
Evaluating and Improving the Content Access in KAD

Moritz Steiner, Damiano Carra and Ernst W. Biersack
Institut Eurécom, Sophia–Antipolis, France

{steiner|carra|erbi}@eurecom.fr

Abstract

We analyze in detail the content retrieval process in KAD. KAD implements
content search (publish and retrieval) functions that use the Kademlia Distributed
Hash Table for content routing. Node churn is quite common in peer-to-peer sys-
tems and results in information loss and stale routing table entries. To deal with
node churn, KAD issues parallel route requests and publishes multiple redundant
copies of each piece of information. We identify the key design parameters in
KAD and present an analytical model to evaluate the impact of changes in the
values of these parameters on the overall lookup latency and message overhead.
Extensive measurements of the lookup performance using an instrumented client
allow us to validate the model. The overall lookup latency is in most cases five
seconds or larger. We elucidate the cause for such high lookup latencies and pro-
pose an improved scheme that significantly decreases the overall lookup latency
without increasing the overhead.

1 Introduction

In recent years a large number of Distributed Hash Tables (DHTs) systems, such as
Chord [15], CAN [11], or Pastry [12], has been proposed. There are mainly two basic
approaches for solving the problems related to the search of the content: structured
ones, using a Distributed Hash Table (DHT) and unstructured ones based on flooding
or random walk. Despite the large effort devoted to the topic, only few systems have
been successfully deployed.

In this paper we focus on the DHT adopted by different clients that accounts for
million of users: KAD, the implementation of Kademlia [9] contained eMule [4],
aMule [1], and AZUREUS [2]. Overnet [10] uses Kademlia as well, but an older im-
plementation. We consider the functionalities related to content management: lookup
for searching the target peers, content publishing and content retrieval. Among the
different publishing schemes, KAD adopts a publishing node centric approach: the re-
sponsibility of the content and its maintenance is with the publishing node, while the
references to it are announced and stored into the P2P system.

A major issue in P2P networks is churn, i.e. node arrivals and departures that make
the system volatile. In order to make the references available despite node dynamics,
a peer in KAD publishes multiple copies (replicas) of a reference by selecting different
nodes around the target, which is determined by the key of the reference. As the
time goes by, some replicas may disappear, or new peers may arrive and take place
in between the peers holding replicas. The actual location of the references is then

1

scattered: some entries in the routing tables may be missing since the peers arrived
recently or may be stale since the peers already left the system.

In case of content retrieval, where these references are searched around the target
where they should be published, robust search mechanisms are necessary.

The aim of our study is to evaluate the performance of the current implementation
of content management in KAD. We identify its basic building blocks and we analyze
the interactions among them. The main contribution of our work can be summarized
as follows:

• We develop a qualitative analysis of the current implementation to understand
the impact of the design parameters on the latency of the overall content pub-
lishing/retrieval process;

• We obtain through measurements many interesting properties of the KAD P2P
system, such as the probability that an entry in the routing table is stale, or the
round trip delay of the messages;

• We evaluate through measurements the key performance metrics, such as overall
content retrieval latency, the number of hops needed, and message overhead of
the content retrieval process;

• We propose an alternative approach for the content retrieval process – called
Integrated Content Lookup – by strongly coupling the retrieval with the lookup
process and we develop a qualitative analysis of this scheme.

The analysis highlights some performance issues with the current implementation:
the decoupling of the lookup phase and the content retrieval phase has an adversarial
impact on the performance of the retrieval process. These issues are addressed by the
Integrated Content Lookup scheme we propose. The measurement-based characteri-
zation of the KAD P2P system shows that (i) a large fraction of peers in the routing
table that are stale and (ii) the empirical distribution of the message delay presents a
non-negligible tail. These results should be taken into account in the design of the
content management process, since they have a strong impact on the overall lookup
delay.

The remainder of the paper in organized as follows. In Section 2 we give some
background on KAD, the architecture, the content lookup, and the content retrieval.
In Section 3 we analyze the content retrieval process and identify the impact of the
main parameters on the overall lookup latency. In Section 4 we present the results of
our measurements and analyze the impact of the different parameters. We propose an
improved content retrieval procedure in Section 5. In Section 6 we discuss the related
work before we conclude.

2 Content Publishing and Retrieval in KAD

Similar to other DHTs like Chord [15], Can [11], or Pastry [12], each KAD node has
a global identifier, referred to as KAD ID, which is 128 bit long random number gen-
erated using a cryptographic hash function. The KAD ID is generated when the client
application is started for the first time and is then permanently stored. In KAD the

2

distance between two nodes is measured considering their KAD IDs: in particular it
is calculated as bitwise XOR, i.e. the XOR-distance d(a, b) between nodes a and b is
d(a, b) = a⊕ b.

2.1 KAD Architecture

The basic operations that each node has to perform can be grouped into two sets: rout-
ing management and content management. Figure 1 shows some of the basic building
blocks of the software architecture.

Routing
Maintenance

R
o

u
ti

n
g

 M
an

ag
em

en
t

C
o

n
te

n
t

M
an

ag
em

en
t

Lookup

Content Search
(Publishing/Retrieval)

Table
Routing

Figure 1: Software architecture of KAD.

Routing management takes care of populating the routing table and maintaining it.
The maintenance requires to update the entries – called contacts – and to rearrange
the contacts according to the distance: A peer stores only a few contacts of peers that
are far away in the KAD ID space and increasingly more contacts to peers closer in
the KAD ID space. If a contact refers to a peer that is offline, we define the contact
as stale. In order to face the problem of stale contacts due to churn (departure of
peers), KAD uses redundancy, i.e. the routing table stores more than one contact for
a given distance. The routing management is responsible also for replying to route
requests sent by other nodes during the lookup (Sect. 2.2). Since in this paper we focus
on content management, we do not go into the details of the routing procedure (the
interested reader is referred to [16]). The only information we use is the probability
that a contact contained in the routing table is stale: pstale.

Content management takes care of publishing the information about the objects
the peer has, as well as retrieving the objects the peer is looking for. We summarize
these two operations with the term content search, since they actually use the same
procedure (Sect. 2.3). In both cases the peer has a target KAD ID (of the objects it
wants to publish or it wants to retrieve) that it needs to reach. The KAD ID of an object
is obtained by hashing the keywords in its filename. Since the peer routing table does
not contain the KAD ID of all peers, the peer needs to build a temporary contact list,
called candidate list or simply candidates, which contains the contacts that are closer
to the target. The temporary list building process – called lookup – is done iteratively
with the help of the other peers. Since the lookup process and the content search
process represent the focus of our paper, we explain them in detail in the following
sections.

3

2.2 Lookup

The lookup procedure is responsible for building the candidate list with contacts that
are closest to the target KAD ID, i.e. contacts with the longest common prefix to the
target. The procedure, along with the main data structures, is summarized in Proce-
dureLookup.

Procedure Lookup
Data: hash(128bit): target = hash of the target
Data: list: candidates = peers to query, ordered by their distance to target
Data: list: queried = peers queried with route requests
Data: list: answered = peers that replied to route requests
Data: final int: α = initial degree of parallelism
Data: final int: β = number of contacts requested
Data: final int: t = seconds to wait for route request messages
Data: timestamp: timeout /* timeout for route request messages

*/
Data: int: lookuptime = 0 /* time the lookup process is running

*/
Data: int: objectcount = 0 /* number of object references received

*/
Data: int: contentreplies = 0 /* number of content replies received

*/

Initialization:1
candidates.insert(50 closest peers to target from our routing table);2
send route request(target,β) to first α candidates;3
queried.insert(first α candidates);4
timeout = now + t;5

6

When route response is received do7
timeout = now + t;8
answered.insert(sender);9
foreach contact ∈ response do10

if contact not ∈ candidates and contact not ∈ queried then11
candidates.insert(contact);12
if dist(contact,target) < dist(sender,target) then13

/* approaching the target */
if contact is in the α closest contacts to the target then14

send route request(target,β) to contact;15
queried.insert(contact);16

17

The source peer first retrieves from its routing table the 50 closest contacts to the
destination and stores them in the candidate list. The contacts are ordered by their
distance to the target, the closest first. The discover process is done starting from this
initial candidate list in an iterative way. The source peer sends a request to the first
α contacts (by default α = 3). The request is called route request. The source peer
remembers the contacts to which a route request was sent. A route request asks by
default for β = 2 closer contacts contained in the routing tables of the queried peers.
A timeout is associated to the lookup process. In case the source peer does not receive
any reply, it can remove the stale contacts from the candidate list and it can send out

4

new route requests.
As soon as one route response arrives, the timeout is reset and for each of the β

contacts in the response it is checked if the contact has not already been queried and
it is not already in the candidate list. A route request is sent if (i) the new contact is
closer to the target than the peer that provided that contact, and (ii) it is among the α
closest contacts to the target. This implies that in the extreme case for every of the α
incoming route responses min(α, β) new route requests are sent out. If the returned
contact is not among the α closest known contacts it is stored in the candidate list.

Figure 2 illustrates an example of the lookup process. On the top we show the
evolution of the candidate list, where we use the flags ‘s’ and ‘r’ to record if a route
request has been sent or a route response has been received respectively. α is set to 3
and β is set to 2. The initial list is composed of contacts a, b, c and d. The distance in
the vertical axes indicates the XOR-distance to the target. At the beginning, the source
peer sends a route request to the top α contacts a, b and c. Contact c is stale and will
never reply. The first response comes from b and contains β contacts, e and f , that the
source peer does not know. The new contacts are inserted in the candidate list: since
they are closer to the target than the other candidates, a route request is sent to them.
At this point the response of a arrives. The new contacts, g and h, are inserted in the
candidate list. Since contact h is not among the top α contacts, no route request is sent
to h. After some time, the source peer receives the response of e, but only one of the
contacts is inserted in the candidate list, since the other one is already present in the
list.

c

a
f

g

b

i

s r

b
c

f
h

e
g

a

a
b
c

e
f

s r

b
c
d

a
s r s r

b
c

f
h

e
g

a

i

e

e,f g,h i,g

(stale)

(stale)

time

X
O

R
−

di
st

an
ce

 to
 th

e
ta

rg
et

Figure 2: Example of lookup (α = 3; β = 2).

The ProcedureLookup terminates when the route responses contain only contacts
that are either already present in the candidate list or farther away from the target than
the other top α candidates. At this point, no new route request is sent and the list
becomes stable. The stabilization of the candidate list represents a key point for KAD.
In fact, the source peer has to exhaustively search for all the contacts around the target.
We show in Sect. 3 how the stabilization influences the performance.

5

2.3 Content Search

When the candidate list becomes stable, the source peer can start the content search
process. The designers of KAD decided to consider a contact sufficiently close to the
target if it shares with it at least the first 8 bits. The space of KAD IDs that satisfy
this constraint is called tolerance zone. At the time KAD has been designed probably
nobody thought of having such a huge success, with millions of users. However, today
the 8 bit tolerance zone is too big, since it contains up to 10,000 users in the evening
hours [14].

Each candidate that falls in the tolerance zone can be considered for storing or
retrieving a reference. The process is described in ProcedureContent Search.

In the implementation of KAD, there is no direct communication between the
ProcedureLookup and the ProcedureContent Search, i.e. when the candidate
list becomes stable, the ProcedureLookup does not trigger the ProcedureContent
Search. The stabilization of the candidate list means that in the last t seconds no
route responses are received, where t is the timeout set to 3 seconds by default. This
can happen for two reasons: the closest peers to the target have been found or the
queried peers did not reply, i.e. the top α contacts in the candidate list are stale, or
overloaded, or the messages were lost.

The solution adopted by KAD to handle these two different situations is a periodic
execution of the ProcedureContent Search: every second the procedure checks
if the candidate list has been stable for at least t seconds. In this case, the procedure
iterates through the candidate list: a content request is sent if (i) a route request was
sent to the contact, (ii) the contact replied with a route response and (iii) the contact
belongs to the tolerance zone. The content request contains a ‘store reference’
type in case of publishing and a ‘search reference’ type in case of content re-
trieval (line 13). When the procedure iterates through the candidate list and finds a
contact that has not been queried, it sends a (single) route request, actually restarting
the ProcedureLookup. This is useful in case the lookup gets stuck (line 15).

When a content response is received, a counter is incremented. In case of content
publishing, the maximum value for this counter is set to 10: in order to face churn
each reference is published to 10 different peers that belong to the tolerance zone. In
case of content retrieval, the response contains one or more objects with the requested
reference and the maximum value for the counter is set to 300, i.e. at maximum 300
objects that contain the reference are accepted.

The main loop is stopped for one of the following three reasons: either the maxi-
mum search time is reached (lines 4-5), or there are no more contacts to query (lines
6-7), or enough content response have been received (lines 22-30).

3 Analysis of the Content Search Process

The content management process in KAD is divided into two procedures – Lookup
and Content Search. The latter contains in a single module both content publish-
ing and retrieval. Nevertheless, the aims of the two tasks – publishing and retrieval –
are completely different. On the one hand a peer should try to publish the different
replicas as close as possible to the target: this requires a candidate list to be stable, a
result that can be obtained with large timeouts – note that, as explained above, a stable

6

Procedure Content Search (Publish or Retrieval)
Every 1 sec do1

if not stopsearch then2
lookuptime++;3
if lookuptime > 25 then4

stopsearch← true;5

if candidates is empty then6
stopsearch← true;7

if timeout ≤ now then8
/* candidate list is considered stable */
for i← 0 to candidates.size do9

contact = candidates.get(i);10
if contact ∈ queried then11

if contact ∈ answered and contact in tolerance zone around12
target then

/* the timeout triggers the actual
content search. */

send content request(TYPE, target) to contact;13
candidate.remove(contact);14

else15
/* the timeout triggers a new route request.

*/
send route request(target,β) to contact;16
queried.insert(contact);17
return;18

19
When content response is received do20

contentreplies++;21
if peer is publishing then22

if contentreplies > 10 then23
stopsearch← true;24
return;25

else26
foreach object ∈ response do27

objectcount++;28

if objectcount > 300 then29
stopsearch← true;30

31

candidate list does not necessarily mean that the contacts are close to the target. On
the other hand, a peer should look for the content as soon as it is sufficiently close to
the target, i.e. when it enters in the tolerance zone: in this case a stable candidate list
is not necessary.

In this section we analyze the impact on the performance of the content manage-
ment approach adopted by KAD. The main performance metric for the content search
process is the overall lookup latency, i.e. how long it takes to reach the target and find

7

the content. The delay is mainly influenced by the following parameters:
pstale probability that a contact is stale;
d round trip delay between two peers;
h number of iterations (hops) necessary to reach

the target;
α number of route requests sent initially;
β number of closer contacts asked for by a route

request;
t time waited for route response messages.

While pstale, d and h cannot be controlled by the content management process, α, β
and t do depend on the implementation.

3.1 Qualitative Analysis of the Latency

Lookup Latency. For the analysis of the delay, let FRTT(d) be the cumulative distri-
bution function (CDF) of the round trip delay for the single hop (see for instance the
empirical CDF, found with measurements, shown in Fig. 5). At the first iteration (hop
and iteration are used interchangeably) α route requests are sent. We assume that the
probability that all the α contacts are stale, pα

stale, is negligible.
Among the initial α messages, only α(1 − pstale) replies are received. At each

response, γ = min(α, β) messages can be possibly sent out. The maximum number
of route requests at the second hop, ρ2, max, is then α(1−pstale)γ. In the following hop,
only a fraction of (1 − pstale) of contacts reply and each response can trigger γ new
requests. The maximum number of messages at hop i, ρi, max, is

ρi, max = α[(1− pstale)γ]i (1)

and the cumulative maximum number of messages up to hop h, ρh, max, is

ρh, max = α
h−1∑
i=0

[(1− pstale)γ]i. (2)

In practice, some contacts in the replies are already known or they are not inserted in
the top α positions of the candidate list, so the actual total number of route requests
sent up to hop h will be ρh ≤ ρh, max. Figure 3 shows ρh, max and ρh for two settings
for the parameters α and β. The value of pstale used to compute ρh, max and the value
of ρh have been found by measurements as will be explained in Sect. 4. We consider
up to three hops, since, as we will see in Sect. 4, more than 90% of the lookups reach
the target in less than four hops. The actual number of messages sent is close to the
maximum we computed in case of default values for α and β (3 and 2 respectively). If
we increase α and β both to 4, we receive more duplicates or not interesting contacts,
thus the actual total number of route request messages is far less than the maximum.

The candidate list stabilizes only after the last response is received, thus the stabi-
lization time corresponds to the maximum round trip delay over all the route requests
that were sent. To simplify of the analysis, we assume that all messages are sent at the
beginning1. The CDF of the lookup delay can be found considering that the maximum

1This is an unrealistic assumption that provide optimistic results; for our purpose, this coarse analysis
is sufficient to understand the impact of the parameters.

8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3
C

u
m

u
la

ti
v

e
 N

u
m

b
e

r
o

f
M

e
s

s
a

g
e

s
Number of Hops

α = 3, β = 2

ρh,max

ρh

 1 2 3
Number of Hops

α = 4, β = 4

Figure 3: Number of route request messages sent during lookup.

of two random variables, which corresponds to the product of their CDFs (see [3],
Eq. 2.6), thus we obtain

Flookup(d) = FRTT(d)ρh . (3)

If we increase α, or β (or both), ρh increases, i.e. more messages are sent. In fact with a
higher degree of parallelism, the number of message on the fly increases. With a higher
value of β more new contacts may come back and correspondingly the probability that
these contacts fall in the top of the list increases. The overall effect is that the client sent
more messages. The drawback of this approach lies in the time for the stabilization
of the candidate list. In fact the list becomes stable when contacts received in the
answers are not new. If many messages are sent, the probability to receive a new
contact increases; this new contact can be contained in one of the last message sent. In
general, the list become stable when all the responses are received.

This is the contrary of what one would expect – and require during the design
phase –, namely that sending more messages should increase the chances to reach the
target faster. The key point is that the client has to wait for all the responses, non only
for the fastest ones. With the current scheme it is not possible to reduce the lookup
latency by increasing the parameters α and β.

Content Retrieval Latency. Once the candidate list is stable, the lookup process ter-
minates. At this point the content retrieval process waits for t seconds (timeout) before
starting to send the content requests. This adds to the overall latency t seconds, plus
a random delay uniformly distributed between zero and one second, due to the peri-
odic execution of the ProcedureContent Search. Moreover there is an additional
round trip delay due to the content request message.

Overall Lookup Latency. In summary, the overall latency of the content retrieval
process is composed by different terms. Let flookup(d) be the probability density func-
tion (PDF) of the lookup latency, i.e. the derivative of Flookup(d) found in Eq. (3). The
PDF of the overall lookup delay, foverall(d) can be found by considering that the sum
of two random variables corresponds to the convolution of their PDFs, denoted with
the symbol ‘∗’. We obtain

foverall(d) = flookup ∗ δt ∗ Unif(0,1)(d) (4)

9

where δt is the Dirac’s delta function translated in t (the timeout value) and Unif(0,1) is
the PDF of a random variable uniformly distributed between 0 and 1. For simplicity
we do not consider the additional round trip delay due to the content request message
since it can be correlated with the lookup delay. The CDF of the overall lookup delay,
Foverall(d), can be found by integrating Eq. (4). Figure 4 shows the CDFs of the overall
lookup latency for different values of α and β. The input CDF of the round trip delay,
FRTT(d), and the value of ρh have been obtained by measurements as we will explain
in Sect. 4. As already observed, by increasing the design parameters α and β, the
overall lookup latency increases. The fact that the lookup process and the content
search are decoupled results in an overall delay that is strongly dependent on the value
of the timeout t.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

F
ra

c
ti

o
n

 o
f

L
o

o
k

u
p

s

Overall Lookup Latency (seconds)

α = 3, β = 2, h = 3 (ρh = 10)

α = 4, β = 4, h = 3 (ρh = 17)

α = 5, β = 2, h = 3 (ρh = 20)

Figure 4: Overall Lookup Latency Foverall(d): qualitative analysis (t = 3).

4 Evaluation

In this section we measure the performance of the content management in KAD. We
first evaluate the external factors that we cannot influence: pstale, the empirical CDF of
the round trip delay FRTT(d) and the empirical CDF of the number of hops h. Then
we study the current implementation and the impact of of the design parameters α, β,
and t.

4.1 Measurement Tool and Methodology

For our measurements we have instrumented version 2.1.3 of aMule[1] to log all the
messages related to content management: route requests and route response, as well as
content search and content response. Given a keyword, the client determines the target
KAD ID and starts the ProcedureLookup and the ProcedureContent Search.
For each message, we register the time stamp, and for lookup responses we register
the contacts returned, so that we can evaluate the evolution of the candidate list.

We have extracted 1251 keywords from movie titles found on IMDB [17] and we
use them as input for the instrumented client. The keywords are chosen such that the
hashes of these keywords are uniformly distributed over the hash space. As explained
in Sect. 2.3, the content retrieval process stops at the latest after 25 seconds. This
means that we can launch the lookup for a keyword every half a minute. For a given

10

set of values for α, β and t one experiment where we lookup all 1251 keywords takes
about 10 hours2.

The metrics derived from the collected data are:

pstale: the probability of stale contacts, found as ratio between the number of requests
sent and responses received;

CDF of d: empirical cumulative distribution function of the round trip delay for a
single message;

CDF of h: empirical cumulative distribution function of the number of hops neces-
sary to reach the target (the first peer that replied with the content);

CDF of the Overall Lookup Latency: empirical cumulative distribution function of
the delay between the first route request sent and the first content response re-
ceived;

Overhead: The number of route request messages sent during a lookup process.

The initial number of route requests launched is set to α = 3; the number of
contacts contained in the route response is set to β = 2. The timeout is equal to t = 3
seconds. These are the default values in aMule [1]; we perform a set of experiments
by changing these values and we evaluate the impact of them on the overall lookup
latency and on the overhead.

4.2 Basic Characteristics

Staleness (pstale). The first parameter we analyze is pstale, the probability that a con-
tact is stale. We perform the same set of experiments with two different access net-
works and we have found a value of pstale approximately equal to 0.32. This value has
a strong impact on the performance: one third of the contacts are stale, so a lookup
process with low α may get stuck with high probability. With the default value α = 3
this happens with probability pα

stale = 0.03. We will see that this value is partly respon-
sible for the tail of the empirical CDF of the overall lookup latency (see Fig. 8).

Round Trip Latency (d). The other interesting metric that is independent from the
client settings is the round trip delay of messages. Figure 5 shows the results of our
measurements obtained using two different access networks.

Almost 80% of the responses are received within 700 msec after the request was
sent. However, the distribution has a significant tail, which impacts, as we will see, the
overall lookup latency.

Number of Hops (h). Table 1 shows the empirical probability mass function of the
number of iterations necessary to reach the target. It is interesting to note that at max-
imum 4 hops are necessary, and in more than 90% of the cases 3 hops are sufficient.
This means that, since the KAD network has more than one million concurrent users
[14], the routing tables are very detailed (about 1,000 contacts).

2We provide the modified files of the aMule client as well as the list of keywords we used at http:
//www.eurecom.fr/∼btroup/kadlookup/.

11

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Latency (seconds)

F
ra

c
ti

o
n

 o
f

R
o

u
te

 R
e
q

u
e
s
ts

university network

adsl

Figure 5: Empirical CDF of the round trip delay for route requests.

Table 1: Number of hops needed per lookup and the average number of bits gained per
hop.

hop i % of loookups bits gained
terminating at hop i
after i hops

1 1 6.13
2 55 6.02
3 37 5.24
4 7 2.30

Once the content is found, we can evaluate the number of bits in common between
the KAD ID of the keyword we searched for and the KAD ID of the contact that replied
with the content. This helps in understanding how much the content is spread around
the target. Figure 6 shows the empirical CDF of the number of bits in common be-
tween the replying peer and the content hash. The wide support of the empirical CDF
indicates that many keywords can be far from the corresponding target. In Sect. 4.4 we
will use this observation in order to study the impact of the timeout.

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Bits in Common

C
D

F

Figure 6: Empirical CDF of the bits in common between the peers replying to the
search requests with the desired content and the hash of the content.

Looking deeper into the spread of the content, it is interesting to evaluate its cor-
relation with the popularity of the keywords. In fact, if a keywork is popular (the files
that contain that keywork are highly replicated), many peers will try to publish it; this

12

means that many peers build a temporary candidate list and publish using such can-
didates, and the probability that these list contain peers that are not very close to the
target (even if they are inside the tolerance zone) grows as more and more publishing
attempts are done. To check the influence of the keyword popularity on the spread of
its references, we perform an exhaustive search with our instrumented client: first the
entire zone around the searched keyword in the hash space is crawled to learn about
all peers; second all these peers are queried for the desired content [13]. As shown in
Fig. 7, rare keywords (as “dreirad” or “fahrrad”) have more bits in common with the
peers that host them, compared to popular keywords (as “the”, “french”, or “german”).

8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Bits in common with target

F
ra

ct
io

n
 o

f
P

ee
rs

the

french

german

fahrrad

dreirad

Figure 7: The CDF of the bits in common between the peers hosting a content and the
hash of the content.

The final empirical CDF shown in Fig. 6 can be considered as the composition of
the single keyword CDFs as shown in Fig. 7, where the contribution of each single
keyword CDF depends on the popularity of the keyword.

4.3 Impact of Different Degrees of Parallelism α

In Figure 8 we show the empirical CDF of the overall lookup latency when the pa-
rameter α varies from 1 to 7 (its default value is 3). We note a significant difference
between the case α = 1 and the cases α ≥ 2, which is due to the high value of pstale.
In case of α = 1, at each hop only one message is sent; if the contact is stale and the
message is lost, the process has to wait for the timeout to expire. This has a strong
impact on the overall lookup latency.

With α = 2, the probability that the top 2 contacts are all stale decreases sig-
nificantly. For instance, with pstale = 0.32, the probability that at the first hop both
contacts are stale is p2

stale = 0.1. Therefore, the impact of the timeout due to stale
contacts on the overall lookup latency reduces, and becomes negligible for α ≥ 3.

With α ≥ 3, the different empirical CDFs seems to overlap. If we look in detail at
the median (Table 2, with β = 2 and t = 3), we see that, as α increases, the median
of the overall lookup latency increases. This result was predicted by our qualitative
analysis in Sect. 3.1 (c.f. Fig. 4). The higher α, the more messages the source peer
sends (ρh), the longer it takes for the candidate list to stabilize, since it is influenced
by the delay of the last received response.

As also shown in the qualitative analysis in Sect. 3.1, the support of the empirical
CDF starts at d = 4 seconds. In the best case, in fact, the candidate list stabilizes

13

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

c
ti

o
n

 o
f

lo
o

k
u

p
s

α=7

α=5

α=3

α=2

α=1

Figure 8: Empirical CDF of the overall lookup latencies as a function of the degree of
parallelism α (β = 2; t = 3).

after approximately 100 milliseconds (each hop takes at least 40 msec, and the mean
number of hops is 2.5). Once the list is stable, the source peer has to wait for the
timeout (t = 3 seconds), and for the periodic execution of the ProcedureContent
Search (in average, 500 msec). If we consider the application level processing delay,
we obtain almost 4 seconds.

As regards the overhead, Table 2 shows the average number of route requests sent
for different values of α (left hand side of the table, with β = 2 and t = 3). The
number of messages sent increases linearly with increasing α.

Table 2: The overall lookup latency and the number of route requests sent per lookup
depending on α for different configurations.

α β = 2; t = 3 β = 2; t = 0.5
average # of median average # of median

messages lookup messages lookup
ρh latency ρh latency

1 8.5 9.5 10.4 5.6
2 11.5 6.6 12.8 2.4
3 13.7 5.8 15.2 2.3
4 16.9 6.1 18.0 2.3
5 20.0 6.4 20.6 2.2
6 22.9 6.5 24.0 2.3
7 26.5 6.5 27.7 1.8
8 30.0 6.6 30.4 1.6
9 32.9 6.6 34.0 1.5
10 36.7 6.6 36.8 2.2

4.4 Impact of the Timeout t

The default timeout t in aMule is set to three seconds. This implies that the candidate
list must be stable for three seconds before the content can be requested. As we showed
in Sect. 4.2 (Fig. 6), the contacts that hold the content may be spread around the target.
This means that we could start asking for the content as soon as the lookup finds a

14

candidate in the tolerance zone, without waiting for the candidate list stabilization.
One possible way to obtain the above result is to decrease the time the Proce-

dureContent Search has to wait before starting iterating through the candidate
list, i.e. we can decrease the timeout t.

As for α, also t can be changed locally at our instrumented client, without need to
update all participants in the network. In Figure 9 we show the empirical CDFs of the
overall lookup latency for different timeouts for the route request messages.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

c
ti

o
n

 o
f

L
o

o
k

u
p

s

t=0.5

t=1

t=2

t=3

Figure 9: Empirical CDF of the overall lookup latencies as a function of the route
request timeout t (α = 3;β = 2).

As the timeout decreases, its influence on the overall latency becomes less sig-
nificant: reducing the timeout from the default value of 3 seconds to 0.5 seconds de-
creases the median lookup latency by 60%, from 5.8 to 2.3 seconds. Note that further
reducing the timeout would have no effect, since the periodic execution of the Proce-
dureContent Search is set to 1 second.

Similar results are obtained using a different access network, a common ADSL line
(see Fig. 10). This is as expected, since the CDFs of the round trip delay are almost
the same for the ADSL network or the university access (Fig. 5).

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

ct
io

n
 o

f
L

o
o

ku
p

s

t=0.5

t=1

t=3

Figure 10: Empirical CDF of the overall lookup latencies depending on the route re-
quest timeouts for an ADSL client. (α = 3;β = 2; t = ∗)

In Table 2 we show the overhead for a timeout t set to 0.5 seconds (right hand side
of the table). If we compare the default case α = 3, t = 3 with the case α = 3,
t = 0.5, we see that the overhead is slightly increased: this is mainly due to the fact
that the timeout is also used to trigger new route requests, and, if the responses to the

15

initial α requests arrive later than t = 0.5 seconds, new requests are sent out.

Table 3: The overall lookup latencies and the number of messages sent per lookup
depending on t for different configurations.

t α = 3;β = 2 α = 1;β = 2
average median average median

of lookup # of lookup
messages latency messages latency

0.5 16.2 2.3 11.4 5.5
1 15.6 3.4 10.9 5.6
2 15.2 4.9 10.2 7.8
3 14.7 5.8 9.5 9.5
4 14.7 7.4 9.1 10.9
5 14.4 8.2 8.7 12.7

In Table 3 we show the overhead and the lookup latency for different values of the
timeout t. As already shown in Figs. 9 and 10, the lookup latency (in this case the
median) decreases significantly for decreasing t. The interesting result is given by the
average number of messages sent: in this case we have only a slight increase of the
overheads. This means that a new design, where the role of the timeout is revisited,
may improve the latency without affecting the overheads.

4.5 Impact of the Number of Contact Asked For

Once observed the gain that can be obtained by eliminating the effect of the timeout,
we want to evaluate the impact of the parameters α and β on the overall lookup delay.
Recall that β is the number of closer contacts that are asked for by a route request
message. Unfortunately, this parameter cannot be chosen freely in the source code,
but can be only set to 2, 4, or 11. We performed measurements for β = 4 and varying
α.

Figure 11 shows the results we obtained with different settings. The more mes-
sages we send, the more the overall lookup latency is reduced. This comes at a cost of
increased overhead. For instance, for α = 5 and β = 4 the mean number of messages
is equal to 29. By increasing further the values of the parameters, we are not able to
notice a significant improvement in the empirical CDF, since the periodic execution of
the ProcedureContent Search determines the overall lookup delay.

5 Improving the Content Lookup

The evaluation of the impact of the timeout t on the overall lookup latency suggests
that a different approach to the content management process would bring a substantial
gain.

The idea is to differentiate the software architecture according to the two different
aims – publishing or retrieval – as shown in Fig. 12. In the following, we describe the
different approaches.

16

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

c
to

n
 o

f
L

o
o

k
u

p
s

α=7; β=4; t=0.5

α=5; β=4; t=0.5

α=4; β=4; t=0.5

α=3; β=2; t=0.5

α=3; β=2; t=3

Figure 11: Empirical CDF of the overall lookup latencies varying α and β.

Publish

Content

Lookup

Publishing

request

Lookup

Content

Integrated

C
o

n
te

n
t

M
an

ag
em

en
t

Retrivial

request

Figure 12: Improved software architecture of KAD.

5.1 Improved Content Publishing

The primary aim of the content publishing is to find the nodes as close as possible to
the target: this process requires time because the peer needs to exhaustively search for
the contacts. Only when the contact list is stable, the peer can publish the content. This
is similar in spirit to the original design of the content lookup process. Nevertheless,
in the original design the timeout has two different roles: a timeout occurs when (i)
candidates do not reply or when (ii) candidates reply with contacts that are not closer
than the other candidates. In the first case the lookup procedure may be stuck waiting
for replies, with an increasing in the delay that is not useful for the publishing process.
In the second case, contacts that are already known is a sign of a stable candidate list.
These two meaning should be decoupled.

Each candidate should have a flag that indicate its status: NQ (not queried), Q
(queried), R (reply received) and T (timeout). The candidate must be necessarily in
one of this status. If it is a new contact, it is inserted as NQ; if a query is sent to that
contact, its status is updated to Q and a timeout is associated to the contact. If a reply
is received, the status is updated to R, otherwise, after the expiration of the timeout,
the status is updated to T.

At this point the lookup phase checks periodically the status of the candidates.
The list is considered stable if, starting from the the top of the list and not considering
the contacts in status T, there are at least 10 consecutive contacts in status R. In order
to avoid too long delays, a global timeout for the lookup process is maintained, after

17

which the candidate list is sent to the content publishing module (see Fig. 12) in any
case.

When the timeout expires, the lookup process can trigger new queries to contacts
in the list that are in status NQ. The role of the timeout is then only related to stale
contacts. The stabilization process results in a list that contains with high probability
the best contacts (i.e. closer to the target) the node can reach.

5.2 Improved Content Retrieval

For the content retrieval, the lookup and the retrieval should be strictly coupled: as
soon as the lookup finds a candidate in the tolerance zone, a content request should
be sent. We call this approach Integrated Content Lookup (ICL). In Sec. 4.4 we have
shown how to obtain a similar objective with a simple hack of the code: by decreasing
the timeout t we let the content search process iterate though the candidate list more
frequently. The results we have obtained are pessimistic, since they include the delay
due to the periodic execution of the ProcedureContent Search. In this section we
propose a model that shows the qualitative performance in terms of the overall lookup
latency of ICL scheme.

We assume that the probability that all the initial α contacts are stale, pα
stale, is

negligible. Among the initial α messages, only α(1− pstale) replies are received. The
process continues to the next hop using the contacts contained in the first reply. Thus,
the delay of the first hop is the minimum delay among the replies. It is simple to show
that the corresponding CDF for the first hop is equal to (see [3], Eq. 2.8)

F1, ICL(d) = 1− [1− FRTT(d)]α(1−pstale) . (5)

At this point we neglect the contacts contained in the route responses that come af-
ter the first, and concentrate only on the β contacts we received. This simplification
ignores possible better contacts contained in the responses of the first hop that are re-
ceived later: in this sense the analysis is conservative. We assume that the contacts
contained in the first response are placed in the top of the candidate list (they are
closer to the target than the candidates already present). In the second hop the process
sends γ = min(α, β) new route requests. Among them, only γ(1 − pstale) replies are
received. The CDF of the delay for the second hop is

F2, ICL(d) = 1− [1− FRTT(d)]γ(1−pstale) . (6)

For the following hops, we have the same behavior as for the second one. When a
contact replies, the Integrated Content Lookup process checks if it falls in the tolerance
zone and immediately send a route request. Thus, the overall lookup latency is given
by the sum of the delay of the single hops. Let fi, ICL(d) be the PDF of the delay for a
single hop i, i.e., the derivative of Fi, ICL(d) of Eqs.(5) and (6). The PDF of the overall
lookup latency, fICL(d), is then

fICL(d) = f1, ICL ∗ f2, ICL ∗ . . . ∗ fh, ICL(d) (7)

where the convolution is done for all the h hops. The CDF of the overall lookup
delay can be found by integrating Eq. (7). Figure 13 shows the CDFs of the overall
lookup latency for different values of the parameters α and β, with a number of hops

18

h = 3. We consider the input CDF of the round trip delay, FRTT(d), shown in Sect. 4.
The design parameters α and β now have a significant impact on the overall lookup
latency, at a cost of increased overhead. This qualitative analysis yields the same
results as shown in the experimental evaluation, where we studied different settings
for the parameters α, β and t (Fig. 11). It is interesting to note that the CDF has a
similar tail as we found with measurements: this means that the tail of the input CDF
FRTT(d) has a strong impact, even for large α and β.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

F
ra

c
ti

o
n

 o
f

L
o

o
k

u
p

s

Overall Lookup Latency (seconds)

α = 7, β = 4, h = 3

α = 4, β = 4, h = 3

α = 3, β = 2, h = 3

Figure 13: CDF of the Overall Lookup Latency, FICL(d): qualitative analysis.

5.3 Additional Improvements

In the analysis so far we have considered a set of parameters – α, β and t – with
fixed values. We have shown how these values can influence the overall performance
considering the current adoption and characteristics of the user behavior. It is clear that
fixed parameters may work in some scenarios, while they may give poor performances
in others. For instance, in case of high churn (e.g. 50% of the contacts are stale), asking
only for β = 2 contacts could result in high delay due to timeouts (many stale contacts
are inserted in the candidate list and can be queried).

The publishing or retrieval scheme can be further improved if we let the design
parameters to change, i.e. if we make them adaptive to the different scenarios. The
input parameters would be the parameters that we cannot control: the probability that
entries are stale (pstale), the round trip delay of the messages (d), and the number of
hops h necessary to reach the target. The client can continuously monitor these para-
meters and accordingly adjust the other design parameters – α, β and t. For instance,
in contexts with a low churn, the probability that entries are stale (pstale) reduces, and
thus it is not necessary to have a large degree of parallelism in the sent requests. In
this case we may choose α and β as functions of pstale, rather than simply taking fixed
values. The same applies for timeout t, i.e. we may choose t as a function of d, the
(estimated) round trip delay.

These changes would make the design of the client more flexible to the future
changes of its use. For instance, there are variants of the eMule client that works only
for a specific ISP [6]: the majority of the clients have fiber connectivity and the ISP
offer mainly flat rate, thus the user behavior for this ISP is different from a typical user
behavior worldwide; in particular both the churn and the delay are reduced. In this
context, the overheads can be reduced, yet maintaining the same performances.

19

6 Related Work

Stutzbach and Rejaie [16] did a detailed analysis of the routing tables and the lookup
process in KAD and provide latency measurements for varying α. However the two
remaining parameter β and t are not mentioned.

Falkner et al. [5] analyzed the implementation of KAD in Azureus and measured a
median of the overall lookup latency of 127 seconds (more than 2 minutes!). The au-
thors explain these huge values by the fact that the routing tables of the Azureus clients
contain many stale contacts and thus timeouts occur frequently during the lookup. We
think that such an high response time is highly incredible, if the system really suffered
from such a high response time it would be unusable. The measurement we did on
KAD in aMule using the default configuration showed a median overall lookup time of
5.8 seconds.

Li et al. [8] describe the lookup process in KAD identifying the parameters α and
β. Using the one hop latency data obtained with the King method [7], a simulation
of the overall lookup latency was performed with p2psim. This simulation found an
average overall lookup latency of 250 milliseconds.

7 Conclusions

In this paper we study the content management process of KAD as implemented in
aMule. We identified the key parameters, developed an analytical model for the lookup
latency and the lookup overhead that was validated by measurements on a real client.

The measurements allowed us to:

• Characterize the external factors that influence the performance – such as the
probability that entries in the routing tables are stale, or the round trip delay of
messages

• Evaluate the influence of the design parameters – such as the number of requests
sent initially or the timeout – on the overall performance.

We saw that the current implementation exhibits a poor lookup performance that
can be significantly reduced by coupling the lookup procedure and the the content
retrieval process, while keeping the overhead the same.

Moreover, we propose to dynamically adapt all the design parameters, the number
of parallel requests, the number of closer contacts asked for, and the timeout, to the
measured or estimated round trip delay.

Acknowledgments

The authors would like to thank Antonio Trifilo and Emanuele Leomanni for their
work on the aMule code.

20

References

[1] A-Mule. http://www.amule.org/.

[2] Azureus. http://azureus.sourceforge.net/.

[3] E. Castillo. Extreme Value Theory in Engineering. Academic Press, Inc., 1988.

[4] E-Mule. http://www.emule-project.net/.

[5] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson. Profiling a
Million User DHT. In Proc. of IMC, 2007.

[6] Fastweb (Internet Provider). http://www.fastweb.it/.

[7] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between
arbitrary internet end hosts. In Proc. of Internet Measurement Workshop, 2002.

[8] J. Li, J. Stribling, R. Morris, M. Kaashoek, and T. Gil. A performance vs. cost
framework for evaluating DHT design tradeoffs under churn. In Proc. of INFO-
COM, 2005.

[9] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer informatiion system
based on the XOR metric. In Proc. of International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

[10] Overnet. http://www.overnet.org/.

[11] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. of SIGCOMM, 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale Peer-to-peer systems. In Proc. of Middleware, Heidelberg,
Germany, 2001.

[13] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack. Load Reduction in
the KAD Peer-to-Peer System. In Fifth International Workshop on Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P), 2007.

[14] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of KAD. In Proc.
of IMC, 2007.

[15] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-to-peer lookup service for Internet applications. In Proc. of SIG-
COMM, 2001.

[16] D. Stutzbach and R. Rejaie. Improving lookup performance over a widely-
deployed DHT. In Proc. of INFOCOM, 2006.

[17] The Internet Movie Database. http://www.imdb.com/.

21

