
Efficient Access Control for Wireless Sensor
Data

Alessandro Sorniotti1,2, Refik Molva2, Laurent Gomez1, Christophe Trefois3,
and Annett Laube2

1 SAP Research
805, Docteur Maurice Donat, 06250 Mougins, France

Email: first.last@sap.com
2 Institut Eurécom

2229, Route des Crêtes, 06560 Valbonne, France
Email: first.last@eurecom.fr

3 EPFL
CH-1025 Lausanne, Switzerland

Email: christophe.trefois@a3.epfl.ch

Abstract. Although very developed in many sectors (databases, filesys-
tems), access control schemes are still somewhat elusive when it comes
to wireless sensor networks. However, it is clear that many WSN systems
– such as healthcare and automotive ones – need a controlled access to
data that sensor nodes produce, given its high sensitivity. Enforcing ac-
cess control in wireless sensor networks is a particularly difficult task due
to the limited computational capacity of wireless sensor nodes. In this
paper we present a full-fledged access control scheme for wireless sensor
data. We enforce access control through data encryption, thus embed-
ding access control in sensor data units. We also propose a lightweight
key generation mechanism, based on cryptographic hash functions, that
allows for hierarchical key derivation. The suggested protocol only relies
on simple operations, does not require interactions between nodes and
data consumers and has minimal storage requirements.

1 Introduction

Wireless Sensor Networks (WSNs) can be seen - in a raw approximation - as
sources of input, delivering data from the real world into the digital world. Low
cost often arises as a requirement to justify the adoption of WSN technology for
particular business scenarios: this results in sensors often being simple devices,
with limited computing and transmitting power and limited battery capacity
too.

In many WSN scenarios, nodes are required to sense a vast range of different
data types: in an elderly-care scenario for instance, ambient sensors sensing room
occupancy, temperature, motion, activity and sound are used together with body
sensors sensing blood pressure, HRV, galvanic skin response, SpO2, blood glucose
rate and so forth [1].

In scenarios such as the healthcare one, the sensed data is often highly sensi-
tive. Moreover, the sensed data often has very different levels of sensitivity: the
mere information on the room occupancy of a hospital is not highly sensitive,
whereas the ECG of a given patient is indeed very private information, since it
could possibly reveal information about the health status of the person.

There can also be several consumers of wireless sensor data, belonging to an
heterogeneous population, and having intrinsically different data access rights:
within a healthcare scenario, patients, social workers, nurses, relatives, generic
physicians and specialists naturally form a hierarchy of entities that are in-
terested in the data delivered by a healthcare WSN. Data consumers can be
therefore conveniently organized in hierarchies. Low levels in the hierarchy can
just access data with low level of sensitivity whilst higher levels can also access
more sensitive data.

A problem of hierarchical access control therefore clearly arises. The solution
to such a problem is additionally complicated by the resource limitation of some
WSN installations. In this paper we present a hierarchical access control scheme
for wireless sensor data. Access control is enforced using cryptography: sensors
encrypt data prior to its transmission, thus embedding access control right at
the source. Thanks to the key generation mechanism, multiple consumers, with
different access rights, converge on the same decryption key if their privileges are
sufficient. The presented protocol achieves two very desirable goals for WSNs: it
does not use complex operations and it does not require any interaction between
the different nodes and the different data consumers.

The rest of the paper is organized as follows. Section 2 states the problem.
Section 3 presents the state of the art in related areas. Our access control scheme
is presented in Section 4. Section 5 and 6 analyse the security of the scheme.
Section 7 gives conclusions.

2 Problem Statement and Approach

Sensor nodes produce, on a broadcast medium, highly diverse data, which is often
very sensitive. Sensors listeners may be numerous, diverse and have different
access rights to sensor data. The problem of multiple-resources/multiple-accesses
is usually solved using access control. Under a standard access control scenario,
entities that wish to benefit from the produced information, have to authenticate
themselves, receive a credential, produce the credential to the data source and
receive a specialized stream of information that contains just the information the
requester received an authorization for. Many solutions exist for this problem [2],
however most of them are unsuitable for WSN scenarios, given the technological
constraints of the nodes. In addition, nodes produce data in real time, hence the
generation of multiple streams is difficult.

Our solution relies on cryptography: right from its production, data is en-
crypted, and therefore its access is intrinsically restricted. This way, sensors can
encrypt data and publish it regardless of the present consumers: the knowledge
of the cryptographic key used to encrypt data, belonging to a given level, allows

proper decryption – and therefore access – to data belonging to that level. Con-
versely, it is impossible to access encrypted data for consumers who do not have
the proper decryption key.

To satisfy the hierarchical requirement, the idea is to map each distinct sensor
data type to an authorization level. Data, whose disclosure does not rise high pri-
vacy issues, is mapped to low authorization levels. Similarly, highly private data
will be mapped to high authorization levels. The resulting mapping expresses
the security preferences of a central access control policy point. The hierarchy of
authorization levels is then mapped to keys in a hierarchical structure, whereby
low-level keys can be derived from high-level ones.

We model the hierarchy of authorization levels (al) as a tree. al0 is the root
of the tree, and represents the highest level. C(ali) represents the set of children
nodes of a given level ali. P(ali) represents the parent node of a given level ali,
with P(al0) = ∅. We restrict the admissible hierarchies to the ones which can
be modeled by trees such that ∀ ali, ∃! alk : alk = P(ali), i.e. where nodes
have just a single parent. We assume that a user who receives access rights to
ali is able to derive access rights to C(ali), C(C(ali)) and so forth, while the
converse (i.e. deriving access rights for P(ali)) is not allowed. In section 4 we
will detail how we implement such mapping between authorization level tree and
cryptographic keys.

The adoption of encryption as a way to enforce access control reduces the
problem of granting, denying and revoking access rights to a problem of key man-
agement. We assume the presence of a central access control manager (ACM)
which – after evaluation of data consumers’ (from now on also referred to as
users) credentials – takes care of granting, denying and revoking access rights.
Granting a user to a given authorization level means giving her the key to de-
crypt all data units mapped to that level and to descendant ones. Denying access
simply implies not providing the decryption key(s). Finally, revocation of access
rights is based on rekeying: changing the keys used at a given point, forces data
consumers to re-contact the ACM in order to receive the new keys. Consumers
whose access rights have been revoked do not receive the new keys, which ac-
complishes the revocation. This approach achieves the desirable property of no
specific interactions between data producers (the sensor nodes) and data con-
sumers, other than data publishing.

3 Related Work

The seminal work of Akl and Taylor [3] first proposes a solution for data ac-
cess control based on cryptography. Access controlled resources (data), users
and cryptographic keys are mapped to a hierarchy of classes, represented by a
directed acyclic graph. Data belonging to a given class is encrypted with the
key associated to that class. The key generation scheme uses the homomorphic
properties of modular exponentiation. It assures that a user, who is given the
decrypting key of a class, can generate the keys of that class’ descendants, and
therefore access data mapped to descendant classes as well. On the contrary,

the inverse – generating the key of a parent class – is unfeasible. However, the
expensive operations used in the scheme (modular exponentiation) make this
scheme unsuitable for a WSN environment.

In [4], Chien proposes a much lighter key generation scheme, based on one
way hash functions instead of modular exponentiation. In addition, the author
places a time bound on keys, introducing time periods: during each time period,
a new key for each class of data is derived. However, this scheme suffers from
a few drawbacks: first of all it requires tamper resistant devices, in order to
store secret material used to derive keys. Second, similarly to Akl’s scheme, it is
impossible to revoke a user’s access right to a lower class in the hierarchy. Finally,
in [5], Yi showed an attack where, despite the tamper resistance requirement,
a coalition of three user can access some secret class keys that they should not
know according to Chien’s scheme.

In [6], Tzeng proposes a time-bounded key assignment scheme for hierarchies.
The computation of the keys however, involves particularly expensive Lucas
function computation. This scheme is not suitable for resource-constrained WSN
nodes due to the particularly expensive operations required for the computation
of keys.

In [7], Shehab et al. propose a mechanism to generate and distribute hierar-
chical keys. The mechanism presented in the paper, based on hashing as well,
is somewhat more refined then the one we present in this paper, allowing for
instance arbitrary hierarchies. Although efficient and very well suited for WSN,
this scheme has no time bound on keys, and therefore it is not ready to represent
a fully flourished access control solution.

In [8], and [9], Atallah and colleagues propose a general and efficient scheme
to incorporate time bounds in existing management scheme. In addition, they
show how to create a full-fledged hierarchical access control scheme with time
capabilities. The scheme is elegant and efficient, relies just on one way hash
functions, but – seen from a WSN viewpoint – requires a too elevated amount
of public information in order to allow for efficient key derivation.

4 The Scheme

In Section 2 we presented an approach to sensor data access control based on data
encryption with a hierarchical key structure, which allows for key derivation of
children authorization levels. In this Section we first introduce the cryptographic
primitives used to implement the scheme, then the various mechanisms used in
the scheme and finally we wrap-up showing how all the pieces come together to
form an access control system.

4.1 Preliminary definitions

Let h : {0, 1}n × {0, 1}∗ → {0, 1}n be a message authentication code (MAC)
based on a one-way hash function (OWHF) f (such as RIPEMD-160 or SHA-1).
We recall that OWHFs require preimage resistance (given a value F ∈ {0, 1}n,

Fig. 1. Authorization level structure

it is computationally infeasible to find x such that f(x) = F) and 2nd-preimage
resistance (given x, it is computationally infeasible to find x′ such that f(x) =
f(x′)). h takes as input an n-bit secret value and an arbitrarily long string and
produces a pseudo-random n-bit string that strongly depends on both the secret
value and the string. An example of such function is the well-known HMAC [10].

Using h, we can efficiently associate values to each authorization level, so
that the derivation process suits the hierarchical requirement of the scheme. We
then use these values to derive the keys used in the scheme. Let us label each
of the direct children nodes of a parent node with an incremental index, 1 for
the leftmost child, 2 for the next one and so forth. We refer to the index of a
generic node ali as idx(ali). Then, the values V(ali) associated to each level can
be computed as

V(ali) =

{
V0, if i = 0;
h(V(P(ali)), idx(ali)), if i 6= 0;

where V0 is a given initial value, whose generation mechanism will be detailed
later on in this Section. For example, with reference to the hierarchy in Figure 1,

V(al4) = h(V(P(al4)), idx(al4))
= h(V(al1), 2)
= h(h(V(P(al1)), idx(al1)), 2)
= h(h(V(al0), 1), 2)
= h(h(V0, 1), 2)

It is straightforward to see how it is easy to derive values for descendant levels
from higher ones, whereas the converse is unfeasible thanks to the one-wayness
of f .

In order to further explain the scheme, we introduce the encryption scheme
used in the system, which is the well-known one-time-pad (OTP) scheme [11].

The efficiency of OTP makes it very suitable for WSN environment. As widely
known in literature, one-time-pad is information-theoretically secure as long as
the encryption key is never reused twice. We must keep in mind this requirement
when we design the key generation mechanism.

4.2 Key Generation, Distribution and Derivation

Keys for a given authorization level ali are derived from the values V(ali). The
use of OTP as encryption and decryption mechanism requires to have a dif-
ferent key for each sensor, since the encryption of data belonging to the same
authorization level leads to key reuse, which opens the possibility of breaking the
encryption scheme with statistical attacks. A sequence number is also needed to
differentiate the keys used by the same sensor node to encrypt the different data
units – belonging to the same authorization level – that are generated by the
same sensor, for the same reason mentioned before.

Keys can therefore be computed as

Kali,ID,seq = h(V(ali), ID‖seq)

where ID is a univocal numeric identifier for each sensor, it can be easily derived
from any univocal network layer address, and seq is a sequence number, locally
maintained at each sensor node and incremented each time a new data unit is
sent.

Fig. 2. Derivation of keys

When a user wants to access sensor data at a given authorization level all, she
contacts the ACM, produces her credentials and she is either cleared or refused.
We point out that these aspects of the protocol (e.g. details on how to obtain
credentials, how to authenticate to the ACM, the policies in use and so forth)
are out of the scope of this paper and therefore not addressed in this paper. If
she is cleared she receives an access right value. From the latter she will be able

to derive all the keys to decrypt data, classified to authorization level l or to its
descendants in the hierarchy.

To understand the key derivation mechanism, we refer to Figure 2. Let us
assume that a given user is cleared to authorization level al1. Then she will re-
ceive the value V(al1). From that value she can easily derive the keys Kal1,ID,seq

for all seq and ID in one step computing h(V(al1), ID‖seq). She can also easily
compute all the keys for authorization levels that are descendants in the hier-
archy. For instance, she can compute the keys Kal3,ID,seq for all seq and ID in
two steps, first computing V(al3) = h(V(al1), 1) and then computing the key
as h(V(al3), ID ‖ seq). The same process can be applied to compute any key
which is a descendant of the granted one. In general, when a user is cleared to
authorization level i, she then receives V(ali) from the ACM.

Fig. 3. Complete key generation scheme

Figure 3 shows a complete picture of the key generation scheme, which also
encompasses the generation of the value V0. In order to do so, let us introduce
two counters, c1 and c2, and a secret value S. Both counters are initialized to
one. S and c1 are used to compute S′ as h(S, c1). S′ is updated as c1 increases.
Similarly, S′ and c2 are used to finally compute V0 as h(S′, c2). V0 too is updated
as c2 increases.

The counter c2 is incremented each time the need for revocation arises: each
time a user grant needs to be revoked, c2 is increased and V0 is updated. From
the updated value, a new set of keys is generated, using the technique introduced
earlier on in this section. Previous keys are therefore no longer used for encryp-
tion and consequently, keys that were previously used for decryption cannot be
used any longer; hence all the access rights are revoked altogether.

The remaining problem is how to distribute keys to sensor nodes. A simple
approach could be the predistribution of the secret value S to each sensor node
prior to the deployment of the network. This solution allows a node to generate
all the keys of the system. Although very practical, this solution suffer from a
security exposure, since by compromising a single node, an attacker would be
able to decrypt all data. This problem could be solved by requiring nodes to be
tamper-resistant; however this requirement clashes with the economic constraints
of sensor nodes. On the other hand, distributing the updated values of V0 to
sensor nodes as access grants are revoked, would result in excessive transmission
overhead.

As a good tradeoff, nodes are instead given the intermediate values of S′

(see Figure 3). This way, we allow sensors to update the value of V0 across
multiple revocation phases, yet, if ever a node is compromised, the ACM simply
increments c1 and computes a new S′, which is transmitted to non-compromised
sensors using a reliable, confidential, authenticated broadcast scheme [12][13].

4.3 Putting it All Together

At system startup, the ACM assigns a random secret value to S and sets c1 and
c2 to one. Then it creates a mapping of each of the data types sensed by sensors
into authorization levels, and installs this mapping onto each sensor. Finally, the
value S′ = h(S, c1) is broadcasted to each sensor on a secure channel, along with
the initial value of c2.

Each sensor has a numeric identifier ID that univocally identifies it in the
sensor population. Each sensor also has a counter seq which is initialized to zero.
Upon sensing a value v, a sensor derives its associated authorization level, say,
alx, generates the proper encryption key Kalx,ID,seq using its ID and the current
value of seq and broadcasts

{Kalx,ID,seq ⊕ v, alx, ID, seq, c2} (1)

It then increments seq and sets itself ready to sense another value.
When a user joins the system, it contacts the ACM and performs the au-

thentication/authorization process, at the end of which she might be cleared to
an authorization level. Let us assume that the granted level is alg. She is then
given V(alg), computed with the value of c1 and c2 currently in use. She is also
given the value c2.

Upon receiving sensor data as in 1, a user first checks if the received c2
is equal to the held one. If so, she then checks if alx is equal to, or a child
authorization level of, the granted level alg (alg � alx). If so, then she uses
the key derivation procedure to compute the key and decrypt the value. If c2 is
different, she contacts again the ACM to refresh its grant. Finally, if alg 6� alx,
she simply does not have sufficient privileges to access data belonging to that
class.

If the ACM needs to revoke the access rights of a user, it broadcasts – through
an authenticated and reliable channel – a command to force each sensor to in-
crement c2 and update V0 accordingly. Keys are therefore re-computed from the

new value of V0: this results in an immediate access rights revocation for all
users. Users are therefore forced to re-contact the ACM to get the new access
right values V(ali). Naturally, a user whose grants are to be revoked will not suc-
ceed in this operation, thus effectively having its access rights revoked. Thanks
to this feature, the proposed scheme can handle situations in which a sudden
escalation of access rights is required. A user can be granted access to a very
high authorization level (even the root of the tree if needed), only to be revoked
the exceptional permissions later on when this is not required anymore, so that
the original privileges can be easily reinstated.

Our scheme also handles the case of compromised sensor nodes. We assume
that a compromised node is eventually detected: different detection strategies
exist in literature [14, 15]. If a node is compromised, the ACM increments c1
and c2, and transfers to all non-compromised sensors, on a secure channel, the
updated value S′ = h(S, c1): this step can be performed through a secure broad-
cast scheme4. Object of the broadcast will only be non-compromised nodes:
the compromised nodes that are detected, are pruned from the communication
infrastructure and do not receive the new value. The ACM also sends the com-
mand to force each sensor to increment c2. Sensors then update V0 using the
new value of S′ freshly received from the ACM, and the incremented c2. Thus,
the compromised sensor(s) holds an outdated V0, whose exposure to an attacker
is not a concern. We point out that – from a user’s perspective – this process is
undistinguishable from a normal revocation: users just witness an incremented
value of c2 and are therefore forced to re-contact the ACM to get new access
right values.

5 Scheme Analysis

In this section we firstly evaluate the security of the scheme. In order to properly
accomplish this task, we need to bear in mind that the ultimate objective of the
scheme is to allow sensor data access control right from sensor data production.
Consequently, we will focus our analysis only on the soundness of the access
control mechanism. Other orthogonal security aspects are not touched upon in
this paper, as there is plenty of active research addressing them. The security
requirement that we will investigate are therefore only the security of the key
derivation process and the security of the encryption scheme used.

To tackle the security analysis, we need to state a few assumptions: first
of all, we assume that a corrupted or malfunctioning node will eventually be
detected and singled out. This is a common assumption, and it represents an
active area of research (for instance see [14, 15]). Last, we assume that there
is a way to distribute key updates secretly and on an authenticated channel,
and there is a way to distribute authenticated messages commanding nodes to
update their counters. Also these last two assumptions are reasonable, as the area
of authenticated broadcast and secure communications in WSN is very prolific
4 For a comprehensive view on the state of the art in the domain, the reader can refer

to [16]

and has already presented viable solutions to these problems (e.g. [16]). With
this in mind, we can move on to some considerations about the security of our
access control approach.

First of all it is clear that an outsider, with only publicly known information
available, cannot generate a valid key, since every key depends on the secret
value S. S is never disclosed, and therefore an outsider has no chance to get it
and use it to generate a valid key.

Let us now focus on the security of the key derivation scheme. Our require-
ment is that once the ACM has distributed access control grants (in the form
of valid V(·) values) according to an access control decision based on system
policies, users cannot bypass this decision. Stating this more formally, any coali-
tion of users cannot escalate their privileges or, similarly, for every coalition, the
highest attainable class is the highest granted one. This claim easily follows from
the choice of a secure message authentication code such as [10] which does not
allow existential forgery under chosen-plaintext attacks. This property trans-
lates into the impossibility – from V(ali) – to forge ∀ V(alj) : alj ∈ C(P(ali))
i.e. the value of any of the direct siblings of ali. The one wayness of f in turn,
protects us from the derivation of the value of the parent node V(P(ali)) from
V(ali). It is straightforward to see how these two assurances together lead to the
impossibility of privilege escalation.

Public storage mapping
Required storage on sensor nodes seq, ID, c2, S′

Required storage on users V(ali), c2

Key derivation O(n) hash operations
Encryption/Decryption 1 hash + 1 xor

c2 rekeying update message
c1 and c2 rekeying update message + S′

Table 1. Considerations on the performances of the scheme

Let us now analyse the security of the encryption scheme. It is well known
that the one-time pad algorithm assures semantic security if the encryption keys
are randomly chosen and never re-used. We have shown that no two sensor data
can be encrypted with the same key. Therefore, since keys are never reused,
the only possibility for a statistical attack is some correlation between different
keys. However, with the choice of a strong hash function for f , all the keys are
pseudo-random and the correlation between them is so small as to discourage
any statistical attack. In addition, it is possible to reduce the encryption scheme
to d ⊕ h(K, counter) where d is the cleartext value and K is a secret value. If
we model h as a random oracle [17], it is easy to see that the encryption scheme
is equivalent to the well known CTR encryption scheme, introduced in [18],
which exhibits strong security properties. In the next Section we are going to
investigate this aspect in more details.

It is clear that, the encryption scheme used in the system being a symmetric
one, malicious users can inject encrypted data in the system and have honest
consumers decrypt it as if it were a legitimate data unit. However the data
origin authentication problem is not addressed here since this is an access control
scheme that deals just with confidentiality and authorization.

As for the performances of the scheme, we can see in Table I that the proposed
scheme achieves remarkable results. The required public storage only amounts
to the mapping of data types to authorization levels, which is a data structure
representing – for instance – the tree in Figure 1; sensor nodes have to store two
counters (c1 and c2), their numeric identifier and the current value S′, whereas
users are just required to store one counter (c1) and the access right value V(ali)
for a given granted class aci. Looking at the number of operations, we can see that
to derive a key, users and nodes require an average of O(n) hash computations,
where n is the depth of the tree of the authorization levels. We underline that
this operation is just performed once to derive V(alj) from the access right value
V(ali), ∀alj : ali ≺ alj . After the derivation, encryption and decryption are
performed with one single hash evaluation to derive the key and a single xor
operation to perform OTP. Finally, the two different types of rekeying, the one
that involves the increment of c1 (in turn, of both c1 and c2), just requires one
message to order sensor nodes to increment c1 (in turn, one message to order
sensor nodes to increment c1 plus the secure broadcast of the updated S′).

6 Randomness Evaluation

In Section 5 we mentioned that the proposed scheme is semantically secure, pro-
vided that keys are randomly chosen and never reused, so that the correlation
between them is so small as to discourage any statistical attacks on the cipher-
text. The randomness is dependent on both the choice of the hash function and
the way it is used in the construction of the keys. In our current implementa-
tion, we are using RIPEMD-160 [19] as hash function for which there are no
known attacks at the time of this writing. In this Section we will evaluate the
randomness of the keys using the NIST SP 800-22b test battery.

The NIST (National Institute of Standards and Technology) Test Suite SP
800-22b (detailed in [20]) is a statistical package consisting of 15 tests. These
tests evaluate the randomness of a given sequence of keys. The NIST organization
provides an ANSI C implementation of that test battery which can be freely
downloaded from [21]. DIEHARD [22] is another free of charge package that
offers a variety of statistical tests. However, many of the tests are based on the
NIST 800-22b package and so we choose NIST to perform the testing.

6.1 Parameter Choices

For each test, the NIST test suite extracts a probability, called the p-value.
The p-value is a summary of the strength of the analyzed sequence against a
perfectly random one. A p-value of 0 suggests that the sequence is completely

non-random. We denote α as the confidence level which typically ranges from
0.001 to 0.01 [20]. Let Seq be the sequence of bits, then for each test we have

Randomness(Seq) =
{
True , if p− value > α
False , if p− value < α

NIST recommends running the tests on 1000 sequences of keys with each
sequence having at least 106 bits in order to determine if a key stream is random
or not. We generated 107 keys of 160 bits each. The resulting 1.6 Gib file was
then used as input for the 15 tests. Each test was run on 1000 sequences of 105

keys.
The significance level α was set to 0.01, which is the suggested level when

dealing with cryptography [20, 4.3.f]. This means that if a p-value > 0.01 the
sequence is accepted as random with a confidence of 99%. Similarly, if a p-value
< 0.01, the sequence is non-random with confidence of 99%.

Figure 4 shows a list of the 15 tests of the NIST Suite with a short description
of each. For more details about the tests, the reader can refer to [20].

Fig. 4. List of Tests and their Description

6.2 Results

There are two suggested approaches to interpret the results of the NIST Test
Suite. The first one deals with the examination of the proportion of sequences
that pass the test while the second one focuses on the uniformity of the p-values.
The two approaches are shortly discussed below.

Examination of Proportion of Passing Sequences The final analysis report
generated by the suite contains a value called proportion for each test. The
proportion is the number of sequences that passed (e.g. with p-value > 0.01 = α)
divided by the total number of sequences tested. In other words, the proportion
is the percentage of passed tests.

NIST specifies a range of acceptable proportions determined by using the

confidence level defined as p̂± 3
√

p̂(1−p̂)
m , where p̂ = 1− α and m is the sample

size (e.g. 1000).
In our case, we used m = 1000 sequences and each sequence had 1.6 Mib

bits. Using the formula for the confidence level above, our range of acceptable
proportions is from 0.9805 to 0.9994. Figure 5 shows the proportion for each
test. Since the proportion for each test lies within the range we computed, we
can accept the sequence as a random bit sequence.

Fig. 5. Passing Proportion of the 15 NIST Tests

Examination of the Uniformity of p-values The second approach presented
by NIST is the analysis of the uniformity of the p-values. If the p-values form

a uniform distribution, then we accept the sequence as random. Uniformity can
be examined by performing a χ2 (Chi-Square) test on the p-values, with

χ2 =
10∑
i=1

(Ci − m
10)2

m
10

where Ci is the number of p-values in the sub-interval [i−1
10 ,

i
10), i = 1. . . 10 and

m is the sample size (the number of sequences tested, e.g. 1000). Finally, a new
pΓ -value is computed from the original p-value as

pΓ − value = igamc(
χ2

2
,

9
2

)

where igamc is the Incomplete Gamma Function as defined in [20, Section 5.3.3].
In conclusion, the p-values form a uniform distribution if pΓ > 0.0001 and do
not otherwise.

Figure 6 shows the pΓ -values for the tests we conducted. From the table
we see that all test passed the uniformity condition and thus the sequence is
random.

Fig. 6. Uniformity Distribution of p-values

We omitted the Fast Fourier Transform test from the examination of uni-
formity as the results were not usable. Furthermore, in [23], the authors state
that the results of the FFT test are degrading when the number of sequences in-
creases. In particular, if the number of sequences is bigger than 10000, then any
Pseudo-Random Number Generator fails the uniformity test. For that reason,
we decided not to include this test in the uniformity evaluation.

The evaluation of uniformity for the Linear Complexity test raises an excep-
tion when we run it. At this point we are still investigating the cause of this
as we are not aware of the reasons behind the failing of this test. In order not
to bias our results by using erroneous values, we decided to remove the Linear
Complexity test from the Uniformity Evaluation.

These results seem to confirm that using hash functions lead to pseudo-
random key generators. Furthermore, we showed that the way keys are com-
puted (e.g. by incrementing a counter for each key) seems to preserve pseudo-
randomness and could be compared to other pseudo-random number generators
(PNRGs) [24] such as Blum Blum Shub [25] or Fortuna [26].

Beside generating random key streams, the hash function needs to be collision
resistant. In Cryptography, a brute force collision search has a time and memory
complexity of

√
2n where n is the hash size [24]. This means that for a hash of 160

bits, the complexity is
√

2160 = 280 = 1.20892582 × 1024. Thus, if we suppose
that the computation of a hash takes 1 [ns], then a brute force attack requires
38 million years to be successful. This means that if no statistical attacks are
known, the hash function can be considered collision resistant.

7 Conclusion

We have presented a hierarchical access control scheme for wireless sensor net-
works. The scheme relies upon data encryption in order to protect data access
from the moment of its production. A lightweight key derivation protocol – solely
based on the computation of message authentication codes (MACs) – achieves
hierarchical derivation of keys: users having sufficient, yet possibly different,
access rights, can derive the same decryption key. The protocol supports easy
revocation of access rights through rekeying, which can be performed seamlessly
at each sensor. The intervention of the access control module is just required
upon detection of a compromised node.

As future work, we intend to analyze if commutative hash accumulators can
be used to solve the problem addressed in this paper, and if so, what are the
advantages of disadvantages of such solution. Indeed hash accumulators seem
perfectly suited for the task: if one can easily accumulate values related to au-
thorization levels and epochs, the resulting hash value could then be a perfect
key associated to a particular level and epoch. In addition, if the operation is
semi-commutative, then the key derivation process becomes extremely easy and
elegant. Nonetheless, this approach brings disadvantages, notably the expensive
operations required for accumulation of values. We deem the subject worthy of
future research.

References

1. Wasp Consortium. D6.2-II Elderly Care Application: In-depth scenarios and use
cases. http://www.wasp-project.org/, 2007.

2. William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong. Access control
in collaborative systems. ACM Comput. Surv., 37(1):29–41, 2005.

3. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access
control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

4. Member-Hung-Yu Chien. Efficient time-bound hierarchical key assignment scheme.
IEEE Transactions on Knowledge and Data Engineering, 16(10):1301–1304, 2004.

5. Xun Yi. Security of chien’s efficient time-bound hierarchical key assignment
scheme. IEEE Transactions on Knowledge and Data Engineering, 17(9):1298–1299,
2005.

6. W. G. Tzeng. A time-bound cryptographic key assignment scheme for access
control in a hierarchy. IEEE Transactions on Knowledge and Data Engineering,
14(1):182–188, 2002.

7. Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. Efficient hierarchical key gen-
eration and key diffusion for sensor networks. In Second Annual IEEE Communi-
cations Society Conference on Sensor and AdHoc Communications and Networks,
2005.

8. Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Incorporating temporal
capabilities in existing key management schemes. In ESORICS, pages 515–530,
2007.

9. Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Incorporating tempo-
ral capabilities in existing key management schemes. Cryptology ePrint Archive,
Report 2007/245, 2007.

10. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In CRYPTO, pages 1–15, 1996.

11. J-O. Mauborgne and G. Vernam. One time pad scheme. at
http://en.wikipedia.org/wiki/One-time pad.

12. Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, pages 480–491,
1993.

13. Shang-Ming Chang, Shiuhpyng Shieh, Warren W. Lin, and Chih-Ming Hsieh. An
efficient broadcast authentication scheme in wireless sensor networks. In ASIACCS
’06: Proceedings of the 2006 ACM Symposium on Information, computer and com-
munications security, pages 311–320, New York, NY, USA, 2006. ACM.

14. Mary Mathews, Min Song, Sachin Shetty, and Rick McKenzie. Detecting compro-
mised nodes in wireless sensor networks. In SNPD ’07: Proceedings of the Eighth
ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD 2007), pages 273–278,
Washington, DC, USA, 2007. IEEE Computer Society.

15. Tao Li, Min Song, and Mansoor Alam. Compromised sensor nodes detection: A
quantitative approach. icdcsw, 0:352–357, 2008.

16. Adrian Perrig and J. D. Tygar. Secure Broadcast Communication in Wired and
Wireless Networks. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

17. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security, pages 62–73, 1993.

18. Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete se-
curity treatment of symmetric encryption. In FOCS ’97: Proceedings of the 38th
Annual Symposium on Foundations of Computer Science (FOCS ’97), page 394,
Washington, DC, USA, 1997. IEEE Computer Society.

19. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strengthened Ver-
sion of RIPEMD. In Fast Software Encryption, pages 71–82, 1996.

20. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
NIST special publication 800-22, National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA, 2001.

21. NIST 800-22b. Download documentation and software for the nist 800-22b special
publication.

22. G. Masaglia. The marsaglia random number cdrom including the diehard battery
of tests of randomness, 1995.

23. S. Kim, K. Umeno, and A. Hasegawa. Corrections of the NIST statistical test suite
for randomness, 2004.

24. A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

25. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing, 15(2):364–383, 1986.

26. N. Ferguson and B. Schneier. Practical Cryptography. J. Wiley & Sons, Inc.,
New York, NY, USA, 2003.

