surroundings.
Whenever free server bandwidth is available, the server also
transmits data about nearby POIs that the client can store in
its cache. In this way, avatars moving toward a POI may have
already downloaded the objects they need before reaching it,
reducing the discover latency.

B. Avatar Management

The avatar management in NVEs consists of informing each
avatar about the status of its neighbor avatars in real time. In
the past few years, several distributed avatar management have
been proposed [22], [23], [24] in which clients connect to other
clients whose avatars are close in the virtual coordinate space.
The Delaunay Network [22], [25] have received comparatively
more attention from the research community. Interestingly,
researchers show that a Delaunay-based avatar management
performs poorly when large virtual groups are present, or when
avatars move quickly as in multi-player games [26]. The nature
of the SL virtual world favors avatar socialization rather than
quick movements [10], [21]. Moreover, our analysis shows that
avatars tend to organize in small groups of 2-10 avatars (see
Figure 7). Thus, a distributed avatar management based on the
Delaunay Network seems a promising approach to improve
user QoE in SL and SL-like virtual worlds.

In order to verify our claim, we extend the player (Sec-
tion IV-B) to allow direct communication among end-users
organized as a Delaunay Network. To do so, we intercept the
avatar state updates generated by the player and transmitted
to the SL server and we duplicate them into a Delaunay
Network constructed among active users. Then, we reproduce
the experiment described in Section VI by focusing on a

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 12

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Inconsistency Duration [sec]

C
D

F

P2P

C/S

Fig. 11. CDF of the inconsistency duration; Client/Server (C/S) vs Peer-to-
Peer (P2P) Second Life.

SL region empty of any objects. In this way, objects do not
interfere with avatar mobility patterns. A complete description
of the player modifications as well as of the experiments can
be found in [27].

Figure 11 compares the inconsistency duration (Section
VI-B2) measured in Peer-to-Peer (P2P) and Client/Server
(C/S) Second Life. P2P clearly outperforms the current C/S
design. About 90% of the time, inconsistency in P2P lasts
less than 1 second, i.e., P2P is about 5 times faster than C/S.
This result is very promising if we consider that acceptable
values of interactivity in on-line games vary between 300 ms
and 1 sec [14]. However, despite the fact that the Delaunay
Network allows a direct communication among SL users
Figure 11 shows that only 20% of the inconsistencies in P2P
last less than 150 ms, i.e., a value comparable to common
network latencies over the Internet [28]. Since avatars tend to
form groups in SL (see Figure 7) the transmission of avatar
state updates to all interested avatars require multiple hops
in the Delaunay Network. This operation generates additional
latencies that increase the inconsistency duration. This result
suggests that further reduction of the inconsistency duration
can be attained by introducing alternative strategies for the
dissemination of avatar state updates within groups of avatars.

VIII. CONCLUSIONS AND FUTURE WORK

Second Life (SL) has received a lot of press coverage and
even some major companies and governments have created
their own SL region. We have carried out a detailed evaluation
of SL and made some interesting observations. Almost 30% of
the regions do not attract any visitors, and only a few regions
are popular. Moreover, the number of concurrent participants
barely reaches 50, 000. So one is tempted to paraphrase the
famous American comedian W. C. Fields saying “I went to
Second Life and it was closed”.

Our results also indicate that the user Quality of Experience
(QoE) is generally poor: most of the time avatars have an
inconsistent view of their surrounding, missing information
about other avatars or visualizing them in an incorrect location.
This inconsistency takes generally more than one second to be
resolved, which impacts user interactivity. Finally, in a region
crowded with virtual objects it generally takes more than one
minute for a user to retrieve the description of the virtual world
in its surroundings.

The static nature of most SL regions suggests that a dis-
tributed caching system as well as a prefetching algorithm

for virtual objects can help reduce the server traffic and
the discovery latency experienced at the clients. Moreover,
a distributed avatar management could be highly efficient at
increasing interactivity among avatars. As future work, we
envisage to deploy an SL client that relies on Peer-to-Peer
for both object and avatar management.

REFERENCES

[1] S. Singhal and M. Zyda, Networked Virtual Environments: Design and
Implementation. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1999.

[2] World of Warcraft, http://www.worldofwarcraft.com.
[3] Second Life, http://www.secondlife.com.
[4] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen, P. Dubey, C. Bienia,

and Y. Kim, “Second life and the new generation of virtual worlds.”
IEEE Computer, vol. 41, no. 9, pp. 46–53, 2008.

[5] F. Stenio, K. Carlos, S. Djamel, M. Josilene, and A. Rafael, “Traffic
Analysis Beyond This World: the Case of Second Life,” in Nossdav’07,
Urbana-Champaign, IL, USA, June 2007.

[6] K. James and C. Mark, “Traffic Analysis of Avatars in Second Life,” in
Nossdav’08, Braunschweig, Germany, May 2008.

[7] R. Antonello, S. Fernandes, J. Moreira, P. Cunha, C. Kamienski, and
D. Sadok, “Traffic Analysis and Synthetic Models of Second Life,”
Multimedia Systems, vol. 15, no. 1, pp. 33–47, Feb. 2009.

[8] C.-A. La and P. Michiardi, “Characterizing User Mobility in Second
Life,” in WOSN’08, Seattle, USA, August 2008.

[9] H. Liang, R. N. D. Silva, W. T. Ooi, and M. Motani, “Avatar mobility
in user-created networked virtual worlds: Measurements, analysis, and
implications,” Multimedia Tools and Applications, Special Issue on Mas-
sively Multiplayer Online Gaming Systems and Applications, vol. 45, no.
1-3, pp. 163–190, 2009.

[10] M. Varvello, F. Picconi, C. Diot, and E. Biersack, “Is There Life in
Second Life?” in Conext’08, Madrid, Spain, Dec. 2008.

[11] Planetlab, https://www.planet-lab.org/.
[12] G. A. Miller, “The Magical Number Seven, Plus or Minus two: Some

Limits on Our Capacity for Processing Information,” Psychological
Review, vol. 63, pp. 81–97, 1956.

[13] J. Pang, F. Uyeda, and J. R. Lorch, “Scaling Peer-to-Peer Games in Low-
Bandwidth Environments,” in IPTPS’07, Bellevue, Washington, USA,
February 2007.

[14] M. Claypool and K. Claypool, “Latency and Player Actions in Online
Games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, 2006.

[15] libsecondlife, http://www.libsecondlife.org/.
[16] Wikipedia, http://en.wikipedia.org/wiki/Real estate (Second

Life)(accessedJune15,2009).
[17] Second Life, http://blog.secondlife.com/ (accessed June 15, 2009).
[18] SL Login, http://secondlife.com/app/login/.
[19] H. Liang, M. Motani, and W. T. Ooi, “Textures in second life: Mea-

surement and analysis,” in ICPADS ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 823–828.

[20] K. Alsabti, S. Ranka, and V. Singh, “An Efficient K-Means Clustering
Algorithm,” 1997. [Online]. Available: http://www.cise.ufl.edu/∼ranka/

[21] M. Varvello and G. M. Voelker, “Second Life: a Social Network of
Humans and Bots,” in Nossdav’2010, Amsterdam, Netherlands, June
2010.

[22] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “VON: A Scalable Peer-to-Peer
Network for Virtual Environments,” Network, IEEE, vol. 20, no. 4, pp.
22–31, 2006.

[23] J. Keller and G. Simon, “SOLIPSIS: A Massively Multi-Participant
Virtual World,” in Proc. of PDPTA, Las Vegas, Nevada, USA, 2003.

[24] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A Distributed
Architecture for Online Multiplayer Games,” in NSDI ’06, 2006.
[Online]. Available: http://www.comp.nus.edu.sg/∼bleong/hydra/related/
bharambe06colyseus.pdf

[25] M. Ohnishi, R. Nishide, and S. Ueshima, “Incremental Construction of
Delaunay Overlay Network for Virtual Collaborative Space,” in Proc of.
C5, Cambridge, MA, USA, January 2005.

[26] H. Backhaus and S. Krause, “Voronoi-Based Adaptive Scalable Transfer
Revisited: Gain and Loss of a Voronoi-Based Peer-to-Peer Approach for
MMOG,” in Proc. of Netgames, Mellbourne, Australia, September 2007.

[27] M. Varvello, S. Ferrari, E. Biersack, and C. Diot, “A Distributed
Avatar Management for Second Life,” in NETGAMES’09, Paris, France,
November 2009.

[28] J. Winick and S. Jamin, “Inet-3.0: Internet Topology Generator,” Uni-
versity of Michigan, Tech. Rep. CSE-TR-456-02, 2002.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X X 13

Matteo Varvello is a researcher at Alcatel-Lucent in Holmdel (New Jersey)
since January 2010. In November 2006, he earned his MSc in Networking En-
gineering from Polytechnic of Turin (Italy), graduating cum laude. As part of
his Master studies, he spent one year at Eurecom in Sophia Antipolis (France),
where he obtained a Research Master in Network and Distributed System. In
December 2009, he received a Doctoral degree in Computer Science from
Telecom Paris (France). His current research interests include peer-to-peer,
content-centric networking, cloud computing and energy efficiency.

Stefano Ferrari is a software engineer at Cisco System in Rolle (Switzerland)
since December 2009. In April 2008, he received his MSc in Software
Engineering from Polytechnic of Turin (Italy). His education was enriched
with one year of study at EURECOM Institute (France) where he obtained
a diploma in Network and Distributed Systems. His present main occupation
is on design and development of advanced routing features for Internet core
routers.

Ernst Biersack studied computer science at the Technische Universitt Mnchen
and at the University of North Carolina at Chapel Hill. He received the
Dipl. Inf. (M.S.) and Dr. rer. nat. (Ph.D.) degrees in computer science from
the Technische Universitt Mnchen, Munich, Germany, and the Habilitation
Diriger des Recherches from the University of Nice, France. From March 1989
to February 1992, he was a Member of Technical Staff with the Computer
Communications Research Group of Bell Communications Research, Morris-
town, NJ. Since March 1992, he has been a Professor in telecommunications at
Institut Eurecom, Sophia Antipolis, France. His current research is on peer-to-
peer systems, network tomography of TCP connections, and LAS scheduling
in edge routers.

Christophe Diot received a Ph.D. degree in Computer Science from INP
Grenoble in 1991. He was with INRIA Sophia-Antipolis (Oct. 93-Sep.98),
Sprint (Oct. 98-Apr. 03), and Intel Research in Cambridge, UK (May 03-
Sep. 05). He joined Thomson in October 2005 to start and manage the
Paris Research Lab (http://thlab.net). Diot has been a pioneer in multicast
communication, DiffServ, Internet measurements, and more recently Pocket
Switched Networks. Diot’s research activities now focus on advanced p2p
communication services. Diot is the Thomson Scientific Council chair and an
ACM fellow.

