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ABSTRACT
Nowadays, Wireless Sensor Networks are mature enough to
be used by Business Applications. These applications rely on
trustworthy sensor data to control business processes. We
propose an approach to assess the trustworthiness of sen-
sor data during its lifecycle from acquisition on the node,
over processing and to routing to the Business Application.
We rely on the Subjective logic framework to compute the
probability that sensor data are trustworthy enough to be
used by an application. With the definition of new opera-
tors for the subjective logic, we develop a trust model, that
allows to detect erroneous sensor data which are originated
either unintentionally by malfunctioning of sensor nodes or
intentionally by attackers.

General Terms
WSN, Trust Assessment, Subjective Logic

1. INTRODUCTION
Nowadays, Wireless Sensor Network technology is mature
enough to be used by Business Applications. An increas-
ing number of applications are developed in several business
domains, reaching from defense, over public security, manu-
facturing and traffic control to health care [?]. The partic-
ular interests lay in the ability of Wireless Sensor Networks
(WSNs) to control and monitor different physical environ-
ments.

Business Applications (BAs) have a strong need to assess
the trustworthiness of the data delivered by WSN. When
WSNs are integrated into business processes, the delivered
data can influence severely the decisions in the applications
and the taken actions in the real world. In the worst case,
the life of people can be endangered. A good example is
the remote patient monitoring: a patient is equipped with a
Body Sensor Network (BSN) ?? which monitors body per-
formance (e.g. heart rate, body temperature, SPO2, etc. )
and activities (e.g. walking, running, falling). Erroneous

sensor data can lead to a wrong therapy for this person. If
an emergency stays undetected, it can result in the dead of
the person.

Erroneous or non-trustworthy sensor data can have 2 dif-
ferent reasons: Intentional misbehavior and unintentional
errors.

Unintentional errors of the sensor data are caused by mal-
function of the hardware (broken or obstructed sensors),
malposition of the node (untied or incorrectly attached node)
or exhausted batteries.

Intentional misbehavior is caused by attackers, exploiting
security vulnerabilities of WSNs, e.g. in the routing proto-
cols. [?] Security for WSN has often to be balanced with
the requirements of energy saving and the limited resources
(memory, CPU) that are available. But, implementating
’cheaper’ security solutions, like symmetric key algorithms,
can open more exploitable flaws. Related to the capability of
easy deployment and mobility, WSN node are often easily
accessible and rarely tamper-resistant. Hijacking of nodes
and extraction of cryptographic material is quite easy and
gives the attacker the possibility to add malicious nodes or
inject bogus data into the network.

Instead of hardening the security in WSN, assessing the
trustworthiness of sensor data is an alternative solution. The
goal of the trustworthiness assessment is to assist business
applications in decision making whether they can rely on the
data or not. Trustworthiness is the probability that a sensor
data really corresponds to the measurement in the physical
world. This approach has two main advantages: (i) it allows
business applications to separate erroneous sensor data from
trustworthy ones, and (ii) it supports energy optimisation in
WSNs.

Energy saving can be achieved when non-trustworthy sensor
data is filtered out already on the sensor or within the net-
work considering that data transmission is the most energy
consuming task in a WSN ??.

In this paper, we propose a framework for the trustworthi-
ness assessment of sensor data, from the acquisition on the
node, to their delivery to business application, including any
intermediary routing or processing. The assessment aims at
identifying erroneous sensor data caused intentionally or un-
intentionally.



The paper is organised as follows. In Section 2 we discuss
the state of the art. In order to propose our trust model in
Section 4, we introduce the notion of sensor data life cycle
in Section 3. Section 5 is dedicated to the use of subjective
logic for our model. In this section, we define new oper-
atorsin order to support the trustworthiness assessment at
acquisition, processing and routing time. At last, we evalu-
ate the feasibility of our approach in Section 6. Futur work
and conclusion are discussed in Section 7.

2. RELATED WORK
According to [?], sensor node data can be compromised in
two different ways: (i) unintentionally or (ii) intentionally.
Unintentional errors are cause by malfunction of hardware,
misposition of the nodes or battery exhaustion and decay. In
literature, several approaches can be found for sensor node
failure detection (see Subsection 2.1).

The deliberated exploitation of node vulnerabilities can in-
tentionally cause erroraous sensor date. Many security mech-
anism rely on the assupmtion that sensor nodes are tamper-
resistant devices []. Due to the nodes resource restriction,
the support of strong security mechanism on sensor node is
hardly envisioned. Eventhough security mechanism are tai-
lored to those constraints, it is still quite easy capture node
and to get the embedded cryptographic material [?]. Based
on those assumption, several attacks are possible: the injec-
tion of malicious nodes with proper cryptographic material,
the interception and forgery of sensor data on the wireless
channel, etc. The impact of the exploitation of such threats
on business applications can be severe consequences.

In [18], the authors aims at identifying compromised nodes.
They develop an alert reasoning algorithm where each node
evaluates its security estimation on its neighbors. This ap-
proach is only based on authentication and analysis of data
delivered by sensor nodes. Furthermore, the authors do not
study influence of compromised sensor data involved in fur-
ther processing.

Other authors (discuses in Subsection subsec:RepSystems)
use distributed reputation and trust systems to detect unre-
liable sensor node. We consider also approach for mobile ah-
hoc networks (MANETs) which address similar problems.

2.1 Failure Detection
Within a WSN, sensor nodes are prone to different kinds
of failure [16]. : crash, omission, timing, value or arbi-
trary. Crash or omission imply none response from the sen-
sor to sensor data request. Timing refers to timeout during
request processing. Value failure deals with delivering in-
correct value due to malfunctioning or compromised sensor
nodes. Finally, arbitrary failures include all the types of fail-
ures that cannot be classified in previously described cate-
gories [13, 12]. In order to improve resilience to sensor node
failure, a few approaches propose failure detection mecha-
nisms. In sensor node failure detection, nodes can either
detect its own failure [8] (e.g. based on battery exhaustion),
or its neighbors failure [7].

2.2 Reputation and Trust Systems
Reputation systems have been developed in order to iden-
tify compromised nodes, based on the behavior. Reputa-

tion is based on a collection of evidence of good and bad
behavior undertaken by other entities. In [4], the authors
capitalize on Bayesian formulation of reputation represen-
tation, updates, integration and trust evolution in a Repu-
tation based Framework for Sensor Network (RFSN). The
latter addresses bad mouthing and ballot stuffing attacks.
Thus in this approach, only good behaving nodes can get
access to others nodes information. In [2], the authors also
propose a reputation system based on Bayesian approach.
They clearly distinguish the reputation from trust in sen-
sor nodes. The former represents the opinion formed by a
node on another nodes and the latter the opinion formed
by a node about how honest another nodes are. In this ap-
proach, each node is in charge of maintaining its reputation
and trust rating on its nodes of interest (e.g. the ones that
it is interacting with).

At the contrary, in trust systems, the objective is to evalu-
ate the probability exceptation that a given event occured.
In the case of sensor data, this event woudl be that the
sensor data really reflects the actual physical environment
context. In [14], the authors propose a trust-and-clustering
based framework based on public key authentication for mo-
bile ad hoc wireless networks. They define a decentralised
trust model where each nodes monitor and rate each other
with quantitative trust values. The goal is thus to discover
and isolate dishonest nodes. A chain of trust is established
among nodes similar to Pretty Good Privacy (PGP). Any
nodes can sign another’s public key with its own private key.
The authors developed a trust-and-clustering based public
key authentication mechanism supported by new security
operations on public key certification and update of a trust
table. In [19], the authors propose a trust based framework
for secure aggregation in wireless sensor network based on
Bayesian model and beta distribution probability. Based on
subjective logic, this framework computes an opinion which
encompasses belief and uncertainty on the aggregation of
sensor data with the consensus operator. Still those ap-
proaches are restricted to the trustworthiness evaluation of
origin and value of data. Besides, in [19], the authors use
the consensus operator, which computes a fused opinion of
several entities about a same event. Consensus then appears
not to be the most appropriated operator ( see section ??).

Nevertheless, all existing approaches barely address erro-
neous data processing. Apart [?] which considers data ag-
gregation, they all restrict themselves to detection of raw bo-
gus sensor data. In addition, those approaches evaluate the
reliability of data based on their origin or value. But none
of them target the confidence assessment of data process-
ing (e.g. filtering, aggregation, fusion) based on potentially

bogus data. {FIX1}

3. SENSOR DATA LIFE CYCLE
As identified in Section 1, business applications need to eval-
uate the trusthworthiness of sensor data in order to distin-
guish between erroneous and trustworthy sensor data. To
the best of our knowledge (see Section ??), existing ap-
proaches base their confidence on the raw sensor data and
take only sensor data values and/or origin into account.
When it comes to data routing or processing, none of those

1FIX. ALR: Do not forget to mention BARAK-2008



Figure 1: Sensor Data Life Cycle

approaches target the trustworthiness of sensor data.

In order to address this problem, we formalise the life cycle
of sensor data, from its acquisition on the sensor nodes, to
their delivery to business applications, including intermedi-
ary processing or routing from entity to entity (e.g. nodes,

middleware, business application). 1.{FIX2} In this life cycle,
we identify three states for sensor data: (i) raw, (ii) routed,
(iii) processed. A sensor node firstly produces a raw sen-
sor data which is transmitted to a radio/processing board
attached to the node. Usually a bunch of sensor nodes are
attached to the same radio/processing board ??. Neverthe-
less, a sensor data is raw as soon as it has been acquired
(sensed) by a node without any additional routing or pro-
cessing. With processing, we understand any data manipu-
lation such as filtering, fusion or aggregation. As soon as a
sensor data is sent to other node in the WSN, it is consid-
ered as routed. The data has been delivered from an entity
(e.g. node, forwarding node, middleware) to another entity
(e.g. forwarding node, business applications).

In the remaining of this paper, we will note ei i ∈ [0, n] the

set of entities on which the sensor data is routed to.{FIX3}

e0 is the production node {FIX4} , and en is a business appli-
cations. Last but not least, a sensor data can be the result
of a processing (e.g. fusion, aggregation) of multiple sensor
data. Sensor data can be processed several time on the same
entity.

4. TRUST MODEL FOR SENSOR DATA
Based on the sensor data life cycle described in Section 3, we
define now our trust model. Trust [11, 5] is commonly de-
fined as the propability expectation of an entity (e.g. node,
sink, middleware, applications) that an event occurs or that
a proposition becomes true.

In Section 3, we identified three states in the sensor data life
cycle: raw, routed and processed. Following this definition,
we have three possible propositions Px: (i) Praw: ”the raw
sensor data is trustworthy enough to be used” , (ii) Prouted:
”the routed sensor data is trustworthy enough to be used”and
(iii) Pprocessed: : ”the processed sensor data is trustworthy
enough to be used”. The trust assessment of each of those
three propositions is impacted by different parameters. For
example, the trustworthyness of raw sensor data is impacted
by type of measurement, whereas routed data trustworthi-
ness is impacted by the trust relationship between the source
and destination nodes{FIX5}.

We formalise trust along the three sensor data states as fol-
lows:

Definition 1. (Trust)
Let e be an entity. Trust ψ(Px, e) is e’s expectation proba-

2FIX. ALR: Remove Ei form figure!
3FIX. ALR: not correct, while nothing is routed to e0
4FIX. ALR: Think about terminology
5FIX. ALR: better depending on the used routing protocol?

Figure 2: Sensor Data

bility that Px is true where ψ(Px, e) ∈ [0, 1].

In the remaining of this section, we formalise the trust of
raw, routed and processed sensor data, and identify the spe-
cific parameters for the trust assessment along the sensor
data life cycle.

4.1 Trust Assessment of Raw Sensor Data
As depicted in Figure 2, a sensor data is a composition of
a type (e.g. ambient temperature, pulse) and a list of at-
tributes (e.g. accuracy, value, origin). We formalize raw
sensor data as follows

Definition 2. (Sensor Data Attribute)
Let a sensor data attribute be a pair
a =< atype, v > where
atype is the attribute type and v its value.

Definition 3. (Sensor Data)
Let a piece of sensor data s be a pair < stype, < ai >

n
i=0>

where
stype is the sensor data type and
< ai >

n
i=0=< ati, avi >

n
i=0 is the list of its n attributes

where ati and aiv are type and value of attribute ai and
such as for each i=1,..,n, it exists only one sensor data at-
tribute ai of type ati.

We have for example patient’s body temperature represented
as follows:

s = < bodytemperature,
< <value, "37.5">,
<metric, "celsius">,
<typeofmeasurement, "behind ears">,
<origin, "sensor1234">,
<accuracy, "+-0.5">

>

We consider that each sensor attributes have an impact on
trust assessment of raw sensor data, eventhough the influ-
ence of metric can be neglected in comparison to the origin
of the data. We note P(ai,e) the impact of the attribute ai on
sensor data trust assessment, and αi its weight. The trust
assessment of a raw sensor data is then defined as follows:

Definition 4. (Trust Assessment of Raw Sensor Data)
ψ(Ps, e) = ψacquisition(ψ(Pai , e), αi)
where i=1,..,n
and αi is the weight of the ai attribute on ψ(Ps, e).

4.2 Trust Assessment of Routed Sensor Data
We note the process of sensor data routing s from an en-
tity e to an entity f as s |e→f . Each entity e has a confi-
dence, ψ(Pf , e), in the entity f delivering data. The trust
assessment of the delivered sensor data from entity f to e is
expressed as follows:



Definition 5. (Trust Assessment of Routed Sensor
Data)
ψ(Ps|f→e , e) = ψdelivery(ψ(Ps, f), ψ(Pf , e))

4.3 Trust Assessment of Processed Sensor Data
Numerous sensor data processing are available along the life
cycle from on-the-fly average to aggregation including fusion
of sensor data, mainly depending on resource capabilities of
the processing entity. Sensor data processing is the result a
computation over a set of sensor data < si > i = 0, . . . , n.
Likely the trust assessment of raw sensor data, we weight
each sensor data of < si > i = 0, . . . , n. Their impact on
the sensor data processing can vary. To that purpose, we
weight each sensor data with αi.

Definition 6. (Trust Assesment of Sensor Data Pro-
cessing)
ψ(P(si)

n
i=0

, e) = ψ(ψ(Psi , e), αi)
n
i=0

where i=1,..,n the number of aggregated sensor data
and αi is the weight of si sensor data in ψ(P(si)

n
i=0

, e).

ψ(P(si)
n
i=0

, e) is called trustworthiness evaluation of sensor

data aggregation
⊕

(si)
n
i=0.

5. A SUBJECTIVE LOGIC APPROACH
In section 4, we model trust of sensor data from acquisition
from nodes to delivery to business applications including
aggregation and fusion. In this section, we implement our
trust model mapping trust assessment to subjective logic
opinion.

5.1 Subjective Logic
Subjective logic is a theoretical framework based on Dempster-
Schafer theory of evidence [15]. In subjective logic, we ma-
nipulate opinions about proposition P. An opinion is rep-
resented by the 4-tuple (b,d,u,a) when a represents the a
priori probability in absence of opinion. As we only con-
sider binary state space for P, we set a to 1

2
. Respectively,

b, d and u represent the belief that P is true, the belief
that P is false, and the uncertainty is the amount of be-
lief that is no committed to the truth or falsehood of P Šs.
The range of those four value is [0,1] where b+d+u=1. The
opinion of A about P is defined as ωAP = b+a.u. Moreover,
subjective logic framework provides a set of logical opera-
tor for combining opinions such as conjunction, disjunction
and negation, in addition to non-traditional operators for
consensus or discount of opinions. .

Applied to trust evaluation of sensor data, it consists of de-
termining opinion in the following proposition : ‘a sensor
data is trustworthy enough to be used’. In addition, subjec-
tive logic allows to represent the uncertainty with respect to
sensor data measurement (e.g. quality of service, accuracy
of node). Josang’s model [10] is thus suitable for measur-
ing uncertainty with respect to sensor data. Moreover, data
processing benefits from subjective logic operators for com-
bining opinions on collected sensor data.{FIX6}

6FIX. LG: motivate the use of subjective logic for sensor
data

Table 1: Opinion Determination
Subjective Measurable

Attribute Reputation of
Origin

Accuracy

Trust Type of measurement
Value

Entity Reputation Communication protocol
Trust Entity credentials

5.2 Opinion Policy
5.3 Trusted Sensor Data Attribute and Entity
Relying on our trust model introduced in section 4 and cap-
italizing on subjective logic, we define ψ(Pa, e), the trust
evaluation of sensor data attribute a by an entity e, as ωea.
Similarly, we define ψ(Pf , e), the trust evaluation of an en-
tity f by e , as ωef .

Those opinions on sensor data attributes and entity are to be
determined based on a combination of subjective and mea-
surable criteria. Following Covington et al’s [3] approach,
we distinguish subjective aspect (e.g. node or entity rep-
utation) from measurable aspects (e.g accuracy, freshness).
The subjective aspects of an opinion are based on the past
experience with a given entity (e.g. node, sink), while the
measurable aspects are derived from elements which charac-
terize a sensor data or an entity.

Table 1 proposes some subjective and measurable aspects
for opinion determination of attributes and entities. Rep-
utation of node can be seen as subjective element of origin
attribute of sensor data. Credential of an entity and its used
communication protocol are measurable elements which sup-
port the determination of trustworthiness of an entity.

For the sake of readability, s denotes a subjective aspect,
and m a measurable aspect. In [3], the authors propose the
following combination in order to determine an opinion ω
based on those two parameters:

ω = (b, d, u, a) where

 b = s ·m
d = s · (1−m)
u = 1−m

Belief is then defined as a combination of subjective and
measurable aspects whereas uncertainty is defined as the
opposite of subjective aspect. Based on this combination
of subjective and measurable aspects, sensor data attribute
and entity are determined.

5.4 Trusted Sensor Data Acquisition
When applying subjective logic to our trust model, we define
ψ(Ps, e), trust evaluation of sensor data s of an entity e, as
ωes . Based on ψ(Ps, e) formulation in section ??, we suggest
the definition of as combine operator which computes ωes
based on opinions on its sensor data attributes, ωeai . Con-
trary to the consensus operator [17] which fuses opinions of
different entities about a same proposition, ψacquisition op-
erator aims at combining opinions of a single entity about
different propositions Pai , related to Ps, and leveraging the



influence of the most weighted opinions, ψ(Pai , e). We then
propose the following mapping between ψacquisition and the
combine operator:

ψ(Ps, e) = ψacquisition(ψ(Pai , e), αi)

ωes = combine(ωeai , αi)
n
i=0

ωes = combineαi((ωeai))
n
i=0

As described in section 5.1, an opinion is a 4-tuple {b, d, u,
a} encompassing belief, disbelief, uncertainty and atomicity
(set to 1

2
) of a given proposition trustworthiness. We then

have

ωes = (b, d, u, a) where b = combinebαi((bai))
n
i=0

d = 1− b− u
u = min(1− b, combineuαi((uai)

n
i=0)

combineb aims at smoothly increasing belief of combined
opinions. u is defined in such manner that the influence of
uncertainty on combination of opinion is minimized in com-
parison with belief. Additionally, we respect the constraint
on b+ d+ u = 1.

combineb and combineu functions are defined in the follow-
ing sections.

5.4.1 combineb function
We first define the combineb function for two beliefs, and
then extend it for more than two beliefs. As regards com-
bination of two beliefs be and bf , it consists of a smooth in-
crease of their maximum, depending on the distance |be−bf |.
This increase is to be exponentially proportional to their
maximum belief and to their distance. The combineb oper-
ator has then to fulfill the following requirements:

• RE1:

∀be, bf ∈ [0, 1] , 1 ≥ combineb(be, bf ) ≥ max(be, bf )

• RE2: combineb(be, bf ) is proportional to the distance
| be − bf |.

• RE3: combineb(be, bf ) is exponentially proportional
to max(be, bf ).

With requirement RE1, we express the fact that the com-
bination of two beliefs always results in an increase. In
case of min(be, bf )=0, combineb(be, bf ) is equal to the lower
bound, max(be, bf ). Besides, combineb(be, bf ) is up to 1.
RE2 reflects the fact that the closer the min(be, bf ) is to
max(be, bf ), the bigger the combination acceleration has to
be. In other words, we tend to reward the combination of
belief with are close each others. Finally, RE3 is to reward
the combination of high beliefs. We prefer the combination
of two beliefs 0.5 and 0.9 rather than 0.5 and 0.5, even if

][t]

Figure 3: combineb Evolution

Figure 4: combineb Operator

they are close each others. Figure 3 depicts the fact that a
combination of two low beliefs leads to almost no belief in-
creases. On the contrary, the combination with two strong
beliefs leads to a quick increase of combined belief. In ad-
dition, the combination of two high beliefs is to be bigger
than combination of high and low beliefs.

Based on RE1, RE2 and RE3, we define combination be-
tween two beliefs as follows:

Definition 7. (Belief Combination)
Let be and bf be agent’s beliefs about two distinct proposi-
tions a and b. Let combineb(be, bf ) be the belief such that:
combineb(be, bf ) = min(1,max(be, bf ) + ε(be, bf ))

where ε(be, bf ) = (be · bf )(2−be−bf ).

combineb(be, bf ) is called the combination of be and bf rep-
resenting the agents’ beliefs about the combination of a and
b being true.

In figure 5, we depict the evolution of combineb(be, bf ) for
five values of the maximum between be and bf . We clearly
demonstrate our three requirements. When the maximum
between the beliefs equals to 0.1, the increase of combineb(be, bf )
is smaller than the one with the maximum equals to 0.9
(RE1 and RE3). Moreover combineb(be, bf ) increases pro-
gressively while |be − bf | tends to zero (RE2).

As far combination of more than two beliefs is considered,
we define belief combination as follows:

combineb(bai)
n
i=0 = for n = 0, ωa0

for n = 1, combineb(ba0 , ba1)
otherwise , combineb(bean , combineb(b

e
ai)

n−1
i=0 )

5.4.2 combineu function
With respect to uncertainty combination, we reduce com-
bined uncertainty by computing an average of uncertainty
as follows:

combineuαi(uai)
n
i=0 =

∑n
i=0(uai · αi)∑n

i=0(αi)

5.4.3 combine operator
In Figure 5, we illustrate the evolution of the combination
of two opinions, ωe and ωf , equally weighted. We set three
fixed values of belief and uncertainty of ωf . For curve (a),
(b) and (c), we set ωf to 0.375 (bf = 0.25 and uf = 0.25),
0.875 (bf = 0.75 and uf = 0.25) and 0.625 (bf = 0.25 and



Figure 5: Combination Operator

uf = 0.75) respectively. With (a), (b) and (c), we clearly
demonstrate then that combination of opinions smoothly in-
crease up to 1. With (a) and (c), we show the impact of
high uncertainty of combination of opinions. Additionally,
comparing (a) and (b), we leverage combined belief in com-
parison to uncertainty.

5.5 Trusted Sensor Data Delivery
We define the trustworthiness in a sensor data delivery by a
entity f to e as follows:

ψ(Ps|f→e , e) = ψdelivery(ψ(Ps, f), ψ(Pf , e))

ωes|f→e = discount(ωfs , ω
e
f )

The discount operator perfectly fits, by definition, to com-
pute ωes|f→e based on ωfs and ωef . Dedicated to transitive

trust computation, the discount operator enables any en-
tity e to form an opinion on a proposition Ps by discounting
opinion ωfs and ωef .

5.6 Trusted Sensor Data Fusion
In order to determine trustworthiness of sensor data fusion,
we decide to reuse the combine operator. As defined in
section 5.4, the combine operator combines opinions of a
entity e in a single opinion. In the case of fusion of data, we
combine opinions of a single entity on different propositions
used to infer on a single proposition.

ψ(P⊗
(si)

n
i=0

, e) = ψ⊗(ψ(Psi , e), αi)
n
i=0

ωe⊗(si)
n
i=0

= combine(ωesi , αi)
n
i=0

ωe⊗(si)
n
i=0

= combineαi(ωesi)
n
i=0

5.7 Trusted Sensor Data Aggregation
We propose to compute an average on opinion on the sensor
data of the aggregation. This average computation has to
involve weight of aggregated sensor data, as expressed in the
following definition of the average operator.

ψ(P⊕
(si)

n
i=0

, e) = ψ⊕(ψ(Psi , e), αi)
n
i=0

ωe⊕(si)
n
i=0

= average(ωesi , αi)
n
i=0

We then define the average operator as such:

average(ωesi , αi)
n
i=0


baverage =

∑n
i=0(bPsi

.αi)∑n
i=0(αi)

daverage =

∑n
i=0(dPsi

.αi)∑n
i=0(αi)

uaverage =

∑n
i=0(uPsi

.αi)∑n
i=0(αi)

In summary, in this section, we implement our model trust
with subjective logic. The notion of opinion is then used to
assess the trustworthiness of sensor data. Including belief

Figure 7: Trust Assessment Illustration

and uncertainty on the fact that ”the sensor data is trustwor-
thy enough to be used”, subjective logic framework supports
the combination of opinions with several operators (e.g. dis-
count, consensus). In order to determine the opinion of a
single entity about different interdependent propositions, we
introduce the combine operator. The latter is used to de-
termine opinions of acquired and fuse data. In addition, we
adapt average operator defined by subjective logic in or-
der to consider weight of opinions. At last, we re-use the
discount operator at sensor data delivery time.

6. EVALUATION
6.1 A remote healthcare monitoring scenar-

ion
In order to illustrate the implementation of our trust model
with subjective logic, we introduce a remote health care
monitoring example where patients activities (e.g. patient’s
hydration, awakening schedule) or physiological information
(e.g. blood pressure, pulse, body temperature) are moni-
tored 24 hours a day via a Body Sensor Network[6]. The
latter is defined as a combination of any kind of wearable[9]
and implantable[1] sensors. The BSN is connected to a Med-
ical Emergency Response Center (MERC) through patients
PDA. The latter is in charge of detecting any irregularities
in patient health condition, and of aggregating physiological
patient information. The PDA can for example trigger an
alert in case of emergency to the MERC, that contacts the
closest physician to patient for a home visit. In addition to
visiting, physician can request for aggregation of physiolog-
ical information for a better diagnostic. Figure 6 outlines
trust assessment at acquisition, aggregation and fusion of
physiological information from the PDA to the MERC.

Mapping to the life cycle illustrated by Figure 1, we de-
tail the trustworthiness evaluation of pulse and blood pres-
sure from nodes to application in Figure 7. Applying the
defined operator at acquisition, aggregation, fusion and de-
livery steps, we demonstrate confidence evolution in sensor
data and processing. For sake of readability, in Figure 7,
we note opinion as such pe− {b, d, u}, where pe is expecta-
tion probability, b belief, d disbelief and u uncertainty. In
this example, each sensor attributes or element of fusion and
aggregation are equally weighted.

Our implementation then homogenizes trust evaluation of
sensor data within their life cycle. As depicted in Figure 7,
we use the same metric from acquisition to delivery of sensor
data. Moreover, we consider any sensor data attributes for
trustworthiness evaluation, and do not restrict it to origin
or value. At last, we use our combine operator in order to
assess trustworthiness of data at acquisition and fusion time.

6.2 Herd control scenario
In this section, we can speak about the experiment and the
collected data by TU/e. On the field, farmers detect the
following events: node detached from the cow, low battery,
. . . How can we infer that a cow lost her node . . .

Show some results with the data received.



Figure 6: Remote Health care Monitoring

7. CONCLUSION
In this paper, we proposed a novel trust model for sensor
data during their entire life cycle. Capitalizing on subjec-
tive logic, we implement our model and design new oper-
ators on opinions for the combination and aggregation of
opinions. Opinion on data is then used by application for
further decision-making. To the best of our knowledge, our
work is the first in the field to introduce a complete trust
evaluation of sensor data during their life cycle. The pro-
posed implementation of our trust model then address draw-
backs introduced by existing approaches: heterogeneity, the
fact that they only consider origin or value in trust evalua-
tion, and the lack of confidence determination in fusion of
information.

In the future, we plan to investigate on the establishment of
similarity between sensor data based on ontology for contex-
tual information. The idea is to support business applica-
tion in the acquisition of sensor data which are not directly
available in WSN. For example, a business application can
request pulse from a WSN delivering heart rate data. If
pulse and heart rate data are defined as similar, it would
enable the middleware to convert heart rate into pulse in-
formation. The latter would be mapped with a confidence
value depending on heart rate and similarity relation trust-
worthiness.
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