

Thèse

Présentée pour obtenir le grade de docteur de l’Eco le
d’Ingénieur TELECOM ParisTech

Spécialité : Informatique et Réseaux

Par

Nouha Oualha

Sécurité et coopération pour le stockage de
données pair-à-pair

À soutenir le 18 Juin 2009 devant le jury composé d e:

Rapporteurs :

Examinateurs :

Directeur de Thèse :

Maryline Laurent -Maknavicius (TELECOM&Management SudParis -France)

Pierre Sens (Laboratoire LIP6, Université Paris 6-F rance)

David Powell (LAAS-CNRS-France)

Pascal Urien (Telecom ParisTech-France)

Roberto Di Pietro (Università di Roma 3-Italie)

Yves Roudier (EURECOM-France)

II

III

Acknowledgements

First of all, I would like to dedicate my thesis to my grand-mother who passed away
recently, to my dear parents and sisters.

This PhD dissertation could not be written without the help and guidance of many generous

and inspiring people who encouraged me and contributed to my personal and professional
development.

I thank Prof. Yves Roudier, my supervisor for his support and guidance during these three
and a half years. I was visiting his office for advices daily and he has always been available.

Thanks:
To Prof. Refik Molva for his invaluable willingness to share his exceptional knowledge.
To Dr. Melek Onen and Dr. Pietro Michiardi for their persistent help and support.
To my past and present colleagues for making work a pleasure, especially Ikbal Msadaa,
Lamia Romdhani, Aymen Hafsaoui, Majed Haddad, Bassem Zayen, Abdullatif Shikfa,
Alessandro Dumunico, Van Hau Pham, Corrado Leita, Slim Trabelsi, Ulrich Bayer...
To all EURECOM staff for their help and assistance.

Thank you all.
Nouha.

IV

V

Résumé

Chapitre I Introduction

L’intérêt pour les protocoles et algorithmes auto-organisants qui s’est manifesté notamment
avec la popularité des services de partage de fichiers (file sharing) tels que Napster1, Gnutella2,
KaZaA 3 et Morpheus4 concerne maintenant un plus large domaine d’applications. En
particulier, il a favorisé l’essor des services de stockage pair-à-pair (Wuala5, AllMyData Tahoe6
et UbiStorage7). Ces services permettent l’utilisation efficace de tout espace disque libre et
inexploité pour construire un système de stockage fiable, disponible, passant à l’échelle et avec
des coûts d'entretien réduits.

A. Cas du stockage pair-à-pair

L'avancement des technologies de l'information se traduit par l’accroissement de la quantité
de données disponibles et produites dans nos systèmes informatiques. Toutefois, ceci
occasionne des défis complexes par rapport à la gestion du stockage des données, stockage qui
peut être réalisé en mettant en application des techniques d’auto-organisation. Les données
peuvent être stockées d’une manière coopérative chez plusieurs pairs éparpillés dans le réseau
pair-à-pair. Ces derniers doivent garder les données stockées jusqu’à ce que leurs propriétaires
viennent les réclamer. Un tel système de stockage offre une solution fiable et robuste (no single
point of failure), sans pour autant nécessiter une infrastructure dédiée et chère come c’est le cas
avec des centres de données (data centers).

L’approche pair-à-pair a déjà été appliqué à des services de sauvegarde de données ([Cox et
Noble 2002] et [Lillibridge et al. 2003]) et à des systèmes de fichiers ([Druschel et Rowstron
2001], [Kubiatowicz et al. 2000] et [Dingledine 2000]). Le stockage pair-à-pair est aussi
intéressant pour les réseaux tolérants aux délais (DTNs), puisqu’il peut être utilisé pour livrer
les messages des nœuds en dépit de leur mobilité dans le réseau (store-carry-and-forward
paradigm de [Zhao et al. 2006]). Les services contextuels peuvent tirer un bénéfice du stockage
pair-à-pair afin par exemple de déplacer des données relatives à une application pour suivre le
mouvement de son utilisateur (Desktop teleporting [Bennett et al. 1994], [Pham et al. 2000]).
Les données stockées peuvent être aussi contextuelles comme par exemple dépendantes de
l’emplacement ([Marmasse et Schmandt 2000], [Huang et al. 1999], [Dey et Abowd 2000],
[Beigl 2000]).

B. Les enjeux de sécurité

Une application de stockage pair-à-pair se base sur l’échange volontaire et équitable des
ressources de stockage entre des pairs autonomes, pourtant il y a une tension inévitable qui régit
ces pairs qui doivent trancher entre leur rationalité individuelle et le bien-être collectif. Cette

1 http://www.napster.com/
2 http://www.gnutella.com/
3 http://www.kazaa.com/
4 http://www.morpheus.com/
5 http://wua.la/en/home.html
6 http://allmydata.org/
7 http://www.ubistorage.com/

VI

tension qui menace la viabilité de l’application est le résultat d'un dilemme social qui peut
mener à une tragédie des biens communs (tragedy of commons [Hardin 1968]).

Concevoir un système de stockage pair-à-pair fiable et sûr présente un défi important du fait
de la nature ouverte, autonome, et fortement dynamique des réseaux pair-à-pair. Tout effort
pour protéger ce type de système devrait assurer les objectifs suivants :

- Confidentialité et intégrité des données : Les données traitées dans un système de
stockage pair-à-pair sont généralement personnelles (ou appartiennent à un groupe) et
sont stockées chez des pairs qui ne sont à priori pas de confiance. C’est la raison pour
laquelle les données devraient être protégées lors de leur transmission et de leur stockage
chez un pair. Typiquement, la confidentialité et l'intégrité des données peuvent être
assurées en utilisant les moyens cryptographiques habituels tels que des méthodes de
chiffrement symétriques, et les fonctions de condensation (hashing), et de somme de
contrôle (checksum).

- Anonymat : L'anonymat peut être une condition nécessaire pour un certain type
d'application de stockage pair-à-pair qui a pour objectif d’empêcher la censure de
l'information par exemple. L'anonymat peut se rapporter à l'identité du propriétaire des
données stockées, à l'identité du pair de stockage, ou aux détails d'interaction entre les
deux. En outre, l’anonymat permet d'éviter des attaques ciblées où l'attaquant vise tous
les pairs qui stockent la même donnée afin de l’éliminer complètement du système. Les
systèmes de stockage qui visent à fournir l'anonymat utilisent souvent des infrastructures
à base de couches anonymes comme le routage d'oignon dans [Goldschlag et al. 1999].

- Identification : Dans un environnement distribué et ouvert, il est possible que la même
entité physique apparaisse sous différentes identités. Ce problème peut mener à des
attaques de type Sybil [Douceur 2002], et ainsi menacer les méthodes de réplication de
la donnée qui se basent sur l’idée que les pairs de stockage sont physiquement distincts.
Ce type d’attaque ne peut être éliminé qu’avec le déploiement d'une autorité centrale de
certification comme démontré dans [Douceur 2002]. Cet objectif peut limiter
l'anonymat. Alternativement, l'autorité peut imposer le paiement d’honoraires
d'adhésion. Cependant, cette approche réduit la nature décentralisée des systèmes pair-à-
pair et où un point d’étranglement. Sans tierce partie de confiance, une autre option est
d'appliquer des sanctions à tous les nouveaux venus : un pair peut coopérer avec des
étrangers avec une probabilité donnée (comme dans BitTorrent [Piatek et al. 2007]), ou
un pair peut joindre le système seulement si un autre pair l’invite [Lesueur et al. 2008].
Autre approche plus appropriée dans un réseau pair-à-pair, les opérations acceptables
peuvent être limitées si on observe des liens directs avec trop d'identités éphémères et
peu fiables [Yu et al. 2006]. Cette option semble cependant freiner la mise à l’échelle du
système et dégrade aussi le bien être social [Feldman et Chuang 2005].

- Contrôle d'accès : Le manque d'authentification peut être surmonté par la distribution
des clefs nécessaires pour accéder aux données stockées. Des listes de contrôle d'accès
ou des capacités peuvent être associées aux données par leurs propriétaires originaux,
comme dans [Srivatsa et Liu 2005].

- Mise à l’échelle : Le système de stockage pair-à-pair doit pouvoir faire face à la
participation d’une grande population de pairs qui y participent (mise à l’échelle
horizontale). Puisque la plupart des fonctions importantes du système sont exécutées par
les pairs, le système devrait alors pouvoir facilement traiter des quantités croissantes de
messages de contrôle d’une complexité accrue pour la gestion des pairs et des
ressources. Le système peut être géré par des groupes comme c’est le cas des réseaux
sociaux, ce qui réduit la charge supportés par les pairs.

VII

- Fiabilité des données : Généralement, la fiabilité d’une donnée est assurée par la
redondance de la donnée stockée à plusieurs endroits dans le réseau. Les données
peuvent être simplement répliquées. Le facteur de réplication devrait être maintenu
pendant la durée entière du stockage. Ceci implique la réparation des données détruites
ou corrompues, ce qui peut s’effectuer périodiquement ou peut être déclenché par des
événements comme la détection de fautes avec des protocoles de vérification de la
donnée à distance. D'autres approches de redondance peuvent être aussi employées, par
exemple le codage d'effacement qui fournit le même niveau de fiabilité des données mais
avec des coûts de stockage inférieurs à ceux de la réplication.

- Survie à long terme des données : La longévité des données stockées dans certaines
applications comme la sauvegarde distribuée (backup) est très critique. Le système doit
s'assurer que les données seront conservées de manière permanente (jusqu'à leur
récupération par le propriétaire). Les techniques de redondance des données améliorent
la longévité des données, mais ces techniques doivent être régulièrement ajustées pour
optimiser la capacité du système. Généralement, la méthode d'adaptation utilisée est
basée sur des protocoles de vérification de la présence de la donnée chez le pair de
stockage. Par ailleurs, des mécanismes d’incitation à la coopération doivent être
employés pour encourager les pairs de stockage à préserver les données.

- Disponibilité des données : Les systèmes de stockage doivent assurer que les données
stockées sont accessibles et utilisables sur demande par les pairs autorisés. Les
vérifications périodiques des données stockées chez les pairs de stockage permettent un
contrôle régulier de cette propriété. La connexion intermittente des pairs peut être
mitigée en appliquant un « délai de grâce » où les vérificateurs tolèrent l’absence de
réponse du pair de stockage pour un nombre défini de défis avant de déclarer que le pair
est non coopératif.

Dans cette thèse, nous nous focalisons sur les trois derniers objectifs décrits ci-dessus :
comment réaliser un stockage fiable et disponible à long terme dans le contexte d'un système de
stockage pair-à-pair à grande échelle. Ces trois objectifs sont souvent ignorés dans les systèmes
de partage de fichiers qui suivent plutôt des approches sous obligation de moyens (best effort).
Cette thèse suggère la nécessité d’effectuer des vérifications cryptographiques périodiquement
pour permettre l'évaluation du statut de sécurité des données stockées dans le système et la
conception de mécanismes d’incitation à la coopération adaptés qui préservent les propriétés de
sécurité des données sur le long terme.

C. Objectifs de recherche

L'étude des systèmes auto-organisants mène vers plusieurs défis de sécurité stimulants. En
premier lieu, ces systèmes sont caractérisés par une grande échelle allant de centaines à des
milliers de pairs, une grande dynamicité, et un relatif anonymat des pairs participants. Ainsi, la
coopération volontaire est difficilement réalisable du fait du manque de confiance. La confiance
peut être réalisée d’une manière statique (basée sur l'identité par exemple) ou d’une manière
dynamique (auto-organisante). La confiance statique consiste en un rapport de fidélité qui reste
le même jusqu'à ce qu'il soit retiré, tandis que la confiance dynamique montre des
caractéristiques d’auto-apprentissage (self-learning) et d’auto-élargissement (self-amplifying).
La confiance se construit en se basant sur des évaluations de comportement dans le système et
change en conséquence sans interruption.

La dimension temporelle doit être prise en compte. Les interactions coopératives entre pairs
sont généralement considérées en tant qu'opérations atomiques, ce qui est une hypothèse
acceptable pour une application de routage de paquets dans un réseau ad hoc ou de partage de
fichiers dans un réseau pair-à-pair ; ce n’est pas le cas d’une application de stockage ou de

VIII

sauvegarde de données. Cette dernière exige un nouveau type de primitives qui permet
l'évaluation « ponctuelle » de la coopération des pairs de stockage. Cette primitive vise à
vérifier périodiquement la présence des données stockées sur le long terme dans le but de
fournir des évaluations à court terme de la coopération des pairs de stockage. En se basant sur
ces évaluations, des mécanismes d’incitation à la coopération sont construits pour stimuler la
coopération des pairs et assurer l'équité de leurs contributions respectives.

Les mécanismes d’incitation à la coopération supposent des pairs stratégiques et rationnels.
Par conséquent, les modèles théoriques les plus adaptés qui permettent de valider ces
mécanismes utilisent la théorie des jeux. Il existe un grand nombre de modèles théoriques de
jeux qui peuvent façonner le système de stockage pair-à-pair. Nous nous concentrerons en
particulier sur les jeux non coopératifs répétés et évolutionnaires.

Chapitre II Architecture : éléments pour un stockage de données pair-
à-pair sécurisé

Un système de stockage pair-à-pair s’appuie sur la coopération des pairs pour fonctionner
correctement.

Pour permettre une architecture simple et modulable, nous proposons une organisation sous
forme de couches. Les couches sont superposés les unes sur les autres et chaque couche peut
utiliser des éléments fournis par les couches basses :

- Couche d’infrastructure basique
- Couche de gestion des pairs et des ressources
- Couche de gestion de la confiance et de la coopération
- Couche applicative

A. Couche d’infrastructure basique

Notre travail se concentre en particulier sur le réseau pair-à-pair. Le réseau pair-à-pair est un
paradigme de communication qui permet l'échange direct des ressources entre les pairs à la
place d’un échange à travers une entité centralisée dans le paradigme client/serveur. Chaque
pair peut agir en tant que serveur s'il veut partager des ressources, et en tant que client s'il veut
demander des ressources d'autres pairs. Tous les pairs sont égaux et ont les mêmes
responsabilités et privilèges. Puisqu’il n’y a pas d’entité centralisée, les coûts administratifs et
opérationnels sont réduits, permettant au réseau de contenir une grande population de pairs.

Les objectifs de sécurité nécessaires à réaliser dans un système de stockage pair-à-pair
peuvent être assurés avec un environnement de confiance. Ce type d’environnement permet aux
utilisateurs d’être confiants sur l'intégrité et la fiabilité de leurs propres dispositifs et d'autres
dispositifs sur le réseau. Il fournit un environnement protégé d'exécution qui ne peut pas être
manœuvré ni observé par un adversaire. Un environnement de confiance existe dans divers
facteurs de forme allant des dispositifs de confiance dédiés dans un réseau aux plateformes de
confiance intégrées à des appareils pas forcément de confiance. Une tierce partie de confiance
(trusted third party) est une entité responsable et admise pour une fonction convenue par tous
les utilisateurs. Les fonctions de la tierce partie de confiance peuvent être assurées d’une
manière distribuée en utilisant des modules de type TPM (Trusted Platform Module) pour cartes
à puce. Ces derniers sont des composants matériels passifs et programmables qui possèdent un
système d’exploitation. La machine de l’utilisateur peut aussi disposer d’un système
d'exploitation de confiance (trusted operating system) qui est un système actif conçu pour
garantir la confidentialité, l'intégrité et la disponibilité des informations, des systèmes et des

IX

ressources. Les utilisateurs ou les processus sont autorisés à effectuer seulement les actions qui
leur sont permises.

B. Couche de gestion des pairs et des ressources

Les systèmes implémentés sur un réseau pair-à-pair sont en général très dynamiques : les
pairs peuvent joindre le système et en partir à tout moment. Déployer un réseau de superposition
offre un bon substrat pour la gestion des pairs et des ressources du système. Le réseau de
superposition peut être réalisé d’une manière centralisée par laquelle la gestion dans son
ensemble se fait à travers un serveur centralisé qui garde la métadonnée correspondant aux
ressources du système et facilite la découverte et la recherche de ses ressources par les pairs. Le
réseau de superposition peut être également décentralisé. Les services de découverte et de
recherche des ressources se font par des techniques relatives à des topologies différentes. Dans
le cas d’une topologie plate du système, les pairs cherchent par eux-mêmes les ressources qu’ils
sollicitent en inondant par exemple le système avec leurs requêtes comme dans Gnutella8. La
topologie du système peut être aussi hiérarchique come dans FastTrack [Liang et al. 2006] où la
gestion du système se fait essentiellement à travers des super-pairs (super-peers) qui assistent
les pairs ordinaires (ordinary-peers) dans leur recherche des ressources. La topologie du
système peut aussi être structurée sous forme de tables de hachage distribuées (distributed hash
tables) qui attribuent uniformément des identités aléatoires aux pairs. Des marques uniques,
dites clefs, sont aussi attribuées aux ressources dont les métadonnées seront stockées par les
pairs. Ces messages se trouvent dans le même espace d’adressage que les clefs.

Identification des pairs

L'identification des pairs dans le réseau est un enjeu de sécurité très important puisque le
système risque des attaques de type Sybil si les pairs sont libres de choisir leur identifiants.
[Douceur 2002] démontre que ce type d’attaque est complètement éliminé s’il existe une entité
de certification dans le système qui fournit des identifiants fortement liés aux identités réelles
des pairs. D’autres alternatives limitent l’attaque sans pour autant l’éliminer et se basent sur des
tests de ressources, comme par exemple des puzzles cryptographiques dans [Vishnumurthy et
al. 2003] ou la vérification d’adresse IP. Par ailleurs, SybilGuard [Yu et al. 2006] utilise des
liens sociaux déjà existants entre les pairs pour détecter des attaquants de type Sybil.

Gestion de la métadonnée

La métadonnée renseigne sur les attributs d’une donnée (par exemple nom, taille, propriété
et type), sa structure (par exemple, longueur et champs), son emplacement, ses droits d’accès et
les clefs associées, et contient éventuellement une description courte de leur contenu. La
métadonnée peut être stockée par le propriétaire de la donnée, rendue disponible par une entité
centralisée, ou distribuée aux pairs du réseau qui gèrent cette information à travers un réseau de
superposition structuré ou non structuré.

Sélection aléatoire de pair

Dans un réseau de superposition centralisé, la sélection aléatoire des pairs peut être
simplement effectuée en choisissant un sous-ensemble aléatoire de la liste des pairs enregistrés.
Dans un réseau de superposition non structuré, la sélection aléatoire peut être obtenue en se
basant sur la marche aléatoire (random walk) [Zhong et al. 2008]. Finalement, un réseau de
superposition structuré permet avec une valeur aléatoire dans l’espace d’adressage de
sélectionner aléatoirement les pairs qui se trouvent au voisinage de cette valeur.

8 http://www.gnutella.com/

X

C. Couche de gestion de la confiance et de la coopération

La confiance entre les pairs peut être réalisée statiquement ou dynamiquement (la Fig. 1
décrit la terminologie utilisée pour la confiance). Dans le premier cas, les pairs ont des rapports
de confiance antérieurs basés par exemple sur des liens sociaux existants. Dans les réseaux ami-
à-ami (friend-to-friend), les pairs interagissent avec les pairs qu’ils connaissent. Turtle [Popescu
et al. 2004] est un système anonyme de partage d'informations qui construit un réseau de
superposition pair-à-pair sur des relations d'amitié préexistantes entre les pairs. Ces relations
d'amitié sont définies comme commutatives, mais non transitives. [Li et Dabek 2006] a proposé
un système de stockage sur un réseau ami-à-ami. Comparée à un système ouvert de stockage
pair-à-pair, l'approche proposée réduit le taux de réplication des données stockées puisque les
pairs sont seulement sujets à des pannes et pas à l’égoïsme ou à la malveillance et l’intérêt est
donné plus à la préservation des données qu’à leur disponibilité. Cette approche n'aide
cependant pas à construire des systèmes à grande échelle avec une large réserve de ressources.

La confiance peut être assurée en utilisant une autorité de confiance comme dans le cas
d’UbiStorage9. Ce service propose un système de fichiers qui est basé sur une infrastructure de
confiance distribuée établie au-dessus d'un réseau de pairs. En effet, le service distribue des
terminaux dédiés, appelés « néobox », aux pairs. Ces terminaux sont utilisés pour stocker en
sécurité les données d'autres pairs.

Fig. 1 Taxonomie de la confiance

La confiance dynamique évalue les interactions des pairs et se construit suite à cette
évaluation. L'évaluation du comportement des pairs peut être effectuée à différentes fréquences.
L'évaluation immédiate du comportement du pair est seulement possible si sa contribution se
produit dans un temps très court (atomique) comme pour le routage ad hoc ([Michiardi 2004] et
[Buttyán et Hubaux 2003]) ou l’échange de fichiers pair-à-pair. L’opération de stockage s’étend
sur une période temporelle généralement longue ; ce qui nécessite l’utilisation de protocoles qui
fournissent des preuves de possession de données. En utilisant un de ces protocoles, le pair de

9 http://www.ubistorage.com/

Confiance

Confiance statique
(confiance a priori)
e.g., réseaux sociaux (F2F)

Confiance dynamique
(confiance non a priori)

Confiance à long terme
(confiance a posteriori)

Réputation

Confiance à court terme
(confiance non a posteriori)

Echange Paiement
Incitation à la
coopération

XI

stockage démontre au vérificateur (peut être le propriétaire) qu’il possède les données stockées
chez lui. Ces preuves peuvent être maintenues de manière confidentielle par les vérificateurs
comme elles peuvent être distribuées au reste des pairs. La distribution peut se faire d’une
manière centralisée ou suivant un réseau de superposition structuré [Kamvar et al. 2003] ou non
structuré [Anceaume et Ravoaja 2006]. L’information sur le comportement d’un pair en
particulier est utilisée pour déduire si ce pair mérite d’avoir une bonne réputation ou à
alternativement être rémunéré pour sa contribution, suivant le mécanisme d’incitation à la
coopération en vigueur. Le modèle d’incitation à la coopération peut utiliser un historique des
actions passées des pairs (réputation) ou une promesse de récompense ou de punition financière
(paiement). Il peut se baser sur l’échange symétrique comme dans le système de partage de
fichiers BitTorrent10. Dans BitTorrent, les pairs téléchargent des fichiers vers d’autres pairs qui
leur fournissent une bande passante élevée (tit-for-tat).

Le déploiement d’un environnement de confiance peut permettre la gestion de l’information
de la réputation des pairs et même assurer l’échange équitable entre pairs de la rémunération
contre contribution dans le cas d’un mécanisme d’incitation basé sur le paiement.

D. Couche applicative

La couche du niveau applicatif est concernée par la gestion individuelle du service installé
sur chaque machine. Chaque pair doit stocker les données d'autres pairs du réseau et garantir la
disponibilité et la fiabilité du stockage.

Structure multiservice

Il est possible de concevoir une structure générale d’échange de ressources où les pairs
peuvent échanger plusieurs types de ressources entre eux. Cette structure s’avère être
intéressante dans le cas où les pairs ont des systèmes hétérogènes et des besoins différents.
Chaque pair participe donc à une collection de services dont certains sont utilisés pour sa
consommation personnelle et d’autres pour sa contribution à la collectivité.

La rémunération (argent réel ou virtuel) peut être considérée comme une contrepartie neutre
qui peut être échangée pour n'importe quel service coopératif. Par conséquent, un système basé
sur des incitations à base de paiement peut permettre aux pairs d’accéder d’une manière
simultanée à des services coopératifs. L'évaluation du comportement des pairs devrait être
exécutée séparément et indépendamment pour chaque service. Cependant, la rémunération pour
un service rendu peut être effectuée de la même façon pour tous les services. Par exemple, la
rémunération peut employer des enchères (comme dans KARMA [Vishnumurthy et al. 2003])
pour faire face à l'effet des changements de l'offre et de la demande sur les prix.

Un système d’exploitation de confiance incorporé dans la machine de chaque pair doît
contrôler l'accès du pair aux ressources et aux services et peut également servir pour stimuler ou
même forcer le pair à coopérer avec le système d’une manière équitable. L’incitation à la
coopération peut se résumer à une différentiation du service reçu par le pair: un pair coopératif
aura une bonne qualité de service contrairement à un pair non coopératif. La fonction du
système d’exploitation est de permettre l’évaluation impartiale des actions du pair et de modifier
ses droits d’accès sur les ressources du système en fonction de cette évaluation. En particulier,
la différentiation de service peut miser sur une politique de sécurité contextuelle qui peut être
renforcée avec une architecture de sécurité comme dans Flask [Spencer et al. 1999]. Ce type
d’architecture permet la révocation systématique des droits d'accès précédemment accordés.

10 http://www.bittorrent.com/

XII

Chapitre III Vérification de la possession de la donnée à distance

Le premier objectif du stockage de données pair-à-pair est de garantir la survie à long terme
des données stockées. Cet objectif exige des primitives particulières qui permettent d’assurer la
vérification de cette propriété. Contrairement aux contrôles simples d'intégrité, la vérification de
l’intégrité des données stockées doit prendre en considération le fait que le pair de stockage peut
être défectueux mais aussi malveillant. De plus, puisque les données sont stockées à distance, la
vérification ne devrait pas exiger le transfert des données dans leur intégralité. La dynamicité du
système due notamment à la connexion intermittente des pairs suggère de distribuer la charge de
la vérification sur plusieurs pairs dans le réseau. Il est nécessaire que ces vérificateurs ne
gardent pas toute la donnée pour la vérification mais plutôt une information de petite taille
(comparée à la donnée). Les vérificateurs ne sont pas forcément de confiance, donc
l’information qu’ils stockent pour la vérification ne doit pas être une information secrète par
rapport au pair de stockage. En tenant compte de ces dernières conditions, le protocole de
vérification est donc délégable.

A. Objectifs de sécurité

Le mécanisme de vérification doit adresser les attaques potentielles suivantes auxquelles le
système de stockage est exposé :

- Détection de destruction de données : La destruction ou la corruption des données peut
être due à un pair défectueux ou malhonnête. Le protocole de vérification doit assurer
cette fonction.

- Résistance à la collusion : Les pairs possédant les répliques de la même donnée peuvent
entrer en collusion en détruisant toutes les répliques sauf une qui est utilisée pour
répondre correctement aux vérificateurs. Une solution contre ce type de collusion se base
sur la personnalisation des répliques de données : le propriétaire conserve des répliques
qui sont personnalisées pour chaque pair de stockage.

- Prévention contre l’attaque par le milieu (man-in-the-middle): L'attaquant peut
prétendre être à la fois le pair propriétaire de la donnée et le pair qui garde cette donnée
en se plaçant entre les deux lors d’un échange de messages. La réplication peut être
perturbée par cette attaque puisque le propriétaire risque de stocker sa donnée chez le
même pair. Une manière typique de résoudre ce problème est d’ajouter une étape
d'engagement dans les messages échangés entre les pairs de telle manière que
l’attaquant ne puisse pas ouvrir ou produire ces engagements.

- Prévention contre le déni de service (denial of service) : Un pair de stockage peut être
inondé de requêtes de vérification. Un attaquant peut aussi rejouer un message de
vérification ou de réponse valide afin de perturber le processus de vérification.

Ce chapitre présente trois protocoles de vérification qui cherchent à répondre aux exigences
de construction, de performance et de sécurité discutées ci-dessus en proposant différent
compromis.

XIII

B. Protocole de vérification Probabiliste

Le premier protocole de vérification vise à une détection de destruction de donnée
probabiliste. La donnée est stockée sous forme de fragments avec leurs signatures respectives
qui sont générées par le propriétaire de la donnée. A chaque opération de vérification, le
vérificateur demande un fragment dont l’index est choisi aléatoirement avec sa signature.
Lorsqu’il reçoit la réponse du pair de stockage, le vérificateur teste si la signature correspond au
fragment demandé. Le vérificateur réalise ce test en utilisant la clé publique utilisée lors de la
signature des fragments.

Le vérificateur évalue la présence d’un fragment chez le pair de stockage. Mais, puisque le
fragment est choisi aléatoirement, le pair de stockage doit garder toute la donnée stockée pour
pouvoir répondre correctement à toutes les requêtes du vérificateur. Par contre, si le pair de
stockage détruit une fraction d des fragments, le vérificateur doit effectuer des vérifications
multiples pour réaliser une certaine probabilité de détection pdetection. Le nombre de vérifications
c est dérivé comme suit:

c=log1-d(1-pdetection)

Fig. 2 Nombre de vérifications nécessaire pour assurer une certaine probabilité de détection de la destruction

La Fig. 2 démontre que même avec un nombre de vérifications c modeste, il est possible de
garantir une probabilité de détection de la malveillance du pair de stockage proche de 100%.

C. Protocole de vérification déterministe restreint

Le second protocole de vérification vise à une vérification à distance sur toute la donnée
stockée mais avec un nombre limité d’opérations de vérification réalisables. Le protocole
proposé se base sur la notion d'unicité de la solution du problème d'interpolation de polynôme.

Le propriétaire de la donnée génère des polynômes à partir de valeurs déduites des fragments
de la donnée et des valeurs aléatoires pour assurer que les défis construits soient aussi
aléatoires. Il utilise pour cela la formule de Lagrange comme méthode d’interpolation de
polynôme. A partir des polynômes générés, le propriétaire calcule des points particuliers. Ces
points sont envoyés au vérificateur avec les valeurs aléatoires utilisées constituant ainsi une
métadonnée pour la vérification. Le pair de stockage qui possède les fragments de la donnée
reçoit périodiquement du vérificateur une valeur aléatoire qu’il utilise pour générer un

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Probability of detection

N
um

be
r

of
 c

ha
lle

ng
es

 r
eq

ui
re

d

d=0.1
d=0.2
d=0.3
d=0.4
d=0.5
d=0.6
d=0.7
d=0.8
d=0.9

XIV

polynôme. Ce polynôme est construit à partir des points constitués par les fragments de la
donnée et le point qui consiste en la valeur aléatoire reçue comme défi. Le pair de stockage
produit une réponse unique au défi en calculant un point particulier du polynôme généré. Cette
réponse est ensuite envoyée au vérificateur qui la compare à la valeur qu’il stocke comme
métadonnée.

Le vérificateur peut effectuer un nombre limité de test sur la donnée stockée à distance. Ce
nombre est défini par le nombre de défis pré-calculés et stockés chez le vérificateur. Augmenter
la fréquence de test contraint le vérificateur à stocker une métadonnée de plus grande taille. La
taille d’un défi est déterminée par la taille (maximale) d’un fragment de la donnée. Diminuer la
taille des fragments (i.e., augmenter le nombre de fragments de la donnée) diminue en même
temps la taille de la métadonnée stockée chez le vérificateur. Cependant, ceci affecte la sécurité
du schéma puisque les points à partir desquels le polynôme est généré par interpolation
deviennent aussi de petite taille et donc la solution produit beaucoup plus de faux positifs.

D. Protocole de vérification déterministe

Le protocole de vérification proposé se base sur la cryptographie des courbes elliptiques. Le
propriétaire de la donnée génère une courbe elliptique sur l’ensemble ℤn avec n est choisi
comme un modulo RSA tel que n=pq où p et q sont deux nombres premiers. L’ordre de la
courbe est gardé secret par le propriétaire. [Koyama et al. 1991] démontre que résoudre l’ordre
sans connaître p et q revient à factoriser le modulo RSA n qui est conjecturé comme étant un
problème difficile. La donnée est associée à une valeur entière d. Le propriétaire génère la
métadonnée qui consiste en un point T=d.P où P est un générateur de la courbe. Cette
métadonnée est stockée chez le vérificateur. Pour vérifier la présence de la donnée chez un pair
de stockage, le vérificateur lui envoie le point Q=r.P avec r un entier choisi aléatoirement. Le
pair de stockage répond à ce message en calculant R=d.Q. Le vérificateur teste finalement si
cette égalité R=r.T est vérifiée.

Le pair de stockage ne peut qu’utiliser toute la donnée pour pouvoir répondre correctement
au vérificateur car il devrait sinon déduire la valeur de r de r.P ou connaître l’ordre de la courbe
elliptique Nn pour garder juste d mod Nn. Le premier cas correspond au problème du logarithme
discret d’une courbe elliptique et le second au problème de factorisation d’un modulo RSA ; les
deux problèmes sont conjecturées comme étant difficiles à résoudre.

Dans ce protocole, le pair de stockage doit faire une opération de multiplication sur toute la
donnée qui peut être assez coûteuse en termes de ressources de calcul et de temps. Pour alléger
cette opération, on propose de diviser la donnée en fragments et d’augmenter la taille de la
métadonnée stockée chez le vérificateur. Chaque élément de la métadonnée correspond donc à
un fragment de la donnée plutôt qu’à toute la donnée. Ainsi, le pair de stockage effectue une
opération de multiplication sur juste un fragment. Pour permettre la vérification déterministe de
la donnée, le vérificateur doit constituer en plus de r un générateur de valeurs aléatoires (seed)
qui sont utilisées pour relier les points obtenus de la multiplication de fragments avec le point
inclus dans le défi du vérificateur.

La littérature regorge de propositions pour des schémas qui permettent la vérification de
l’intégrité des données à distance ([Ateniese et al. 2007], [Deswarte et al. 2004], [Sebé et al.
2007], [Filho and Barreto 2006], [Schwarz and Miller 2006], [Chang and Xu 2008], [Juels and
Kaliski 2007]). Ces propositions sont assez prometteuses en termes de performance, sauf
qu’aucun de ces protocoles ne suggère la délégation de la tâche de vérification à plusieurs pairs
pas forcément de confiance (même si certains protocoles sont délégables). Notre protocole est le
seul qui est construit autour de cette propriété qui est d’un grand intérêt pour un réseau pair-à-
pair dynamique.

XV

Chapitre IV Stockage et maintenance sécurisés de données pair-à-pair

Les protocoles de vérification de données à distance permettent au vérificateur de détecter
(de manière déterministe ou probabiliste) si les données stockées sont détruites ou non. Afin de
préserver la fiabilité des données dans le système, la détection de toute destruction ou corruption
de ces dernières devrait déclencher leur restauration. Cette charge ne peut pas être accomplie
seulement par le propriétaire des données, puisqu’il ne participe pas souvent à la vérification.
Les vérificateurs et les pairs de stockage devraient plutôt coopérer pour restaurer les données en
générant une nouvelle copie des données qui est stockée chez un nouveau pair. Cette nouvelle
copie doit être personnalisée pour le nouveau pair de stockage ; en outre la génération de la
nouvelle copie ne doit pas exiger la transmission des données plusieurs fois de suite notamment
le transit à travers un vérificateur.

Dans cette section, nous présentons une nouvelle méthode de stockage et de maintenance des
données qui se base sur le protocole déterministe proposé précédemment et qui permet de
restaurer les données détruites sans avoir recours au propriétaire.

A. Attaques

Les différentes attaques auxquelles le protocole de stockage et de maintenance de données
est exposé sont détaillées dans la section précédente relative aux attaques contre un protocole de
vérification de données à distance. Notre proposition introduit cependant de nouvelles menaces
en particulier liées à la phase de restauration:

- Attaques en Déni-de-Service (DOS) : Les vérificateurs malveillants peuvent inonder le
réseau avec des messages inutiles pour la réparation. Afin d'empêcher ce type d'attaques, un
seuil t de vérificateurs honnêtes est défini : il devrait y avoir au moins un nombre t de
vérificateurs qui détectent un problème de destruction de données dans la phase de
vérification avant de produire une nouvelle copie des données.

- Données fausses : Durant la phase de réparation, les pairs de stockage peuvent tricher en
effectuant la régénération de données fausses. Les vérificateurs peuvent également jouer un
rôle dans ce type d’attaques.

B. État de l’art des approches existantes

Le protocole de stockage et de maintenance des données devrait consister en cinq phases: les
pairs de stockage potentiels sont élus par le propriétaire durant une phase de sélection, ces pairs
stockent les données du propriétaire durant la phase de stockage. Le propriétaire nomme alors
des vérificateurs pour vérifier l’intégrité et la présence des données stockées durant la phase de
délégation et ces vérificateurs effectuent périodiquement cette tâche durant la phase de
vérification. Si les vérificateurs détectent la destruction ou la corruption des données, la phase
de réparation est activée durant laquelle les vérificateurs produisent une nouvelle copie des
données avec l'aide des pairs de stockage encore présents dans le système.

Sélection : Le but de cette phase est de choisir un ensemble de pairs qui peuvent maintenir la
fiabilité et la disponibilité des données. Il y a deux techniques possibles pour la sélection des
pairs de stockage. Une sélection discriminatoire détermine les pairs d’une manière spécifique
par exemple parce qu’ils satisfont une contrainte ([Dingledine 2000]) ou partagent des
caractéristiques identiques à celles du propriétaire ([Toka et Michiardi 2008]). En revanche, la
sélection aléatoire est généralement employée pour sa simplicité puisqu'elle consomme moins
de bande passante par pair. TotalRecall [Bhagwan et al. 2004] se base sur des tables de hachage
distribuées (distributed hash tables) pour choisir aléatoirement les pairs de stockage. [Godfrey

XVI

et al. 2006] a analysé les stratégies de sélection de pair et a prouvé l’intérêt de la sélection
aléatoire. Après que les pairs de stockage sont choisis, le propriétaire peut directement les
contacter. Il existe plusieurs techniques pour limiter les attaques de type Sybil [Douceur 2002],
(se référer à [Levine et al. 2006]) par exemple les pairs qui joignent le système devraient en
premier lieu fournir quelques ressources (crypto-puzzles dans [Vishnumurthy et al. 2003]).

Stockage : Une fois que des pairs ont été sélectionnés pour le stockage par le propriétaire, ce
dernier envoie ses données à ces pairs. La disponibilité des données peut être assurée avec de la
redondance. Avec la réplication, une simple copie des données est distribuée à chaque pair
choisi. Par contre avec le codage d'effacement (erasure codes), les données sont divisées en
plusieurs blocs qui vont produire des blocs supplémentaires pour permettre la reconstruction des
données à partir d’un nombre de blocs seuil. La réplication, qui a été la plupart du temps
employée dans les tables de hachage pour sa simplicité, offre un compromis moins intéressant
entre les frais de stockage et de bande passante pour la maintenance et la tolérance aux fautes
par comparaison aux codes d'effacement. C’est pourquoi, il y a plusieurs systèmes de stockage
qui ont opté pour le codage d’effacement comme Wuala11, AllMyData Tahoe12, UbiStorage13, et
TotalRecall [Bhagwan et al. 2004]. Dans le cas de la réplication, puisque la taille des données
est en général grande, les pairs de stockage peuvent entrer en collusion et tricher en stockant une
seule copie des données. La personnalisation de chaque copie pour son détenteur a été présentée
comme une solution à cette menace (comme présenté précédemment dans la description des
protocoles de vérification, ainsi que dans [Lillibridge et al. 2003]). Ce type de collusion peut
également surgir avec le codage d'effacement quoiqu'il devienne problématique seulement si le
nombre de pairs en collusion excède le nombre de blocs originaux.

Délégation : Comme précédemment décrit, le protocole de stockage devrait assurer que les
données sont toujours disponibles. Les réseaux pair-à-pair étant très dynamiques, le propriétaire
n’est pas toujours en ligne ce qui implique que la vérification de données doit encore être
assurée par des délégués du propriétaire. Le propriétaire fournit à ses délégués des métadonnées
qui sont des informations sur les données stockées, et qui servent comme base à la vérification à
distance.

Vérification : Des protocoles cryptographiques permettent aux pairs de stockage de prouver
à distance l'intégrité des données qu’ils stockent (par exemple, les protocoles de vérification
proposés précédemment, [Deswarte et al. 2004], [Sebé et al. 2007], et [Ateniese et al. 2007]).
Cependant le manque de réponse de la part d’un pair de stockage est ambiguë parce qu’il ne
permet pas de savoir si le pair est défaillant ou malveillant, ou bien s’il est juste déconnecté et
peut revenir avec les données intactes. Ceci peut être contourné en considérant un certain délai
au cours duquel le vérificateur défie le pair de stockage plusieurs fois avant de décider que ce
pair est malveillant.

Réparation : Détecter qu'un des pairs de stockage a triché doit déclencher une opération de
restauration afin d'assurer la disponibilité des données. Etant donné la nature dynamique des
réseaux pair-à-pair, une telle opération ne peut pas se baser seulement sur l’effort du
propriétaire qui peut être déconnecté lors de la détection de la destruction des données. Cette
opération doit plutôt être effectuée par les vérificateurs et les pairs de stockage qui gardent
encore les données stockées. Les résultats de simulation de [Bhagwan et al. 2004] démontrent
que la réparation retardée des données détruites (lazy repair) est plus efficace en termes de
compromis entre la disponibilité des données et les coûts d’une telle opération que la réparation
immédiate (eager repair) pour des données de grande taille et un système très dynamique.

11 http://wua.la/en/home.html
12 http://allmydata.org/
13 http://www.ubistorage.com/

XVII

C. Protocole de stockage et de maintenance de données basé sur le codage
d’effacement

Le protocole proposé emploie le protocole de vérification déterministe basé sur les courbes
elliptiques proposé à la section III.D. Il suggère aussi l’utilisation du codage d'effacement
linéaire et aléatoire [Acedański et al. 2005]. Avec un tel codage, les entrées de la matrice
génératrice des blocs codés sont choisies aléatoirement.

Dans le protocole proposé, les pairs de stockage sont sélectionnés aléatoirement. Ces pairs
vont ensuite stocker les blocs {bi} 1≤i≤k+m qui sont des blocs codés par le propriétaire avec un
codage d’effacement linéaire et aléatoire sur ℤ et utilisant les blocs originaux des données
{ di} 1≤i≤k. Le propriétaire choisit aussi des vérificateurs qui sont assignés chacun à un ou
plusieurs pairs de stockage et vont donc recevoir une métadonnée correspondant au bloc stocké
par le pair de stockage. Par exemple, le vérificateur assigné au pair qui stocke bi reçoit la
métadonnée Ti=bi.P. Chaque vérificateur teste l’intégrité et la présence du bloc d’une manière
périodique en se basant sur le protocole de vérification décrit au III.D de ce chapitre. Si au
moins t vérificateurs détectent un problème chez un pair de stockage, ils décident alors de
reproduire un nouveau bloc et de le stocker chez un nouveau pair. La décision de déclencher la
phase de réparation revient donc à plusieurs vérificateurs pour éviter des attaques de déni de
service (flooding attack). Les vérificateurs se mettent d’accord sur un nombre aléatoire s qui va
être utilisé comme un générateur de coefficients aléatoires {ci} 1≤i≤k. Ils sélectionnent aussi un
nouveau pair qui va recevoir s avec un nombre k de blocs provenant des pairs de stockage
restants. Le nouveau pair reproduit un bloc codé b’ en utilisant les blocs reçus et s :

�� � � �� 	 �
�
�

��

Ce nouveau bloc peut s’écrire aussi en fonction des blocs originaux (��,� est une entrée de la
matrice génératrice utilisée par le propriétaire):

�� � � �� �� 	 �
� ,�
�

�� ��
�� 	 ��

Le nouveau bloc est donc bel et bien un bloc codé. La génération du nouveau bloc a
nécessité la transmission de k blocs ; bien que ceci puisse encore être réduit en utilisant par
exemple le codage d’effacement hiérarchique [Duminuco and Biersack 2008]. Les vérificateurs
qui vont être responsables de ce nouveau pair reproduisent une nouvelle métadonnée T’ à partir
des métadonnées des autres vérificateurs et de s :

�� � � �� 	 �
�
�

��

Cette métadonnée peut s’écrire aussi en fonction du nouveau bloc. En effet,

�� � � �� 	 �
�
�

�� � ���� 	 �
��. ��
�� � ��. �

Donc, T’est une métadonnée de vérification pour le nouveau bloc b’. Pour éviter que les
pairs n’envoient des informations fausses, sous forme de blocs ou de métadonnées, chaque

XVIII

information doit être accompagnée par la signature du propriétaire. Le protocole peut même
utiliser des signatures homomorphiques (par exemple, une signature algébrique [Schwarz and
Miller 2006]) pour permettre au nouveau pair de reproduire une nouvelle signature pour le
nouveau bloc généré pour attester de sa validité. Ce type de signature permet la vérification
suivante :

���� !"#$ ��′ � � �� 	 �
�
�

�� � � % ���� !"#$��
��&�
�

��

 Le protocole de stockage et de maintenance de données à distance proposé est auto-
organisant puisqu’il fait participer les vérificateurs et les pairs de stockage et non plus le
propriétaire. La distribution de la plupart de ses fonctionnalités à ces pairs permet de limiter à la
fois la connexion intermittente des pairs et leur malveillance potentielle.

Chapitre V Incitations à la coopération basées sur l’audit

Le protocole de vérification de présence de la donnée à distance constitue une primitive
d’évaluation du comportement des pairs de stockage, qu’on nomme audit. A partir de cet audit,
des mécanismes d’incitation à la coopération peuvent être établis pour générer de la confiance
dynamique entre les pairs. On distingue des approches basées sur la réputation et d’autres
basées sur la rémunération.

A. Approche de réputation

L’approche de réputation estime le degré de confiance des pairs en s’appuyant sur
l’expérience et l’observation de leurs comportements passés.

Attaques

Les pairs ne sont pas nécessairement honnêtes et peuvent tromper le système de réputation
pour gagner un avantage personnel non mérité.

- Mensonge : Un menteur est un pair qui dissémine des observations incorrectes sur d'autres
pairs pour augmenter ou diminuer leur réputation. Les menteurs peuvent s’entendre et
conspirer contre un ou plusieurs pairs dans le réseau en leur affectant injustement une
mauvaise réputation ou au contraire en affectant une réputation excessivement élevée aux
membres de leur groupe.

- Collusion entre le propriétaire et le pair de stockage : La collusion vise à augmenter la
réputation du pair de stockage chez les vérificateurs honnêtes. Le propriétaire stocke des
données factices chez le pair de stockage.

- Collusion entre le pair de stockage et le vérificateur : Le but d'une telle collusion est
d’augmenter la réputation du pair de stockage chez le propriétaire sans pour autant garder sa
donnée. L’effet de ce type de collusion est limité grâce à la distribution de la tâche de
vérification à des pairs multiples ; le propriétaire peut se fier à l’ensemble (par exemple à
travers un vote) de leurs résultats comme il peut finalement vérifier par lui-même le
stockage.

- Blanchissement (whitewashing): les pairs peuvent sortir du système et le rejoindre plus tard
avec une nouvelle identité afin d’effacer leurs forfaits.

XIX

- Attaque de type Sybil : Si les pairs peuvent produire des nouvelles identités à volonté, ils
peuvent employer certaines d'entre elles pour augmenter la réputation des autres.

Description
Nous proposons que les pairs soient organisés en groupes où seules les interactions intra-

groupes sont autorisées. Ainsi, les pairs établissent une estimation rapide de la réputation des
autres membres de groupe. Les groupes de pairs sont créés d'une façon centralisée par une
autorité (comme [Lillibridge et al. 2003]) ou décentralisée qui misent sur des protocoles de
distribution de clef de groupe (par exemple, [Lee et al. 2006], [Lesueur et al. 2007]).

Fig. 3 La qualité d’observation en variant le nombre de pairs dans le groupe pour notre approche (audits) et
une approche de réputation indirecte (reputation).

Le modèle de confiance est basé sur les listes blanches (white-listing) qui sont similaires à la
stratégie d'œil pour œil dans BitTorrent [Piatek et al. 2007] sauf que les vérificateurs tiennent en
plus en compte les résultats de vérification des données des autres pairs. Les pairs inconnus
d’un pair particulier sont ajoutés à sa liste blanche d’une manière probabiliste. Chaque pair
accepte de servir seulement des pairs inclus dans sa liste blanche.

Les pairs sont structurés sur une table de hachage distribuée dont on suppose qu’elle offre
une recherche de clefs sécurisée ([Sit and Morris 2002] and [Castro et al. 2002]). Pour prévenir
des collusions potentielles entre pairs visant à tromper le système de réputation, la sélection des
vérificateurs et des pairs de stockage se fait d’une manière aléatoire dans la table de hachage.

Fig. 4 Ratio des propriétaires en fonction de leur stratégie avec une composition initiale : 40% coopérateurs,
30% pairs égoïstes passives (passively selfish), 30% pairs égoïstes actifs (actively selfish).

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

n (logarithmic scale)

A
ve

ra
ge

 o
bs

er
va

tio
n

qu
al

ity

audits
reputation

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
of

 o
w

ne
rs

pe
r s

tra
te

gy

coop.
passiv. self.
activ. self.

XX

La qualité de l’observation a été calculée analytiquement pour un système utilisant
l’approche basée sur l’audit et une approche de réputation traditionnelle basée sur les
recommandations. La Fig. 3 démontre que l’approche proposée est plus adaptée à un ensemble
de pairs de petite taille puisqu’il affiche une bonne qualité d’observation comparé à une
réputation typique qui se base sur des informations indirectes.

Le système de stockage qui utilise l’approche basée sur l’audit a été simulée dans un
environnement constitué de pairs avec des stratégies comportementales persistantes. La Fig. 4
qui est un résultat de cette simulation illustre le filtrage des pairs égoïstes du système de
stockage en se basant sur notre approche de réputation. Après cette phase, les pairs aptes à
stocker des données dans le système sont les seuls pairs coopératifs.

B. Approche de paiement

L’approche de paiement proposée combine la surveillance périodique du stockage de
données aux paiements des pairs qui les stockent et des vérificateurs.

Attaques et problèmes

Les pairs doivent participer au système conformément au protocole de paiement ; cependant
les pairs peuvent se conduire d’une manière malhonnête.

- Attaque de type Sybil : l’attaquant peut tromper le système en s’aidant avec plusieurs
identités générées par lui-même. Par exemple, il peut abuser des pairs de stockage en
refusant de les payer et en prétextant de quelques vérificateurs qui les as fabriqués pour
justifier son comportement.

- Personnification : Un pair ne doit pas être capable de personnifier un autre pair, parce que
sinon il peut utiliser son argent.

- Contrefaçon : Des pairs sont généralement payés avec des jetons (argent virtuel, crédit,
chèque, etc.). La contrefaçon se résume à reproduire frauduleusement un jeton.

- Double dépense : Le jeton peut être dépensé numériquement une ou plusieurs fois. Il y a
deux solutions à ce problème : le bénéficiaire vérifie la validité du jeton avec la banque à
chaque fois qu’il est payé, ou bien le fait de dépenser un jeton plusieurs fois expose
l'identité de l’attaquant.

- Échange équitable : Les protocoles d'échange équitable permettent de garantir que deux
parties échangent un service contre paiement sans qu’aucune partie ne gagne un avantage
sur l’autre.

- Famine : La famine est l'incapacité d'un pair de participer au système parce qu’il n’a plus de
jetons à dépenser ([Weyland et al. 2005]).

Description
Notre approche de paiement se base sur KARMA [Vishnumurthy et al. 2003]. KARMA

propose de substituer à la banque (autorité de confiance) un ensemble de pairs aléatoirement
attribués pour chaque pair, appelés bank-set. Ces banques réparties sont collectivement
responsables d'augmenter et de diminuer le solde d’argent des pairs auxquels ils sont assignés.
Les paiements se font sous forme de chèques électroniques certifiés par les banques.

Avant de joindre le système, les pairs doivent résoudre un puzzle cryptographique. Ceci
contrecarre les attaques de type Sybil contre le système de stockage.

Les pairs sont donc organisés dans une table de hachage distribuée dont le service de
recherche est supposé sécurisé. Les pairs de stockages ainsi que les vérificateurs sont choisis
aléatoirement dans la table pour limiter des collusions potentielles entre eux.

XXI

Le calcul des prix du stockage de donnée et de la vérification s’effectue sous forme
d’enchères afin d'atténuer les phénomènes de famine. Les prix sont calculés en fonction de la
quantité d’argent que le pair possède : un pair qui a beaucoup d’argent propose des prix élevés
alors qu’un pair pauvre propose des prix bas pour avoir plus de chance d’être choisi.

Une simulation du système de stockage utilisant l’approche de paiement a été réalisée. Le
résultat de la simulation est décrit dans la Fig. 5 qui démontre qu’avec notre approche basée sur
l’enchère, le système continue de fonctionner pendant une longue durée. Ceci est du au fait que
les pairs ont un risque réduit de tomber en famine.

Fig. 5 Quantité de données stockées dans le système en variant le poids de l’enchère w (w=0 signifie pas
d’enchère). Composition initiale : 40% coopérateurs, 30% pairs égoïstes passives, 30% pairs égoïstes actifs.

Puisque le stockage est une opération de longue haleine, on propose de mettre en séquestre
les paiements dus aux pairs pour empêcher les pairs d'émettre des chèques à découvert. Le
propriétaire de la donnée stockée doit dès le début bloquer la quantité nécessaire pour payer les
pairs de stockage et les vérificateurs. Les pairs de stockage doivent aussi mettre en séquestre
une quantité d’argent qui correspond à la rémunération que le propriétaire obtient si la donnée
est détruite.

Fig. 6 Ratio des propriétaires en fonction de leur stratégie avec une composition initiale : 40% coopérateurs,
30% pairs égoïstes passives (passively selfish), 30% pairs égoïstes actifs (actively selfish).

Etant donné que le nombre de paiements reçus par les pairs est proportionnel au nombre de
vérifications à effectuer, le protocole de vérification peut se baser sur un protocole qui utilise

0 3 6 9 12 15 18 21 24
2

3

4

5

6

7

Simulation time (in months)

S
to

ra
ge

 ra
te

 p
er

 p
ee

r
 a

nd
 p

er
 h

ou
r

w=0
w=0.5
w=1

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
o

f o
w

n
e

rs
p

er
 s

tra
te

g
y

coop.
passiv. self.
activ. self.

XXII

des défis pré-calculés. Le vérificateur possède un nombre limité de défis et leurs réponses
respectives qu’il emploie un par un pour tester la présence de la donnée chez le pair de
stockage. Cette vérification permet au vérificateur et au pair de stockage d’être payés. C’est
pourquoi la métadonnée stockée chez le vérificateur consiste en des réponses hachées. Les
réponses obtenues du pair de stockage peuvent toujours être testées mais permettent en elles
mêmes de déchiffrer des chèques reçus du propriétaire. Si le pair de stockage a gardé toute la
donnée intacte, lui et son vérificateur sont récompensés. Par contre, si le pair de stockage a
détruit la donnée, il sera détecté par un nombre suffisant de vérificateurs. Ces vérificateurs
gardent des parts d’un chèque électronique au nom du propriétaire : celui-ci représente la
punition du pair de stockage en cas de défaillance. Ces parts sont envoyées au propriétaire et
posséder un nombre suffisant de ces parts permet de construire le chèque et de l’encaisser au
près de sa banque.

La Fig. 6 est le résultat de la simulation du système de stockage basé sur l’approche de
paiement et illustre la convergence du système vers un état où seuls les pairs coopératifs
peuvent stocker leurs données. La convergence prend un certain temps (comparé à la réputation)
pour atteindre une population de propriétaires 100% coopératifs du fait de la grande taille du
système (nombre de pairs=10000).

Chapitre VI Validation par la théorie des jeux

Le rôle d’un mécanisme d’incitation à la coopération est de motiver les pairs rationnels qui
accomplissent des actions stratégiques à coopérer avec les autres pairs. Il s'avère que la
démonstration qu’un mécanisme satisfait cet objectif est possible avec les outils de la théorie
des jeux. Les jeux non coopératifs répétés sont employés pour valider les incitations de
coopération qui régissent les interactions entre pairs bien définis et donner ainsi une vue
microscopique du mécanisme; par contre l'utilisation de jeux évolutionnaires qui décrivent
l'évolution des stratégies chez plusieurs populations de pairs permettent de saisir une vue plus
large et plus dynamique du problème.

A. Jeu non coopératif répété

Le premier modèle de jeu proposé pour le système de stockage pair-à-pair basé sur
l’approche de paiement est un jeu non coopératif et symétrique qui se joue entre deux pairs : le
propriétaire de la donnée et le pair qui stocke cette donnée. Le propriétaire vérifie
périodiquement la présence de sa donnée chez le deuxième pair.

Le modèle de jeu de la Fig. 7 est un jeu séquentiel avec une distribution asymétrique
d'information, puisqu’on considère que le propriétaire ne connaît pas le type du pair de stockage
qui peut être coopératif ou égoïste ou même défaillant. Toutefois, le propriétaire a la possibilité
de déduire le type en se basant sur les résultats de vérification de la donnée à distance. Après
chaque vérification, le propriétaire met à jour sa croyance sur le type du pair de stockage selon
la formule de Bayes. Ces vérifications sont appelées signaux et le jeu est dit jeu à signaux
(signaling game). Un signal réussi (résultat de vérification positif) veut dire que le pair de
stockage est coopératif ou égoïste car il a pu répondre correctement (avec une probabilité q) à
un défi de vérification parce qu’il a gardé une portion de la donnée (qui correspond à l’ensemble
d’information III). Un signal erroné (résultat de vérification négatif) signifie au contraire que le
pair de stockage est défaillant ou égoïste (qui correspond à l’ensemble d’information IV). En se
basant sur ces signaux, le propriétaire a le choix entre récompenser, punir ou ne rien faire contre
le pair de stockage.

XXIII

La solution du jeu est de trouver l’équilibre. L’équilibre de Nash se résume à la non
coopération des deux parties : le pair de stockage choisit d’être égoïste et le propriétaire de le
punir. L’équilibre Bayesien parfait est plus adapté à ce type de jeu avec information incomplète
et réussit à produire la coopération des deux pairs mais avec des conditions qui lient les
paramètres du jeu (les valeurs de récompense et de punition par exemple).

Fig. 7 Jeu à signaux

Le jeu proposé est répété plusieurs fois avec une probabilité d’arrêt de jeu p. Le jeu peut
aussi être arrêté par le propriétaire qui choisit de punir le pair de stockage. Les profils d’action
considérés sont les suivants :

a) (signal réussi, récompense), (signal réussi, récompense), (signal réussi, récompense), …
b) (signal réussi, récompense), …, (signal réussi, récompense), (signal erroné, punition)
c) (signal erroné, punition)

Le résultat de l’analyse du jeu répété prouve que l'itération du jeu (valeur basse de p)
favorise la coopération du pair de stockage et du propriétaire. De plus, l’analyse démontre que
la coopération du propriétaire est stimulée en minimisant les valeurs de la récompense et de
punition et en maximisant le gain qu’il obtient du stockage à distance.

B. Jeu évolutionnaire

Le deuxième modèle de jeu du système de stockage pair-à-pair basé sur l’approche de
réputation décrit l'évolution des stratégies des populations d’individus suite à des interactions
locales multiples entre des individus choisis aléatoirement. Un individu joue contre un autre
joueur aléatoirement choisi avec le but de maximiser son utilité (fitness) dans ce jeu.

Le jeu évolutionnaire proposé est similaire à celui dans [Brandt et Sigmund 2006] où les
joueurs ont chacun un rôle défini : soit donateur, soit récipiendaire. Le donateur gagne un
avantage b d’un récipiendaire à un coût –c chez ce dernier. Le propriétaire, le pair de stockage
et le vérificateur sont des rôles qui sont jouables par n’importe quel pair. Le propriétaire est un
récipiendaire dans la terminologie de [Brandt et Sigmund 2006], et les r pairs de stockage et les
m vérificateurs sont des donateurs. Le propriétaire gagne b si au moins un pair de stockage
donne à un coût -c ; néanmoins si aucun pairs de stockage ne donne, alors le propriétaire peut

XXIV

gagner βb si au moins un vérificateur donne à un coût -αc (α≤1) pour chaque vérificateur. Le
dernier cas correspond à la situation où le vérificateur coopératif informe le propriétaire de la
destruction de la donnée, le propriétaire ayant alors la possibilité de maintenir le même taux de
réplication de sa donnée dans le système.

Les donateurs ont le choix entre donner (coopérer) ou pas. Le travail d’analyse se porte sur
les stratégies des pairs suivants:

- Toujours coopérer : le pair est altruiste et donne toujours lorsqu’il est dans le rôle du
donateur.

- Ne jamais coopérer : le pair ne donne jamais dans le rôle du donateur.
- Discriminer : le discriminateur donne selon des conditions : le discriminateur donne

lorsqu’il ne connaît pas le joueur d’en face ou lorsque ce joueur a déjà donné dans un jeu
précédent dans lequel le discriminateur était soit dans le rôle du propriétaire, soit dans le
rôle du vérificateur (il était observateur). Cette stratégie s’apparente à la stratégie œil pour
œil (tit-for-tat) mais diffère par le fait que non seulement le propriétaire tient compte des
actions du pair de stockage, mais aussi que les vérificateurs considèrent ces actions dans
leurs interactions futures.

La dynamique du jeu évolutionnaire se base sur la dynamique de reproduction de gènes qui
définit le taux de croissance de la population de pairs avec une stratégie déterminée est
proportionnelle à la valeur d’utilité acquise par la stratégie. Ainsi, la stratégie qui rapporte plus
d’utilité que l’utilité moyenne du système augmente ; alors que celle qui rapporte moins d’utilité
diminue en taille de population.

Fig. 8 Fraction des trois stratégies dans le temps : x(t) pour les altruistes, y(t) pour les non coopérateurs et z(t)
pour les discriminateurs.

La Fig. 8 montre la convergence du jeu évolutionnaire vers un équilibre où les altruistes sont
éliminés du jeu et les non coopérateurs et les discriminateurs coexistent. L’analyse du jeu
permet de déterminer les valeurs des paramètres du système (r, m, b, c) pour lesquelles les
discriminateurs, qui emploient le modèle de réputation basé sur l’audit, peuvent gagner contre
les non coopérateurs. En effet, augmenter le nombre de vérificateurs m permet d’accroître la
fréquence des discriminateurs à l'équilibre. Un stockage coûteux ou un taux de réplication r
élevé réduit cette fréquence.

0 30 60 90 120 150 180 210 240 270
0

0.2

0.4

0.6

0.8

Time (in days)

F
re

qu
e

n
cy

 o
f

st
ra

te
g

ie
s

x(t)
y(t)
z(t)

XXV

Chapitre VII Conclusion

Les systèmes pair-à-pair ont émergé comme un nouveau paradigme intéressant pour le
stockage distribué qui vise à profiter des ressources libres et inexploitées des pairs d’une
manière efficace et équitable. Externaliser le stockage de données chez des pairs d’un réseau est
probablement l’unique solution qui permet la disponibilité et la tolérance aux fautes des données
tout en garantissant une croissance à grande échelle et en réduisant ou même supprimant les
coûts d'entretien du stockage. Dans cette thèse, nous avons traité les problèmes de sécurité et de
coopération auxquelles une telle application peut être confrontée une fois efficacement déployée
dans le réseau.

Résumé et contributions

Tout d’abord, nous avons examiné les questions de sécurité liées au stockage de données
pair-à-pair. L'opération correcte d'un système de stockage pair-à-pair se base sur la coopération
équitable et efficace des pairs. Malheureusement, les pairs peuvent être malhonnêtes de diverses
manières. Les pairs de stockage peuvent prétendre stocker des données qu'ils ont en fait
détruites. Pour les approches basées sur la réplication, les pairs peuvent s'entendre pour stocker
une seule copie des données défaisant de ce fait les mécanismes qui assurent la fiabilité des
données. La collusion peut ne pas être la manière unique de faire ainsi, puisque les attaquants
Sybil peuvent produire plusieurs identités et les employer d’une manière frauduleuse.

Nous décrivons des éléments d'une architecture modulaire pour un tel système fournissant
les mécanismes de sécurité et de coopération nécessaires pour assurer l'opération correcte et
sécurisée d'un système de stockage de données pair-à-pair. Nous détaillons comment un
environnement de confiance peut empêcher des comportements malhonnêtes, en particulier
concernant l’identification des pairs, la vérification de l'intégrité des données, et la gestion de la
confiance.

Les actions dissimulées des pairs non coopératifs peuvent être dévoilées en utilisant un
nouveau type de protocole que nous qualifions de vérification de possession de données. Ces
protocoles permettent à un vérificateur de détecter si des données qui sont stockées à distance
ont été corrompues ou détruites sans les transférer jusqu’au vérificateur. Nous proposons trois
différentes constructions pour de tels protocoles avec différentes options pour la vérification, en
particulier concernant la délégation.

Le comportement des pairs de stockage peut être évalué en se basant sur les résultats obtenus
avec de tels protocoles. L’audit forme la base d'observation pour les mécanismes d’incitation à
la coopération que nous proposons pour stimuler la coopération et motiver les comportements
corrects. L'originalité de ces mécanismes provient de l'évaluation optimiste du comportement
des pairs, suivant ainsi une approche très différente comparée aux incitations à la coopération
dans les réseaux mobiles ad hoc (MANET) : tandis que le comportement d’un pair peut
seulement être décidé à la fin de la période de stockage, l’audit peut être exécuté de façon
régulière et nous considérons qu'un pair se comporte bien tant qu’aucune corruption de données
n'est détectée. Nous proposons deux mécanismes d’incitation à la coopération, un basé sur la
réputation et l'autre sur la rémunération. Les deux mécanismes sont conçus pour encourager un
comportement coopératif et également pour établir la confiance, détecter et punir les pairs
malhonnêtes.

L'efficacité de nos mécanismes basés sur l’audit en termes de sécurité et de coopération est
démontrée par des modèles théoriques de jeu non coopératif. Nous évaluons d'abord l'efficacité
des incitations avec diverses primitives d'observation probabilistes et déterministes. Des jeux
évolutionnaires sont également présentés afin d'évaluer les équilibres macroscopiques réalisés.

XXVI

Perspectives
Notre travail a présenté des primitives pour évaluer le comportement des pairs en ce qui

concerne le stockage. La réaction qui résulte de telles évaluations sert principalement à des
mécanismes d'incitation à la coopération. Cependant, les pairs, en particulier les propriétaires de
données, doivent également adapter leurs stratégies de stockage basées sur de telles évaluations.
Détecter un défaut de stockage devrait déclencher un processus de régénération de données pour
assurer la fiabilité à long terme du stockage de données. Cependant, l'efficacité d'un tel
processus dépend non seulement de la disponibilité d’un nombre suffisant de pairs de stockage,
comme nous l'avons modélisé, mais également du temps nécessaire pour le transfert des blocs
de données entre les pairs. Une analyse de performance d'un tel processus apporterait
certainement des évaluations plus réalistes quant à la largeur de la bande passante et aux
conditions de dynamicité d'une application de stockage pair-à-pair.

Les mécanismes de sécurité développés dans cette thèse, et en particulier les incitations à la
coopération, sont cruciaux pour estimer le degré de confiance d’un pair et stimuler sa
coopération. Bien qu'ils aient été conçus pour le stockage de données pair-à-pair, d'autres
applications pair-à-pair (e.g. la téléphonie pair-à-pair sur IP) tireraient certainement bénéfice de
tels mécanismes de sécurité et de coopération. Par exemple, les fournisseurs d’Internet peuvent
déployer des relais Wifi pour la téléphonie sur IP avec la coopération des utilisateurs qui
acceptent de configurer leurs boîtes ADSL pour mettre en œuvre ce service. En échange, ces
derniers disposent d’un accès au service qu’ils contribuent à déployer. Une gestion plus fine et
auto-organisante pourrait être réalisée, en particulier avec des incitations basées sur la
rémunération. Wuala par exemple a commencé à déployer son infrastructure de stockage de
données avec une telle approche. Les incitations à la coopération basées sur la rémunération
préparent également le terrain pour des architectures qui offrent des services multiples et qui
permettraient par exemple à des plateformes hétérogènes de coopérer efficacement et
d’échanger de la bande passante pour du stockage.

La protection contre des attaques de type Sybil et des attaques de blanchissement
(whitewashers) est une question centrale dans beaucoup d'applications pair-à-pair. Il convient de
noter que les approches complètement auto-organisées peuvent seulement atténuer de telles
attaques tout en appliquant une sanction contre les pairs honnêtes. Nous avons discuté de
l'utilisation d’un environnement de confiance comme solution possible. Bien que coûteux en
termes de déploiement, un environnement de confiance peut en effet fournir une solution à ce
problème qui permet aussi la scalabilité. En particulier, l'architecture TCG qui est de plus en
plus déployée dans les équipements d’entreprise est un candidat intéressant. Par exemple, les
mécanismes d'attestation anonymes et directs (direct anonymous attestation) peuvent lier des
données à une plateforme unique tout en préservant l'intimité de la plateforme. Il y a également
une tendance de fond à établir la confiance dynamique basée sur des rapports existants de
confiance et statiques, bien illustrée par l'apparition des services basés sur les réseaux sociaux
(Skype, Facebook, hi5, LinkedIn, MySpace). Dans de tels systèmes, de petits groupes de pairs
peuvent facilement être établis. La règle de Dunbar détermine qu'un pair donné peut maintenir
des rapports sociaux stables avec au plus 150 autres pairs. Ceci peut signifier que les
applications pair-à-pair pourraient à l'avenir montrer des topologies très différentes de celles
utilisées dans le partage de fichiers pair-à-pair dans lequel un pair peut se relier à 3000 autres,
comme dans les swarms de BitTorrent par exemple. La mise à l’échelle restera cependant un
défi de recherche important dans de tels systèmes qui peut encourager le développement de
protocoles plus efficaces pour contrôler l'interconnexion de multiples groupes reliant des pairs.

XXVII

Abstract

Self-organizing algorithms and protocols have recently received a lot of interest in mobile
ad-hoc networks as well as in peer-to-peer (P2P) systems. The latter in particular suggest that
decisions and operation, instead of being concentrated in a relatively low number of specific
devices (e.g., routers, gateways, servers, certification authority), may use the computing power,
bandwidth, or disk storage space of end-user devices in the network. Such techniques have
proven most successful to implement cost-effective and reliable applications to be deployed on
a large scale, as illustrated by file sharing, video/audio streaming, or VoIP. P2P storage,
whereby peers collectively leverage their storage resources towards ensuring the reliability and
availability of user data, is an emerging field of application. P2P storage however brings up far-
reaching security issues that have to be dealt with.

Providing assurances in P2P storage systems requires not only ensuring the confidentiality
and privacy of the data storage process, but also the introduction of proper security and
cooperation enforcement mechanisms for thwarting various peer misbehaviors. Indeed, the
delegation of data storage mechanisms to autonomous peers raises new concerns, in particular
with respect to peer selfishness, as illustrated by so-called free-riding attacks: the attacker may
consume storage resources without contributing its fair share, or may even corrupt or destroy
the data that it has promised to store while pretending it did its share of work. Systems
vulnerable to free-riding either run at reduced capacity or collapse entirely because the costs of
the system weigh more and more heavily on the remaining honest peers, thus encouraging them
to either quit or free ride themselves. Additionally, a new form of man-in-the-middle attack may
make it possible for a malicious peer to pretend to be storing data without using any local disk
space. New forms of collusion also may occur whereby replica holders would collude to store a
single replica of some data, thereby defeating the data redundancy requirement. Finally, Sybil
attackers may create a large number of identities and use them to gain a disproportionate
personal advantage.

Whilst many aspects of P2P applications have been thoroughly researched, security within
these applications still remains a challenge. A trusted infrastructure that offers an interesting and
powerful set of security features may be employed in order to act in response to such
challenges. We provide an architectural description with a layered organization to handle the
operation of the P2P storage system in a secure way. We show the different ways whereby such
architecture may be enhanced by judiciously introducing a trusted infrastructure. However, with
a trusted infrastructure, it is difficult to ensure a large scale P2P storage system with low
administrative attention. The security assurances of such system should be provided by relying
solely on peers themselves.

The continuous observation of peer behavior and monitoring of the storage process is an
important requirement to secure a storage system. Observing peer misbehavior requires
appropriate primitives like proofs of data possession, a form of proof of knowledge whereby the
holder interactively tries to convince the verifier that it possesses the very data without actually
retrieving them or copying them at verifier’s memory. We present a survey of such techniques
and discuss their suitability for assessing remote data storage. We also propose a new data
possession verification protocol through which verification can be handed over to volunteer
peers from the network. There is a potential interest in delegation method for verification,
mainly because the owner or the holder may be offline such that they are not able to catch each
other for the interactive verification protocol. Thus, the owner holds interest in delegating the
verification task to one or multiple verifiers; though multiple verifiers’ case is more desirable to
avoid Byzantine failures of verifiers or even potential collusion between a verifier and the
holder.

Cooperation is key to deploying P2P storage solutions, yet peers in such applications are
confronted to an inherent social dilemma: should they contribute to the collective welfare or

XXVIII

misbehave for their individual welfare? So-called cooperation incentive schemes provide an
answer to such dilemma by promoting ways of managing and organizing resources and dealing
with the new security challenges that traditional security approaches cannot cope with. We
review several incentive mechanisms that have been proposed to stimulate cooperation towards
achieving a resilient storage. We also propose mechanisms enforcing cooperation by means of
proofs of data possession periodically delivered by storage peers. This approach makes it
possible to change the purpose of cooperation incentives from stimulating cooperation among
peers to enforcing that cooperation and increasing its fairness.

The effectiveness of such incentive mechanisms must be validated for a large-scale system.
We approach this assessment with game theoretical techniques: cooperation incentive
mechanisms are proven to be effective if it is demonstrated that any rational peer will always
choose to follow mechanism directives whenever it interacts with another peer. We illustrate the
validation of cooperation incentives with non-cooperative one-stage and repeated Bayesian
games and evolutionary games.

XXIX

Table of Contents

Table of Contents .. XXIX

List of Figures .. XXXIII

List of tables ... XXXVII

1. Introduction .. 1

1.1. A case for P2P storage ...1

1.2. Security issues related to P2P storage ...2

1.3. P2P storage applications: A brief state of the art ...4

1.4. Research objectives ..6

1.5. Thesis organization ..6

2. Architecture: elements of a secure P2P data storage system 7

2.1. Basic infrastructure layer ..8
2.1.1. Network infrastructure ... 8
2.1.2. Security infrastructure .. 10

2.2. Overlay management layer ... 13
2.2.1. Classification ... 13
2.2.2. Metadata usage and management .. 15
2.2.3. Peer identification .. 16
2.2.4. Peer random selection .. 17

2.3. Trust and cooperation layer .. 17
2.3.1. Classification ... 17
2.3.2. Peer assessment.. 19
2.3.3. Cooperation incentives .. 21

2.4. Application layer ... 27
2.4.1. Shared storage management .. 27
2.4.2. Multi-service framework ... 28

2.5. Summary .. 30

3. Remote data possession verification .. 32

3.1. Problem Statement .. 32
3.1.1. Organization .. 32
3.1.2. Efficiency ... 33
3.1.3. Threat model .. 34

3.2. Probabilistic verification protocol ... 34
3.2.1. Protocol description ... 35
3.2.2. Security evaluation .. 36
3.2.3. Performance evaluation ... 37
3.2.4. Countering additional attacks .. 38

XXX

3.3. Restricted deterministic verification protocol .. 39
3.3.1. Lagrange interpolation polynomial .. 39
3.3.2. Protocol description ... 39
3.3.3. Security evaluation .. 40
3.3.4. Performance evaluation ... 40

3.4. Deterministic verification protocol.. 41
3.4.1. Security background .. 42
3.4.2. Protocol description: data-based version ... 42
3.4.3. Protocol description: chunk-based version .. 43
3.4.4. Security analysis .. 44
3.4.5. Performance analysis ... 45
3.4.6. Protocol refinement .. 45

3.5. Existing verification protocols ... 46

3.6. Summary .. 50

3.7. Relevant publication .. 51

4. Secure P2P data storage and maintenance ... 52

4.1. Threat model .. 52

4.2. An overview of existing approaches .. 52
4.2.1. Selection .. 53
4.2.2. Storage ... 53
4.2.3. Delegation .. 54
4.2.4. Verification .. 54
4.2.5. Repair ... 54

4.3. An erasure coding based data storage and maintenance protocol 55
4.3.1. Description ... 55
4.3.2. Security evaluation .. 59
4.3.3. Performance evaluation ... 60

4.4. An analytic model for P2P data storage and maintenance 60
4.4.1. Model of P2P data storage without data maintenance ... 61
4.4.2. Model of P2P data storage with data maintenance .. 62
4.4.3. Numerical simulation ... 63

4.5. Summary .. 64

5. Audit-based cooperation incentives ... 66

5.1. Cooperation incentives for P2P storage .. 66

5.2. Reputation-based approach .. 67
5.2.1. Threats ... 67
5.2.2. Reputation-based storage ... 68
5.2.3. Analytic evaluation .. 70
5.2.4. Simulation experiments ... 74
5.2.5. Security considerations .. 77

XXXI

5.3. Remuneration-based approach ... 77
5.3.1. Threats ... 78
5.3.2. Enabling mechanisms .. 78
5.3.3. Payment-based Storage .. 81
5.3.4. Simulation experiments ... 86
5.3.5. Security considerations .. 91

5.4. Discussion... 92

5.5. Summary .. 93

5.6. Relevant publication .. 94

6. Evaluating cooperation incentives using game theory ... 95

6.1. Preliminaries .. 95
6.1.1. Definitions ... 95
6.1.2. Related work .. 96

6.2. Repeated signaling game of payment-based incentives .. 99
6.2.1. Game elements ... 99
6.2.2. Game models ... 99
6.2.3. Equilibria ... 102
6.2.4. Repeated game ... 103

6.3. Evolutionary game model of reputation-based incentives 108
6.3.1. Game model ... 108
6.3.2. Observations .. 110
6.3.3. Fitness .. 111
6.3.4. Replicator dynamics .. 112
6.3.5. Evolutionary stable strategy ... 112
6.3.6. Numerical evaluation ... 113

6.4. Summary .. 118

6.5. Relevant publication .. 118

7. Conclusion and future work .. 119

Appendix A Diffie-Hellman based deterministic verification 123

Appendix B Managing whitewashers .. 127

Appendix C Dissymmetric peer defection .. 135

Bibliography ... 139

XXXII

XXXIII

List of Figures

Figure 1 Architecture of the P2P storage system. ..7
Figure 2 Network communication models: data exchange through (a) client/server and (b) P2P
models. ...9
Figure 3 Access control matrix.. 11
Figure 4 Decentralized overlay: (a) flat topology, (b) hierarchical topology, and (C) DHT-
based topology. ... 15
Figure 5 Trust taxonomy ... 18
Figure 6 The feedback loop of dynamic trust ... 19
Figure 7 Reputation: diagram of operations .. 23
Figure 8 Payment: diagram of operations ... 26
Figure 9 Multi-service framework based on payment .. 29
Figure 10 The Flask security architecture ... 30
Figure 11 Verification protocol in 3 phases: (1) the owner requests storage from 2 holders, (2)
owner delegates the verification of its data to 3 verifiers, and (3) the verifiers periodically check
the behavior of holders.. 33
Figure 12 Probabilistic verification protocol .. 35
Figure 13 Number of challenges required to achieve a probability of detection of holder’s
misbehavior .. 37
Figure 14 Restricted deterministic verification protocol .. 40
Figure 15 Deterministic verification protocol: data-based version .. 43
Figure 16 Deterministic verification protocol: chunk-based version .. 44
Figure 17 Data storage and maintenance phases .. 55
Figure 18 Storage phase ... 56
Figure 19 Delegation phase .. 57
Figure 20 Verification phase ... 57
Figure 21 Repair phase: (a) construction of a new coded block and (b) construction of the
corresponding metadata. ... 58
Figure 22 State model of data storage without maintenance .. 61
Figure 23 State model of data storage and maintenance .. 62
Figure 24 Number of holders. r=30, k=5, v=10, k’=7, d=6.94×10-4, λ=0.0167, λ’=0.0044
(rates per minute (mn)). .. 63
Figure 25 Number of online holders. r=30, k=5, v=10, k’=7, d=6.94×10-4, λ=0.0167,
λ’=0.0044 (rates per mn). ... 64
Figure 26 Whitelisting model. ... 70
Figure 27 Average observation quality: (a) varying r and (b) varying m. n=100, λ=0.2, γ=0.3,
r=3, m=5, w=0.5, η=0.3. .. 72
Figure 28 Average observation quality varying the fraction of malicious peers. n=100, λ=0.2,
γ=0.3, r=3, m=5, w=0.5. .. 73
Figure 29 Average observation quality varying the number of peers for (a) r=3 and (b) r=10.
λ=0.2, γ=0.3, m=5, w=0.5, η=0.3. .. 73
Figure 30 Averaged ratio of owners per strategy. n=300, r=3, m=5, P=0.01, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 30% actively selfish peers. 75

XXXIV

Figure 31 Averaged ratio of holders per strategy. n=300, r=3, m=5, P=0.01, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 30% actively selfish peers. 75
Figure 32 Average amount of control messages per file stored (in KB). n=1000, r=3, m=5,
P=0.01, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish
peers. .. 76
Figure 33 Fraction of cooperative owners varying the probability of newcomer’s acceptance P.
n=300, r=3, m=5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively
selfish peers. ... 76
Figure 34 Average amount of data stored per peer varying the probability of newcomer’s
acceptance P. n=300, r=3, m=5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers,
30% actively selfish peers. .. 77
Figure 35 KARMA framework: 1) payee sends a transfer request to its banker set; 2, 3) after
confirming the transfer from the payer’s banker set, 4) payee’s banker set will send back
receipt to the payee. .. 80
Figure 36 Used verification protocol ... 81
Figure 37 Escrowing credits ... 83
Figure 38 Payment protocol .. 85
Figure 39 Averaged ratio of owners per strategy. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 30% actively selfish peers. 87
Figure 40 Averaged ratio of holders per strategy. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 30% actively selfish peers. 87
Figure 41 Averaged ratio of cooperative owners varying probability of participation p and
probability of achieving promise q of actively selfish peers. n=1000, r=3, m=5, w=0.5, 40%
cooperators, 30% passively selfish peers, 30% actively selfish peers. 88
Figure 42 Averaged ratio of owners that switch their strategy at time=45 days (marked by the
red dashed line): (a) from cooperation to passive selfishness, or (b) from passive selfishness to
cooperation, or (c) from active selfishness to cooperation. n=1000, r=3, m=5, w=0.5, p=0.2,
q=0.2, 40% cooperators, 30% passively selfish, 30% actively selfish peers. 89
Figure 43 Average amount of control messages per file stored (in KB). n=1000, r=3, m=5,
w=0.5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.
 ... 90
Figure 44 Average peer rate of file storage and loss per hour. n=1000, r=3, m=5, w=0.5,
p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers. 90
Figure 45 Averaged amount of data stored in the system varying the weight w. n=1000, r=3,
m=5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.
 ... 91
Figure 46 Modeling the holder strategy .. 101
Figure 47 Modeling the owner strategy ... 101
Figure 48 Payoffs of H with type “S” and “C” (truncated) varying p and q. G=30, R=20, R’=5,
D=10. ... 105
Figure 49 The minimum value for p(C) acceptable for O to continue the game varying p and q.
G=30, R=20, R’=5, D=10. ... 106

XXXV

Figure 50 The minimum value for p(C) acceptable for O to continue the game varying R and R’.
G=30, D=10, q=0.5. ... 107
Figure 51 One-stage game model .. 109
Figure 52 System dynamics ... 110
Figure 53 Frequency of cooperators vs. defectors over time. m=5, r=3, β=0.1, α=20.10-6,
λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0.8, y(0)=0.2, and z(0)=0. 114
Figure 54 Frequency of the three strategies over time. m=5, r=3, β=0.1, α=20.10-6,
λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0.6, y(0)=0.1, and z(0)=0.3. 114
Figure 55 Frequency of discriminators at equilibrium varying z(0). m=5, r=3, β=0.1, α=20.10-

6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0. .. 115
Figure 56 Frequency of discriminators at equilibrium varying r. m=5, β=0.1, α=20.10-6,
λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5. 115
Figure 57 Frequency of discriminators at equilibrium varying m. r=3, β=0.1, α=20.10-6,
λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5. 116
Figure 58 Frequency of discriminators at equilibrium varying the average storage rate γ in
#file/hour. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, b=1, c=0.01, x(0)=0, y(0)=0.5,
and z(0)=0.5. .. 116
Figure 59 Frequency of discriminators at equilibrium varying the arrival rate λ in
#newcomers/hour. m=5, r=3, β=0.1, α=20.10-6, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0,
y(0)=0.5, and z(0)=0.5. ... 117
Figure 60 Frequency of discriminators at equilibrium varying the ratio c/b. m=5, r=7, β=0.1,
α=0.001, λ=0.01, σ=0.05, b=0.05, x(0)=0, y(0)=0.5, and z(0)=0.5. 117
Figure 61 Tree-based number generation. n=23. ... 123
Figure 62 Deterministic verification protocol .. 124
Figure 63 Frequency of defectors and discriminators. m=5, r=3, β=0.1, α=20.10-6,
λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, y(0)=0.5, and z(0)=0.5. 129
Figure 64 Frequency of discriminators at equilibrium varying their initial frequency. m=5, r=3,
β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01..................................... 130
Figure 65 Frequency of discriminators at equilibrium varying their probability of cooperation
with strangers p. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1,
c=0.01, y(0)=0.5, and z(0)=0.5. .. 130
Figure 66 Frequency of discriminators at equilibrium varying the probability of whitewashing
w. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, y(0)=0.5,
and z(0)=0.5. .. 131
Figure 67 Social welfare at equilibrium varying (a) the probability of cooperation p, (b)
probability of whitewashing w, and both of them. m=5, r=3, β=0.1, α=20.10-6, λ=10/month,
N=1000, γ=3 files/day, b=1, c=0.01, y(0)=0.5, and z(0)=0.5. ... 132
Figure 68 Social welfare at equilibrium varying (a) replication rate r (m=5) and (b) verification
distribution factor m (r=3). β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1,
c=0.01, p=w=0.5, y(0)=0.5, and z(0)=0.5... 133
Figure 69 Social welfare at equilibrium varying the churn λ. m=5, r=3, β=0.1, α=20.10-6,
N=1000, γ=3 files/day, b=1, c=0.01, p=w=0.5, y(0)=0.5, and z(0)=0.5. 133
Figure 70 Frequency of strategies over time. m=5, r=3, β=0.1, α=20.10-6, λ=10/month,
N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0.3, y(0)=0.3, and z(0)=0.4. 136

XXXVI

XXXVII

List of tables

Table 1 Summary of resource usage consumed by the probabilistic verification protocol
(variable n and m respectively correspond to data size and the number of chunks) 38
Table 2 Summary of resource usage consumed by the restricted deterministic verification
protocol (variable n and m respectively correspond to the number of data chunks and the
number of pre-computed challenges) ... 41
Table 3 Summary of resource usage of the deterministic verification protocol (variable n and m
respectively correspond to data size and the number of chunks) .. 45
Table 4 A comparison of existing verification protocols (variable n and m respectively
correspond to data size and the number of chunks) .. 49
Table 5 Comparison between the proposed reputation-based and remuneration-based
approaches ... 93
Table 6 Notations .. 100
Table 7 Normal form of the game of Figure 46 .. 102
Table 8 Finding the equilibrium for x=0, y≠0, z≠0. ... 113
Table 9 Summary of resource usage of the deterministic verification protocol (n corresponds to
data size) .. 125

XXXVIII

1

Chapter 1

1. Introduction

Peer-to-peer (P2P) networks have first emerged in the late 90’s as specialized systems and
protocols to support file sharing. They became very popular thanks to services like Napster14,
Gnutella15, KaZaA16 and Morpheus17, and particularly thanks to the legal controversy regarding
their copyrighted contents. Since then, the popularity of P2P systems has continued to grow
such that the self-organization of a service based on the contributions of its users is now
regarded as a general-purpose and practical approach that can be applied to designing
applications for sharing any resource. In this context, resources may include the exchange of
information, processing cycles, packet forwarding and routing, as well as cache and disk
storage. In this sense, an increasing number of services ranging from telephony or audio/video
streaming to ad hoc networking or nomadic computing are bound to use such architectures. P2P
storage services have more recently been suggested as a new technique to make use of the vast
and untapped storage resources available on personal computers. P2P data storage services like
Wuala18, AllMyData Tahoe19, UbiStorage20, or Cucku21 have received some highlight. In all of
these, data are outsourced from the data owner place to several heterogonous storage sites in the
network, in order to increase data availability and reliability, to reduce data storage maintenance
costs, and to achieve a high scalability of the system.

1.1. A case for P2P storage

Innovation and advancement in information technology has spurred a tremendous growth in
the amount of data available and generated. This situation has resulted in new challenges
regarding the need for scalable storage management that can only be addressed by
implementing storage applications in a self-organized and cooperative form. In such storage
applications, peers can store their personal data in one or multiple copies (replication) at other
peers. The latter, which we call data holders, should store data until the owner retrieves them.
Such P2P storage aims at maintaining a reliable storage without a single point of failure,
although without the need for an expensive and energy-consuming storage infrastructure as
offered by data centers (currently a lot of efforts are being undertaken to make these data

14 http://www.napster.com/
15 http://www.gnutella.com/
16 http://www.kazaa.com/
17 http://www.morpheus.com/
18 http://wua.la/en/home.html
19 http://allmydata.org/
20 http://www.ubistorage.com/
21 http://www.cucku.com/

2

centers efficient22). Peers volunteer for holding data within their own storage space on a long
term basis while they expect a reciprocal behavior from other peers.

It has been some years now that P2P storage has been presented as a solution for data backup
([Cox and Noble 2002] and [Lillibridge et al. 2003]) as well as for a new generation of
distributed file systems ([Druschel and Rowstron 2001], [Kubiatowicz et al. 2000], and
[Dingledine 2000]). P2P storage aims at a free and more importantly more resilient alternative
to centralized storage, in particular to address the fact that storage can still be considered as a
single point of failure. Additionally, P2P storage may also be attractive in wireless ad-hoc
networks or delay-tolerant networks (DTNs), notably since mobility introduces a store-carry-
and-forward paradigm ([Zhao et al. 2006]) to deliver packets despite frequent and extended
network partitions. The cooperative storage of other nodes’ messages until their delivery to their
destination thus might become an important feature of such networks. Context- or location-
based services may also benefit from P2P storage. Desktop teleporting ([Bennett et al. 1994],
[Pham et al. 2000]) for instance aims at the dynamic mapping of the desktop of a user onto a
specific location. Teleporting may benefit from some caching by using the storage offered by
surrounding nodes at the new user location, depending on the network topology. Location-
aware information delivery ([Marmasse and Schmandt 2000], [Huang at al. 1999], [Dey and
Abowd 2000], [Beigl 2000]) is another context-aware application. Each reminder message is
created with a location, the message being delivered when the intended recipient arrives at that
location,. In such an application storing messages at nodes situated nearby the location context
rather than at the mobile node may make sense, especially if only intermittent connections of
the mobile node are possible.

Though the self-organization introduced by P2P storage promises to produce large scale,
reliable, and cost-effective applications, it exposes the stored data to new threats. In particular,
P2P systems and even more so P2P storage systems may be subject to selfishness, a
misbehavior whereby peers may discard some data they promised to store for other peers in
order to optimize their resource usage. Maliciousness in the P2P context would simply consist
in peers destroying the data they store in order to reduce the quality of service of the system.
Because of the high churn and dynamics of peers, checking that some data have been stored
somewhere is quite more complex than checking that a route has been established with another
node in multi-hop MANETs for instance. In addition, such verifications cannot be instantaneous
but have to be repeatedly performed. All these problems contribute to the difficulty of properly
determining the actual availability of data stored onto unknown peers. Countermeasures that
take into account the fact that users have full authority on their devices should be crafted to
prevent them from cheating the system in order to maximize the benefit they can obtain out of
peer cooperation.

1.2. Security issues related to P2P storage

A P2P storage application takes advantage of the existing and spare disk space at peers
allowing the latter to leverage their collective power for the common good. While the
fundamental premise of this is voluntary storage resource sharing among individual peers, there
is an inherent tension between individual rationality and collective welfare that threatens the
viability of these applications. Selfish behaviors, termed free riding, are the result of a social
dilemma that all peers confront and may lead to system collapse in the tragedy of the commons

22 The Green Grid is an association of IT professionals seeking to dramatically raise the energy efficiency
of data centers: http://www.thegreengrid.org/

3

[Hardin 1968]: the dilemma for each peer is to either contribute to the common good, or to free
ride (shirk).

Achieving secure and trusted P2P storage presents a particular challenge in that context due
to the open, autonomous, and highly dynamic nature of P2P networks. We argue that any effort
to protect the P2P storage system should ensure the following goals:

- Confidentiality and integrity of data: Most storage applications deal with personal (or

group) data that are stored somewhere in the network at peers that are not especially
trusted. Data must thus be protected while transmitted to and stored at some peer.
Typically, the confidentiality and the integrity of stored data are ensured using usual
cryptographic means such as encryption methods and checksums.

- Anonymity: Anonymity can be a requirement for some type of storage applications that
aim at preventing information censorship for instance; however it may not be a targeted
objective for all of them. Anonymity may refer to the data owner identity, the data holder
identity, or the detail of their interaction. Anonymity permits to avoid attacks whereby the
data of a given user are specifically targeted in order to destroy them from the system.
Systems that seek to provide anonymity often employ infrastructures for providing
anonymous connection layers, e.g., onion routing [Goldschlag et al. 1999].

- Identification: Within an open environment like P2P networks, it is possible for the same
physical entity to appear under different identities, particularly in systems with highly
transient populations of peers. This problem may lead to the problem of “Sybil attacks”
[Douceur 2002], and may also threaten mechanisms such as data replication that rely on
the existence of independent peers with different identities. Solutions to these attacks may
rely on the deployment of a trusted third party acting as a central certification authority,
yet this approach may limit anonymity. Alternatively, P2P storage may be operated by
some authority controlling the network through the payment of membership fees to limit
the introduction of fake identities. However, that approach reduces the decentralized
nature of P2P systems and introduces a single point of failure or slows the bootstrap of
the system if payment involves real money. Without a trusted third party, another option
is to bootstrap the system through penalties imposed on all newcomers: an insider peer
may only probabilistically cooperate with newcomers (like in the P2P file sharing
application BitTorrent [Piatek et al. 2007]), or peers may join the system only if an
insider peer with a limited number of invitation tickets introduces them [Lesueur et al.
2008]. The acceptable operations for a peer may also be limited if the connection of too
many ephemeral and untrustworthy identities is observed [Yu et al. 2006]. This option
however seems to be detrimental to the scalability of the system and it has even been
shown that this degrades the total social welfare [Feldman and Chuang 2005]. Social
networks may also partially solve the identification issue.

- Access control: Encryption is a basic mechanism to enforce access control with respect to
read operations from one single reader. In the case of multiple readers, the distribution of
the keys necessary for accessing the stored data to these readers should be enforced in
order to prevent denial of service attacks against the storage peer launched by
unauthorized readers. For instance, access control lists can be assigned to data by their
original owners through the use of signed certificates. Capability-based access control can
be also employed like in [Srivatsa and Liu 2005]. Delete operations have to be especially
controlled because of their potentially devastating end result.

- Scalability: The system should be able to scale to a large population of peers. Since most
of the important functions of the system are performed by peers, the system should then
be able to handle growing amounts of control messages for peer and storage resource
management and an increased complexity in a graceful manner. The system may also be
clustered into small groups with homogeneous storage needs which may reduce the load

4

over peers. Another important issue associated with P2P applications is the fairness of
resource allocation (e.g., storage, bandwidth) between peers. Generally a quota system
introduced within a cooperation incentive mechanism is put in place to regulate resource
sharing. The role of such system is to adjust peer consumption to their just contribution:
no peer has the right to sponge off other peers.

- Data reliability: The common technique to achieve data reliability relies on data
redundancy at several locations in the network. The data may be simply replicated at a
given redundancy factor. The redundancy factor should be maintained during the entire
duration of the data storage. The rejuvenation of the data may be carried out either in a
periodic or event-driven fashion. For instance, in the latter approach, one or multiple new
replicas should be generated whenever a certain number of replicas have been detected as
destroyed or corrupted. Other redundancy schemes may be used instead of merely
replicating the data into identical copies; for instance erasure coding provides the same
level of data reliability with much lower storage costs.

- Long-term data survivability: The durability of storage in some applications like backup
is very critical. The system must ensure that the data will be permanently conserved (until
their retrieval by the owner). Techniques such as data replication or erasure coding
improve the durability of data conservation but these techniques must be regularly
adjusted to maximize the capacity of the system to tolerate failures. Generally, the
employed adaptation method is based on frequent checks over the data stored to test
whether the various fragments of a data are held by separate holders. Moreover,
cooperation incentive techniques must be used to encourage holders to preserve the data
they store as long as they can.

- Data availability: Any storage system must ensure that stored data are accessible and
useable upon demand by an authorized peer. Data checks at holders allow the regular
verification of this property. The intermittent connectivity of holders can be tolerated by
applying a “grace period” through which the verifiers tolerate no response from the
checked holder for a given number of challenges before declaring it non cooperative.

The rest of this thesis especially details how to achieve the last three objectives above: high

reliability, availability, and long-term durability of data storage in the context of a large scale
P2P storage system. These three objectives are often ignored in P2P file sharing applications
which rather follow best effort approaches. Performing periodic cryptographic verifications
makes it possible to evaluate the security status of data stored in the system and to design an
adapted cooperation incentive framework for securing data storage in the long run.

1.3. P2P storage applications: A brief state of the art

P2P storage applications have become famous in several domains: file sharing is the flagship
of such applications that it now accounts for almost 80% of total traffic [Bolton and Ockenfels
2000]; yet P2P file systems or file backup systems are also available.

PAST [Druschel and Rowstron 2001], which is based on Pastry, and OceanStore
[Kubiatowicz et al. 2000], which is based on Tapestry, are well-known file systems that make
use of DHT (Distributed Hash Table)-based overlay networks. Both PAST and OceanStore aim
at ensuring a high data availability of files by guaranteeing the geographical separation of
replicas: this is achieved by means of file replication and random distribution of the
identification numbers to peers. Both PAST and OceanStore rely on remuneration means as
cooperation incentives. Each OceanStore peer is supposed to pay a fee to one particular provider
who buys storage space from and sells it to other providers. Legal contracts and enforcement

5

can be used to punish peers that do not keep their end of the bargain, based on planned billing
and auditing systems. On the other hand, PAST relies on the use of smart cards to ensure that
peers cannot use more remote storage than they are providing locally. Smart-cards are held by
each PAST peer and issued by a third party, and they support a quota system that balances
supply and demand of storage space in the system. With fixed quotas and expiration dates, peers
are only allowed to use as much storage as they contribute.

The file systems described so far are not commercial infrastructures, on the contrary to the
Wuala23 start-up. Wuala is an online storage and file-sharing system that offers to “securely
store and back up files online, access them from anywhere, and share photos, videos, and music
with friends and family” 24. In Wuala, users may choose whether to have 1GB of free storage at
Wuala’s servers or trade their computer’s space for other Wuala members’ space. User files are
split into 500 encrypted fragments, each of which is stored onto other Wuala members’
computers. To our knowledge, the selection of storage peers is performed randomly and
centrally by Wuala. Wuala introduces an original mechanism for storage trading in that it takes
into account peer availability in the network: the gained storage space is equal to the contributed
data storage space times the actual availability percentage of the peer.

Pastiche [Cox and Noble 2002] is a storage system whose primary function is data backup
and which is based on Pastry for locating peers. It exploits excess disk capacity to perform P2P
backup with no administrative costs. Each Pastiche peer minimizes storage overhead by
selecting peers that share a significant amount of data. It replicates its archival data on more
than one peer. Most of these replicas are placed nearby to ease network overhead and to
minimize restoration time. To address the problem of storing data on malicious peers, Pastiche
uses a probabilistic mechanism to detect missing backup state by periodically querying peers for
stored data. However it sacrifices a fair amount of privacy because peers can grab some
information about the backup data.

The latter issue is less critical for the Cooperative Internet Backup Scheme [Lillibridge et al.
2003] where fragments of a file are stored at different geographical locations, and partners are
tracked by a central server. Each peer has a set of geographically separated partner peers that
collectively hold its backed up data. In return, the peer backs up a part of its partners’ data. To
ensure a high reliability, the scheme adds redundancy through Reed-Solomon erasure correcting
code.

AllMyData Tahoe25 also uses Reed-Solomon redundancy to provide automated online file
backup. The file fragments are redundantly disseminated into the network of storing peers in
such a way that only a small percentage of the fragments must be recovered in order to fully
restore the file. The file is identified using a URI that includes the rights (read/write) to the data
yet such capability-based access control requires URIs to always be kept secret (which is still an
open issue for AllMyData).

AllMyData does not consider any cooperation incentives for thwarting free-riding, whereas
in [Lillibridge et al. 2003], peers are periodically challenging each of their partners by
requesting them to send a block of the backed up data. An attack can then be detected and the
data blocks of the attacker that are stored in the attacked peer are consequently dropped. The
scheme then uses a sort of tit-for-tat (TFT) (similarly to BitTorrent [Cohen 2003]) strategy
whereby each peer takes note of its direct experience with a partner. If this partner does not
voluntarily cooperate or is estimated to cooperate below some threshold, the peer may decide to
dump it from its partner list.

23 http://wua.la/en/home.html
24 Wuala also provides typical Web 2.0 features like collaborative tagging, sharing, comments, etc.
25 http://allmydata.org/

6

1.4. Research objectives

The study of P2P systems raises several stimulating security challenges owing to the
intricate issues that are associated with self-organization in such systems. First of all, these
systems are inherently large scale, highly churned out, and relatively anonymous. This all
renders volunteer cooperation hardly achievable without some trust referential. Trust can be
achieved statically (based on identity for instance) or dynamically (self-organized trust). Static
trust refers to a statement of trustworthiness that remains the same until it is revoked, whereas
dynamic trust exhibits self-learning and self-amplifying characteristics. The latter arises from
behaviors experienced in the system and continuously changes accordingly. An entity trusts a
peer more when it has direct or indirect information about that peer that prove its trustfulness.
Such information may consist in the collection of its past behavior (reputation) or in a
commitment of financial reward or punishment if the peer cooperates or not (payment).
[Carbone et al. 2003] for instance introduces a trust model that does not only concentrate on the
content of evidence but also on the amount of such evidence.

The temporal dimension should also be taken into consideration. Cooperative interactions
between peers are generally understood as atomic operations which may be deemed to be
acceptable in the case of packet-forwarding or file sharing; however such an assumption
definitely does not hold for distributed storage, an operation that can certainly not be considered
as instantaneous. The latter application requires a new primitive that allows an immediate
evaluation of peer cooperation, and that we call proofs of data possession. The primitive aims at
periodically checking the actual storage at a holder in order to provide short-term assessments
of holder’s cooperation. Based on such primitive, cooperation incentives are introduced to
establish long-term trust between peers, to stimulate their cooperation, and to ensure the fairness
of their respective contributions.

To overcome the free-riding problem and to encourage peers to cooperate, incentive
mechanisms assume “strategic” peers with “rational” behavior. This generally represents a
worse situation than reality as file-sharing applications have shown. Game theoretical models
are the most efficient tool to evaluate whether such mechanisms will be followed by any
rational peer whenever it interacts with another peer. There are a large number of game
theoretical models that can fashion the P2P storage system, each one providing a different view
of the problematic and challenging facets of the system. We will particularly focus on non-
cooperative one-stage, repeated and evolutionary games. It should be noted that this rational
behavior assumption does not take into account purely malicious behaviors that have to be
addressed by some other means.

1.5. Thesis organization

The remainder of the thesis will be structured as follows. Chapter 2 describes a secure
architecture that attempts to fulfill the security goals of a P2P storage system. We show the
extent to which such an architecture may benefit from a trusted environment in order to realize
several critical functionalities instead of letting the peers realize them themselves. In Chapter 3,
we present two protocols that may be used to remotely prove data possession: the first one
achieves a probabilistic proof for the sake of better performance, whereas the second one allows
the prover to provide a deterministic and complete attestation of data possession. Based on such
primitives, mechanisms for enforcing cooperation in a resilient and secure way are introduced in
Chapter 4. Finally, Chapter 5 validates such mechanisms as cooperation incentives for rational
peers using game theoretical models.

7

Chapter 2

2. Architecture: elements of a secure P2P data storage system

In a P2P storage system, data are distributed in a self-organizing manner to multiple peers
instead of using a central storage outsourcing server. Such a P2P storage system is however like
any P2P application more complex and chaotic than classical distributed systems. The
organization and control that the system should afford is provided by the peers themselves.
These peers should organize themselves in a way that provides security, scalability, and
reliability of the storage. We define in this chapter the features of a secure architecture that
coordinates the system while attempting to meet several security goals. These goals are
presented and discussed beforehand. We suggest organizing the various functionalities offered
by a P2P data storage application along several orthogonal overlays. In addition, we present two
architectures, one based on self-organized peers, the other one making use of a trusted
infrastructure with the aim of enforcing system security.

A P2P storage system relies on the cooperation of peers to properly operate. Such
cooperation is controlled in a distributed fashion by peers themselves and whose role is critical
to achieving the overall requirements of a secure storage system. In the following, we will
describe each of these blocks specifying how they work and how they are connected to meet the
requirements of the P2P storage system (discussed in 1.2).

Figure 1 Architecture of the P2P storage system.

8

The proposed architecture follows a layered organization for the sake of modular
development and separation of concerns such that each layer may use elements produced by
lower layers. Wherever their functions can only be implemented in a self-organizing manner,
layers are implemented by overlays on top of a P2P network. Our architecture proposal consists
of four layers (depicted in Figure 1):

- Basic infrastructure layer: The layer defines the communication paradigm that is
employed in the storage system and that particularly illustrates the direct exchange of
messages and resources between peers. It also introduces a security infrastructure with
various forms that can be deployed within the network in order to carry several security
functions of the storage system.

- Overlay management layer: The layer provides the organization model of peers and
resources in the system.

- Trust and cooperation layer: The layer comprises the tools required to guarantee the
well operation of the system that relies essentially on the fair and large cooperation of
peers.

- Application layer: The layer is concerned with managing the service offered to the user.
The service is generally associated with the resource cooperatively exchanged between
peers notably the distributed storage facility.

2.1. Basic infrastructure layer

This section describes the network infrastructure that is used in the storage system. The main
characteristics of the infrastructure are discussed, particularly demonstrating that the peers
representing the network can handle all functionalities of the storage system (explained in detail
in the following sections). Yet, some functions can be handed out to a security infrastructure
that can be deployed within the network. Such infrastructure is also described in this section.

2.1.1. Network infrastructure

There are three models for the computer network depending on how resources are exchanged
between computers (depicted in Figure 2): client/server model and peer-to-peer (P2P) model.

- Client/server: In the client/server model, computers are distinguished between client
computers and server computers. The client requests some information from the server
that holds such requested information and transmits it to the client (e.g., HTTP, FTP).
Servers make use of dedicated server operating systems that are designed to handle the
load when multiple client computers access server-based resources. Moreover, servers
may employ trusted computing forms thus providing a trusted environment for the
system to handle several of its functionalities in a secure and protected way.

- P2P: In the P2P model, each computer can act as a server if it has some resources to
share, and can act as a client if it wants to request some resources from other computers.
Computers, termed peers, have equal roles and responsibilities. The communication
model relies on the direct exchange of resources between peers (e.g., file sharing, IP
telephony, publish/subscribe system).

9

(a) (b)

Figure 2 Network communication models: data exchange through (a) client/server and (b) P2P models.

Our work focuses on storage systems built over the latter type of networks: the P2P
communication model. We may assume in some cases discussed in this chapter that the network
further relies on a trusted environment based on trusted devices integrated within computers or
dedicated systems disseminated into the network to secure applications.

P2P networks abide by a communication paradigm that allows the direct exchange of

resources between peers rather than being exchanged through a centralized entity, the server.
Each peer provides an equivalent functionality and has equivalent responsibilities and
privileges. Due to the lack of dedicated servers, the control and management of such networks is
handled by peers themselves. P2P applications should thus be built talking into consideration
self-organization as the main feature characterizing such type of networks.

Because of the absence of a centralized server, there is no bottleneck in the network and the
architecture achieves minimal administrative and operational costs which render it particularly
scalable with a large population of peers.

However, the P2P network model is prone to peer failure and unpredictable peer departures
from the network. Such a model is highly dynamic in nature in the sense that peers randomly
join and leave the system at any time and concurrently without any central coordination (churn).
This may cause the partition of the network into smaller fragments sometimes leading to an
impossible communication between peers. Although P2P systems have received a lot of
attention in the past few years, they have also earned a lot of criticisms for their high
maintenance cost in the presence of high churn. Structured P2P networks (see next section) in
which peer organization is handled by all peers through exchanged control messages constitute
an example of efforts to cope with that issue. As another example, [Zhao et al. 2006] suggests
the use of “throwboxes” to improve the connectivity of P2P applications deployed on top of an
ad hoc network based on the “store-carry-and-forward” paradigm. Such throwboxes are trusted
devices disseminated within the network.

Robustness of applications built upon P2P networks is undermined by the potential peer
churn or failure. Peers are also heterogeneous in terms of the quality and quantity of resources
they offer, their connectivity, and behavior. Finally, the geographical and topological
distribution of peers generally prevents establishing any correlation between their
disconnections, departures, or failures. With such heterogeneity and behavior independence, the
robustness of applications relying on the network peers is enhanced just by distributing
application functionalities to multiple peers. Security mechanisms and primitives required to

10

ensure the security and protection of the P2P storage system should not just fulfill the objectives
discussed earlier, but they also should cope with peer churn and failure.

2.1.2. Security infrastructure

A security infrastructure can be deployed into the storage system; thus allowing to resolve
several problems notably related to self-organization. The security infrastructure provides strong
authentication mechanisms for peers; it may even be used to assess their behavior. Moreover,
trust among peers that have no relationships may be established thanks to the security
infrastructure.

The security infrastructure exists in various form factors, from dedicated trusted devices in a
network to trusted platforms integrated within untrusted devices. Their purpose is to achieve
confidence towards the integrity and reliability of one or several platforms in a network.

The security infrastructure may be used to correctly identify peers (see Section 2.2.3) or
assess their behavior (see Section 2.3.2). Additionally, it may manage reputation ratings of
cooperating peers in reputation approaches or care for the correctness of the fair-exchange and
handle payments in remuneration-based approaches (see Section 2.3.3). A trusted third party
may handle these functions. Techniques based on trusted operating system, trusted platform
module or smart cards may provide also these same functionalities but in a distributed fashion.

Trusted third party

A trusted third party (TTP) is an established and responsible entity (e.g., dedicated server)
accepted by all users as the authority for performing a given function (e.g., certification
authority, fair exchange, etc.). A TTP facilitates interactions between different parties with no
prior trust relationships, but which all trust the TTP and use this trust to secure their own
interactions between them. A TTP is termed online when it is involved in an electronic
transaction between peers, the transaction being possible only if it does not fail. Such a TTP
also constitutes a single point of failure in that case. Most protocols assume that a TTP will not
misbehave or collude with one of the transacting parties (e.g., [Cox et al. 1995]) whereas some
assume that the TTP is only semi trusted (e.g., [Franklin and Reiter 1997]). Some protocols on
the contrary rely on offline TTPs that are used in case of a dispute over the results of a protocol
Finally, as explained below, tamper resistance can provide the necessary basis for implementing
online authority in a distributed fashion and despite churn, thanks to the local availability of a
protected execution environment that cannot be manipulated nor observed by an adversary.

Trusted operating system

A trusted operating system (trusted OS) (called also secure operating system) is designed so
that agents (users or processes) can only perform actions that have been allowed. The primary
objective is to preserve and protect the confidentiality, integrity, and availability of information,
systems, and resources. This involves specifying and implementing a security policy: “A
security policy is a statement of what is, and what is not, allowed” [Bishop 2003]. A security
policy enables the proper managing and gaining access to information, systems and resources.
Security policies must be applied within access control mechanisms that are based on several
underlying concepts and principles.

Let us first define some aspects of access control terminology. The entity that requests
access to a resource is called subject. A subject is an active entity because it initiates the access
a resource. The requested resource is called object of the access, and it is the passive part of the
access. So, access control is the process by which to permit or deny the use of an object (such as
information, system, or resource) by a subject (such as user or process). Access control

11

techniques are concerned with whether subjects can access an object and how this access can
occur. A trusted OS involves each object being protected by an access control mechanism.

Generally, access control techniques are categorized as either discretionary or mandatory.
Alternative approaches are role-based access control, rule-based access control, or domain type
enforcement.

- Discretionary access control (DAC) is a security policy that allows the owner of the
information to decide who can read, write, and execute a particular object. DAC is based
on the idea that the owner of data should determine who has access to them.

- Mandatory access control (MAC) is a security policy where access is determined by the
system, not the owner. Administers and overseeing authorities pre-determine who can
access an object. MAC assigns security label (level of sensitivity) to objects and subjects,
limiting access across labels. Examples of security labels are: unclassified, sensitive but
unclassified (SBU), confidential, secret, and top secret; you can see more examples of
classification with their description in [Solomon and Chapple 2005]. Security labeling
confers to MAC the aspect of focusing on information confidentiality, and it is often
associated with Bell-LaPadula confidentiality model. Biba model developed a similar
method as Bell-LaPadula model, but it aims at providing information integrity.

- Role-based access control (RBAC) or task-based access control is a security policy that
requires that access rights be assigned to roles rather than to individual subjects. Subjects
obtain these access rights by virtue of being assigned membership in appropriate roles.

- Domain type enforcement (DTE) is an access control technology that restricts subject
accesses according to a specific security policy. DTE is an extension of Type
Enforcement (TE) and is itself extended into Dynamic Typed Access Control (DTAC).
Implementing TE gives priority to MAC over DAC.

Rso

Figure 3 Access control matrix

An access control system comprises an access control mechanism and all information
required to take decisions. An access control matrix (depicted in Figure 3) characterizes the
rights of each subject with respect to every object in the system. The redundancy of access
modes and complexity of matrix management render the model subject for theoretical analysis
only. In practice, there are two implementations alternatives for access control matrix that have
been developed: capabilities and access control lists.

- Capability list (CL) lists objects and rights associated with each subject. A capability is a
reference to an object, which allows the subject, possessing it, to interact with an object in

Objects

S
u

bj
ec

ts

o

s CL of subject s

ACL of object o

12

certain ways. It refers to a value that references the object along with an associated set of
access rights. Thus, capabilities encapsulate object identity and its location in memory.

- Access control list (ACL) lists subjects and rights associated with each object. ACL is a
concept of privilege separation in which each object is associated with a set of doubles,
each containing a subject and a set of rights. The list is a data structure (usually a table)
which contains entries that specify subjects’ rights for a specific object.

For centralized systems, the trusted OS assures the integrity of CL and subject identification
in ACL. For distributed system, user management is flexible in CL if revocation operation
which is difficult is not considered; however user management is complex in ACL although it
allows a better resource control.

More sophisticated policies have been also suggested such as usage control [Sandhu and
Park 2003] that extends traditional access control models: a usage decision is particularly made
by policies of obligations and conditions. Obligations are actions that are required to be
performed before or during the access process. Conditions are environment restrictions that are
required to be valid before access or during access.

Access control is certainly the core function of a trusted OS. The trusted OS has the role of
enforcing such control. There is generally a reference monitor that checks each subject’s
permission when it requests access. Permission is granted to the subject according to a security
policy defined by the access control mechanism.

Trusted platform module

The TCG26 (Trusted Computing Group) consortium, formerly named TCPA (Trusted
Computing Platform Alliance), founded in October 1999 by Intel, IBM, Compaq, HP, and
Microsoft, aims to “develop and promote open industry standard specifications for trusted
computing hardware building blocks and software interfaces across multiple platforms,
including PC’s, servers, PDA’s, and digital phones”. Trusted environment can be established
using its trusted platform modules (TPMs).

A trusted platform is “a platform that can be trusted by local users and remote entities to
always behave in the expected manner for the intended purpose”. To form a trusted platform,
TCG’s specifications define three components: a Trusted Platform Module (TPM), a Core Root
of Trust for Measurement (CRTM), and a Trusted platform Support Service (TSS).

- The TPM is a hardware chip that is separate from the motherboard. TPM is a passive

component, i.e. slave device that only performs action when asked (by operating system
or application), and it does not have access to system resources. The TPM offers a
physical true random number generator (RNG), cryptographic functions (i.e., SHA-1,
HMAC, RSA encryption/decryption, signatures and key generation), and tamper resistant
non-volatile memory (mainly used for persistent key storage). The TPM provides a set of
platform configuration registers (PCRs) that are used to store measurements of hash
values of the system/platform. The content of these registers can only be modified using
the extending operation:

PCRi+1 ← SHA-1(PCRi||M)

with PCRi the previous register value, PCRi+1 the new value, M a new measurement and ||
denoting the concatenation of values. The initial platform state is measured by computing

26 https://www.trustedcomputinggroup.org/

13

cryptographic hashes of all software components loaded during the boot process. The
Stored Measurement Log (SML) (also called the Event Log) is responsible for
maintaining an ordered database for all the events for every PCR. SML may be stored
outside the TPM because it can potentially grow very large. Another possible usage of the
TPM is key storage: key and other data will be encrypted by a secret key only known to
the TPM (binding storage), and the sensitive data can be bound to a certain platform
configuration i.e., encrypted data with a reference to the configuration then only the
platform in this configuration can read data (sealed storage).

- CRTM is the first code the platform executes when it is booted. The task of the CRTM is
to compute a hash of the code and parameters and extend the first PCR register with this
measurement. In this way a chain of trust is established from the CRTM to the operating
system and potentially even to individual applications.

- The TSS offers “low level” API for applications and platforms. It is responsible for all
kinds of functions that are necessary for communication with the rest of the platform or
other platforms.

Smart cards
A smart card is a programmable device that has a full operating system in the dimensions of

normally credit card size (ID-1 of ISO/IEC 7810 standard27). Therefore, applications can be
managed and nowadays the preferred language to implement the application is Java Card, a
subset of the Java language. A smart card has the same functionalities as a TPM (key storage,
key generation, cryptographic engine). Additionally like a TPM, a smart card is a slave device,
which is however portable. With this latter particular nomadic feature, a smart card typically
belongs to a certain user, contrary to TPM that is physically bound to a computing platform.
There are two broad categories of smartcards. Memory cards contain only non-volatile memory
storage components, and perhaps some specific security logic. Microprocessor cards contain
volatile memory and microprocessor components.

2.2. Overlay management layer

Given that P2P systems are highly dynamic networks of peers, organizing peers and
resources in such networks requires deploying a network overlay that offers a good substrate for
peer and resource management. An overlay network allows connecting peers by virtual or
logical links built on top of a physical network to which the overlay is generally totally
unrelated.

2.2.1. Classification

Overlays have been originally designed for file sharing applications to provide index storage
as well as discovery and lookup services for peer content. Overlays can be classified based on
their degree of centralization that illustrates the extent to which such overlays rely on one or
more servers to facilitate the interaction between peers.

Centralized overlay

Centralized overlays, also termed “peer-through-peer” or “broker mediated”, rely on a
centralized server that maintains the metadata information. Content discovery and lookup are
performed on the central server, and the end-to-end resource transfers are made between peers

27 ISO/IEC 7810 in Wikipedia : http://en.wikipedia.org/wiki/ISO/IEC_7810

14

themselves. The Napster28 architecture, which consists of a central index server to which peers
logged in and uploaded metadata, is a perfect illustration of this architecture. The centralized
approach quickly and efficiently locates data but it is vulnerable to the flash crowds, whereby
popular data become less accessible because of the load of the requests on the central server, or
plain denial of service. The server thus constitutes a single point of failure that is vulnerable not
only to technical failure or malicious attack, but also to censorship.

Decentralized overlay

In decentralized overlays, peers combine the roles of servers and clients without the need for
a central coordination of their activities. Decentralized overlays fall into two classes, depending
if they have an unstructured or structured topology (see Figure 4).

An unstructured overlay is composed of peers joining the network without any prior
knowledge of the topology.

- Flat topology: Gnutella29 is the first system that makes use of unstructured overlays. To
retrieve data over the overlay, Gnutella floods queries over the network with a limited
scope. Therefore, the unstructured overlay does not scale when handling a high rate of
aggregate queries and sudden increase in the system size because peers become
considerably overloaded; even though the approach is effective in locating highly
replicated data and is resilient to peers joining and leaving the system.

- Hierarchical topology: Another type of unstructured overlay is proposed by the
FastTrack [Liang et al. 2006] two-tier architecture particularly used in KaZaA30 ,
Grokster31, and iMesh32. In this architecture, some of the peers assume a more important
role than the rest of the peers, acting as local central indexes as Napster for the data
shared by local peers. These peers, called “super-peers”, are selected for these special
tasks and do not constitute single points of failure like in Napster, since they are
dynamically assigned and replaced if they are subject to failure or attack. However, the
architecture may create islands of sub-networks that are not connected to each other
which slows discovery and lookup of shared data.

A structured overlay does not place data at random peers but at specified locations with a
topology that is tightly controlled.

- DHT-based topology: Such structured overlays use the Distributed Hash Table (DHT) as
a substrate such as CAN [Ratnasamy et al. 2001], Chord [Stoica et al. 2001], Pastry
[Rowstron and Druschel 2001], or Tapestry [Zhao et al. 2000]. DHT-based overlay
consistently assigns uniform random IDs to the set of peers into a large space of
identifiers. Data objects are assigned unique identifiers called keys, chosen from the same
identifier space. Keys are mapped by the overlay network protocol to a unique live peer
in the overlay network. Although structured overlays can efficiently locate rare data items
since the key-based routing is scalable, they incur significantly higher overheads than
unstructured overlays for popular content.

28 http://www.napster.com/
29 http://www.gnutella.com/
30 http://www.kazaa.com/
31 http://www.grokster.com/
32 http://imesh.com

15

(a) (b) (c)

Figure 4 Decentralized overlay: (a) flat topology, (b) hierarchical topology, and (C) DHT-based topology.

Choosing structured or unstructured overlay for data storage, discovery, and lookup comes
with some tradeoffs for file sharing applications. However, our considered application differs
from file sharing: in the latter, peers may not actually know the location of the data and
therefore need to query the network overlay to search for such information; whereas in our
application, the owner may know the location of its stored data (if the). Still, an overlay is
required to provide the storage of metadata in addition to other services related to peer
organization like for instance the random selection of potential holders or verifiers within the
P2P network.

2.2.2. Metadata usage and management

Metadata must be introduced into the overlay for describing the attributes relative to data
stored (e.g., name, size, ownership, and type), their structures (e.g., length and fields), their
location, or a short description of their content. Moreover, security metadata also must be
introduced specifically for data storage applications. Each peer may store data and replicate
them at other multiple peers. The data must initially be encrypted before being stored at the
holder so as to protect them. Decryption keys are either kept by the owner (single reader) or
distributed to peers allowed to access the data (multiple readers) as metadata. Signed certificates

16

in the form of capability-based access rights may also be granted and distributed as metadata,
hence offering a low granularity of access to data. A peer wanting to retrieve some data will
thus need to refer to metadata information for identifying the location of their holders,
decrypting the data, or even for verifying their integrity.

Such metadata can be handled by the owner peer itself or made available at a centralized
entity that cares about providing this type of information online or offline, or distributed to
peers in the network that cooperatively administer this information either within a structured or
unstructured network overlay. For instance, [Srivatsa and Liu 2005] proposes the
LocationGuard algorithm for hiding the location of application data or of an online service on a
large overlay network. The location hiding algorithm uses location keys to implement a
capability-based access control mechanism whereby the token (capability) is a pseudo-filename
generated from file’s name and its location key.

2.2.3. Peer identification

Peer identification in a P2P network is a very important security issue. The lack of strong
peer identities and the dynamicity of P2P networks with arrivals and departures of peers may
lead to the problem of whitewashing whereby misbehaving peers leave the system and come
back with new identities to avoid any penalty because of their misbehavior.

Additionally, without proper peer identification, the system is vulnerable to the Sybil attack
(also formerly known as pseudo-spoofing) where the attacker masquerades under multiple
simultaneous identities in order to gain an unfair advantage over system resources. Completely
eliminating Sybil attacks can only be provided by trusted certification as proven by Douceur
[Douceur 2002]. Trusted devices associated with peers can be used as an implementation to
eliminate such attacks, even though a peer may buy multiple devices and then acquire multiple
identities yet at a high cost. [Balfe et al. 2005] proposes a pseudonymous authentication scheme
for P2P networks based on TPMs. The scheme assumes TCG-enabled peers with appropriate
Direct Anonymous Attestation (DAA) credentials. DAA is an approach (supported in version
1.2 of TCG specification) that relies on cryptographic techniques to ensure the privacy of TPM
users, without introducing the requirement for special trusted third parties (e.g., privacy CA).
Based on DAA approach, the TPM proves that it has knowledge of a specific TPM-controlled,
non-migratable secret value (the value is not revealed during the process). With the scheme of
[Balfe et al. 2005], any peer is able to verify the pseudonym of another peer by challenging this
latter to supply a DAA signature on some message. Such verification allows checking that the
peer has a valid credential supplied by a particular issuer and also that the pseudonym is
determined as a function of the P2P network name. Peers can thus be authenticated without
revealing their TPM identities in the process.

Without a trusted infrastructure, Sybil attacks can only be mitigated at best. Mitigation can
be achieved by relying on the topology, for instance through the test of a peer IP address range.
It can also be achieved more indirectly by making the newcomer pay with computation
resources, bandwidth, or storage capabilities, such as for example with crypto-puzzles
[Vishnumurthy et al. 2003]. Other techniques like SybilGuard [Yu et al. 2006] rely on prior
trust relationships e.g., real-world friendship between peer owners to detect Sybil attackers.
[Lesueur et al. 2008] even enhances the SybilGuard approach by controlling the number of peer
invitations that a group member possesses.

In the three latter methods, the costs are only one-time paid by Sybil attackers and can be
then amortized during the rest of the system operation. As discussed in [Levine et al. 2006],
such costs can be periodically paid by repeatedly performing resource testing on peers, thus
confining the potential return on investment of Sybil attackers to a limited time slot. Even
though all these proposed approaches for limiting Sybil attacks without trusted infrastructure are

17

scalable compared to certification-based approaches, they incur a huge cost overhead not only
for Sybil attackers but also for honest newcomers, which may undermine their practicability and
tolerability in actual implementations. In that respect, [Feldman et al. 2006] for instance shows
that imposing a penalty on all newcomers significantly degrades system performance when the
peer churn rate is high.

2.2.4. Peer random selection

In a centralized overlay, the random selection of peers can obviously be performed by
parsing the list of peers registered to the network and selecting a random subset of them. Peers
may also be organized in an unstructured or a structured network overlay. Both types of
overlays permit the random selection of peers.

In unstructured overlays, the random selection may be based on the random walk. To solicit
a number of random peers, the requesting peer starts the random walks at a subset of its
neighbors chosen randomly, and runs them for TTL (time to live) steps. Each intermediate peer
involved in the walk forwards the query message to a randomly chosen sub-set of its neighbors
until the TTL is reached. The final peers are considered as the randomly selected peers. The
random walk approach is proven to be inherently scalable [Zhong et al. 2008] because its
communication overhead does not increase as the network size grows. In structured overlay,
random selection of peers can be realized by randomly choosing a value from the number space,
and routing to that value. However, the problem of random peer selection boils down to the
problem of assigning identifiers appropriately in the network overlay. Such identification is
prone to Sybil attacks that threaten also the selection based on the random walk.

2.3. Trust and cooperation layer

In P2P systems, peers often must interact with unknown or unfamiliar peers without the help
of trusted third parties or authorities to mediate the interactions. As a result, peers trying to
establish trust towards other peers generally rely on cooperation as evaluated on some period of
time. The rationale behind such trust is that peers have confidence if the other peers cooperate
by joining their efforts and actions for a common benefit.

2.3.1. Classification

Trust between peers can be achieved in two essential ways that depend on the type and
extent of trust relationships among peers and that reflect the models and trends in P2P systems
(the used taxonomy is depicted in Figure 5). Static trust based schemes rely on stable and
preexisting relationships between peers, while dynamic trust is relying on a real-time
assessment of peer behavior.

18

Figure 5 Trust taxonomy

Among other taxonomies have been proposed, [Obreiter and Nimis 2003] classifies
cooperation enforcement mechanisms into trust-based patterns and trade-based patterns.
Obreiter et al. distinguish between static trust, thereby referring to pre-established trust between
peers, and dynamic trust, by which they refer to reputation-based trust. They analyze trade-
based patterns as being based either on immediate or on deferred remuneration. Other authors
describe cooperation in self-organized systems only in terms of reputation based and
remuneration based approaches. Trust establishment, a further step in many protocols, easily
maps to reputation but may rely on remuneration as well. In this work, we adhere to the existing
classification of cooperation incentives in distinguishing between reputation-based and
remuneration-based approaches.

Static trust

Peers may have prior trust relationships based for example on existing social relationships or
a common authority. In friend-to-friend (F2F) networks, peers only interact and make direct
connections with people they know. Passwords or digital signatures can be used to establish
secure connections. The shared secrets needed for this are agreed-upon by out-of-band means.
Turtle [Popescu et al. 2004] is an anonymous information sharing system that builds a P2P
overlay on top of pre-existent friendship relations among peers. All direct interactions occur
between peers who are assumed to trust and respect each other as friends. Friendship relations
are defined as commutative, but not transitive.

[Li and Dabek 2006] proposes a F2F storage system where peers choose their storage sites
among peers that they trust instead of randomly. Compared to an open P2P storage system, the
proposed approach reduces the replication rate of the stored data since peers are only prone to
failure not to departure or misbehavior. However, the approach is more applicable to certain
types of storage systems like backup since it provides data durability not generally data
availability: peers may not often leave the system but they me be offline. F2F-based approaches
ensures the cooperation of peers which results in enhanced system stability and reduces
administrative overhead; even though these approaches does not help to build large scale
systems with large reserve of resources.

Trust

Static trust
(Prior trust)

e.g., social networks (F2F)

Dynamic trust
(No prior trust)

Long-term trust
(Posterior trust)

Reputation

Short-term trust
(No posterior trust)

Bartering Payment
Cooperation
incentives

19

Trust can be established using a trusted authority like in UbiStorage33. Such service proposes
a file system that is based on a distributed trusted infrastructure of servers built over a network
of peers. Indeed, the service distributes dedicated terminals, named “néobox”, to peers. These
terminals are used to securely store other peers’ data. Dedicated devices, named “throwboxes”,
are also used to increase the capacity of an ad hoc network in [Zhao et al. 2006]: throwboxes
store node messages before being transmitted to their destination.

Dynamic trust

A P2P storage system may rely on the cooperation of peers without any prior trust
relationships. Some trust is then established as peer interactions progress, through cooperation
incentive mechanisms. Peers describe their trust towards each other either directly based on
reputation, or indirectly through payment incentives, money being an indirect though not always
fully meaningful measure of how trusted some peer might be. The lack of prior trust between
peers allows building open large scale systems that are accessible to the public. Storage systems
with cooperation incentives perhaps result in more overhead than with prior trust based
approaches; but however the reliability of the stored data is increased since data will be
generally stored in multiple copies at different worldwide locations rather than confined at one
or limited number of locations.

Inciting peers to adopt a cooperative behavior can only achieved efficiently if peer behavior
can be correctly assessed. Therefore, cooperation incentive mechanisms should comprise
verification methods for measuring the actual peer contributions to the P2P system. The
evaluation of the behavior of each peer allows determining the right incentives to stimulate its
cooperation. In turn, such incentives guide the peer in adapting its contribution level. A peer
might in particular choose the best strategy that maximizes its utility gained from the system: it
compensates the cost incurred due to its potential contribution with the incentives received in
support for its cooperation. With such a cyclic process, the system dynamically reaches the
status of “full” cooperation between peers.

Figure 6 depicts the feedback loop illustrating the correlation between peer assessment,
cooperation incentives and peer strategies.

Figure 6 The feedback loop of dynamic trust

2.3.2. Peer assessment

An evaluation of the peer behavior can be performed at different timescales. An immediate
evaluation of the peer behavior is only possible if the peer contribution occurs immediately like

33 http://www.ubistorage.com/

20

in packet forwarding application (e.g., [Michiardi 2004] and [Buttyán and Hubaux 2003]).
Otherwise, peer evaluation is deferred to the completion of the peer contribution as it is the case
in data storage applications. This constitutes a problem for storage applications since
misbehaving peers are left with an extensive period of time during which they can pretend to be
storing some data they have in fact destroyed for free-riding or for purely malicious purposes.

Proof of data possession

Periodic peer evaluation can be achieved through proof of knowledge protocols that have
been called interchangeably remote integrity checking [Deswarte et al. 2004], demonstration of
data possession [Filho and Barreto 2006], proofs of data possession [Ateniese et al. 2007], or
proofs of retrievability [Juels and Kaliski 2007]. Chapter 3 suggests three verification protocols
of this type with various tradeoffs.

Such protocols are used as an interactive proof between the holder and the verifier or
possibly the owner, in which the holder tries to convince the verifier that it possesses these very
data without actually retrieving them. Interaction is based on challenge-response messages
exchanged between the holder and the verifier. Verification of the holder’s response is
permitted through some information kept at the verifier side.

Verification protocols generally require storing security metadata for verification purposes,
which are much smaller than data themselves, making it possible for multiple peers to perform
periodic verifications at multiple holders. Verifiers may comprise not just the owner but also
peers from the network selected and appointed by the owner. The distribution of behavior
assessment tasks to multiple peers allows deploying the P2P storage application in a large scale.
It also allows mitigating the selfishness of verifiers whereby they give up performing the
verification task or send bogus verification results to the owner.

To ensure that a data is periodically verified, we may rely on some trusted devices rather
than on the delegated verifiers. Distributed online TTPs may perform the verification operations
over the data at several holders. Such TTPs may be represented as dedicated devices distributed
over the network. They have storage capability and they are easy to deploy in the field without
access to any infrastructure. TTPs may correspond to TPMs or smart cards that are held by each
peer and that periodically perform verification of peer’s storage. This approach reduces the
communication overhead of the verification process since verification messages are exchanged
between the TPM or the smart card and its holder.

However, the peer may detach such device avoiding its storage to be verified. Therefore, we
should ensure that the incentives for cooperation must be enforced through the trusted device
i.e., the peer cannot use the storage system without contacting its device, as illustrated by
[Buttyán and Hubaux 2001]. For instance, verification operations whose outcome is positive
increases a counter in the trusted device, such counter if it exceeds a certain threshold enables
the very peer to store its own data into the system. Additionally, we may resort to a trusted OS
that controls several peer functionalities such that if ever the peer selfishly disconnects from the
network the trusted OS reduces the number of services or even degrades the quality of service
offered to that peer.

Distribution of peer assessment information

Verification results obtained from the periodic auditing of holders can be kept private by the
verifiers or instead distributed to peers other than the data owner. Private information is
certainly objective but achieves a very local view about peer behavior confined to a small subset
of network peers; even though delegating the verification task to multiple verifiers increases the
size of such subset.

Cooperation incentive approaches have proven to be more successful (see [Lai et al. 2003])
if they rely on an objective and shared history of peer actions to compute reputation ratings.

21

Results obtained from remote data possession verification protocols provide such objective
evaluations of effective data storage, however the knowledge of such results, which we call
audits, are limited to the verifiers and the owner of the verified data. Verification results can be
disseminated using a centralized or decentralized overlay network. A centralized entity may
distribute verification results. It collects all information about the behavior of peers in the
system, and then disseminates a history of peers’ behavior to any peer either in a regular-basis
or on-demand. However, the centralization creates a bottleneck problem at the central entity.
The verification information can also be provided within a structured or unstructured overlay
where peers may search for this kind of information, for instance through a random walk to
collect the information from random peers [Anceaume and Ravoaja 2006] or through score
managers that are assigned within a DHT to track the behavior of a given peer [Kamvar et al.
2003]. These approaches make collected information that may be subjective or even incorrect
available to the other peers in the system. In Section 5.2.3 of Chapter 5, we introduce an
analytic model that proves that this kind of indirect approach degrades the quality of collected
evidences.

2.3.3. Cooperation incentives

Peer behavior assessment forms the basis of an efficient cooperation incentive mechanism.
From such an evaluation, well-behaved peers will be rewarded with incentives while ill-behaved
peers will be punished. Incentives may consist in exchanging identical resources (Barter), or in
conferring good reputation to the well behaved peers, or in providing well behaved peers a
financial counterpart for their cooperation.

Bartering

Barter based approaches do not require the interacting peers to have any preset trust
relationships. They rather rely on a simultaneous and reciprocal behavior. The exchange of
resources in particular takes place if both peers cooperate with each other; otherwise, there is no
exchange.

Cooperation incentives may be cheaply built on a tit-for-tat (TFT) strategy (“give and ye
shall receive”). The peer initially cooperates, and then responds likewise to the opponent's
previous action: if the opponent previously cooperated, the peer cooperates; otherwise, the peer
defects. TFT is demonstrated to be an evolutionary stable strategy (ESS) in game theory jargon:
this strategy cannot be invaded (or dominated) by any alternative yet initially rare strategy.

In the Cooperative Internet Backup Scheme [Lillibridge et al. 2003], each peer has a set of
geographically-separated partner peers that collectively hold its backed up data. In return, the
peer backs up a part of its partners’ data. To detect free-riding, each peer periodically evaluates
its remote data. If it detects that one of its partners dropped the data, the peer establishes a
backup contract with a different partner. Since the scheme relies on identical and immediate
resource exchanges, peers must be able to choose partners that match their needs and their
capabilities and that ensure similar uptimes. To this end, a central server tracks peers and their
partners. Decentralized methods of finding partners in a Gnutella-like flooding approach are
also suggested although not evaluated in [Lillibridge et al. 2003].

However, TFT is not perfect as illustrated by the P2P file sharing protocol BitTorrent34. In
BitTorrent, unchoking a peer means that the peer is accepted to upload files for it. Peers follow
a TFT strategy by unchoking peers that provide the highest throughput for them, and besides
that they use an optimistic unchoking strategy to discover potentially better trading peers.
However this strategy of (probabilistically) cooperating with newcomers blindly can be

34 http://www.bittorrent.com/

22

exploited by whitewashers (peers that repeatedly join the network under new identities to avoid
the penalty imposed on free-riders). [Piatek et al. 2007] describes the design of BitTyrant, a
selfish client that demonstrates that BitTorrent incentives don’t build robustness. The reason is
that TFT is no longer an evolutionary stable strategy in the presence of whitewashers.

Reputation

Reputation relies on the evaluation of the past behavior of a peer for deciding whether to
cooperate with it. Reputation then builds a long-term trust between peers based on a statistical
history of their past interactions. This allows going beyond barter-based approaches (direct
reciprocity) by permitting to several peers to indirectly reciprocate to the behavior of the
observed peer.

A reputation mechanism consists of three phases (summarized in Figure 7):

1. Collection of evidence: Peer reputation is constructed based on the observation of the
peer, on experiences with it, and/or on recommendations from third parties. The
semantics of the information collected can be described along two dimensions:

o Specific vs. general information: specific information about a given peer relates
to the evaluation of its functionality such as its ability to deliver a service on time,
which general information evaluates all its functionalities (e.g., measured as a
weighted average).

o Objective vs. subjective information: objective information (also known as direct
or private information) can be obtained about a given peer through past
interactions, while subjective information (also known as indirect or public
information) refers to either listening to messages intended for other peers or to
using the opinion of others about the peer. A message can also voluntarily
piggyback evaluations collected by other peers as extra information.

23

Figure 7 Reputation: diagram of operations

2. Cooperation decision: Based on the collected information, a peer can decide whether it
should cooperate with another peer, based on the reputation of that other peer. There
exists a variety of methods for computing the reputation of an entity such as voting,
averaged ratings, Bayesian computation ([Jøsang and Ismail 2002] and [Mui et al.
2001]), or the flow model (e.g., PageRank [Page et al. 1998] algorithm for ranking
Google35’s web pages36 and EigenTrust [Kamvar et al. 2003]). More details can be
found in [Jøsang et al. 2005].

3. Cooperation evaluation: The occurrence of an interaction with a peer is conditional on
the previous phase. After interaction, the degree of cooperation of the peer involved is

35 http://www.google.com
36 The public PageRank measure does not fully describe Google's page ranking algorithm, which takes
into account other parameters for the purpose of making it difficult or expensive to deliberately influence
ranking results in what can be seen as a form of "spamming".

24

determined. Peers performing correct operations, that is, behaving cooperatively, are
rewarded by increasing their reputation accordingly. A peer with a bad reputation will
be isolated from the functionality offered by the group of peers as a whole.

The reputation mechanism may rely on an online TTP to collect auditing information,
compute the reputation of the corresponding holder and disseminate such information to the rest
of peers, either periodically or on-demand. However the approach results in a bottleneck
problem and does not scale to large populations of peers. This task of reputation collection and
dissemination can be attributed not to a single TTP but instead to several ones, even though
decreasing the total shared history of peer actions while achieving a more scalable system.

Reputation values can be handled by peers through the use of TPMs or smart cards. These
devices would then verify the data that the device holder has promised to store, compute the
reputation of this latter accordingly, and distribute the reputation information to other peers
when requested. The computed reputation would then provide an accurate and complete record
of all peer actions. However, this approach may be still vulnerable to attacks whereby the peer
maliciously disconnects the trusted device from the network. This would however prevent the
peer from using the system and storing its data at other peers without presenting an up-to-date
reputation certified by its device. For instance, a potential holder may request a data owner
reputation by selecting a random number as a nonce. Then, the owner should send back its
reputation along with the nonce certified by its trusted device.

Reputation may also just rely on peers themselves that compute reputation ratings for each
other peer based on their personal experiences. The learning process of such ratings may be
made fast by considering groups of peers rather than the whole system of peers. Group members
interact with each other and accordingly compute reputation ratings for each other. The
reputation approach based on this structure is describes in more detail in Section 5.2 of Chapter
5.

Payment

In contrast to reputation-based approaches, payment-based incentives constitute an explicit
and discrete counterpart for cooperation and provide means to enforce a more immediate form
of penalty for misconduct. Payment based approaches make it possible to secure short-term
interactions between peers without relying neither on prior trust nor on some long-term history.

Payment brings up new requirements regarding the fairness of the exchange itself [Asokan et
al. 1997]. This in general translates to a more complex and costly implementation than for
reputation mechanisms. In particular, payment schemes require trusted third parties (TTP) such
as banks; these entities do not necessarily take part in the online service, but may be contacted
to resolve payment litigations. Tamper proof or tamper resistant hardware (TPH/TRH) like
secure operating systems or smart cards have also been suggested as a distributed
implementation of such a TTP.

A payment scheme comprises four main phases (summarized in Figure 8):

- Negotiation: Two peers may negotiate the terms of their interaction. Negotiating the
remuneration in exchange for an enhanced service confers a substantial flexibility to the
mechanism. The negotiation can be performed either between the participating peers or
between peers and an authority if available.

- Cooperation decision: The peer is always the decision maker in a self-organizing system.
During negotiation and based on its outcome, a peer can decide whether it will cooperate.

- Cooperation evaluation: Cooperation is evaluated by the service requesting party in
terms of adequacy of the service to the request, as well as by the service providing party,

25

in terms of adequate remuneration. Ensuring the fairness of both evaluations may
ultimately require involving a trusted third party. Depending on the service, this TTP will
ensure a fair exchange for every interaction, or may only be involved if arbitration is
requested by one party (see below). The TTP, which may be centralized or distributed
itself, may for instance give access to information unavailable to a peer, or more
generally provide a neutral execution environment.

- Remuneration: The remuneration can consist in virtual currency units (a number of points
stored in a purse or counter) or real money (banking and micropayment), or bartering
units (for instance quotas defining how a certain amount of resources provided by the
service may be exchanged between entities). The latter can even be envisioned in the
form of micropayments [Jakobsson et al. 2003]. Regarding real money, this solution
assumes that every entity possesses a bank account, and that banks are enrolled in the
cooperative system, directly or indirectly through some payment scheme. The
collaborating peer is remunerated by issuing a check or making a transfer of money. In
the first case, remuneration implies that a number of points are added to a counter
connected in some way with the collaborating peer. The remuneration effectiveness may
be immediate or delayed after a certain number of steps (e.g., reservations, then
remuneration in several phases for different services).

These phases can be executed repeatedly to perform some cooperative service on a finer
granularity basis, which may ease cooperation enforcement. In particular, micropayment is
often envisioned rather than an actual macro-payment in remuneration based cooperation
enforcement mechanisms. With this scheme, trust establishment essentially relies on the
presence of peers in the system, that is, their continued ability to pay proves they cooperated.

Achieving an effective implementation of payment-based mechanism depends upon the
realization of a protocol that enforces the fair exchange of the payment (credits) against some
task: “A fair exchange protocol can then be defined as a protocol that ensures that no player in
an electronic commerce transaction can gain an advantage over the other player by
misbehaving, misrepresenting or by prematurely aborting the protocol” [Asokan et al. 1998].
The fair-exchange may be enforced through a TTP that may be used online or opportunistically.
TPMs or smart cards may also be employed to carry out a fair-exchange protocol in a
distributed fashion.

In a P2P network, TTPs may be represented as super-peers that play the same role as an
online TTP but in a distributed fashion. One example of such architecture is FastTrack [Liang et
al. 2006] which is used in P2P networks like KaZaA37, Grokster38, and iMesh39. These networks
have two-tier hierarchy consisting of ordinary nodes (ONs) in the lower tier and super-nodes
(SNs) in the upper tier. SNs keep tracks of ONs and other SNs and act as directory servers
during the search phase of files. Additionally, one way of implementing a payment scheme
would be to use super-peers distributed within the P2P network as a trusted infrastructure for
payment. These super-peers would provide neutral platforms for performing an optimistic fair
exchange protocol. The use of such an infrastructure of trusted peers, that would not necessarily
need to be related with the payment authority, may make sense, in particular in relationship with
content distribution networks (CDNs)40. Such networks involve the deployment of managed
workstations all over the Internet, thereby providing a nice platform for payment functionalities.

37 http://www.kazaa.com/
38 http://www.grokster.com/
39 http://imesh.com
40 E.g., Akamai technologies, inc. http://www.akamai.com/

26

Negotiation

Non cooperation

C
o
o
p
e
ra
ti
o
n
 D
e
c
is
io
n

Decision

Study of

Negotiation

S
e
rv
ic
e

Remuneration

Cooperation

Evaluation

C
o
o
p
e
ra
ti
o
n

1

2

3

Figure 8 Payment: diagram of operations

The scale of the storage system makes it necessary to resort to a new type of protocols called
optimistic protocols [Asokan et al. 1997] whereby the TTP does not necessarily take part in peer
interactions, but may be contacted to arbitrate litigations between peers. In the cooperative
backup system of [Lillibridge et al. 2003], a central server considered as a TTP tracks the
partners of each peer participating in the backup system. Partners of a peer are peers that
collectively hold its backed up data. In return, the peer backs up a part of its partners’ data. Each
peer takes note of its direct experience with a partner, and if this partner does not cooperate
voluntarily or not beyond some threshold, the peer may decide to establish a backup contract
with a different partner that is obtained through the central server.

TPMs supported approaches have been suggested within the TermiNodes [Buttyán and
Hubaux 2001] and CASHnet [Weyland et al. 2005] projects. Both schemes address the security
of the networking function of packet forwarding through remuneration schemes. Each device
possesses a TPM that manages its account by maintaining a counter that is interpreted as a
currency. However, TPM-based approaches suffer from additional attacks: if the peer device of
a non cooperative or malicious user is disconnected from the other peers, their credits/tokens
might not be available, which might raise starvation issues. However, the use of secure
operating system as a TPM might make it possible alleviate this problem notably by more
completely controlling and possibly reducing the device functionalities if the peer does not
connect to the system network.

27

Smart cards have been used in the P2P storage system PAST [Druschel and Rowstron 2001]
to ensure the fairness of peer contributions. Smart cards issued by a third party are held by each
PAST peer to support a quota system that balances supply and demand of storage space in the
system. Peers cannot use more remote storage than they are providing locally. With fixed quotas
and expiration dates, peers are only allowed to use as much storage as they contribute.

If data storage should be achieved in a large-scale and open P2P system, designs based on a
trusted environment may be unfeasible or unmanageable. In that case, implementing the
optimistic fair exchange protocol would have to be done by relying solely on peers. [Asokan et
al. 1998] describes design rules for such cryptographic protocols making it possible to
implement appropriate fair-exchange protocols. For instance, the distribution of the banking
function to multiple peers may make easier the realization of a scalable system that does not
have recourse to a trusted environment. In the KARMA framework [Vishnumurthy et al. 2003],
the exchange of payment against some task is supported by multiple peers that collaborate to
provide a fair exchange even though mitigated by the selfishness of the latter.

2.4. Application layer

The application-level layer is concerned with the service that is installed at each peer
machine. A peer should store other peers’ data and keep them available for them. Additionally,
it should correctly answer verifiers’ challenges based on the stored data.

2.4.1. Shared storage management

In the proposed P2P data storage application, the shared resource is the extra storage space
spared at each peer that is used to set up a remote data storage facility.

The common technique to provide data reliability is realized by disseminating the data into
multiple copies in the network. Data redundancy can be implemented through either replication
or erasure coding. With replication, the copy is a simple duplicate of the data. Whereas, erasure
coded copies are coded blocks such that any threshold sized set of these blocks allows
generating the original data. Redundancy entails that the size of the actual consumed storage
space is larger than the data size. The overhead introduced by data redundancy can however be
coped with. For instance, Wuala41 reduces the remote storage space allocated to a peer in
exchange of an equivalent local storage space based on its probability of being online: the
unallocated storage space serves for trading space on other peers in order to achieve a redundant
storage [Toka and Michiardi 2008].

The preservation of the remote data is handled by their holders. The management of the
shared storage falls then directly in the individual sphere of the holder, thus corroborating the
idea of peer cooperation as a requirement for this type of storage system.

Verifiers, which are delegates of the data owner, operate a double check on the remote
storage. The data holder should correctly respond to periodic verifier challenges and also send
back the data whenever their owner wants to retrieve them.

Providing data availability and survivability is not just the concern of their owner. Several
holders and verifiers contributed to this task. The distribution of the work to multiple peers
limits the selfishness of holders or verifiers.

Peer cooperation in providing storage resources is stimulated through the trust and
cooperation layer (discussed in the previous section). The fairness of peer contributions is
particularly regulated by the cooperation incentives that work as a quota system: peers consume

41 http://wua.la/en/home.html

28

storage resources from the system because they contribute such resources to other peers. Other
type of resource utilization (e.g., bandwidth) related for instance to the performing the
verification task must also be stimulated and regulated.

2.4.2. Multi-service framework

There is a potential interest in providing a general framework of cooperative services instead
of one specific to P2P storage, mainly in case where a peer desires to store data in the P2P
network without sacrificing its own storage space. This situation may be rendered possible by
just making the peer contribute to the community of peers with other resources that it has in
abundance. The P2P storage service may be then combined with other resource sharing services
that relate for example to the bandwidth (file sharing), computation, or even networking. Each
peer participates to a collection of services which the peer retains some of them for consumption
and others for contribution.

Payment-based approach

Remuneration (e.g., real/virtual money, token) can be regarded as a neutral counterpart that
can be traded for any cooperative service. Therefore, a system based on payment-based
cooperation incentives is able to allow peers simultaneously accessing multiple cooperative
services (e.g., remote storage, cloud computing, distributed database).

The evaluation of the good behavior of peers should be performed separately and
independently using verification mechanisms specifically designed for each service.

However, the remuneration for a service can be operated with the same manner. For
instance, remuneration may rely on auctions (like in the KARMA framework [Vishnumurthy et
al. 2003]) to better cope with the effect of changes in supply and demand on service prices.
Each peer contributing with a service might first auction the offered service and then supply the
service to the winning bidder. The service delivered by the peer would then be checked to
evaluate whether it corresponds to the advertised offer. Such an evaluation permits to determine
if the service provider is worthy of the remuneration earned in counterpart to the service (cf.
Figure 9).

Trusted OS based approach

Additionally, peer cooperation in a multi-service framework can be enforced through the use
of trusted OS. Each peer’s device incorporates a trusted OS that controls the access of the peer
to resources and services and may exploit such control to stimulate or even force the peer to
cooperate to the P2P system in a strictly fair manner. The cooperation enforcement may be
illustrated through service differentiation: a cooperative peer will have a good quality of service
(e.g., high bandwidth) and a non cooperative peer will have a bad quality of service (e.g.,
intermittent connection to the P2P network).

29

Figure 9 Multi-service framework based on payment

Data storage verification would thus serve two different functions:

- Peer evaluation: Based on peer assessments, the framework computes and maintains a
counter that reflects the degree of peer cooperation. The counter employs different
weights for resources.

- Service differentiation: The framework makes use of the counter as an indicator of the
level of quality of service that the peer deserves. Based on the value of the counter, peer
services are either upgraded or degraded and such service differentiation is enforced
through the trusted OS.

The peer evaluation function of the framework requires the employ of a remote data
possession verification protocol to check the fair and correct storage sharing between peers. The
verifier for such protocol may correspond to a service implemented within the trusted
“userland” part (not the kernel) of the trusted OS.

To be able to design the framework, we may use the cooperation counter as a context
information modifying a dynamic access control policy: any change in the value of the counter
would result in a change in the access rights to services granted to the user.

Alternatively, we may make use of the Flask security architecture [Spencer et al. 1999] as
used in the SELinux (Security-enhanced Linux) operating system to enforce the security policy
in a flexible way. Such a security architecture (see Figure 10) divides the responsibility for
security into an object manager part and a security server part. The object manager controls
every object invocation by checking every object request through the security server. This latter
contains a complete representation of the security policy. With such an architecture, the security
policy is consulted for every security decision, and thus can manage the revocation of
previously granted access rights. For instance, let us consider a user that had previously access
to a given service but who was in the meanwhile uncooperative. His cooperation counter will be

30

diminished until reaching the point where the access to the very service will be revoked to him
in its subsequent object (service) request.

Figure 10 The Flask security architecture

2.5. Summary

This chapter describes the many elements of an architecture adapted to the secure P2P
storage problem. The most important elements of this architecture are the overlay and trust
management elements. We have identified techniques of management and implementation of
the blocks that make up these layers and particularly how they may be enforced with a trusted
environment.

The chapter describes several ways in which our cooperation incentive mechanisms may
benefit from a trusted environment in order to improve peer behavior evaluation and motivate or
enforce the cooperation of peers and the fairness of their contributions.

Finally, we described how it would be possible to design a multi-service framework based
on trusted OSes for offering peers the opportunity to select the resources that they prefer to
contribute in order to cope with the use of heterogeneous resources, capabilities, and needs.
Although the use of trusted environment may make deploying our mechanism more costly, this
would of course be mitigated by the deployment of more efficient security measures. The rest of
the thesis studies how to ensure a correct operation of the P2P storage system by relying solely
on peers, in particular based on remote data possession verifications.

31

32

Chapter 3

3. Remote data possession verification

Self-organizing data storage must ensure data availability on a long term basis. This
objective requires developing appropriate primitives for detecting dishonest peers free riding on
the self-organizing storage infrastructure. Assessing such a behavior is the objective of data
possession verification protocols. In contrast with simple integrity checks, which make sense
only with respect to a potentially defective yet trusted server, verifying the data possession
remotely aims at detecting voluntary data destructions by a remote peer. These primitives have
to be efficient: in particular, verifying the presence of these data remotely should not require
transferring them back in their entirety; it should neither make it necessary to store the entire
data at the verifier.

3.1. Problem Statement

This section describes the requirements that should be met by a self-organizing storage
verification protocol.

We consider a self-organizing storage application in which a peer, called the data owner,
replicates its data by storing them at several peers, called data holders. The latter entities agree
to keep these data for a predefined period of time negotiated with the owner. Their behavior
might be evaluated through the adoption of a routine check through which the holder should be
periodically prompted to respond to a time-variant challenge as a proof that it holds its promise.
Enforcing such a periodic verification of the data holder has implications on the organizational
design, performance, and security of the storage protocol, which must fulfill requirements
reviewed under the following three sections.

3.1.1. Organization

The self-organizing style of the P2P storage system entails specific features of the verification
protocol. The protocol faces multiple requirements regarding the large storage capacity of the
system and churn.

- Scalability: The verification protocol should scale to large populations of data owners.
Verification information should be self-carried by the data verifiers although such data
can be made available in the system in a self-organizing manner, within a distributed-
hash-table (DHT) for instance. The latter alternative is more robust since the information
essential to the protocol realization is reliably stored in the system rather than kept by a
single entity.

- Data redundancy: The usual technique to achieve data reliability relies on disseminating
the data in multiple copies to several peers (based on simple replication or erasure codes).
Such data redundancy is initially managed by the owner; however further data
rejuvenation may be initiated by the data owner or by other peers from the network. The
potential detection of data destruction following their verification may trigger a
restoration process of destroyed copies at new peers. The churn out characterizing peers
may end in favor of the second option where some peers help in securing the storage of

33

other peers. The latter peers should also help in distributing the verification information
required to periodically check the presence of data at the new holders.

- Delegating data verification: Self-organization addresses highly dynamic environments
like P2P networks in which peers frequently join and leave the system: this assumption
implies the need for the owner to delegate data storage evaluation verifiers, which should
act as third parties ensuring a periodic evaluation of holders after his leave (see Figure
11). The need for scalability also pleads for distributing this verification function, in
particular to distribute verification costs among several entities. Last but not least,
ensuring fault tolerance means preventing the system from presenting any single point of
failure: to this end, data verification should be distributed to multiple peers as much as
possible; the data should also be replicated to ensure its availability, which can only be
maintained at a given level if it is possible to detect storage faults.

Figure 11 Verification protocol in 3 phases: (1) the owner requests storage from 2 holders, (2) owner delegates
the verification of its data to 3 verifiers, and (3) the verifiers periodically check the behavior of holders.

3.1.2. Efficiency

The costs of verifying the proper storage of some data should be considered for the two
parties that take part in the verification process, namely the verifier and the holder.

- Storage overhead: The verifier must store a meta-information that makes it possible to
generate a time-variant challenge based on the proof of knowledge protocol mentioned
above for the verification of the stored data. The size of this meta-information must be
reduced as much as possible even though the data being verified is very large. The
effectiveness of storage at the holder must also be optimized. The holder should store the
minimum extra information in addition to the data themselves.

- Communication overhead: The size of challenge response messages must be optimized.
Still, the fact that the proof of knowledge has to be significantly smaller than the data
whose knowledge is proven should not significantly reduce the security of the proof.

34

- CPU usage: Response generation and response verification respectively at the holder and
at the verifier should not be computationally expensive.

The use of a specific terminology (remote integrity checking [Deswarte et al. 2004],
demonstration of data possession [Filho and Barreto 2006], proofs of data possession [Ateniese
et al. 2007], or proofs of retrievability [Juels and Kaliski 2007]) has emphasized how the storage
and communication overhead requirements differ between verification primitives for secure
remote storage and classical proof of knowledge protocols.

3.1.3. Threat model

The verification mechanism must address the following potential attacks which the data
storage protocol is exposed to:

- Detection of data destruction: The destruction of data stored at a holder must be detected
as soon as possible. Destruction may be due to generic data corruption or to a faulty or
dishonest holder.

- Collusion-resistance: Collusion attacks aim at taking unfair advantage of the storage
application. Replica holders in particular may collude so that only one of them stores
data, thereby defeating the purpose of replication to their sole profit.

- Denial-of-Service (DoS) prevention: DoS attacks aim at disrupting the storage
application. Possible DoS attacks are:

o Flooding attack: the holder may be flooded by verification requests from
dishonest verifiers, or from attackers that have not been delegated by the owner.
The verifier may be as well subject to the same attack.

o Replay attack: a valid challenge or response message is maliciously or
fraudulently repeated or delayed so as to disrupt the verification.

- Man-in-the-middle attack prevention: The attacker may pretend to be storing data to an
owner without using any local disk space. The attacker simply steps between the owner
and the actual holder and passes challenge-response messages back and forth, leaving the
owner to believe the attacker is storing its data, when in fact another peer, the actual
holder, stores owner’s data. The replication may again be disrupted with this attack: since
the owner may run the risk of storing the data in two replicas at the same holder.

The main security problem is the detection of data destruction combined with the risk of
collusion between holders. We propose security primitives to handle this problem based on
proofs of data possession and personalization mechanisms ([Caronni and Waldvogel 2003]).

Considering all these security and performance goals, we propose three different protocols: a
probabilistic verification protocol and two deterministic ones. We consider for the three
protocols an owner that wishes to store data generates individual replicas for holders and that
delegates the verification to different peers (another method of deterministic verification based
on the Diffie-Hellman problem is proposed in Appendix A). Prevention means against DoS
attacks are presented in a refined version after basic verification protocols.

3.2. Probabilistic verification protocol

This section introduces a verification protocol that allows a peer to probabilistically verify
whether a data holder still possesses the data he agreed to store for the originator using a secret
key and based on challenge-response messages,. This protocol does not require the verifier to

35

keep data or pre-computed challenges, nor the holder to perform time-consuming computations
to answer challenges.

3.2.1. Protocol description

The verification protocol is a three-party scheme in which the owner stores its data at the
holder, then delegates the verification of the very data to a verifier that will periodically check
whether the holder is still storing data.

The protocol requires two keys: the first one is used to encrypt data (encryption key), and the
second one to check data possession (verification key).

The protocol manipulates a keyed function, denoted fKO, where KO is verification secret key
only known from the owner, i.e., only the owner can compute for a given x, fKO(x). For instance,
fKO may be a symmetric encryption function or a keyed one-way hash function or even a one-
way hash function with the message being concatenated with the key.

Storage

Owner Holder
Encrypt data
Split encrypted data into n chunks {ci} 1≤i≤n

Compute for each i in [1, n]: Vi=fKO
(ci, i)

{ Vi, ci} 1≤i≤n

Store {Vi, ci} 1≤i≤n

Delegation
Owner Verifier

 n, fKO
42

Store n, fKO

Verification

Verifier Holder
Choose a random value j in [1, n]

Verify Vj

j

cj, Vj

Figure 12 Probabilistic verification protocol

The protocol comprises the following three phases (see Figure 12):

- Storage: The owner first personalizes the data that will be stored at the holder by
encrypting it concatenated to the identity of the holder using the encryption key.
Personalization prevents the collusion between holders. The owner splits the encrypted
data into n chunks {ci} 1≤i≤n, and then it computes for each chunk (along with its index) its
image with fKO. The result is the set {Vi=fKO(ci, i)} 1≤i≤n (the size of one chunk must be
higher than the size of one generated verification tag to be cost-productive). Finally, the
owner sends data chunks {ci} 1≤i≤n and the verifications tags {Vi } 1≤i≤n for storage to the
holder.

- Delegation: The owner appoints a verifier for checking data storage at the holder, and
informs it of the number of chunks n stored at the holder and the function fKO with its key
KO.

- Verification: the verifier randomly chooses a value j in [1, n] and sends it to the holder
who responds with the corresponding couple (cj, Vj). The verifier verifies if this couple is
a valid one, using the key KO.

42 This message is not sent in clear, but encrypted with the session key shared between the owner and the
verifier.

36

In this protocol, the holder proves that it is keeping a data segment for the owner, and
provides an evidence that attests of its origin. The verification process requires computational
resources consumed at the verifier, and additional storage space together with some
computation at the prover. The extra storage at the holder is the price to pay for a verification
process without data, or pre-computed information stored at the verifier. Keys do not need to be
stored by the verifier if they can be generated based on a passphrase for instance. Such an
approach, or the use of a token, would be required for a storage application in which the owner
(or the verifier) may have completely crashed, thereby losing any secret stored there.

3.2.2. Security evaluation

In the protocol, if the result of the verification is positive, then the verifier is
“probabilistically” assured that the holder is still storing the data. In reality, the verifier only
checks that the holder is keeping the chunk cj. Since j is chosen randomly43, the holder has to
keep all chunks and their images to answer correctly to challenges.

This section investigates how the probabilistic nature of the protocol makes it possible to
enforce some security. We are making the following assumptions:

- The verifier is not in collusion with the holder.
- The verifier’s random selection of indexes is uniform, i.e., for n chunks, the probability to

pick any chunk is 1/n.
- Index selections are independent events.
- The holder removes a fraction d of chunks from its storage; we term d the misbehavior

rate of the holder.
- The verifier performs on average c challenges; 1≤ c ≤n.

The probability that the holder answers correctly to verifier’s challenges all the time is
described as:

p = (1 - d)c

The probability that the verifier detects holder‘s misbehavior is given by pdetection:

pdetection= 1 – p

For a given probability of detection of misbehavior, it is possible to probabilistically
determine the average number of challenges that the verifier should perform to attain this
probability of detection. The number of challenges c can be derived as follows:

c=log1-d(1-pdetection)

 The required number of challenges to acquire a given probability of detection is most of the
time not equal to 1. The verifier should therefore challenge the holder multiple times.

Figure 13 shows how the number of challenges c increases with the probability of detection.
An appropriate value for c can be chosen based on the misbehavior rate of the holder that can be
estimated thanks reputation computed from recent interactions. If the holder has bad reputation,
fewer challenges are needed to likely detect holder's misbehavior. The opposite will be observed
if the holder has good reputation; however, the owner will likely store more critical data at the
holder and the verifier will challenge it more frequently thus compensating the higher number

43 The selection of an index j, for a challenge, has no impact on its probability to be picked another time
for another challenge.

37

of challenges required to detect a misbehaving peer (for a misbehavior rate of 0.1, the required
number of challenges exceeds 50 to achieve a high probability of detection).

Figure 13 Number of challenges required to achieve a probability of detection of holder’s misbehavior

In the proposed protocol, false negatives (i.e., verification is positive when the holder
removes a given number of chunks) are possible, yet their occurrence can be reduced by
increasing the number of challenges c. False positives (i.e., verification is negative when the
holder has got all chunks) may occur and are associated with communication losses. The latter
issue can be thwarted by usual measures like the retransmission of packets after a timeout.

While the use of a probabilistic approach might be seen as a weaker scheme, it should be
noted for instance that multimedia data, like digital pictures or videos may support more
degradation for some chunks such as image details, than for hunks with high-level description:
these data, which promise to be one major area where in-the-field storage application will be
required, may therefore tolerate less stringent protection mechanisms in exchange for more
performance, as it will be demonstrated in the following section.

It is not a requirement for the verifier to be trusted by the owner, only in the case where
function fKO

 is a symmetric function. In this case, if the verifier is not trustworthy, it may

collude with the holder by divulging the verification key KO and thus the holder may answer
correctly to all verifiers appointed to it without having to keep data stored. However, if this
function fKO

 is asymmetric (signature), the protocol does not require from the verifier to be

trusted by the owner, it just requires from it to possess the public key of the function. The
distribution of the verification task to several volunteer peers mitigates the misbehavior of the
verifiers.

3.2.3. Performance evaluation

The following performance analysis shows that the probabilistic approach of the proposed
protocol allows data possession verification to be less expensive for devices with limited
resources. This approach indeed permits to trade some security, which can be measured
probabilistically, in exchange of better performance.

The suggested verification protocol consists of three phases, only two of them are considered
indispensable since the owner can be the verifier of the data (delegation phase is optional). The
first phase corresponds to plain data storage. The verification phase comprises authentication

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Probability of detection

N
um

be
r

of
 c

ha
lle

ng
es

 r
eq

ui
re

d

d=0.1
d=0.2
d=0.3
d=0.4
d=0.5
d=0.6
d=0.7
d=0.8
d=0.9

38

messages, then challenge-response messages. Thus, we only consider the verification part of the
protocol for our analysis.

The verifier is not required to keep the whole data for verification, it only has to keep the
verification key KO. In counterpart, the holder keeps not only the data but some additional
information in the form of verification tags. The challenge-response messages sent mainly
correspond to c data chunks and their verification tags. Table 1 summarizes the discussed
verification costs.

The probability of fault detection success increases with the number of chunks c verified per
challenge sent by the verifier. However, the communication costs linearly increase with the
number of chunks challenged because the holder has to send all requested chunks with their
verification tags.

Table 1 Summary of resource usage consumed by the probabilistic verification protocol (variable n and m
respectively correspond to data size and the number of chunks)

 Storage overhead Computation complexity Communication overhead
At holder O(n) O(1) (upstream) O(n/m)
At verifier O(1) O(n/m) (upstream) O(1)

3.2.4. Countering additional attacks

The described verification protocol permits to detect selfish holders that destroy the data
they have promised to store. However, the protocol alone is not able to defend against other
forms of misbehavior, such as denial of service attacks, man-in-the-middle attacks, or colluding
replica holders.

A flooding attack can be launched by the verifier, by sending a large number of challenge
messages to a victim data holder in order to slow it until it is unusable or crashes. Although this
type of attack is unlikely to happen since the verifier performs computational operations for
every challenge, it is possible to limit the number of challenges by imposing a quota on the
frequency of challenges. This solution is proposed in [Lillibridge et al. 2003]. Moreover, it is
possible to force the verifier to pay fees for every challenge it requests, for instance using a
micropayment scheme. An alternative approach is to reciprocate in storing data, thereby
performing symmetric verifications between the two peers, like in [Caronni and Waldvogel
2003].

A holder can pretend to be storing data while in fact proxying in front of another data holder.
Then, the attacker simply passes data back and forth between the originator and the holder,
making the data originator believe that it is the data holder, and the data holder that it is the
originator of the data. This problem can be addressed by having the index j for each challenge
randomly chosen by both parties as suggested in the random-read protocol presented in
[Caronni and Waldvogel 2003] in which both parties randomly choose the offset of the block to
be checked.

When using replication mechanisms to support the availability of data, replica holders may
collude so that only one of them stores data, thereby defeating the purpose of replication to their
sole profit. One way to counter this attack is to produce personalized replicas for each holder, as
described in [Caronni and Waldvogel 2003], by using an encryption key (used to encrypt the
data) derived from the identity of the holder.

39

3.3. Restricted deterministic verification protocol

This section presents a verification protocol that allows checking the presence of the whole
data at a remote peer without excessive overhead though the protocol implies that the data
checking supports only a limited number of verification operations per verifier. The proposed
protocol relies on the uniqueness of the solution of the interpolation polynomial problem
described in the following section. The subsequent sections present the protocol operation and
its evaluation with respect to security and performance considerations.

3.3.1. Lagrange interpolation polynomial

The proposed protocol relies on the Lagrange interpolation polynomial. This section
describes the polynomial interpolation problem and the Lagrange solution.

For a given set of (n+1) data points {(x0, y0), (x1, y1), …, (xn, yn)} where all xi are different,
there is only one interpolation polynomial P(.) of degree at most n that satisfies P(xi)=yi for each
i ∈ [0, n].

The interpolation polynomial is computed using its Lagrange form which is the linear
combination of Lagrange basis polynomials:

��'� � � (�)��'�"
�*

having for each i ∈ [0, n]:

)��'� � % ' + '�'� + '�
"

�*

3.3.2. Protocol description

The verification protocol involves the owner of some data, a potential holder of the data, and
a verifier that is assigned to periodically check data presence at the holder. The protocol consists
of the following three phases (see Figure 14):

- Storage: Data are first personalized to the holder by the owner. The data are then split
into n chunks {ci} 1≤i≤n, such that all chunks have the same size k (the last chunk can be
padded). Each chunk is mapped to a number of ℤp (with a bijection, i.e., one-to-one
correspondence) where the size of p is also k. Chunks are sent to the holder for storage.

- Delegation: The owner generates a random number r. It derives m polynomials of degree
n: {Pj(.)} 1≤j≤m (the random number r is chosen such that the generated polynomials are all
of degree n). The polynomials are computed using Lagrange interpolation. For each j in
[1, m], the polynomial Pj(.) is the solution of the interpolation problem given the set of
n+1 points {(0, r i=Hashj(r))}{(i, ci)} 1≤i≤n where Hash is a pseudo-random one-way
function and Hashj means that the function Hash is executed j times. Finally, the owner
computes Pj(n+1) for each j in [1, m], and sends r and{Pj(n+1)}1≤j≤m to the verifier. The
number m corresponds to the maximum number of verification operations the verifier is
able to perform with the verification metadata received from the owner.

- Verification: The verifier challenges the holder by sending a random number r i. The
random numbers {r i=Hashj(r)} 1≤j≤m are computed and periodically sent in the reverse
order (i.e., starting from rm to r1). The holder derives the polynomial Pj(.) using the points
obtained from the received random number and all the stored data chunks. The holder
may apply the Lagrange form to the interpolation polynomial. Finally, the holder

40

computes the point Pj(n+1) and sends the result to the verifier. The verifier compares the
holder’s response to the stored value.

Storage

Owner Holder
Encrypt data
Split encrypted data into n chunks {ci} 1≤i≤n

such that ci ∈ ℤp for each i in [1, n]

{ ci} 1≤i≤n

Store { ci} 1≤i≤n

Delegation

Owner Verifier
Generate a random number r ∈ ℤp
For each j in [1, m], compute Pj(n+1) such that:
Pj is a polynomial in ℤp of degree n derived as
Pj(0)= rj and Pj(i) = ci for each i in [1, n]
where r j = Hashj(r)

r, { Pj(n+1)}1≤j≤m

Store r, { Pj(n+1)}1≤j≤m

Verification

Verifier Holder

If R = Pj(n+1) then “accept” else “reject”

q=Hashj(r)

R

Derive Pj as: Pj(0)=q and

Pj(i) = ci for each i in [1, n]
Compute R= Pj(n+1)

Figure 14 Restricted deterministic verification protocol

3.3.3. Security evaluation

The proposed verification protocol relies on the Lagrange form of the interpolation
polynomial that shows the uniqueness of the polynomial. Based on the data set of (n +1) points
{(0, r i=Hashj(r))}{(i, ci)} 1≤i≤n, the interpolation polynomial is constructed. Since all points are
distinct, there is only one polynomial as solution. To construct the polynomial, the holder must
use all data points that include all the data chunks, which means that the verification of the
stored data is deterministic. The generation of the response comprises the computation of a new
data point from the constructed polynomial. Since this point is derived from the interpolation
polynomial, it is then unique. The point is compared with a point computed in advance stored as
a security metadata at the verifier.

The holder should store all data chunks to be able to compute the unique response to the
verifier’s challenge. The holder may store different forms based on composed versions of data
chunks in order to accelerate the computation of the interpolated polynomial. These forms
characterize a polynomial with order n, so these forms have the same number and size as the
original data chunks. It is then still possible to recover data chunks from these forms.

3.3.4. Performance evaluation

The proposed protocol requires the verifier to keep m data points of the same size as the data
chunks. Increasing m allows expanding the verification duration of the data stored, but at the
same time it raises the storage overhead at the verifier. This increase can be compensated by
reducing the size of data chunks (small k). However, very small-sized points may generate a
large number of false positives which means that the holder has more chances to guess the
response of the verifier’s challenge without actually storing data chunks. The value k constitutes
then a security parameter of the protocol that should be cared of.

41

Tuning m makes it possible to achieve a tradeoff between the availability of the protocol
(number of verification reiteration) and the storage overhead at the verifier (refer to Table 2).
The verifier is only able to perform m verifications of the data storage at the holder. A high
value of the number m permits the verifier to check the data presence more often; even if the
verifier must store a large set of data points. Moreover, if some of the stored pre-computed
challenges are compromised (e.g., the holder may compute the reverse of a hash value), the
verifier is still able to check the data with the remaining uncompromised values.

The owner should refresh the verifier metadata from time to time if it wants the latter to
continue verifying the presence of the data at the holder. However, the generation of new
metadata information for verification requires manipulating the data themselves; while this may
be valid if the owner simply performed a backup (although he has to store the data
personalization applied to a given holder), in more general storage cases, the owner has to
retrieve a copy of the data before being able to compute new challenges. Since this obligation
produces quite expensive communication costs, the number of pre-computed challenges m
should be chosen as high as possible. The foremost burden of a high value of m is placed on the
verifier with an increased requirement regarding the storage overhead. The storage of the
verification metadata can however be rendered space efficient by relying on Bloom filters
[Bloom 1970] for instance. Another alternative for alleviating the storage overhead at the
verifier is to store hash values of the verification metadata instead. Storage costs then become
quite modest (typically 128 to 160 bits). As discussed in [Ateniese et al. 2008], the storage
overhead is less problematic in practice. For example, less than 6MB of metadata make it
possible for the remote data to be checked every 15mn for 10 years.

The size of exchanged messages between the holder and the verifier are unrelated to the size
of the data (they rather depend on the data chunk size). Additionally, the holder does not need to
store a large extra-storage other than the data in chunks (some small information is needed e.g.,
the order of chunks).

Table 2 Summary of resource usage consumed by the restricted deterministic verification protocol
(variable n and m respectively correspond to the number of data chunks and the number of pre-computed

challenges)

 Storage overhead Computation complexity Communication overhead
At holder O(n) O(n) (upstream) O(1)
At verifier O(m) O(1) (upstream) O(1)

3.4. Deterministic verification protocol

The requirement of a cheap verification in terms of storage simply forbids the use of plain
message integrity codes as a protection measure if verifier peers are to submit an unlimited
number of challenges, since time-variant challenges based on such primitives cannot be
constructed without the owner or without the verifier storing the entire data. This section
presents a secure and self-organizing verification protocol exhibiting a low resource overhead.
This protocol was designed with scalability as an essential objective: it enables generating an
unlimited number of verification challenges from the same small-sized security metadata.

The security of the storage scheme relies on the hardness of specific problems in elliptic
curve cryptography. The protocol is also especially original with respect to scalability: it both
enables data replication while preventing peer collusion, and delegation of data storage
verification to third parties.

The remainder of this section details the verification protocol incrementally: essential
notions in elliptic curve cryptography and used hard problems are first introduced; two versions
of the security protocol are then described.

42

3.4.1. Security background

The deterministic verification protocol relies on elliptic curve cryptography ([Koblitz 1987],
[Miller 1986]). The security of the protocol is based on two different hard problems. First, given
some required conditions, it is hard to find the order of an elliptic curve. Furthermore, one of the
most common problems in elliptic curve cryptography is the Elliptic Curve discrete logarithm
problem denoted by ECDLP.

Thanks to the hardness of these two problems, the deterministic verification protocol ensures
that the holder must use the whole data to compute the response for each challenge. In this
section, we formalize these two problems in order to further describe the security primitives that
rely on them.

Elliptic Curves over ℤn

Let n be an odd composite square free integer and let a, b be two integers in ℤn such that
gcd(4a3 + 27b2, n) = 1 (“gcd” means greatest common divisor).

An elliptic curve En(a, b) over the ring ℤn is the set of the points (x, y) ∈ ℤn×ℤn satisfying the
equation: y2 = x3 + ax + b, together with the point at infinity denoted On.

Solving the order of elliptic curves

The order of an elliptic curve over the ring ℤn where n=pq is defined in [Koyama et al. 1991]
as Nn = lcm(#Ep(a, b), #Eq(a, b)) (“lcm” for least common multiple, “#” means order of). Nn is
the order of the curve, i.e., for any P ∈ En(a, b) and any integer k, (k×Nn + 1)P = P.

If (a = 0 and p ≡ q ≡ 2 mod 3) or (b = 0 and p ≡ q ≡ 3 mod 4), the order of En(a, b) is equal to
Nn=lcm(p+1, q+1). We will consider for the remainder of the paper the case where a = 0 and p ≡
q ≡ 2 mod 3. As proven in [Koyama et al. 1991], given Nn = lcm(#Ep(a, b), #Eq(a, b)) = lcm(p +
1, q + 1), solving Nn is computationally equivalent to factoring the composite number n.

The elliptic curve discrete logarithm problem

Consider K a finite field and E(K) an elliptic curve defined over K. ECDLP in K is defined as
given two elements P and Q ∈ K, find an integer r, such that Q = rP whenever such an integer
exists.

3.4.2. Protocol description: data-based version

The data, stored in the system, is uniquely mapped into a number d ∈ ℕ in some publicly
known way (for example, conversion from binary representation into decimal representation). In
our context, the terms data file or data and the number d are often used interchangeably. The
verification protocol consists of four phases (see Figure 15): Setup, Storage, Delegation, and
Verification. The owner communicates the data to the holder at the storage phase and the meta-
information to the verifier at the delegation phase. At the verification phase, the verifier checks
the holder’s possession of data remotely through an interactive process. This process may be
executed an unlimited number of times.

- Setup: The phase is performed by the owner. From a chosen security parameter k (k > 512
bits), the owner generates two large primes p and q of size k both congruent to 2 modulo
3, and computes their product n = pq. It then considers an elliptic curve over the ring ℤn
denoted by En(0, b) where b is an integer such that gcd(b, n)=1, to compute a generator P
of En(0, b). The order of En(0, b) is Nn = lcm(p+1, q+1). The parameters b, P, and n are
published and the order Nn is kept secret by the owner.

43

- Storage: The owner stores its data at one or several holders, in a personalized form for
each holder. To this end, the owner encrypts data using a keyed function fs (s is a secret
key known to the owner only) that takes in input the data and the identity of the holder
and returns an identity-based encrypted version of data d’ (we assume that peers are
uniquely identified in the system).

- Delegation: The owner generates meta-information to be used by the verifier for
checking the data possession at one holder. The meta-information is a reduced-size digest
of the data stored at the holder and is computed as T = (d’ mod Nn)P ∈ En(0, b). This
meta-information is sent for storage to the verifier.

- Verification: The verifier checks the presence of data at the holder. It generates a random
number r and computes the point Q = rP ∈ En(0, b) which is sent to the holder as a
challenge. Upon its reception, the holder computes R = d’Q ∈ En(0, b) with the data d’ it
is storing. The proof R is sent to the verifier. With this proof, the verifier checks if R is
equal to rT, and decides if the holder’s proof is accepted or rejected.

Setup Owner

Generate two primes p and q of size k: p, q ≡ 2 mod 3
Compute n = pq
Compute Nn = lcm(p+1, q+1)
Generate random integer b < n, gcd(b, n)=1
compute P a generator of En(0, b)
Public = (n, b, P), Secret = Nn

Storage

Owner Holder
Compute d'=fs(d)
send d’

d'

Store d’

Delegation

Owner Verifier
Compute T = (d’ mod Nn)P
send T

T

Store T

Verification

Verifier Holder
Generate a random number r
Compute Q = rP
Send Q

If R = rT then “accept” else “reject”

Q

R

Compute R = d’Q
Send R

Figure 15 Deterministic verification protocol: data-based version

With the presented security primitives, the verifier keeps an extra-information (T) needed for
the verification that is twice the size of n (< 2k) which is smaller than the size of the stored data
(about 2Kb compared with 100Mb or 1Gb of data). For verification, the verifier has to compute
two point multiplications with a small random number, in contrast with the holder that has to
compute a point multiplication with the whole data.

3.4.3. Protocol description: chunk-based version

This section introduces an improved version of the protocol described above whereby the
computation complexity at the holder is reduced.

In this version, the data are split into m chunks, denoted {d’i} 1≤i≤m, and the verifier stores the
corresponding elliptic curve points {Ti = d’ iP} 1≤i≤m. We assume that the size of each data chunk

44

is much larger than 4k where k is the security parameter that specifies the size of p and q,
because the verifier must keep less information than the full data.

The owner proceeds in the setup phase like in the previous version. It personalizes the data,
then splits the personalized data into m chunks of the same size (the last chunk is padded with
zeroes): {d’ i} 1≤i≤m. At the delegation phase, the owner generates the curve points {Ti = d’ iP} 1≤i≤m
sent to the verifier. During the verification phase, the verifier generates a random number r and
a random seed c (size of c > 128 bits). Then, it sends Q=rP and the seed c to the holder. Upon
reception, the holder generates m random numbers {ci} 1≤i≤m from the seed c (it is possible to
generate the random numbers as ci=ci for each i, or using a random number generator function).
Then, it computes the point R = ∑1≤i≤m cid’ iQ that is sent to the verifier. To decide whether a
holder’s proof is accepted or rejected, the verifier generates the same m random numbers
{ ci} 1≤i≤m from the seed c and checks if R is equal to r(∑1≤i≤m ciTi). The protocol is summarized in
Figure 16.

Storage

Owner Holder
Compute d'=fs(d)
Split d’ in m chunks: {d’i} 1≤i≤m
send {d’i} 1≤i≤m

{d’ i} 1≤i≤m

Store {d’i} 1≤i≤m

Delegation

Owner Verifier
Compute for each i in [1, m]: Ti=(d’ i mod Nn)P
send {Ti} 1≤i≤m

{ Ti} 1≤i≤m

Store {Ti} 1≤i≤m

Verification

Verifier Holder
Generate a random number r and seed c
Compute Q = rP
Send c, Q
Generate {ci} 1≤i≤m from seed c

If R = r(∑1≤i≤m ciTi) then “accept” else “reject”

c, Q

R

Generate {ci} 1≤i≤m from seed c
Compute R = ∑1≤i≤m cid’ iQ

Send R

Figure 16 Deterministic verification protocol: chunk-based version

Compared with the data-based version of the deterministic protocol where the data is
considered as a whole, this new version makes the holder compute m point multiplications of
the same elliptic curve point where the size of the scalar is the size of the data chunk instead of
the full data. Also, the verifier has to keep m points instead of one point in the previous version.
The number of chunks m is the ratio of tradeoff between the storage required at the verifier and
the computation consumed at the holder (the case m = 1 corresponds to the previous version of
the protocol).

3.4.4. Security analysis

This section analyzes the completeness and the soundness of the ECC based deterministic
protocol (more specifically the chunk-based version since it is the generalized case) that are the
two essential properties of a proof of knowledge protocol [Menezes et al. 1996]: a protocol is
complete if, given an honest claimant and an honest verifier, the protocol succeeds with
overwhelming probability, i.e., the verifier accepts the claimant’s proof; a protocol is sound if,
given a dishonest claimant, the protocol fails, i.e. the claimant’s proof is rejected by the verifier,
except with a small probability.

45

Theorem 1- The proposed protocol is complete: if the verifier and the holder correctly
follow the proposed protocol, the verifier always accepts the proof as valid.

Proof: Thanks to the commutative property of point multiplication in an elliptic curve, we
have for each i in [1, m]: d’ irP= rd’ iP. Thus, the equation: ∑1≤i≤m cid’ irP = r(∑1≤i≤m cid’ iP). □

Theorem 2- The proposed protocol is sound: if the claimant does not store the data, then the
verifier will not accept the proof as valid.

Proof: If the holder does not store the data chunks {d’ i} 1≤i≤m, it may try first to collude with
other holders storing the same data. However, this option is not feasible since data stored at
each holder is securely personalized during the storage phase. Since fs is a one-way function and
the key s is secret, no peer except the owner can retrieve the original data d from d’. The other
way to generate a correct response without storing the data relies on only storing {d’ iP} 1≤i≤m
(which is much smaller than the full data size) and retrieving r from the challenge rP in order to
compute the correct response. Finding r is hard based on ECDLP. The last option for the holder
to cheat is to keep {d’ i mod Nn} 1≤i≤m instead of d’ (whose size is very large). The holder cannot
compute Nn based on the hardness of solving the order of En(0, b). Thus, if the response is
correct then the holder keeps the data correctly. □

3.4.5. Performance analysis

In the proposed protocol, challenge-response messages mainly each consist of an elliptic
curve point in ℤn

2. Message size is thus a function of the security factor k (size of n≈2k).
Reducing communication overhead then means decreasing the security parameter.

The verification protocol requires the verifier to store a set of elliptic curve points that allows
producing on demand challenges for the verification. Finally, the creation of proof and its
verification rely on point multiplication operations.

The number of data chunks m can be used to fine tune the ratio between the storage required
at the verifier and the computation expected from the holder: when increasing m, the verifier is
required to keep more information for the verification task, but at the same time the holder is
required to perform one point multiplication operation using much smaller scalars.

Table 3 Summary of resource usage of the deterministic verification protocol (variable n and m
respectively correspond to data size and the number of chunks)

 Storage overhead Computation complexity Communication overhead
At holder O(n) O(n/m) (upstream) O(1)
At verifier O(m) O(1) (upstream) O(1)

3.4.6. Protocol refinement

The above verification protocols allow efficiently detecting data destruction by misbehaving
holders. However, both are still weak against some security threats described in Section 3.1.3.
This section refines the security protocol to address these additional attacks. Every peer in the
framework is assumed to be uniquely identified by an identifier denoted by IDP.

External DoS attacks. At each phase of the protocol, messages are authenticated with
common signature algorithms such as RSA. Therefore each peer possesses a pair of public and
private keys {PKP, SKP}.This authentication inherently prevents external Denial of Service
(DoS) attacks whereby intruders generate some flooding attacks against holders. Only
authorized verifiers are allowed to run the verification phase. In order to provide this security
restriction, during the delegation phase, the owner provides each verifier an enabling credential
for the verification phase. Therefore, verifiers generate a signature for each message at the
verification phase and send this signature and their credentials together with the challenge

46

message. Since the stored data are assumed to be dense, the cost of storage is assumed to be
much more expensive than the cost of verifying or generating a digital signature. Moreover,
thanks to this technique message integrity is also provided.

Internal DoS attacks. In addition to external DoS attacks, some authorized verifiers might
also generate some flooding attacks against holders. In this particular case, authentication is not
a direct solution since verifiers are authorized to participate to the communication. We thus first
propose to limit the number of verifiers that can challenge each holder. This number can be
predefined or negotiated in the storage phase between the owner and the holder based on the
capacity of the latter. We also propose to define a threshold value for requests originating from
a verifier. Hence, the holder keeps a quota counter for each authorized verifier that is
incremented at each new challenge. If this counter exceeds the given threshold value during a
time interval, the verifier is not allowed to challenge the holder and the challenge message is
automatically dropped.

Replay attacks. Replay attacks whereby valid challenge messages are maliciously repeated
or delayed so as to disrupt the verification phase are also taken into consideration. To cope with
this, the verifier only needs to send a newly generated nonce within the challenge message.
Thanks to this well-known technique, the holder will be able to automatically detect replay
attacks.

Man-in-the-middle attack. The holder may not be the actual holder of the data. It may play
the owner pretending to store the data but in fact be performing a man-in-the-middle attack to
step between the owner and the actual data holder. To prevent this type of attack, the actual
holder H may, instead of sending the response R as the answer to the verifier's challenge, send
the following message: Hash(R || IDH); where Hash is a pseudo-random function and IDH is the
identifier of the holder (“||” means concatenation with elliptic curve points mapped to numbers).
The attacker is not able to recreate such a response putting its own identity. And finally, the
verifier is able to check the validity of the response.

3.5. Existing verification protocols

The security of distributed storage applications has been increasingly addressed in recent
years, which has resulted in various approaches to the design of storage verification primitives.

The literature distinguishes two main categories of verification schemes: probabilistic ones
that rely on the random checking of portions of stored data, and deterministic ones that check
the conservation of a remote data in a single, although potentially more expensive operation.
Additionally, some schemes may authorize only a bounded number of verification operations
conducted over the remote storage (although the majority of schemes are designed to overcome
this limitation).

Memory checking. A potential premise of probabilistic verification schemes originates from

memory checking protocols. A memory checker aims at detecting any error in the behavior of
an unreliable data structure while performing the user’s operations. The checker steps between
the user and the data structure. It receives the input user sequence of “store” and “retrieve”
operations over data symbols that are stored at the data structure. The checker checks the
correctness of the output sequence from the structure using its reliable memory (noninvasive
checker) or the data structure (invasive checker) so that any error in the output operation will be
detected by the checker with high probability. In [Blum et al. 1994], the checker stores hash
values of the user data symbols at its reliable memory. Whenever the user requests to store or
retrieve a symbol, the checker computes the hash of the response of the data structure and
compares it with the hash value stored, and it updates the stored hash value if the user requested

47

to store a symbol. The job of the memory checker is to recover and to check responses
originating from an unreliable memory, not to check the correctness of the whole stored data.
With the checker, it is possible to detect corruption of one symbol (usually one bit) per user
operation.

Authenticator. The work of [Naor and Rothblum 2005] better comprehends the remote data

possession problem. It extends the memory checker model by making the verifier checks the
consistency of the entire document in encoded version in order to detect if the document has
been corrupted beyond recovery. The authenticator encodes a large document that will be stored
at the unreliable memory and constructs a small fingerprint that will be stored at the reliable
memory. Using the fingerprint, the authenticator verifies whether from the encoding it is
possible to recover the document without actually decoding it. The authors of [Naor and
Rothblum 2005] propose a construction of the authenticator where there is a public encoding of
the document consisting of index tags of this form: ti=fseed(i o yi) for each encoded value bit yi
having fseed a pseudorandom function with seed taken as secret encoding. The authenticator is
repeatedly used to verify for a selection of random indices if the tags correspond to the encoding
values. The detection of document corruption is then probabilistic but improved with the
encoding process of the document. Moreover, the query complexity is proportional to the
number of indices requested.

Provable data possession. The PDP (Provable Data Possession) scheme in [Ateniese et al.

2007] improves the authenticator model by presenting a new form of fingerprints ti=(hash(v||i) .
gyi)d mod N, where hash is a one-way function, v a secret random number, N an RSA modulus
with d being a signature key, and g a generator of the cyclic group of ℤN

*. With such
homomorphic verifiable tags, any number of tags chosen randomly can be compressed into just
one value by far smaller in size than the entire set, which means that communication complexity
is independent of the number of indices requested per verification.

Proof of retrievability. The POR protocol (Proof of Retrievability) in [Juels and Kaliski

2007] explicitly expresses the question of data recovery in the authenticator problem: if the
unreliable data passes the verification, the user is able to recover the original data with high
probability. The protocol is based on verification of sentinels which are random values
independent of the owner’s data. These sentinels are disguised among owner’s data blocks. The
verification is probabilistic with the number of verification operations allowed being limited to
the number of sentinels.

Compact proofs of retrievability. [Shacham and Waters 2008] improves the POR protocol by

considering compact tags (comparable to PDP) that are associated with each data chunk yi
having the following form: ti = αyi + si where α and si are random numbers. The verifier requests
random chunks from the unreliable memory and obtains a compact form of the chunks and their
associated tags such that it is able to check the correctness of these tags just using α and the set
{ s1, s2, …}that are kept secret.

Remote integrity check. Remote Integrity Check of [Chang and Xu 2008] alleviates the issue

of data recovery and rather focuses on the repetitive verification of the integrity of the very data.
The authors described several schemes some of them being hybrid construction of the existing
schemes that fulfill the later requirement. For instance, the unreliable memory may store the
data along with a signature of the data based on redactable signature schemes. With these
schemes, it is possible to derive the signature of a chunk from the signature of the whole data,
thus allowing the unreliable memory to compute the signature of any chunk requested by the
verifier.

48

Data chunk recovery. The majority of the probabilistic verification schemes require the

recovery of one or multiple (in plain or compacted form) data chunks. For example, in the
solution of [Lillibridge et al. 2003], the owner periodically challenges its holders by requesting
a block out of the stored data. The response is checked by comparing it with the valid block
stored at the owner’s disk space. Another approach using Merkle trees is proposed by Wagner
and reported in [Golle at al. 2002]. The data stored at the holder is expanded with a Merkle hash
tree on data chunks and the root of the tree is kept by the verifier. It is not required from the
verifier to store the data, on the contrary of [Lillibridge et al. 2003]. The verification process
checks the possession of one data chunk chosen randomly by the verifier that requests also a full
path in the hash tree from the root to this random chunk.

Erasure-correcting codes. Erasure-correcting codes are for great interest for probabilistic

verification protocols, since they improve the probability of data recovery in case the
probabilistic approach does not detect the destruction of some parts of the stored data. The
scheme proposed in [Schwarz and Miller 2006] relies on algebraic signatures. The verifier
requests algebraic signatures of data blocks stored at holders, and then compares the parity of
these signatures with the signature of the parity blocks stored at holders too. The main drawback
of the approach is that if the parity blocks does not match, it is difficult (depends on the number
of used parity blocks) and computationally expensive to recognize the faulty holder.

Incremental cryptography. First step toward a solution to the deterministic verification

problem comes from incremental cryptographic algorithms that detect changes made to a
document using a tag, a small secret stored at a reliable memory that relates to the complete
stored document and that is quickly updatable if the user makes modifications. [Bellare et al.
1995] proposes several incremental schemes where the tag is either an XORed sum of
randomized document symbols or a leaf in a search tree as a result of message authentication
algorithm applied to each symbol. These schemes provide tamper-proof security of the user
document in its entirety; although they require recovering the whole data which is not practical
for remote data verification because of the high communication overhead.

Deterministic remote integrity check. The first solution described in [Deswarte et al. 2004]

allows the checking of the integrity of the remote data, with low storage and communication
overhead. It requires pre-computed results of challenges to be stored at the verifier, where a
challenge corresponds to the hashing of the data concatenated with a random number. The
protocol requires small storage at the verifier, yet they allow only a fixed number of challenges
to be performed. Another simple deterministic approach with unlimited number of challenges is
proposed in [Caronni and Waldvogel 2003] where the verifier like the holder is storing the data.
In this approach, the holder has to send the MAC of data as the response to the challenge
message. The verifier sends a fresh nonce (a unique and randomly chosen value) as the key for
the message authentication code: this is to prevent the holder peer from storing only the result of
the hashing of the data.

Storage enforcing commitment. The SEC (Storage Enforcing Commitment) scheme in [Golle

at al. 2002] aims at allowing the verifier to check whether the data holder is storing the data
with storage overhead and communication complexity that are independent of the length of the
data. Their deterministic verification approach uses the following tags that are kept at the holder
along with the data: PK=(gx, gx2

, gx3
, …, gxn

) where PK is the public key (stored at the holder)
and x is the secret key (stored at the verifier). The tags are independent of the stored data, but
their number is equal to two times the number of data chunks. The verifier chooses a random

49

value that will be used to shift the indexes of tags to be associated with the data chunks when
constructing the response by the holder.

Table 4 A comparison of existing verification protocols (variable n and m respectively correspond to data
size and the number of chunks)

 Detection Delegation

Efficiency
Storage at

verifier CPU at holder
Communication

overhead
[Juels and Kaliski

2007]: POR
Probabilistic

Bounded
No O(1)

O(1) hash
transformation

O(1)

[Blum et al. 1994]:
Memory checker

Probabilistic
Unbounded

No O(m)
O(n/m) chunk

fetching
O(n/m)

[Naor and Rothblum
2005]: Authenticator

Probabilistic
Unbounded

No O(1)
O(n/m) chunk

fetching
O(n/m)

[Ateniese et al. 2007]:
PDP

Probabilistic
Unbounded

Possible O(1)
O(n/m)

exponentiation
O(1)

[Shacham and Waters
2008]

Probabilistic
Unbounded

No O(1)
O(n/m)

exponentiation
O(1)

[Chang and Xu 2008]:
based on redactable

signatures

Probabilistic
Unbounded

Possible O(1)
O(log(n))
signature

construction
O(log(n))

[Chang and Xu 2008]:
RSAh solution

Probabilistic
Unbounded

No O(1)
O(n/m)

exponentiation
O(1)

[Lillibridge et al. 2003]
Probabilistic
Unbounded

No O(n)
O(1) simple
comparison

O(1)

Wagner in [Golle at al.
2002]

Probabilistic
Unbounded

Possible O(1)
O(log(n)) hash
transformation

O(log(n))

[Schwarz and Miller
2006]

Probabilistic
Unbounded

Possible O(1)
O(n/m)

signature
validation

O(1)

Our probabilistic
solution

Probabilistic
Unbounded

Yes O(1)
O(n/m) chunk

fetching
O(n/m)

[Deswarte et al. 2004]:
pre-computed

challenges

Deterministic
Bounded

No O(1)
O(n) hash

transformation
O(1)

Our polynomial-based
deterministic solution

Deterministic
Bounded

Possible O(1)
O(n)

polynomial
interpolation

O(1)

[Bellare et al. 1995]:
Incremental

cryptography

Deterministic
Unbounded

No O(1) O(n) fetching O(n)

[Caronni and
Waldvogel 2003]

Deterministic
Unbounded

No O(n)
O(n) hash

transformation
O(1)

[Golle at al. 2002]: SEC
Deterministic
Unbounded

No O(1)
O(n/m)

exponentiation
O(1)

[Deswarte et al. 2004],
[Filho and Barreto

2006]: RSA solution

Deterministic
Unbounded

Possible O(1)
O(n)

exponentiation
O(1)

[Sebé et al. 2007]
Deterministic
Unbounded

Possible O(m)
O(n/m)

exponentiation
O(1)

Our ECC-based
deterministic solution

Deterministic
Unbounded

Yes O(m)
O(n/m) point
multiplication

O(1)

Our DH-based
deterministic solution

(Appendix A)

Deterministic
Unbounded

Yes O(1)
O(n) operations

of
exponentiation

O(log(n))

Homomorphic hash functions. The second solution described in [Deswarte et al. 2004]

requires little storage at the verifier side and no additional storage overhead at the holder side;

50

yet makes it possible to generate an unlimited number of challenges. The proposed solution
(inspired from RSA) has been also proposed by Filho and Barreto in [Filho and Barreto 2006].
It makes use of a key-based homomorphic hash function H. A construction of H is also
presented as H(m)=gm mod N where N is an RSA modulus and such that the size of the message
m is larger than the size of N. In each challenge of this solution, a nonce is generated by the
verifier which the prover combines with the data using H to prove the freshness of the answer.
The prover’s response will be compared by the verifier with a value computed over H(data)
only, since the secret key of the verifier allows the following operation (d for data, and r for
nonce): H(d + r) = H(d) × H(r). The exponentiation operation used in the RSA solution makes
the whole data as an exponent. To reduce the computing time of verification, Sebé et al. in
[Sebé et al. 2007] propose to trade off the computing time required at the prover against the
storage required at the verifier. The data is split in a number m of chunks {di} 1≤i≤m, the verifier
holds {H(di)} 1≤i≤m and asks the prover to compute a sum function of the data chunks {di} 1≤i≤m
and m random numbers {r i} 1≤i≤m generated from a new seed handed by the verifier for every
challenge. Here again, the secret key kept by the verifier allows this operation: ∑1≤i≤m H(di +
r i)= ∑1≤i≤m H(di) × H(r i). The index m is the ratio of tradeoff between the storage kept by the
verifier and the computation performed by the prover. Furthermore, the basic solution can be
still improved as described in [Chang and Xu 2008]; though the verification method is
probabilistic. The holder will be storing tags of ti = gyi+si where si is a random number kept secret
by the verifier. The holder periodically constructs compact forms of the data chunks and
corresponding tags using time-variant challenge sent by the verifier. The authors of [Chang and
Xu 2008] argue that this solution achieves a good performance.

Delegating verification. The authenticator and the memory checker perform verifications on

behalf of the user; though they are considered as trusted entities within the user’s platform.
None of the presented schemes considers distributing the verification task to other untrusted
peers; they instead rely on the sole data owner to perform such verifications. In a P2P setting, it
is important that the owner delegates the verification to other peers in the network in order to
tolerate the intermittent connection of peers and even the fact that a single point of verification
constitutes a single point of failure. Some of the schemes presented above may allow delegating
verification provided that the verifier is not storing any secret information because it may
otherwise collude with the holder. Additionally, the amortized storage overhead and
communication complexity should be minimized for this purpose. To our knowledge, our
proposed verification protocols are the first work to suggest delegating the verification task to
multiple peers selected and appointed by the data owner.

The main characteristics of the existing verification protocols seen in this section are

summarized in Table 4.

3.6. Summary

This chapter presented three verification protocols that satisfy the performance, and security
requirements of self-organizing storage applications with different levels. The security
mechanisms which were developed in this paper make it possible to verify whether a data
storing peer that responds to a challenge still possesses some data as it claims, and without
sacrificing security for performance. This verification can also be delegated to third party
verifiers, thereby fulfilling an essential architectural requirement of self-organizing storage.

Assessing the actual state of storage in such an application represents the first step towards
efficiently reacting to misbehavior: active replication strategies, whereof we have presented

51

how we can achieve in a self-organized form, can be built based on such evaluations. Reactive
replication strategies can be also envisaged as described in the next Chapter that particularly
suggest that generation of new data copies does not require the participation of the data owner.
Cooperation incentives may also benefit from peer evaluations. Stimulating peer cooperation is
however more complex than assessing their instantaneous cooperation with the execution of a
challenge-response protocol. The use of a cooperation stimulation scheme should ultimately
make it possible to detect and isolate selfish and malicious peers. In Chapter 5, we suggest
reputation-based and remuneration-based cooperation incentive mechanisms that both rely on
the verification primitive in having a quasi-punctual evaluation of peer behavior, and thus we
argue that they are better customized to the P2P storage problem than the existing literature on
cooperation incentives.

3.7. Relevant publication

1. Nouha Oualha and Yves Roudier. Securing ad hoc storage through probabilistic
cooperation assessment. 3rd Workshop on Cryptography for Ad hoc Networks, July 8th,
2007, Wroclaw, Poland. Electronic Notes in theoretical computer science, Volume 192,
N°2, May 26, 2008, pp 17-29.

2. Nouha Oualha, Melek Önen, and Yves Roudier. A Security Protocol for Self-
Organizing Data Storage. 23rd International Information Security Conference (IFIP
SEC 2008), Milan, Italy, September 2008.

52

Chapter 4

4. Secure P2P data storage and maintenance

Data possession verification protocols allow the verifier to detect (either deterministically or
probabilistically) whether the holder destroyed data. To ensure data security, the detection of
data destruction should trigger regeneration of a new copy the data at another holder in order to
maintain a high (or at least a minimum) replication rate. This task cannot be solely tackled by
the owner, since it does not often participate in the verification process. Therefore, the task
should be conferred to the other participants in the verification process: verifiers and holders
should then cooperate in order to regenerate a new data replica that will be stored at a volunteer
peer. This regenerated replica should be personalized such that personalization information is
opaque to the new holder; however, the data should not be passed through a third party or a
verifier because then it is transmitted one unnecessary time.

In this chapter, we introduce a new method that relies on the proposed deterministic data
possession verification protocol described in the Section 3.4 and that additionally allows
verifiers and holders to regenerate new data replicas even if the owner is absent (i.e., offline);
though the method can be also applied to the probabilistic verification protocol in an analogous
way. The novelty of the method is that it allows regenerating a replica with the help of verifiers
and holders present in the network, in addition to performing personalization of the generated
replica on the fly without the need of making the data transit via a verifier peer.

We will first review some existing techniques that may be used to realize the maintenance of
the stored data with reliability, security and self-organization as essential objectives. Then, we
will describe a new data storage and maintenance protocol that is resilient to several attacks that
may pose a threat to the well operation of such protocol.

4.1. Threat model

The different attacks the P2P data storage and maintenance mechanism is exposed to are
detailed in Section 3.1.3; there are also new kinds of threats related to the rejuvenation process:

- Denial-of-Service (DoS) attacks: Malicious verifiers may flood the network with useless
rejuvenation messages. In order to prevent that attack, a threshold k’ of honest verifiers is
defined that must detect a storage fault before requesting the generation of a new data
replica.

- Data poisoning: during the repair phase, holders may cheat by performing a bogus data
rejuvenation. Verifiers may also play a part in constructing such bogus data. These verifiers
may construct bogus metadata associated with the new holder that stores in its turn a bogus
data; thus the malicious holder goes undetected by the honest verifiers.

4.2. An overview of existing approaches

A storage mechanism consists in mainly two phases which are data storage, whereby the
owner stores some data at one peer, and data verification, whereby it verifies that the data is
actually stored. However, in order to discuss all the requirements described above and to
address all above threats, we further refine the storage service into five sequential phases (see
Figure 17): during the selection phase, potential holders of the data are elected by the data

53

owner who later on stores its data at these holders during the storage phase. The owner then
appoints verifiers for its remote data during the delegation phase and these verifiers periodically
check the availability and integrity of the stored data during the verification phase. Whenever
these verifiers detect any data destruction or corruption, the repair phase is activated, in which
the verifiers generate a new copy of the data with the help of the remaining holders. These
phases are described below in more detail.

4.2.1. Selection

Selection is the process through which peers that are asked to store data are elected. The goal
of the selection phase is to choose a set of peers that can maintain data availability while
consuming minimal bandwidth. There are two possible techniques for holder selection. A
discriminatory selection determines specific peers chosen such that they satisfy some constraint
(for example, they exhibit a correct behavior as described in [Dingledine 2000]) or such that
they share similar characteristics with the owner like their on-line availability, or dedicated
bandwidth (as illustrated in [Toka and Michiardi 2008]). In contrast, random selection is
generally used for its simplicity since it is less sophisticated and since it consumes less
bandwidth per peer. TotalRecall [Bhagwan et al. 2004] and our P2P storage cooperation
incentives (which will be described in the next Chapter 5) rely on a distributed-hash-table
(DHT) to randomly select data holders. The selection is realized by randomly choosing a value
from the DHT address space and routing to that value. We claim that the random selection
mitigates some type of pre-set collusion between these holders (see next Chapter 5). Similarly,
[Godfrey et al. 2006] analyzes peer selection strategies and proves the positive effects of
randomization through the study of a stochastic model of a P2P system under churn. After
holders have been selected, the owner can directly contact them for data storage. To mitigate the
problem of peers having multiple identities as first described as a Sybil attack in [Douceur
2002], peers joining the system may pay with computational, bandwidth or storage abilities,
such as for example crypto-puzzles in [Vishnumurthy et al. 2003] (the reader may refer to
[Levine et al. 2006] for an exhaustive survey of counter techniques to the Sybil attack).

4.2.2. Storage

Once peers which will store the data have been selected by the owner, the latter should send
the data to these potential holders. Data availability can be ensured either by implementing
some form of redundant storage, through either replication or erasure coding. With replication, a
simple copy of the data is distributed to each selected peer. With erasure coding, a data is
instead divided into several blocks and additional blocks are generated to ensure data
reconstruction as soon as a given number of blocks are retrieved. Replication, which has been
mostly used in DHTs, more seriously increases the storage overhead and maintenance
bandwidth without a comparable increase in fault tolerance. In contrast, erasure codes offer a
better balance between the storage overhead and fault tolerance achieved. Many storage systems
like Wuala44, AllMyData Tahoe45, and TotalRecall [Bhagwan et al. 2004] rely on the latter.
Erasure codes are more complex than replication and in particular, the maintenance of coded
data blocks introduces additional computational costs since it requires performing the coding
yet again. Communication costs are also needed to retrieve a minimum number of coded blocks
from several holders. A tradeoff between storage requirement and data maintenance must be
determined when considering the use of erasure codes or replication: [Weatherspoon et al.

44 http://wua.la/en/home.html
45 http://allmydata.org/

54

2005] for instance describes how quantitative simulation might help in doing so. Quite opposite
results in [Courtes 2007] suggest with analytic models that simple replication may be less
detrimental than erasure codes with respect to data dependability in several scenarios.
Moreover, in the case of replication, since the size of the data can be very large, holders may not
cooperate and cheat on storing the data. They may even collude and ensure that only one holder
is storing the data for all the other selected ones. Data personalization has been introduced as a
solution to this threat: the owner generates a single and different replicate of the data for each
holder and ensures that the response to the challenge during the verification phase is also
different (e.g., see Section 3.4 of Chapter 3). This type of collusion may also arise with erasure
coding even though it becomes problematic only if the number of colluding holders exceeds the
number of original data blocks.

4.2.3. Delegation

As previously described, the storage mechanism should ensure that the data is continuously
available and that holders are rightly claiming to be storing the data assigned to them. The
verification phase relies on specific challenge-response protocols that achieve remote data
integrity verification. P2P networks being very dynamic, the owner cannot be assumed to be
always online, in particular if the storage service is used for backup purposes. At times when the
owner is not present in the network, data verification should still be ensured by the owner’s
delegates, that is, verifiers. The distribution of that verification also improves performance
through load balancing.

4.2.4. Verification

P2P storage systems generally use timeouts/heartbeats to detect peer failures. A new type of
challenge-response protocol has been proposed to tackle the problem of remotely proving the
integrity of some data stored by a holder (see Section 3.5 of Chapter 3). Even though these new
cryptographic primitives prevent the generation of correct responses, a cheating holder may
simply not reply a verifier’s challenge thereby pretending to be offline or crashed.
Distinguishing permanent failures, malicious or not, from transient ones, in which case the
holder may return with the data intact after some time, is difficult. This is generally handled
through the use of a grace period during which the verifier waits for challenges to be answered
before declaring the holder as faulty.

4.2.5. Repair

The repair phase can be triggered in active or reactive mode. Active repair can be performed
in a regular-basis; though such operation may be either insufficient or expensive entailing
considerable both storage and bandwidth overhead because its periodicity is generally not
tailored to the actual status of the stored data. On the other hand, with reactive repair, detecting
that one of the holders has cheated and does not store the data anymore should trigger a data
repair operation in order to ensure data availability. The verifier in charge should select another
peer to perform the required operations to store the data and to generate the corresponding
security metadata. Given the dynamicity of P2P networks, such operations should not rely on
the presence of the owner. Additionally, the cooperative behavior of the peers participating in
the repair operations should be stimulated. The recovery may be triggered almost immediately
after the detection of a cheating or delayed holder. Simulation results of [Bhagwan et al. 2004]
demonstrate that delayed repair (lazy repair) is more efficient in terms of data availability and

55

overhead costs tradeoff than immediate repair (eager repair) for a large data size and a highly
dynamic system. In Section 4.3, we propose an analytic model that studies the periodicity of the
repair phase.

Figure 17 Data storage and maintenance phases

4.3. An erasure coding based data storage and maintenance protocol

This section presents a new data storage and maintenance protocol for P2P storage systems.
The proposed protocol uses the verification protocol introduced in Section 3.4 of Chapter 3. To
our knowledge, such verification protocol is the first to suggest distributing the task of verifying
the remote data to multiple untrusted peers selected from the network. The security of the
protocol relies on the hardness of two problems associated with the elliptic curve cryptography
(defined in Section 3.4.1). However, the deterministic verification protocol does not instantiate
a holder selection strategy, and specially does not suggest any repair method for the destroyed
data that have been detected. The proposed solution that will be described in the following
integrates such method.

Additionally, the following protocol opts for erasure coding rather than replication (that is
rather suggested in Section 3.4) for better storage versus reliability tradeoff. It employs some
type of erasure coding scheme, the random linear erasure coding [Acedański et al. 2005]. With
such data coding, the entries of the generating matrix of the encoded data are chosen randomly.

4.3.1. Description

The description of the data storage and maintenance protocol concentrates on the four phases
discussed in the previous section: storage (Figure 18), delegation (Figure 19), verification

Periodic data verification

Data repair

Data
destroyed?

Holder selection

Data storage

Yes

No

Verification delegation

56

(Figure 20), and repair (Figure 21) phases. The selection phase may however rely on a random
selection.

In the following, the protocol is described phase by phase:

- Storage: As discussed in the previous section, data have to be stored at multiple peers in
order to ensure data availability and reliability. Secure data storage with the simple
replication technique has been proposed and evaluated in 3.4.5. Since the use of erasure
coding technique provides the same level of reliability as replication but with much lower
storage requirements at holders, a new storage mechanism based on erasure codes is
proposed. At this phase, the data D is first divided into k blocks {di} 1≤i≤k. These blocks are
then encoded to produce k+m coded blocks {bi} 1≤i≤k+m based on the generating matrix G
defined in ℤ as:

- � ./�01
where Ik denotes the k×k identity matrix and A denotes a m×k random matrix in ℤ. Each
coded block bi is generated using the following linear operations in ℤ:

�� � � ��,�
�

�� 	 ��

where the ��,� is an entry of G at the i th row and j th column. The coded block bi is finally
sent by the owner to one distinct holder that is named the i th holder.

1) Owner: divide D into k blocks {di} 1≤i≤k
2) Owner: generate random numbers in ℤ 2��,�3�4�4�56,�4�4�
3) for each 1≤i≤k+m
 Owner: compute �� � ∑ ��,���� 	 ��
4) for each 1≤i≤k+m
 Owner → i th holder: bi
5) i th holder: keep bi

Figure 18 Storage phase

Delegation & verification: These two phases integrate the solution from Section 3.4 of
Chapter 3 whereby the metadata is computed using the coded block instead of the whole
data. This verification only guarantees the storage of one block and therefore considered
as partial. The delegation of verification uses a specific elliptic curve (defined in
[Koyama et al. 1991]) such that the order of the curve is kept secret by the owner. The
owner delegates the task of verifying one coded block to a number v of verifiers. The
verifier assigned to the i th holder receives from the owner a metadata information Ti such
that Ti=bi.P, where bi is an integer that maps to the coded block stored at the holder, and
P is a generator of the elliptic curve. Based on such metadata, the verifier is able to
periodically check whether the holder stores block bi. Indeed, it first sends a challenge
message Q=r.P to the holder where r is a freshly generated random number. Upon
reception of the challenge, the holder computes R=bi.P and sends the product to the
verifier. The verifier checks whether the equality r.Ti=R holds. If the latter equality is not

57

met, the verifier detects that the block has been either corrupted or destroyed by the
holder

1) Owner: generate a specific elliptic curve (refer to Section 3.4.1)
2) for each 1≤i≤k+m
 Owner: compute Ti=bi.P
3) for each 1≤i≤k+m

 for each 1≤j≤v
 Owner → verifier: Ti
4) Verifier: keep Ti

Figure 19 Delegation phase

In reaction, this event should trigger the generation of a new block to replace the lost
one. This operation is performed in the next phase.

1) Verifier: generate a random number r
2) Verifier: compute Q=r.P
3) Verifier → i th holder: Q
4) ith holder: compute R=bi.Q
5) ith holder → Verifier: R
6) Verifier: Check if r.Ti=R?
 If r.Ti≠R launch a repair phase

Figure 20 Verification phase

- Repair: To activate this phase, a fraction of verifiers assigned to a given holder
consisting of at least k’ peers has to detect the destruction of the block stored at a holder.
They first select a random key altogether (e.g., the key is the XORed sum of the random
numbers chosen by verifiers). The random key is used to select a new holder randomly.
The new block is generated based on a coding operation over k blocks. The coding
operation is executed by the new holder, who receives k verified blocks {bti} 1≤i≤k from a
randomly selected set of the remaining holders. The verifiers also agree on a seed s that
will be sent to the new holder. The seed can be simply computed as a sum of random
numbers each one of them chosen by each verifier. The seed allows to generate random
coefficients {ci} 1≤i≤k. The new holder then computes the new block b’ in ℤ as follows:

�� � � �� 	 �
�
�

��

The new generated block can be written as a linear combination of the original data
blocks. Indeed, since each block transmitted by the holders participating in the
regeneration process can be written as a combination of the original data blocks, then:

�� � � �� 	 �
�
�

�� � � �� 	 �� �
�,�
�

�� 	 ����
��

Thus,

 �� � � �� �� 	 �
�,�
�

�� ��
�� 	 ��

58

As a result, the generated block is coded based on the random linear erasure coding
scheme. [Acedański et al. 2005] demonstrates that any k×k sub-matrix of a random matrix
is invertible with a high probability for a large field size; thus the property of erasure
coding is still provided by the new block. Moreover, the new block is distinct from the
lost block as well as from the remaining blocks stored in the system. The indexes of the
holders involved in the redundant block generation process along with the seed s must be
stored by the verifiers then handed out to the owner when he is available again, thus
allowing it to update the generating matrix G of the erasure codes. If the block bi has
been destroyed, the update only affects the i th row of the matrix: the new row is defined as ����,�, … , ���,�� where for each j in [1, k]:

���,� � � �� 	 �
�,�
�

��

Each verifier assigned to the revoked holder keeps its role as a verifier for the new holder.
However, it requires new metadata information T’ for the new coded block that is
computed as a linear combination over the metadata information stored at other verifiers
(responsible of the holders that have been involved in the block generation) and using the
same set of coefficients:

�� � � �� 	 �
�
�

��

The new metadata corresponds to the new block b’ stored at the new holder; this is
realized owing to the commutativity properties of elliptic curves ([Koblitz 1987], [Miller
1986]):

�� � � �� 	 �
�
�

�� � ���� 	 �
��. ��
�� � ��. �

1) Verifiers: generate a seed s
2) Verifiers: select k random holders
3) Verifiers → new holder: s, {bti

} 1≤i≤k
4) New holder: generate random coefficients {ci} 1≤i≤k
5) New holder: compute �� � ∑ �� 	 �
����

6) New holder: keep b’

(a)

1) Verifiers→ new holder’s verifiers: s, {Tti
} 1≤i≤k

2) New holder’s verifiers: generate random coefficients {ci} 1≤i≤k
3) New holder’s verifiers: compute �� � ∑ �� 	 �
����

4) New holder’s verifiers: keep T’

(b)

Figure 21 Repair phase: (a) construction of a new coded block and (b) construction of the corresponding
metadata.

59

4.3.2. Security evaluation

This section analyses the security of the proposed data storage and maintenance protocol
with respect to the attacks discussed in Section 4.1.

Preventing data destruction: Each verifier checks the availability of one remote coded

block. The destruction of any block is detected through the verification protocol that has been
proven in Section 3.4.4 of Chapter 3 as being a proof of knowledge protocol. Indeed, the
protocol is proved to be complete i.e., the verifier always accepts the proof as valid if the holder
follows the protocol, and sound i.e., the verifier will not accept the proof as valid if the holder
destroys or corrupts the data.

Collusion resistance: With erasure codes, the produced blocks that will be stored at holders

inherently differ from each other, which ensures blocks are personalized. Even though collusion
between k+1 or more holders may happen, we assume that such a collusion is unlikely because
it requires sending k blocks (comparable in size to the original data) to one of the holders to
encode the destroyed block. This entails considerable bandwidth and computation costs for each
verification operation.

A newly generated block differs from the remaining stored blocks. This is guaranteed with
the randomization added by the seed s that is chosen cooperatively by the verifiers to prevent
potential collusions between one particular holder and an additional peer.

Preventing DoS attacks: A quota system can be introduced into the protocol to regulate the

number of challenge messages the verifier is allowed to send to a given holder during a time
frame. This allows mitigating a flooding attack against the holder launched by a malicious
verifier.

The activation of a repair phase is made possible only after the agreement of at least k’
verifiers. The use of independent verifiers mitigates the maliciousness of some of them that may
flood the system with repair requests. The threshold value k’ is a tradeoff factor between these
two considerations: prevention against verifier collusion and also handling of peer churn and
intermittent availability.

Preventing data poisoning: A holder or verifier may send bogus information to the

concerned peers. We argue that this problem can be easily thwarted by including a signature
with any information to provide proofs of origin and integrity for the recipient of such
information. Each coded block or metadata is associated with some owner signature that attests
its validity.

On the other hand, after a data repair phase, the new holder or the new verifier will keep
track of a compilation of all necessary owner signatures that validates the newly generated
block or metadata. For example, a new holder can keep along with the freshly coded block b’,
the seed s used to generate coefficients for the new block, and the following set of information: 9�
:. �, ���� !"#$��
: . ��;�4�4�

b’ being coded based on blocks {bti} 1≤i≤k and signowner(.) being the signature generated by the
owner. When the owner reconnects to the system, it makes contact with the new holder, checks
the validity of its signature compilation, and replaces all these with its own signature:

���� !"#$ ��′. � � � �� 	 <�
� . �=�
�� �

60

To simplify such process and in particular to reduce the signature overhead, the protocol
may alternatively rely on any homomorphic signature (e.g., algebraic signatures as described in
[Schwarz and Miller 2006]) providing the following property:

���� !"#$ ��′ � � �� 	 �
�
�

�� � � % ���� !"#$��
��&�
�

��

The new holder or verifier can thus construct a valid signature for the newly generated block
or metadata based on the signatures of the generating blocks or metadata and without having
recourse to the owner.

Preventing man-in-the-middle attacks: The holders of a given data are selected randomly.

As suggested in section 5.2.2 of the next chapter, a data owner cannot choose by itself the
identities of its data holders. This means that the owner necessarily have a key ID in the DHT
that is distinct from the key IDs of its holders. These holders are then contacted directly for data
storage and verification. To prevent a man-in-the-middle attack, the response of a holder storing
block bi to a verifier’s challenge may be constructed as a digest of the product bi.P along with
the holder’s identity ID: R=hash(bi.P, ID), hash being a pseudo-random one-way function. The
peer’s ID can correspond to the peer’s IP address, which is forgeable but may still make it
possible to establish a secure channel between two peers if we assume no attack on the routing
protocol. With such a construction of the response, an attacker cannot trick a verifier by
pretending to be storing the block and holding at the same time an identity different from ID.

4.3.3. Performance evaluation

In the proposed protocol, the performance of both the delegation and verification phases has
been already evaluated in Section 3.4.5 (Chapter 3). Since metadata are only computed based on
one block instead of the whole data, the performance in fact improves.

The proposed repair method requires the transmission of only k coded blocks (corresponding
in total to the file size) for the regeneration of one block while at the same time providing
personalized regenerated block to the new holder. Additionally, the bandwidth utilization for the
regeneration is distributed between holders.

Furthermore, the communication overhead of the proposed repair method can be optimized
by relying on hierarchical codes as proposed by [Duminuco and Biersack 2008]. With such
erasure codes, the required number of coded blocks to repair a block is greater or equal to the
number of children in the tree hierarchy and less or equal to k.

The communication overhead caused by verifier agreement and notification messages can be
considered negligible owing to the fact that the data (or the block) are likely considerably larger
in size.

The linear combination of blocks is operated in ℤ which may lead to an increase in the size
of the produced block by at most k bits. We argue that this increase is insignificant given the
original size of blocks.

4.4. An analytic model for P2P data storage and maintenance

This section introduces an analytic model that describes the P2P storage system inspired
from the epidemic models in [Jones and Sleeman 1983] where peers are classified into groups
depending on their state. We endeavor to determine the right periodicity for data maintenance
with such model.

61

We consider an owner that replicates its data at r holders using a (k, r-k)-erasure coding. The
original data can be generated from at least k coded blocks. The owner also delegates the
verification of each coded block to v verifiers. These verifiers have the responsibility to
periodically check the presence and integrity of the stored block at their assigned holder.
Whenever at least k’ verifiers detect the destruction or corruption of the block they decide to
regenerate a new block and store it at a new holder. We assume that verifiers do not require to
be replaced often during the data storage. The owner is supposed to connect to the P2P system
from time to time in order to select new verifiers and to appoint them to the desired blocks.

4.4.1. Model of P2P data storage without data maintenance

Figure 22 depicts a state model for describing the presence of holders in the P2P system.
Holders may disconnect or definitely leave the system. Peer disconnection and peer departure
rates, which are respectively named λ and µ, are considered constant. Peers may reconnect at
constant rate λ’. Holders may be in state “connected”, “disconnected” or “left”. Additionally,
holders do not just leave the system after a crash but may also in state “left” if they destroy
blocks they store. In this model, holders that have destroyed blocks are not replaced (no data
maintenance). We designate the number of holders in states “connected”, “disconnected”, and
“left” at time t by respectively nc(t), nd(t), and nl(t), the total number of peers at time t being: �&�>� ? �@�>� ? ���>� � A

Figure 22 State model of data storage without maintenance

The number of holders in each state varies with time according to the differential equations
derived from the state model: ��&�>��> � B��@�t� + �D ? B��&�>� @"E�
�@
 � BF&�t� + �D ? B���@�>� (4.4.a) ����>��> � D��&�t� ? �@�>��

The solution of these equations gives the number of holders in each state at time t:

�&�>� � B�AB ? B� GHI
 ? BAB ? B� GH�I5J5J��

�@�>� � BAB ? B� GHI
 + BAB ? B� GH�I5J5J��
 ���>� � A�1 + GHI
�

The number of holders in the system nc(t)+nd(t) converges to zero with time. This means that

there is a certain time t0 at which the owner’s data is not available any more (i.e., t0 is the time
limit for data availability), and there is another time t1 at which the owner cannot retrieve its

62

data from the storage system (i.e., t1 is the time limit for data reliability). The time limit t0 is
defined as:

�&�>*� � B�AB ? B� GHI
L ? BAB ? B� GH�I5J5J��
L � M

To simplify the above equation, the exponential functions can be rewritten as infinite power

series (in the form of Taylor series) that can be approximated to their first order. A solution is
obtained for: >*~ 1D ? B �1 + M/A�

The time limit t1 is obtained if: �&�>�� ? �@�>�� � AGHI
P � M

This leads to: >� � �1 DQ �log �A/M�

4.4.2. Model of P2P data storage with data maintenance

If we consider that destroyed blocks are detected and regenerated at other new holders, we
obtain a new state model (depicted in Figure 23). This model describes a repair phase for
destroyed blocks during which new holders are introduced in the model at a constant rate γ (1/γ
is also the verification time period).

Figure 23 State model of data storage and maintenance

The number of holders in each state verifies the following differential equations derived
from the model: ��&�>��> � B��@�t� ? U�A + �&�t� + �@�t�� + �D ? B��&�>� ��@�>��> � B�&�t� + �D ? B���@�>� ����>��> � D<�&�t� ? �@�>�= ���&�>� ? �@�>� ? ���>���> � U�A + �&�t� + �@�t��

The solution to these differential equations gives the number of holders in each state:

�&�>� � AU ? D V U�D ? B��D ? B ? B� ? D�B� + U�B ? B� + U GH�W5I�
 ? B� UD ? B ? B� ? DB ? B� + U�GH�I5J5J��
X

63

�@�>� � BAU ? D Y UD ? B ? B� ? DB ? B� + U GH�W5I�
 + � UD ? B ? B� ? DB ? B� + U�GH�I5J5J��
Z
���>� � DAU ? D YU> ? DU ? D �1 + GH�W5I�
�Z

We note that the equations in 4.4.a match the above equations for γ = 0. To be able to

perform the recovery of dropped blocks, we should have nc(t) ≥ k for each t>0. This leads to the
following inequality that must be met:

U [DAM \ D ? B�D ? B ? B�] + 1 ; MA _ D ? B�D ? B ? B�

The above equation gives a precise bound on the data maintenance period Tmax:

�6`a � AM \ D ? B�D ? B ? B�] + 1
D

4.4.3. Numerical simulation

We simulated the above model of a P2P data storage system in different scenarios based on
the equations developed earlier. In the simulation, peers join the system for an average lifetime
of 2 weeks. Each peer stays online for 1 hour and connects on average 6.4 times in a day.
Additionally, holders are assumed to destroy their blocks one time per day on average. Without
data maintenance, the owner’s data is not available after only 49 minutes and then cannot be
recovered after less than 2 days. With maintenance however, the data is always available and
retrievable. But data maintenance should be periodically performed 3.8 times per day.

Figure 24 Number of holders. r=30, k=5, v=10, k’=7, d=6.94×10-4, λ=0.0167, λ’=0.0044 (rates per minute (mn)).

Figure 24 shows the number of holders that are still storing data blocks with time in different
settings. The figure illustrates the fact that without maintenance (γ=0) the number of holders
decreases converging to zero. On the other hand, with maintenance (γ≠0), the number of holders
converges to an equilibrium value that is not null. This value depends on the γ ratio: if γ<1/Tmax,
then the value is lower than k; otherwise it is higher than k thus rendering the restoration of

0 2000 4000 6000 8000
0

5

10

15

20

25

30

Time (in mn)

N
um

be
r o

f h
ol

d
er

s
st

ill
 s

to
rin

g
th

e
ir

b
lo

ck
s

no maintenance
maintenance at rate:
gamma=0.5*T

max

gamma=1/T
max

gamma=1.5*(1/T
max

)

64

destroyed blocks possible. The figure proves that with the data maintenance mechanism, the
P2P storage system is able to achieve the survivability property for the stored data.

Figure 25 Number of online holders. r=30, k=5, v=10, k’=7, d=6.94×10-4, λ=0.0167, λ’=0.0044 (rates per mn).

Figure 25 shows the number of online holders over time computed with and without a repair
phase. The figure proves that considering maintenance at a rate γ≥1/Tmax and with k chosen in
function of system parameters enables the system to work with high data availability. In the
case without data maintenance however, blocks required to recover the data are not accessible
anymore with time.

4.5. Summary

This chapter presented a P2P data storage and maintenance protocol in which the detection
of data corruption and data rejuvenation are self-organizing functions. This protocol is
innovative in that peers cooperate not only in providing storage resources, but also for ensuring
their resilience. In particular, the main security and dependability functions of this protocol are
distributed to multiple peers which makes it easier to mitigate non cooperative behaviors, while
additionally coping with churn.

0 2000 4000 6000 8000
0

5

10

15

20

25

30

Time (in mn)

N
um

be
r o

f o
nl

in
e

 h
ol

d
er

s

no maintenance
maintenance at rate:
gamma=0.5*(1/T

max
)

gamma=1/T
max

gamma=1.5*(1/T
max

)

65

66

Chapter 5

5. Audit-based cooperation incentives

Cooperation is a central feature of P2P systems that is key to their scalability. However,
cooperation to achieve some functionality is not necessarily an objective of peers that are not
under the control of any authority and that may try to maximize the benefits they get from the
P2P system. Cooperation incentive schemes have been introduced to stimulate the cooperation
of such self-interested peers. They are diverse not only in terms of the applications which they
protect, but also in terms of the features they implement, the type of reward and punishment
used, and their operation over time. Cooperation incentives are classically classified into
reputation-based and remuneration-based approaches. Cooperation enforcement, that is using
cooperation incentives to ensure a proper operation of the P2P system, may rely on a dedicated
and trusted coordinator or, in its purest form, constitute a self-organizing mechanism.

This chapter discusses the design of two cooperation incentive mechanisms for a P2P storage
application and their application to thwarting misbehavior. The first one is reputation based, and
relies on the evaluation of peers’ past behavior to estimate how trustful they will be in
upcoming interactions. The second one is remuneration (or payment) based, and features
explicit rewards for a correct behavior. Both mechanisms rely on the security primitives
discussed in previous chapters, notably on a protocol for the remote verification of data
possession as a primitive for the continuous evaluation of behavior of storage peers.

5.1. Cooperation incentives for P2P storage

In a P2P storage system, individual peers join their efforts and cooperate for the correct
operation of the application. It is generally suggested that cooperation will help entities to
succeed better than via competition. [Buttyán and Hubaux 2003] demonstrated that the best
performance in mobile ad-hoc routing is obtained when nodes are very cooperative. Devising
mechanisms stimulating cooperation among peers should therefore receive a great deal of
attention.

Shortcomings of existing approaches

The majority of existing approaches for stimulating cooperation have been introduced for
immediate services like packet forwarding in ad hoc networks ([Michiardi 2004] and [Buttyán
and Hubaux 2003]) or for transferring a data block in P2P file sharing networks (Napster46,
Gnutella47 , KaZaA48 , Morpheus49 , or BitTorrent50). In MANET routing for instance,

46 http://www.napster.com/
47 http://www.gnutella.com/
48 http://www.kazaa.com/
49 http://www.morpheus.com/
50 http://www.bittorrent.com/

67

encouraging packet forwarding by increasing forwarder node’s reputation or handing it tokens
is an explicit and immediate counterpart for cooperation. Evaluating cooperation for a data
storage service at the time of data retrieval is less easy, because pessimistic approaches make it
necessary for a cooperating peer to wait for a long time before it gets rewarded for its
cooperation, while optimistic approaches might make it possible for a not abuse the cooperation
mechanism to achieve an immediate gain. Hence, there must be a cooperation incentive
mechanism more adapted to distributed storage applications and that must support the periodic
verification of stored data.

Incentives with multiple objectives

Coping with free riding or voluntary data destruction cannot be achieved by a simple tit-for-
tat strategy like in BitTorrent [Piatek et al. 2007], but requires the owner together with the help
of some volunteer peers, verifiers, to periodically check storage at holders and decide if some
data needs to be replicated again in the network. The data stored can be periodically checked
using one of the verification protocols discussed in previous chapters, including our own that
suggests that verification should be mostly handled by verifier peers selected and appointed by
the data owner to distribute the load of this task. Still, verifiers may themselves cheat like
holders (indeed, “quis custodiet ipsos custodies”51); the P2P storage system therefore requires a
cooperation incentive mechanism to be used to incite peers to cooperatively and fairly help in
providing reliable and secure data storage, either-based on reputation or remuneration. Thus, a
cooperation incentive mechanism adapted to distributed storage must at least serve a twofold
objective: to incite peers to store data for other peers and to motivate others to verify these data.

The remainder of this chapter presents approaches whereby a good evaluation of peer
behavior goes essentially by verifying the integrity of the data stored. Verification results serve
to estimate the reputation of data holder peers in a reputation-based mechanism or to decide
whether to reward or punish peers in a remuneration-based approach. Such an evaluation is
additionally a way to indirectly establish trust.

5.2. Reputation-based approach

This section introduces a new reputation system for P2P storage applications that allows
estimating the trustworthiness of peers based on experiences and observations of their past
behaviors.

5.2.1. Threats

The adversaries that we consider for the reputation-based approach are peers that trick the
reputation system for any perceived personal benefit. In the following, we examine ways which
peers may use to subvert the reputation mechanism.

- Lying: a liar is a peer that disseminates incorrect observations on other peers (“rumor
spreading”) in order to either increase or decrease their reputation. Colluded liars may
form a group of peers that conspires against one or more peers in the network by
assigning unfairly low reputation to them (“bad mouthing”) or unduly high reputation to
members of their group.

- Collusion between owner and holder: The collusion aims at increasing the reputation of
the holder at honest verifiers. Just lying to verifiers supposes that observations of peers

51 Who watches the watchers?

68

rely on external recommendations. However without these recommendations, peers may
still be vulnerable to lying using such type of collusion where the owner pretends storing
bogus data at the holder.

- Collusion between holder and verifier: The aim of such collusion is to advertise the
quality of holder more than its real value (“ballot stuffing”) thus increasing its reputation
at owner. But, still the owner may ultimately and opportunistically check by itself storage
at holder to make its own view on the holder.

- Whitewashing: peers may repeatedly leave system and rejoin with new identity escaping
the consequences of their bad actions, so that misbehaving or well behaving does not
matter for them.

- Sybil attack: If peers are able to generate new identities at will, they may use some of
them to increase the reputation of the rest of identities either by lying, or pretending to be
the owner and holder or holder and verifier of some data.

5.2.2. Reputation-based storage

In the P2P storage system, we rely on the construction of groups in which we evaluate peer
behavior. Peers store their personal data in their group. The security of data stored is the
responsibility of group members, given that they are periodically verified by some group
members for availability and no corruption.

Group construction and management

Peer groups are dynamic with members that join and leave the group at anytime. Such
group-based architecture allows only intra-group interactions, and thus peers establish rapid
knowledge of the trustworthiness of their group fellows. Moreover, the group ensures a
minimum level of good behavior: whenever a peer misbehaves it is badly audited by a growing
number of group members until becoming totally isolated from the group.

Peer groups are created either in a centralized or in a decentralized manner. Centralized
managed groups can be constructed at outset by an authority like partnership in [Lillibridge et
al. 2003] that may tackle also the task of distributing the group key to all members. The group
key controls the access to the group, and ensures secure and private communication between its
members. On the other hand decentralized groups are cooperatively formed at will by its
members and they rely on collaborative group key agreement protocols (e.g., [Lee et al. 2006],
[Lesueur et al. 2007]).

Group members are in a structured Distributed Hash Table (DHT). A DHT consists of a
number of peers having each a key KeyPeer in the DHT space, which is the set of all binary
strings of some fixed length. We assume that the DHT provides a secure lookup service (see [Sit
and Morris 2002] and [Castro et al. 2002]): a peer supplies an arbitrary key (an element in the
DHT space), and the lookup service returns the active node in the DHT that is the closest to the
key.

In the group, peers have unique identities in the DHT. The risk of Sybil attacks can be
mitigated by imposing a membership fee for peers willing to join a given group, or in a
decentralized way constraining the number of invitations any group member possesses as
proposed in [Lesueur et al. 2008].

Self-organizing peer selection

The audit-based P2P storage system allows peers to delegate the verification of their data to
other volunteer peers, the verifiers, and also to only accept to store data of well-behaved peers.

69

Verifier selection. A data owner desiring to store a data replica in the system may randomly
choose verifiers to whom it will send a verification request. The random selection of verifiers
may be based on a random operation proper to the owner, for example the identity of the
verifier i can be the closet key to the value KeyVerifier=Hash(KeyOwner||nonce||i) where Hash is a
pseudo-random function determined at group outset and nonce is a randomly chosen number
protecting against a replay of the same operation (“||” means concatenation). From peers
answering to this request, the owner selects m peers, and then acknowledges them including in
the message the list of the m chosen verifiers. This information is a commitment from the owner
to the verifiers’ list.

Holder selection. To avoid collusion between the owner and the holder, holders may be
chosen randomly in the DHT overlay in the same way as verifier selection (with a fresh new
nonce). Alternatively, we may make also the selected verifiers choose altogether the holder for
the owner. Each verifier i commits to a randomly chosen DHT key ki (commitment can be as
simple hash operation of the key) and then sends this commitment to the owner. The owner
sends the digest of verifiers’ commitments to each verifier. Upon the receipt of the owner’s
message, verifiers will send their chosen random keys to the owner. The selected holder is the
peer with the closest key to the XORed sum of these random keys:

KeyHolder = k1 ⊕ k2 ⊕ … ⊕ km

The owner sends a digest of the messages received by verifiers containing their keys along

with the identity of the chosen holder.
 It is clear that the process of selecting holders requires several communication messages

between the owner and verifiers that might be grouped in a single multicast message;
nevertheless, this is the price to pay to obtain a consensus between the owner, the verifiers, and
the holder, and particularly to avoid collusion between any participants in this agreement.

Interaction decision

We may rely on a simple trust model based on whitelisting (see Figure 26) similarly to the
Tit-For-Tat (TFT) strategy in BitTorrent [Piatek et al. 2007]: peers that have correctly stored
data they have promised to preserve are added to the whitelist of their observers (the data owner
and its delegated verifiers).

70

Figure 26 Whitelisting model.

Whenever a peer detects that another peer has destroyed data it has promised to store, the
latter will be removed from the whitelist. We also propose a “grace period” during which “no
response” from the challenged holder is tolerated until the period times out, thus avoiding
abusively isolating cooperative holders with transient connection.

 Newcomers to the system are probabilistically added to the whitelist. Newcomer acceptance
probability may be computed based on the upload capacity of the peer and its whitelist size.
This probabilistic process serves to bootstrap the storage system, but it also means that
whitewashers may probabilistically gain some advantage of that. Other trust models can be
adopted like for example the Additive Increase Multiplicative Decrease (AIMD), the Linear
Increase Sudden Death (LISD), or blacklisting mechanisms.

A peer accepts to only serve peers pertaining to its whitelist: it stores their personal data or
periodically verifies their data availability in the system. However, a peer may accept to store its
data at peers that do not pertain to its whitelist.

5.2.3. Analytic evaluation

This sub-section discusses the potential of the audit-based approach in observing peer
behavior through the study of an analytic model.

The trustworthiness of a peer can be estimated based on the observation of its behavior by
third parties. The semantics of the information collected can be described in terms of direct (or
local) or indirect (or system-wide) observations. Direct observation amounts to the compilation
of a history of personal interactions by one peer towards another peer when being the owner of
data stored at the peer or serving as verifier of this peer. On the other hand, indirect observation
refers to any reputation information received from other peers in the system. There are
substantial communication savings to be gained by limiting observations to just private
interactions even though indirect observation may be only partially disseminated or
piggybacked on ordinary messages. Besides, using only direct observation may delay the
evolution of reputation.

71

A reputation-based approach for P2P storage applications generally allows estimating the
trustworthiness of a given peer based on experiences and observations of its past behavior
towards the actual estimator or other peers. Similarly, the audit-based approach, that we
propose, relies on the estimation of the trustworthiness of this very peer based on experiences of
the estimator, solely as a data owner or its observations obtained from audits of other peers’
data, in the role of a verifier. The following gives an evaluation of both approaches based on an
analytic model.

Model

This sub-section discusses how to compute the gain of choosing one way of observation
reciprocity over the other in terms of the level of correctness of gathered reputation information.

Considering two peers p1 and p2, where p1 desires to have correct observations on p2. Peer p1

may perform a correct observation itself or may receive observations from other peers in the
system that may be correct or incorrect. Our model assumes that incorrect observations are
received from dishonest peers only. Let η denote the fraction of dishonest peers in the total
population.

We define a quality level for the estimated observation with two extrema: bc and b . An
observation of quality bc is correct, and an observation of quality b is incorrect. Observation may
be null to refer to the situation where p1 does not have any observation on peer p2
(indistinguishably from the worst reputation).

First of all, the probability that p1 knows about the p2‘s behavior is computed (it must at least
obtain the result of one interaction involving p2); the estimated observation of p1, denoted õ, is
then derived for two different cases:

- Audits: observations based on storage and verification results: p1 only takes into account
its personal interactions with p2 as an owner storing data at p2 or as a verifier for other
peers’ data stored at p2.

- Reputation: observations based on peer’s experiences and also recommendations: p1

takes into account both its personal interactions and opinions expressed by other peers
with respect to p2. The reputation model is inspired from [Anceaume and Ravoaja 2006]
where reputation computation is based on a subset of information provided by randomly
chosen peers.

Audits: The probability that p1 knows about the behavior of p2 is equal to: �Ab�de� M�bf� egh � i� � 1 + \1 + BA�� + 1�] �1 + BA�� + 1� ? BA�� + 1� �1 + F�� + 2��$�"Hg

λ being the average storage rate of peers and n being the number of peers (the considered

time unit is the time period between two verification operations).
Since personal observations are always correct, the estimated observation quality may only

take two values: correct observation or no observation. �Ab�dbk� � bch � i� �Ab�lbk� � bm � 0 �Ab�dbk� � 0h � 1 + i�
On average, we have: bk� � i� 	 b

Reputation: The probability that p1 knows about the behavior of p2 is equal to: �Ab�de� M�bf� egh � ig � 1 + �1 + i��W"

72

γ being the fraction of the peer population to which the reputation is propagated. External
observations may either originate from honest peers or from dishonest peers. Peer p1 receives at
best (1-η)×γ×n observations from honest peers and η×γ×n from dishonest peers. Observations
from honest peers are all correct; and observations from dishonest peers are always incorrect.
For k and k’ not null observations respectively received from honest and dishonest peers, the
average observation quality is denoted by tk,k’ when p1 has a direct observation, and by t’ k,k’ when
p1 does not have a direct observation:

>�,�o � �1 + f�b ? f �Mb ? M� �M ? M�

>��,�� � f �Mb ? M�b�M ? M�

w being the weight that p1 gives to averaged system-wide observations with respect to local

observations. For 0≤ k ≤(1-η)×γ×n and 0≤ k’ ≤η×γ×n, we have: �Ab�dbkg � >�h � �p��Hq�W"� i��5��1 + i����Hq�W"H���pqW"�� i����1 + i��qW"H��� �Ab�dbkg � >��h � �p��Hq�W"� i���1 + i����Hq�W"H�5���pqW"�� i����1 + i��qW"H���
 �Ab�db>rGAf��Gh � 0

The value Ck
(1-η)×γ×n (respectively Ck’

η×γ×n) is the number of combinations of k (respectively
k’) peers from the set of honest (respectively dishonest) peers from which p1 gathers
observations. A certain probability of interaction is attached to the observations of both honest
and dishonest peers. This is due to the fact that even though peers have to provide cryptographic
proofs that they had interactions with p2, even honest peers cannot always provide proofs of
correct observation: for example, the observation of the absence of any response from p2 cannot
be proved; or the peer sending an observation may be in collusion with p2.

Using the Vandermonde's identity, we have on average: bkg � i��1 + f� ? f��1 + s� 	 b ? s 	 b)

Comparison

Seeking for simplicity, we choose quality observations such as: b � 1, b � +1. Thus, we
have: bk� � i� bkg � i��1 + f� ? f�1 + 2s�

(a) (b)

Figure 27 Average observation quality: (a) varying r with m=5 and (b) varying m with r=3. n=100, λ=0.2,
γ=0.3, w=0.5, η=0.3.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

r

A
ve

ra
ge

 o
bs

er
va

tio
n

qu
al

ity

audits
reputation

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

m

A
ve

ra
ge

 o
bs

er
va

tio
n

qu
al

ity

audits
reputation

73

The average quality of observations is computed in the two cases. Figure 27 shows that the
best quality obtained depends very much on the replication rate.

If the replication rate is low (simple data redundancy), the reputation outperforms the audit-
based approach; however, if the replication rate is high (more than 10 replicas using for
example erasure codes), the audit-based approach is the best way to observe.

The number of verifiers has also an impact on both approaches: increasing m leads into an
increase on the observation quality of the two approaches with a more significant increase of the
audit-based approach.

Figure 28 Average observation quality varying the fraction of malicious peers. n=100, λ=0.2, γ=0.3, r=3,
m=5, w=0.5.

If the ratio of peers that send false observations increases, the quality of observation in the
case with reputation linearly decreases with this ratio, however this quality is not affected in the
case of audits, as it is depicted in Figure 28.

(a) (b)

Figure 29 Average observation quality varying the number of peers for (a) r=3 and (b) r=10. λ=0.2, γ=0.3,
m=5, w=0.5, η=0.3.

Figure 29 shows that increasing peer population n leads to a decrease in the quality of
observations in both approaches, especially the audit-based one. Small peer populations are
more in favor of audit-based approach than reputation; whereas large peer populations are more
advantageous for reputation if the replication rate is small than for audit-based approach.

Discussion

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

Fraction of dishonest peers

A
ve

ra
ge

 o
bs

er
va

tio
n

qu
al

ity

audits
reputation

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

n (logarithmic scale)

A
ve

ra
ge

 o
bs

er
va

tio
n

qu
al

ity

audits
reputation

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

n (logarithmic scale)

A
ve

ra
ge

 o
bs

er
va

tio
n

qu
al

ity

audits
reputation

74

The study of the analytic model demonstrates that the audit-based approach for observing
peer behavior outperforms reputation if the data replication rate is high (e.g., erasure coding)
and with small peer population. Moreover, the approach is robust against liars, and it does not
require propagation of information which avoids the problem of rumor spreading.

Since the audit-based approach works better for small population, the analytic model
validates the group-based architecture for the P2P storage system as more favorable to the audit-
based approach for peer behavior observation than reputation.

5.2.4. Simulation experiments

To validate the ability of our audit-based P2P storage system to detect and punish selfish
peers, we implemented a custom simulator whose framework is at first described, and then
results of simulation are presented and analyzed.

Framework

The self-organizing storage system is modeled as a closed set of homogeneous peers. The
storage system operation is modeled as a cycle-based simulation. One simulation cycle
corresponds to the period between two successive verifications.

Churn: Peers arrive to the system in Poisson distribution: there are 100 newcomers per

hour, for an average lifetime of 2 weeks. [Stutzbach and Rejaie 2004] shows that Gnutella peer
uptime follows a power-law distribution. We will use the same distribution for peer uptime and
downtime. In average, a peer stays online for 1 hour and connects in average 6.4 times in a day.

Storage: Peer storage space, file size, and storage duration are chosen from truncated log-

normal distributions. The storage space of each peer is chosen from 1 to 100GB, with an
average of 10GB. In each day of simulated time, 2.85 of files are stored per peer for an average
period of 1 week. The average file size is 500MB. The stored files will be checked by verifiers
each day.

User strategies: We consider three peer strategies: cooperation, passive selfishness (free-

riding) and active selfishness.

- Cooperative: whenever the peer accepts to store data from another peer, it keeps them
stored. Whenever the peer accepts to check the availability of some data at a storage peer,
it will periodically perform verification operations on this peer as agreed. Such peers
carefully apply the audit-based approach to their strategies.

- Passively selfish: the peer will never accept to store data and will never accept to verify
the availability of some data stored for other peers. The peer is just consumer of the
storage system. This type of behavior is also termed free-riding.

- Actively selfish: the peer probabilistically accepts to store data for other peers or to verify
storage at other peers. Whenever it stores or verifiers for others, it will fulfill its promise
only probabilistically. This type of behavior with an instability effect probabilistically
alternating between cooperation and selfishness: probability of participation denoted p
and probability of achieving promise denoted q.

Strategy with strangers: Cooperative peers accept to store or verify strangers’ data only
probabilistically. Such strategy bootstraps the system and allows peers to discover new peers
with whom they may reciprocally cooperate; even though it also permits to whitewashers to

75

unfairly take advantage of peers’ generosity. The probability of cooperation with strangers is
denoted P.

Simulation results

The framework is simulated in different scenarios in order to analyze the impact of system
parameters and choices on the convergence time of the storage system to a stable state where
only cooperative peers are the active consumers of the storage in the system.

Figure 30 Averaged ratio of owners per strategy. n=300, r=3, m=5, P=0.01, p=0.2, q=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfish peers.

Exclusion of selfish peers: Figure 30 demonstrates that selfish peers have less capability
over time to store data in the system; however, cooperative peers are becoming the majority of
data owners in the storage system. Free-riders are excluded from storing data in the system
before active selfish peers, because the latter cooperate at first by storing data then they destroy
them which may slow their detection. The process of filtering out selfish peers from the system
is made possible in a short time period of 3 days.

Figure 31 Averaged ratio of holders per strategy. n=300, r=3, m=5, P=0.01, p=0.2, q=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfish peers.

Figure 31 shows the fraction of holders per strategy over time. The figure demonstrates that
the stored data will be exclusively held by cooperative peers after selfish peers have been
detected (after 3 days). Selfish peers do not participate in the storage effort because they
consider many owner peers as non cooperative towards them. These owner peers have

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
 o

f o
w

n
e

rs
p

e
r

st
ra

te
g

y

coop.
passiv. self.
activ. self.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
 o

f h
o

ld
e

rs
p

e
r

st
ra

te
g

y

coop.
activ. self.

76

previously detected their selfish behavior and decided to stop cooperating to them. On the other
hand, cooperative peers have probabilistically received contributions from many cooperative
holders; therefore they return the favor by participating in the storage of the data of these
holders.

Overhead: The bandwidth consumed for verification is dependent on the number, rather

than the size, of files being stored. This is in fact a requirement on the verification protocol.
Figure 32 shows the amount of control messages per stored file.

Figure 32 Average amount of control messages per file stored (in KB). n=1000, r=3, m=5, P=0.01, p=0.2,
q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

The figure demonstrates that the bandwidth cost decreases since more and more peers are
acquainted with other peers and thus their contributions increase. This explains the increase in
the storage rate since cooperative peers cooperate at 100% with the peers they know rather than
probabilistically.

Newcomer’s acceptance: Figure 33 depicts the fraction of owners per strategy varying the

probability P for newcomers’ acceptance. This probability slows the participation of peers in the
system; but, it insignificantly affects the convergence time of the system to a system free from
selfish storage consumers.

Figure 33 Fraction of cooperative owners varying the probability of newcomer’s acceptance P. n=300, r=3,
m=5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4
x 10

5

Simulation time (in days)

S
to

ra
g

e
 ra

te
 a

n
d

co
m

m
u

n
ic

a
tio

n
 o

ve
rh

e
a

d

104 * storage rate (file/peer)
communication overhead rate (KB/peer)

1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
 o

f c
o

o
p

e
ra

tiv
e

o
w

n
e

rs

P=0.0001
P=0.01
P=0.5

77

Figure 34 illustrates the effect of the probability of newcomer’s acceptance P on the storage
rate. A very low value of the probability P (P=0.0001) realizes a very small storage rate because
peers voluntarily participate less and then they are considered as selfish even if some of them
are actually cooperative.

Figure 34 Average amount of data stored per peer varying the probability of newcomer’s acceptance P.
n=300, r=3, m=5, p=0.2, q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

High value of P is however more advantageous to the system since the storage rate is high;
even though it decreases over time. Nevertheless, a system with a high value of P is vulnerable
to the problem of whitewashing where peers defect then rejoin the system with new identities
(not evaluated in the simulation). The theoretical study in Appendix B demonstrates that there is
an optimal value of P that deters the effect of whitewashers while achieving a maximum
societal welfare.

5.2.5. Security considerations

In this sub-section, we evaluate the robustness of the audit-based cooperation incentive
mechanism against the attacks exposed in 5.2.1.

Lying observers have no impact on the auditing mechanism since estimations are based on
verification results performed by the actual estimator; thus observations are objective.
Collusions between the owner and its holder or a subset of its verifiers are mitigated by the
random selection of holders and verifiers. Verifiers’ selection relies on a pseudo-random
function and a secure routing in the DHT that can be assessed by each verifier. And, holders are
randomly selected by each verifier. So, collusion between any subset of participants is
prevented.

The group-based architecture of the P2P storage permits controlling peers who are joining
the storage system in order to mitigate Sybil attackers. This latter may still be able to take profit
of peers that are probabilistically adding newcomers to their whitelist, still this probability can
be adjustable depending on peer’s confidence on the system. The architecture allows also a
rapid knowledge about the behavior of group members, and then peers are able to refuse storage
to non cooperating peers, hence limiting free-riders.

5.3. Remuneration-based approach

This sections introduces a mechanism that combines the monitoring of data storage on a
periodic basis together with a payment scheme between the data owner, holders, and verifiers.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Simulation time (in days)

S
to

ra
g

e
 r

a
te

 (
fil

e
/p

e
e

r)

P=0.0001
P=0.01
P=0.5

78

5.3.1. Threats

Cooperative storage relies on the interaction with unknown peers, hence under no prior trust
relationships. Peers should participate to the system in compliance with the payment protocol;
however peers may misbehave in various ways.

- Sybil attack: Sybil attack represents a potential vulnerability making it possible to
generate new peers at will. The payment based mechanisms to be envisioned should
therefore support some form of real world based authentication: this attack should at least
be mitigated by imposing a real world monetary counterpart to membership for peers
joining the storage system so that creating bogus identities cannot be a source of revenue
for peers.

- Impersonation: every peer must know with whom it is dealing. Systems usually rely on a
PKI (Public Key Infrastructure) where a certification authority issues certificates which
bound an identity (peer’s identity) with a public key.

- Counterfeiting: Peers are generally paid with tokens (virtual money, credit, cheque, etc).
Counterfeiting is a fraudulent reproduction of a token. A token signed by the certification
authority cannot be forged as long as the private key of the minter remains secret.

- Double spending attack: Double spending is a problem akin to digital cash where it is
easy to spend a digital coin twice. There are two solutions to this problem: either making
the payee verify that the coin is valid with the bank at the time of spending, or making
spending a coin too many times reveal the identity of the double spender.

- Fair exchange: As mentioned in [Asokan et al. 1997], "many commercial transactions
can be modeled as a sequence of exchanges of electronic goods involving two or more
parties. An exchange among several parties begins with an understanding about what
item each party will contribute to the exchange and what it expects to receive at the end
of it. A desirable requirement for exchange is fairness. A fair exchange should guarantee
that at the end of the exchange, either each party has received what it expects to receive
or no party has received anything." Fair exchange protocols thus provide ways to ensure
that items held by two or more parties are exchanged without one party gaining an
advantage. In remuneration systems, obtaining an efficient cooperation incentive depends
upon devising a protocol that enforces a fair exchange of the remuneration (virtual or not)
against some task. This property can only be attained by intricately integrating the
remuneration operation with the application functionality.

- Starvation: Starvation is the inability of a peer to participate in the cooperative system
because it has not enough tokens to do so. Payment-based schemes generally suffer from
starvation, e.g., see [Weyland et al. 2005].

5.3.2. Enabling mechanisms

Means of verification of remote storage and P2P peers fair payment must be supported by
the payment-based incentive model, given that it relies on periodic fair exchange of credits
between the contributing peers and consuming peers in the storage system, and periodic
verification of remotely stored data at some holder peers by some verifier peers. We discuss in
this section solutions that aim at providing these means.

Related work

There are several micropayment schemes that have been proposed in the past like PayWord,
MicroMint [Rivest and Shamir 1996], and Millicent [Glassman et al. 1995] that particularly

79

present a centralized functionality marked by a central broker, the bank, that tracks each peer
balance and payment transactions. In most of these schemes, the load of the bank grows linearly
with the number of transactions; though hash chains in PayWord or the use of electronic lottery
tickets [Rivest 1997] greatly reduce such cost. As example, the P2P micropayment system
MojoNation52 has also a linear broker’s load and this system has gone out of work because the
central bank constitutes also a single point of failure.

The scale of the P2P system makes it necessary to resort to a type of protocols termed
optimistic protocols where the bank does not necessarily take part in the payment, but may be
contacted to arbitrate litigations between peers. With such type of protocols, the bank’s work is
reduced. PPay [Yang and Molina 2003] is a lightweight micropayment scheme for P2P systems
where the issuer of any coin is a peer from the system that is responsible for keeping trace of the
coin. However, the bank comes into play when the issuer of a coin is off-line. In a very dynamic
system, the probability of finding the original issuer of the coin on-line is very low. In this
situation, PPay converges to a system with a centralized bank. Additionally, tamper resistant
hardware (TRH) can be used to enforce payment protocols in a decentralized and optimistic
fashion as illustrated by the TermiNodes [Buttyán and Hubaux 2001] and CASHnet [Weyland
et al. 2005] projects.

To the best of our knowledge, the only fully-decentralized micropayment scheme that exists
so far is KARMA [Vishnumurthy et al. 2003]. KARMA splits the bank functionality in different
bank sets composed of peers selected and appointed randomly from the P2P system for each
peer when it first joins the system. The KARMA payment scheme does not require any trusted
infrastructure and is scalable. The scheme is described in more detail in the following section.

DHT-based payment framework

The KARMA framework [Vishnumurthy et al. 2003] proposes a payment protocol in which
peers’ balance and payment transactions are handled by a set of peers from the system network.
KARMA proposes to substitute the bank by a set of peers randomly assigned within a
distributed Hash Table (DHT) for each peer, called bank-set. The karma value, which
constitutes the name of the currency, is maintained for each peer by its bank-set whose members
are collectively responsible for continuously increasing and decreasing the karma value as peers
contribute and consume resources from the P2P system (see Figure 35).

The bank-set is randomly assigned to each peer: the b closest peers to HASHB(Id(Peer))
belong to the bank-set of that very peer (HASHB is a pseudo-random function publicly known).
The bank-sets independently track the credits belonging to their assigned peers, and periodically
agree on a given balance of credits with a majority rule. Even if there are inconsistencies in peer
balances, transactions among peers correspond to tiny micropayments and thus do not produce
considerable gains or losses to peers. Peers joining the system for the first time must solve a
cryptographic puzzle in order to mitigate Sybil attacks against the storage system. The payment
protocol in KARMA is similar to an online bank payment but with additional features that
guarantee the consistence and synchronization of peer balances.

52 MojoNation archived website.http://web.archive.org/web/20020122164402/%20http://mojonation.com/

80

Figure 35 KARMA framework: 1) payee sends a transfer request to its banker set; 2, 3) after confirming
the transfer from the payer’s banker set, 4) payee’s banker set will send back receipt to the payee.

The payment scheme proposed in this section relies on this framework to guarantee the fair
exchange of payment against some storage space. The KARMA framework has also been
applied to the file sharing problem described in [Vishnumurthy et al. 2003]. That application
cannot be assimilated to a P2P storage application since in the former case, payments are
immediately charged after the exchange of the file, whereas in the latter case, payments for
storage or verification are by installment i.e., they are billed at a due date that corresponds to the
confirmation (by verifications) of the good behavior of the holder or the verifier. Therefore, we
will supplement the KARMA framework by an escrowing mechanism (described in detail later
on) that guarantees the effective payment of credits promised by the owner towards a
cooperative holder or a verifier.

Remote data verification

Our proposed scheme uses a verification protocol based on pre-computed challenges (see
Figure 36). These challenges are generated by the owner and stored at the verifier. Each verifier
metadata consist of the random numbers and their corresponding pre-computed challenges (the
reader may refer to the first solution in [Deswarte et al. 2004] for details).

The number of verification operations is limited by the number of pre-computed challenges
stored at the verifier. This limitation does not restrain our mechanism because payments of
holders or verifiers should be in essence computable (in number and price); and also the number
of verification operations should be proportional to such payments. Besides, we opted for this
type of verification protocol because it does not require special cryptographic functions (just a
hashing function), in addition to the fact that the computational and storage overhead from the
verifier side and the holder side are optimized.

81

Figure 36 Used verification protocol

5.3.3. Payment-based Storage

In this section, we first give an overview of the payment scheme, to describe then the
cryptographic protocol that achieves such scheme.

Overview of the payment scheme

We propose a mechanism that monitors data storage on a regular basis to determine the
payments between data owners, holders, and verifiers. The payment mechanism allows a peer
storing data for other peers to be paid for its service. It thus controls the storage functions seen
above by rewarding cooperating peers.

Notations: Let BP denote the bank-set of the peer P, pkP the public key of a peer P, skP the

private key of P, and skBP the private key of the bank-set of P. A message M signed by some
key K is denoted as {M} K (bank-set signature is explained in [Vishnumurthy et al. 2003]).

Let G be a finite cyclic group with n elements. We assume that the group is written
multiplicatively. Let g be a generator of G. If h is an element of G then finding a solution x
(whenever it exists) of the equation gx = h is called the discrete logarithm problem (DLP) and is
assumed hard to solve.

Assumptions: A P2P system generally consists of altruistic peers, selfish peers, malicious

peers, and others with behavior ranging in between. We will assume that there are a non-
negligible percentage of the peers that are altruistic or at least correctly follow the protocol.
Peers of the storage system are structured in a distributed Hash Table (DHT). A DHT consists
of a number of peers having each a key Key(Peer) in the DHT space, which is the set of all
binary strings of some fixed length. Each participant is assigned a secure, random identifier in
the DHT identifier space: Id(Peer). We assume that the DHT provides a secure lookup service
(see [Sit and Morris 2002] and [Castro et al. 2002]): a peer supplies an arbitrary key (an element
in the DHT space), and the lookup service returns the active node in the DHT that stores the
object with the key.

Peer selection: To avoid collusion between verifiers and the owner or verifiers and the

holders, holders and verifiers should be randomly chosen. For instance, a long-list of randomly
chosen potential holders and verifiers can be constructed using the DHT. The l1 (respectively l2)
closest peers in the DHT identifier space to the key HASHH(Id(Owner), timestamp)
(respectively HASHV(Id(Owner), timestamp)) constitute the potential holders (respectively
verifiers) of the owner (HASHH and HASHV are pseudo-random functions publicly known). The
random choice of holders and verifiers within the DHT allows the dissemination of storage
requests, instead of for instance relying on network flooding.

82

Auction-based pricing: Payment-based schemes generally suffer from starvation, e.g., see
[Weyland et al. 2005]. In our case, starvation means the inability of a peer to store data in the
system because its account of credits is empty. We suggest an auction-based solution in order to
mitigate the starvation phenomena. The solution aims at making peers holding small number of
credits to contribute uppermost to the system in order to replenish their accounts. These peers
may offer low price values for their storage allowing owners desiring to store data in the system
to select them in priority. A peer seeking to store data initiates an auction by asking peers from
the long-list that have been randomly selected to submit a bid to store the data in question. It
then selects the lowest bidders, though other alternatives, such as second-price auctions are also
possible. In the end, the owner has a short-list of nh holders for its data. The same operation is
repeated for nv verifier selection.

Credit escrowing: Each peer has a personal account managed by a set of peers likewise

KARMA [Vishnumurthy et al. 2003] that are called bank-set. Our payment scheme relies on
digital checks. To prevent peers from emitting bad checks, the amount of credits that
corresponds to a check value are escrowed, i.e., the necessary number of credits to pay check
holder are locked by the bank-set. Consequently, bank-sets keep two types of peer balances:
normal credits and locked credits. Credits are escrowed for some time-out (that corresponds to
the check’s expiry time), after which they are returned to the peer normal balance. The owner
desiring to store data in the system must be able to pay its holders and verifiers with checks.
That’s why, it must escrow credits which are converted to digital checks (see Figure 37). These
checks are then stored in a blinded version at the corresponding holders and verifiers. Checks
include some random numbers that are generated by the owner and certified by its bank-set. The
latter have a blinded version of these numbers too (to prevent collusion between one bank-set
member and a holder or a verifier). Each blinded digital check has this form: p�et(GA, et(GG, �&� � �& , �� �et(GA�, ���et(GG�, eA��G, �Gu, ��v, wxyz{|}~

c being a random number, seq being the check’s sequence number, and TTL the check’s expiry
date. The payee’s knowledge of c allows it to be paid credits of value price. The bank-set of the
payer is not informed of this number c; but only a blinded version of it gc. The verification
operation allows both the verifier and the holder to extract the check in order to be able to
present it to their bank-set to be paid in return. The holder must also escrow an amount of
credits corresponding to the punishment it gets if it destroys data that it has promised to store.
The escrowed credits of the holder are converted to one digital check that is certified by the
holder’s bank-set. The check is split into multiple shares each one will be stored at each verifier:
a threshold number k of these shares allows reconstructing the full check. Shares of the digital
check comprise the following numbers (in blinded version) 2��:3�4�4"� which are shares of ��
if 2��3�4�4"� are shares of s [Desmedt and Frankel 1989]. If a threshold-based majority of
verifiers agree that the holder has destroyed data, they can construct holder’s check and present
it to the owner such that this latter will be reimbursed.

83

Figure 37 Escrowing credits

Data verification: Each verifier appointed by the owner periodically check storage of data
stored at a holder. The verifier does not have the full challenge for the holder, but rather a share
of the challenge: a threshold number of messages received by the holder from verifiers allows
this latter to reconstruct the full challenge. Distributing the verification task to multiple verifiers
prevents potential collusion between the holder and a verifier. The verification operation has
three-fold objectives: it allows assessing the availability of stored data, it permits the verifier to
remove the blinding factor of the stored digital check in order to get paid for verification, and
finally it allows the holder to recover also its check for its payment too. Since, the verifier is
paid exactly for each verification operation it actually performs, verification operations are
executed in a defined number. Consequently, the payment scheme does not require a
verification protocol where verifications are unlimited and may rely on pre-computed
challenges for instance.

Payment protocol

In this section, we describe a protocol that provides a cryptographic implementation of the
scheme.

We consider an owner denoted O that stores its data at a holder H. The integrity of such data
is periodically checked by a verifier V on behalf of O. The proposed protocol consists in
multiple steps described in the following Figure 38.

84

C
re

d
it

e
sc

ro
w

in
g

(O escrows credits for the payment of H and V)
O: fix number of verification operations to m
O: generate random numbers 2��3�4�46, vH, vV
O: compute for each i∈[1, m]
 Ti = HASH(HASH (d , Ri), vH)
 T’i = HASH(HASH (d , Ri), vV)

O → BO:2��: , eA��G3�4�46, �����, 2��: , eA��G3�4�46, �����
BO → O: 2p��, �, ��: �3�4�46 , 2p<�, �, �� ′:=3�4�46

(H escrows credits to form its punition p)
H: generate a random number s
H: generate 2��3�4�4"� shares of s
H → BH: 2��: 3�4�4"� , �� , �����, punition
BH: check 2��:3�4�4"� are shares of ��
BH → H: 2p��, �, ��: �3�4�4"�

D
a

ta
 s

to
ra

g
e

(O stores data d at H)
H → V: �� , p��, �, ��:�
V → H → O: 20p�3xy�
O → H: d, 2p��, �, ��:�3�4�46, vH

(O delegates verification of d to V)
O: generate for each i∈[1, m] { r ij} 1≤j≤nv shares of Ri
帀: compute {HASH2(d , Ri)} 1≤i≤m
 (HASH2: HASH is executed 2 times)
O → V: {HASH2(d , Ri)} 1≤i≤m, r i, 9p<�, �, ��′:=;�4�46, vV

D
a

ta
 v

e
ri

fic
a

tio
n

(V sends a share of the i th challenge to H)
V → H: i, r ij

(H answers verifiers upon construction of challenge)
H: compute Res=HASH(d, Ri)
H → V: Res

(V checks H ’s answer)
V: check HASH(Res) =? HASH2(d , Ri)

P
a

ym
e
n

t

(H obtains its i th payment)
H: compute Ti = HASH(HASH (d , Ri), vH)
H → BH: Ti, p��, �, ��: �
BH → BO: Ti, p��, �, ��:�
BH: increase H’s balance
BO: decrease O’s balance

(V obtains its i th payment)
V: compute T’ i = HASH(HASH (d , Ri), vV)
V → BV: T’ i, p<�, �, ��′:=
BV → BO: T’ i, p<�, �, ��′:=
BV: increase V’s balance
BO: decrease O’s balance

 D
a

ta
 r

e
tr

ie
va

l (O retrieves d from H)
H → O: d

(H unblocks its escrowed credits)
O → H → BH: 20p�3xy�
If TTL times out: unspent escrowed credits are returned (respectively to O and H)

85

Figure 38 Payment protocol

Use cases
In this sub-section, we discuss the operation of the proposed payment storage-based scheme

by reviewing several use cases.

Cooperative holder: A holder that has agreed to store data escrows credits from its bank-set

that correspond to the punishment received in the case where it does not achieve its promise.
Escrowed credits are converted to a digital check that is split into multiple shares and stored at
the assigned verifiers. During data storage, the holder will receive digital checks in blinded
version from the data owner certified by the bank-set of this latter. Each periodic verification
results in revealing one digital check a time. The check will be then sent to the bank-set of the
holder that contacts the owner’s bank-set such that holder’s balance increases with the amount
of the agreed price and that of the owner decreases proportionally. At the time of data retrieval,
the holder will send the data back to the owner, and receives in return an acknowledgement that
when sent to the bank-set allows the holder to unlock its punishment escrowed credits.

Cooperative verifier: A verifier that accepts to periodically check the availability of data on

behalf of the owner will receive first the holder’s check shares corresponding to the punishment
of the holder and then checks in blinded version from the owner corresponding to its payment.
After each performed verification, the verifier receives the resolution of the blinded version of
one check which enables it to increase its balance when the check is passed on to its bank-set.
At the end of the data storage, if the holder returns the data to its owner, the verifier destroys
holder’s check share; otherwise it sends the check share to the owner in exchange for some
small payment.

Selfish holder: A selfish holder destroys the data it has promised to keep. The (online)

verifiers detect such selfishness and act accordingly by sending the holder’s check shares to the
owner. If at least a t threshold number of them do so, the owner is able to reconstruct the
complete holder’s check. The check will be cashed by the owner through its bank-set.

Blackmailing holder: The holder may decide not to send the data to the owner. The damage

caused by such decision is mitigated thanks to the replication of the data at multiple holders.
The blackmailer is not able to generate an acknowledgement to be sent to its bank-set, and then
the check corresponding to its punition will be cashed by the owner. Indeed, the owner contacts
the verifiers to receive the holder’s check shares doomed to it.

Offline or selfish verifier: A verifier may be offline or just selfish and then neglect to

perform the verification of its assigned holder’s storage. Nevertheless, the holder is paid if at
least a t threshold number of verifiers are honest and online. The number t should be then
minimized in a way that takes into account the potential disconnection or selfishness of
verifiers. But also, this number should be maximized to avoid possible collusions between a
fraction of verifiers and the holder. Subsequently, the threshold t is a parameter that trades off
the way of handling peers’ churn and the way of mitigating their collusion. For a verifier that
has been offline, it should (loosely) synchronize with the holder in order to send the right
challenge index, whenever it reconnects to the system.

Selfish owner: If the owner does not send any acknowledgement message to the holder after

correct reception of the data, the holder can request from verifiers to generate an
acknowledgement message on behalf of the owner. The acknowledgement message is
forwarded to the holder’s bank-set to unlock the credits corresponding to the escrowed credits

86

for the punition. However, if there is litigation, i.e., the owner pretends not having received any
data from the holder, then the verifiers may act as proxies for transmitting data between the
holder and the owner (in exchange for small amount of payments): the holder splits data into
chunks that will be conveyed to the owner through verifiers.

5.3.4. Simulation experiments

In order to validate the ability of our payment-based storage approach to detect and punish
selfish peers, we developed a custom simulator of our payment scheme. This section first
describes the framework of simulations, then presents and analyzes the results obtained.

Framework

The self-organizing storage system is modeled as a closed set of homogeneous peers. We
consider the same simulation model as in the reputation-based approach. Newcomers arrive to
the system in Poisson distribution at rate equal to 100 per hour and they stay in the system 2
weeks in average. Peers go online and offline in power-law distribution with average online
period of 1 hour and average number of connections of 6.4 times per day. Peer storage space,
file size, and storage duration are chosen from truncated log-normal distributions with average
value equals respectively to 10GB, 500MB, and 1 week. There are 2.85 of files that are stored
per peer and each one is verified each day.

User strategies: We consider three peer strategies: cooperation, passive selfishness (free-
riding) and active selfishness.

- Cooperative: peers thoroughly follow the audit-based approach.
- Passively selfish: peers never contribute to the storage community or perform

verifications.
- Actively selfish: peers are cooperative with respect to a given data with probability p

(participation probability) and continue to be cooperative with respect to the very data
with probability q (fully achieving promise probability). Otherwise, they are selfish.

Pricing: For the formulation of storage bid prices, we propose the following pricing
function:

eA��G�eGGA, >� � f 	 �t��b��>�eGGA, >�t��b��>* � 	 eA��G* ? �1 + f� 	 eA��G*

Where account(peer, t) is the amount of credits held by the peer at time t, w is used for
weighting the impact of the amount of credits owned by the peer, price0 is the regular price for
storage or verification, and account0 is used for normalization.

Simulation results
Different scenarios were simulated to analyze the impact of several parameters on the

payment mechanism. Simulation studies the transition phase of the network to a stable state
where cooperative peers are the only active actors of the system.

Exclusion of selfish owners: Figure 39 demonstrates that selfish peers have less capability

over time to store data in the system; on the other hand, cooperative peers are becoming the

87

majority of data owners in the storage system. Passive selfish peers are the first to be excluded
from the system because they consume all their initial credits (all peers have a default number
of credits when they join, in order to facilitate system bootstrap). Active selfish peers are also
filtered out from the system because they cooperate only probabilistically.

Figure 39 Averaged ratio of owners per strategy. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfish peers.

The figure shows also that a decreasing fraction of these active selfish peers are still present
in the system. Because they cooperate at some probability; they may temporarily gain some
credits and then go without detection. These are considered as the false negatives of our
detection scheme. But still, such false negatives are decreasing with time.

We may notice that 1 simulated month is sufficient to filter out passively selfish peers;
however the filtering may take more than 3 months for actively selfish peers. Yet, this time
period can be reduced by adaptively reducing the default initial income for newcomers.

Figure 40 Averaged ratio of holders per strategy. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfish peers.

Exclusion of selfish holders: Figure 40 depicts the fraction of cooperators and selfish peers
in the population of data holders. The figure demonstrates that with time cooperative peers will
make the majority of holders. This result is due to the fact that actively selfish peers are losing
their credits and then becoming unable to escrow credits necessary for the storage of other
peers’ data; albeit the fact that they will propose small prices (this explains the small pick in the
first simulated month).

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
o

f o
w

n
e

rs
p

er
 s

tra
te

g
y

coop.
passiv. self.
activ. self.

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

Simulation time (in days)

F
ra

ct
io

n
 o

f h
o

ld
e

rs
p

er
 s

tra
te

g
y

coop.
activ. self.

88

Figure 41 Averaged ratio of cooperative owners varying probability of participation p and probability of
achieving promise q of actively selfish peers. n=1000, r=3, m=5, w=0.5, 40% cooperators, 30% passively selfish

peers, 30% actively selfish peers.

Selfishness ratio: The penchant of actively selfish peers towards cooperation or selfishness
is represented by the probabilities of participation p and achieving promise q: high probability p
and q means that the actively selfish peer is cooperative most of the time. The probability q
impacts more the convergence of the system to cooperative-only owners: for high q (=0.8), the
system converges more quickly to 100% cooperative owners than for low q (=0.2), as illustrated
in Figure 41. However, the probability of participation p has a less effect on the system because
initially all actively selfish peers have enough credits to continue to be present in the system.
Starting from the first month, the graph shows that there is a little increase in detecting actively
selfish peers provided that they participate more (q=0.8).

Dynamic strategies: If a peer changes its strategy from cooperation to selfishness, it is

gradually deprived from storing its data as proven in Figure 42.a. On the other hand, selfish
peers that change their strategies to cooperation, they are progressively permitted to store their
data in the system (Figure 42.b and .c). Finally, these peers share the storage capability of the
system with the rest of cooperative peers (at a ratio of 0.4). This result demonstrates the ability
of the payment scheme to encourage peers to opt for cooperation instead of selfishness by
working as a quota system that regulates the consumption of peers to their contribution.

0 30 60 90 120 150 180

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (in days)

F
ra

ct
io

n
 o

f c
o

o
p

er
at

iv
e

 o
w

ne
rs

p=0.8; q=0.8
p=0.8; q=0.2
p=0.2; q=0.8
p=0.2; q=0.2

89

(a)

(b)

(c)

Figure 42 Averaged ratio of owners that switch their strategy at time=45 days (marked by the red dashed
line): (a) from cooperation to passive selfishness, or (b) from passive selfishness to cooperation, or (c) from
active selfishness to cooperation. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2, 40% cooperators, 30% passively

selfish, 30% actively selfish peers.

Overhead: Note that we only measure the communication overhead due to holder and
verifier selection and storage verification. In particular, we exclude the cost of P2P overlay
maintenance and storing/fetching of files, since it is not relevant to our analysis. In a further
observation, the bandwidth consumed for verification is dependent on the number, rather than
the size, of files being stored. This is in fact a requirement on the verification protocol. Figure
43 shows the amount of control messages per file. The figure demonstrates that the bandwidth
cost decreases with time.

0 20 40 60 80
0.2

0.4

0.6

0.8

1

Simulation time (in days)

R
at

io
 o

f o
w

n
er

s
sw

itc
h

in
g

 b
eh

av
io

r

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

Simulation time (in days)

R
at

io
 o

f o
w

n
er

s
sw

itc
h

in
g

 b
eh

av
io

r

0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

Simulation time (in days)

R
at

io
 o

f o
w

n
er

s
sw

itc
h

in
g

 b
eh

av
io

r

90

Figure 43 Average amount of control messages per file stored (in KB). n=1000, r=3, m=5, w=0.5, p=0.2,
q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

Data reliability: Figure 44 shows that the rate of the amount of data injected into the storage
system decreasing. This is due to several factors. First of all, there is the gradual exclusion of
selfish peers that limits the number of peers able to store data in the system. Second, there are
possible false positives of our detection system due to the starvation phenomenon where
cooperative peers are not able to contribute because they are not chosen as holders or verifiers,
and at the end they consume all their credits and get expelled from the system. The figure also
depicts the rate of file loss that is falling down as low as zero, owing to the exclusion of selfish
holders (explained earlier).

Figure 44 Average peer rate of file storage and loss per hour. n=1000, r=3, m=5, w=0.5, p=0.2, q=0.2, 40%
cooperators, 30% passively selfish peers, 30% actively selfish peers.

Starvation: Figure 45 depicts the rate of file injection with time varying the value of the
weight w in the price function. The figure shows that if the price does not take into account the
amount of credits possessed by peers (w = 0), file storage rate decreases due to the phenomenon
of starvation where peers are not able to store data due to a lack of credits. However, if the price
is based on the factor of possessed credits (w ≠ 1), the rate decreases at first then becomes stable
for the rest of the time. So the consideration of the pricing function allows handling the
starvation problem. Auctioning for holder and verifier selection is then helpful for starving
peers.

0 30 60 90 120 150 180
430

440

450

460

470

480

Simulation time (in days)

A
ve

ra
ge

 a
m

ou
n

t o
f c

on
tro

l
m

es
sa

g
es

 p
er

 fi
le

 s
to

re
d

 (i
n

K
B

)

0 30 60 90 120 150 180
0

2

4

6

8

Simulation time (in days)

A
ve

ra
g

e
 p

e
er

 ra
te

 o
f f

ile
st

o
ra

ge
 a

n
d

lo
ss

 p
er

 h
o

ur

file storage
file loss

91

Figure 45 Averaged amount of data stored in the system varying the weight w. n=1000, r=3, m=5, p=0.2,
q=0.2, 40% cooperators, 30% passively selfish peers, 30% actively selfish peers.

5.3.5. Security considerations

In this sub-section, we analyze the security of the protocol to prevent or at least mitigate the
threats described in sub-section 5.3.1.

The security of our scheme relies principally on replication to deter peers that might try to
subvert the protocol. It assumes that there are at least a given number of peers in the system at
all times, and uses protocols to ensure that the system will correctly operate unless a substantial
fraction of these peers are selfish or malicious.

Selfishness punishment: The proposed payment scheme works as a quota system: peers
have to keep a given balance to be able to participate to the storage system. Peers that are
passively selfish gradually consume all their credits for their data storage and when their
accounts are exhausted they will not be able to use the storage system anymore. In the same
way, actively selfish peers keep losing credits because they have been detected destroying data
they have promised to store. These peers will also drain their accounts and with time will not
able to use the storage system.

Collusion prevention: Holder and verifier selection is random which limits preset peer
collusions. The digital check of the holder is shared among verifiers, thus mitigating also
collusion between the owner and one or a small number of verifiers. Additionally, challenges
sent to the holder are constructed cooperatively by verifiers to avoid collusion between the
holder and one or a small number of verifiers. Finally, collusion between the owner and the
holder is less probable because it does not generate any financial profit since the owner must
pay verifiers to check holder’s storage. The distribution of tasks to several verifiers limits
collusion; but it is still feasible if at least k verifiers collude with the holder for instance. The
probability of collusion can be computed as:

� ���� � e��1 + e�"�H�"�

��

where p is the probability that a given verifier is not honest (colluder). However such collusion
probability is less than 0.1 for 60% of dishonest peers (i.e., p=0.6) in the system and with nv=10
and k=8, or 80% of dishonest peers and with nv=20 and k=18.

0 3 6 9 12 15 18 21 24
2

3

4

5

6

7

Simulation time (in months)

S
to

ra
g

e
 ra

te
 p

er
 p

e
er

 a
nd

 p
e

r
h

ou
r

w=0
w=0.5
w=1

92

Ensuring fair-exchange: Holder and verifier payments are strongly related to the correct

operation of data verification. This motivates holder to accept that its storage being verified and
incites verifiers to perform this task periodically on behalf of the owner. The frequency of
verifications is determined by the owner at the time of delegating verification. This frequency is
the matter of all verifiers: the majority of verifiers use the determined frequency at which the
holder collects a sufficient number of random numbers to compute the challenge; therefore very
fast or very slow frequencies of some verifiers do not influence (with large probability) the
actual frequency of computing the verification challenge. The holder or the verifier cannot cash
their checks without verifying the stored data. This is due to two reasons. First of all, the secret
random numbers included in the checks are only known to the actual payers since they are held
in DLP-based blinded version at the payees and bank-sets too. Second, HASH is a one-way
function, so knowing HASH(m) does not give any extra information on m. Therefore, the data
verification operation strongly relates to the holder and the verifier payment operations.
However, the existence of such relation is only guaranteed by the owner. So, if a verifier or a
holder is still not paid even though it behaves well, it has the possibility to prove owner’s
misbehavior to the other participants (using the certified checks) and also to stop cooperating
with the owner without being punished. Thus, the owner is encouraged to provide this type of
relation to secure the future cooperation of peers handling its data. The bank-set comes into play
to guarantee that payments are actually doable since the corresponding amounts of credits are
locked to prohibit the payer from emitting bad checks.

Preventing remuneration-related attacks: Attacks on the payment scheme (such as double
spending or impersonation) are handled by the KARMA framework. Moreover, the sequence
number and the identity of the payee included in each payment receipt prevent replay attacks,
because they impose that the digital check is only cashed by the payee one time. We assume
that all exchanged messages are signed and encrypted by the keys of the involved parties in
order to ensure the integrity of exchanged messages and even the security against man-in-the-
middle attack for instance. Sybil attacks are mitigated a la KARMA by compelling peers to
execute a cryptographic puzzle before joining the storage system, the result of which will be
used to construct their identities.

5.4. Discussion

The proposed cooperation incentive mechanisms: reputation-based and remuneration-based
suggest two distinct solutions to the P2P storage problem (Table 5 shows a number of
dissimilarities between both approaches).

In the reputation-based approach, the periodic results of data holders’ evaluation obtained by
verifiers and data owners serve in computing the reputation value of these holders. Such results
are not disseminated in the network to other peers, thus conferring to the approach a locality
property. Therefore, the approach operates better in a group-based architecture where peers are
only concerned with the reputation of their group members. In a group of modest size, peers are
able to be acquainted about the behavior of other peers inside the group and then act
accordingly.

On the other hand, the remuneration-based approach does not require dissemination of the
verification information, it rather uses such information to decide in a self-organizing way if the
verified holder deserves being rewarded or punished with financial incentives. Moreover, the
security of the remuneration-based approach supposes that there is at all times a fraction of
peers in the network that are honest in order to correctly function. The selfishness or

93

maliciousness of peers is mitigated by distributing the critical functions of the incentive
mechanism to multiple peers in the same way as a Byzantine failure model. For that reason,
large population of peers better suits the remuneration-based approach than a small or a group-
based peer population.

Table 5 Comparison between the proposed reputation-based and remuneration-based approaches

 Reputation Remuneration

Data
resilience

+ random but uniform holder and verifier
selection
+ no starvation of storage sites

+ random holder and verifier selection
complemented by an auction
++ starvation of malicious or selfish storage
sites

Cooperation
stimulation

++ storage incentive: good reputation enables
storage
+ verification incentive: accuracy of reputation
estimation
- Local view of peer behavior
+ limited collusions
+ Sybil attack mitigated by controlling entry to
the group

++ storage and verification incentive:
remuneration
+ global view of peer behavior
+ limited collusions
+ Sybil attack mitigated using a
cryptographic puzzle

Architecture
- group formation (e.g., social networks) - - requirement of a substantial fraction of

honest peers

Reputation-based and remuneration-based approaches may be combined into one

cooperation incentive mechanism to achieve a twofold objective: protecting the system from
malicious peers and inciting the cooperation of the other peers. In this way, peers use the P2P
storage system since they trust and rely on peers that are well-reputed. They are also motivated
to contribute to the system thanks to financial rewards they gain from their cooperation. The
security of the storage system that relies on such cooperation incentive mechanism is
guaranteed. Indeed, selfish peers are generally considered as rational and therefore they prefer
to obtain a compensation for their contributions instead of not cooperating. On the other hand,
irrational peers that are malicious are detected and then acquire bad reputation leading to their
gradual eviction from the system. Finally, irrational peers that are rather altruistic attain a high
reputation and are then admitted to stay in the system. Additionally, we suggest that verifiers
should receive a reputation value as holders. This is not proposed in the described audit-based
reputation approach since only holders have a reputation value and verifiers are incited to
perform their work in order to estimate that very reputation. It is possible that holders and
verifiers are ranked with reputation. However reputation for storage and verification services
should be decoupled to avoid free-riding peers that offer verification assistance to the data
stored in the system as an alternative to utilizing their own storage resources. Therefore, peers
should have two values for reputation: the first one concerns their aptitude to store and to
preserve data of other peers, and the second one points out to their contributions in checking the
presence and integrity of such data. However, we do not require distinguishing storage from
verification services in the remuneration mechanism because generally payment are neutral and
may even allow a multi-service framework as discussed in Section 2.4.2 of chapter 2.

5.5. Summary

This chapter described two new cooperation incentive mechanisms that are well suited for
P2P storage applications. These approaches, whether they rely on reputation estimates or
payments, allow a fast isolation of selfish peers, and prevent several further malicious behaviors
that go beyond the absence of contribution to the system to data destruction or even malicious
peer collusion to render data verification inoperative. Remuneration incentives have been shown

94

to be effective as cooperation incentives for P2P data backup [Toka and Maillé 2007] although
their resistance to attacks beyond selfishness has not been really studied. The proposed
cooperation incentive mechanisms are not only able to detect non cooperating peers in the
storage system and to punish them, but they also aim at mitigating several potential attacks that
may cause the system to fail in providing a reliable and fair storage for all peers. The choice of
one mechanism over the other depends on the organization of peers inside the storage system.
The first mechanism presented is based on local reputation that is appropriate for peers clustered
in groups (like social networks). The second mechanism instead better fits larger networks.

The next chapter further and more formally investigates the capabilities of the proposed
mechanisms as cooperation incentives through the use of game theoretical models.

5.6. Relevant publication

1. Nouha Oualha and Yves Roudier. Reputation and Audits for Self-Organizing Storage.
In the 1st Workshop on Security in Opportunistic and SOCial Networks (SOSOC 2008),
Istanbul, Turkey, September 2008.

2. Nouha Oualha and Yves Roudier. Designing Attack Resilient Cooperation Incentives
for Self-Organizing Storage. 1er Workshop sur la sécurité des réseaux autonomes et
spontanés organisé, Loctudy, France, 13-14 October, 2008.

3. Roberto Baldoni, Miguel P. Correia, Ludovic Courtes, Felicita Di Giandomenico,
Fabrizio Grandoni, Marc-Olivier Killijian, Nuno Ferreira Neves, Nouha Oualha, Thea
Peacock, David Powell, Adriano Rippa, Yves Roudier, Michel Raynal, Peter Ryan,
Marco Serafini, Neeraj Suri, Sara Tucci Piergiovanni, Paulo Veríssimo. Resilience-
Building Technologies: State of Knowledge: Part Algo – Resilience Algorithms and
Mechanisms. ReSIST NoE: Resilience for Survivability in IST, Deliverable D12,
September 2006.

95

Chapter 6

6. Evaluating cooperation incentives using game theory

Cooperation incentives prevent selfish behaviors whereby peers free-ride the storage system,
that is, they store data onto other peers without contributing to the storage infrastructure.
Remote data verification protocols are required to implement the auditing mechanism needed by
any efficient cooperation incentive mechanism. In general, a cooperation incentive mechanism
is proven to be effective if it is demonstrated that any rational peer will always choose to
cooperate whenever it interacts with another cooperative peer. One-stage games or repeated
games have been mostly used to validate cooperation incentives that describe individual
strategies; in addition, the use of evolutionary dynamics can help describe the evolution of
strategies within large populations.

This chapter proposes two theoretic game models of a P2P storage system that we use to
show under which conditions an audit-based strategy wins over self-interested strategies. The
contribution of this chapter is the validation of the security primitive particularly the
probabilistic and the deterministic verification protocols, with respect to its cooperation
enforcement function for data storage.

6.1. Preliminaries

Game theory offers valuable tools for the validation of cooperation incentive mechanisms as
the study of selfish behavior and incentive measures strongly relate to rationality and decision
making. Consequently, it has been used in several works that try to provide means to prevent
selfishness and to enforce cooperation among self-interested individuals. In the following,
essential definitions about game theory are first introduced, and then some approaches inciting
resource sharing and applying game theoretical models that we deem to be interesting are
reviewed.

6.1.1. Definitions

Game theory is a branch of applied mathematics that models interactions among individuals
making decisions. It attempts to mathematically capture individual rational behavior in strategic
situations where individuals’ decisions are based on their preferences and also depend on the
other individuals’ choices. It then provides a language to describe, analyze, and understand
strategic scenarios [Turocy and Stengel 2001].

Game: A game consists of:

- A set of players {p1, …, pn} which are the individuals who make decisions
- A set of strategies i.e., moves for each player Si, i=1, …, n
- A specification of each player’s payoffs which are the numeric values assigned to the

outcomes produced by the various combinations of strategies. Payoffs represent the

96

preference ordering of players over the outcomes. Payoffs are expressed using player’s
utility function Ui:

Ui: S1×S2× …×Sn → ℜ

The game assumes that all players are rational; this means that they will always choose the
strategy that maximizes their payoffs. Players are then participants in the game with the goal of
choosing the actions that produce their most preferred outcomes.

Game types: A game can be one of two types: non-cooperative or cooperative. In the first

type, players are selfish and are only concerned with maximizing their own benefit. In the
second type, some players cooperate and form a coalition in order to achieve a common goal,
and then the coalition and the rest of players play non-cooperatively the game. A game can be a
repeated game that consists in a finitely or infinitely number of iterations of some one-stage
game. In such one-stage game, players’ choices are referred to as actions rather than strategies
(term reserved to the repeated game) and these actions take into account their impact on the
future actions of other players. Evolutionary game theory provides also a dynamic framework
for analyzing repeated interactions. In such games, randomly chosen players interact with each
other, and then the player with the lower payoff switches to the strategy of the player with the
higher payoff i.e., players reproduce proportionally to their payoffs. Hence, strategies with poor
payoffs eventually die off, while well-performing strategies thrive.

Game equilibria: Finding a solution of a game is trying to find equilibria in the game. In
equilibrium, each player of the game has adopted a strategy that they are unlikely to change.
Many equilibrium concepts have been developed in an attempt to capture this idea. The most
famously one is the Nash equilibrium. Nash Equilibrium is the set of players’ strategy choices
where no player can benefit by changing its strategy while the other players keep their strategies
unchanged. So, it is a set of strategies {σ1 ∈ S1, …, σn ∈ Sn}, such that:

Ui(σ1, …, σi, …, σn) ≥ Ui(σ1, …, σ’ i, …, σn), ∀ i ∈ {1, …, n} and σ’ i ∈ Si
Evolutionary stable strategy (ESS) is a refined version of the Nash equilibrium which

captures the idea that a strategy that is a Nash equilibrium, if adopted by a population of players,
cannot be invaded by any alternative strategy that is initially rare. For a two-player game with a
strategy space S, a strategy σ∗ is an ESS if and only if for any σ’ ≠ σ∗, either one of the
following two conditions holds:

a) U(σ∗, σ∗) > U(σ’ , σ∗)
b) U(σ∗, σ∗) = U(σ’ , σ∗) and U(σ∗, σ’) > U(σ’ , σ’)

Here, U(., .) is the payoff function of the associated two-player game.

6.1.2. Related work

To achieve a socially optimal equilibrium for a self-organizing system with autonomous
peers, different incentive mechanisms have been proposed in the literature. These incentives
include providing virtual or real payment incentives or establishing and maintaining a reputation
index for every peer in the network.

Payment incentive modeling

One of the first studies that considered payment schemes in P2P systems is [Golle et al.
2001], which uses a game theoretical model to study the potential benefits of introducing micro-

97

payment methods into centralized P2P file-sharing systems such as Napster. In such type of
systems, in order to catch the asymmetric aspect of interactions between peers, called agents,
the strategies have two independent actions: sharing i.e. providing the service, and downloading
i.e. acquiring the service. Without considering any incentives as it is the case with Napster, the
outcome of the equilibrium analysis results in an unique equilibrium with nothing is shared and
nothing can be downloaded. Even with some level of altruism in the system, all agents, either
altruistic or free-rider, are not restrained from downloading and the whole cost then weights
over the small number of altruistic agents. Therefore, the authors propose alternatives based on
payment to overcome the free-riding problem. The first proposed payment scheme consists in
charging agents for every download and rewarding them for every upload. The result of the
equilibrium analysis shows that there is one unique and strict equilibrium where agents are
extensively sharing and downloading files. This result validates the payment scheme; but still,
the analysis does not take into account the fact that agents share diverse files and some of them
may store files that are sufficiently rare thus unfairly receiving a large fraction of all the
download requests for these files. For that reason, the authors propose a second payment-based
alternative that continues to penalize downloads, but rewards agents in proportion to the amount
of material they share rather than the number of uploads they provide. The equilibrium analysis
demonstrates that two strict equilibriums may be reached either full file sharing or no sharing at
all; though simulation experiments of the model demonstrate that the system converges to an
equilibrium where all agents cooperate by sharing files.

[Toka and Maillé 2007] in the DisPairSe project took a different direction for defining peer
utility function that becomes more centered on payment than the model of [Golle et al. 2001].
Actually, the authors of [Toka and Maillé 2007] modeled a P2P backup service as a non-
cooperative game using an economic model. The parameters characterizing the profile of each
user and, associated with the demand and supply functions turned to be playing a crucial role on
justifying the use of a pricing scheme or imposed symmetry with respect to the optimal situation
of the service that is maximizing the social welfare. Indeed, the theoretical study of the
economic model shows that if users are homogeneous in terms of these parameters, then it is
better to opt for imposed symmetric user contributions rather than a pricing scheme. However,
heterogeneous user population, which is the general case of P2P networked peers, validates the
use of a pricing scheme by which a monopoly is introduced to fix unit prices for buying and
selling storage resources. The mathematical study presented by the authors attempts to defend
the intrusion of the operator in fixing prices for a P2P backup system; albeit the fact that a
profit-oriented intrusion whereby the operator strives to extract the maximum profit out of the
business, reduces the social welfare of the system by ¼ times its maximum.

Reputation incentive modeling

Reputation schemes have received a great deal of intention for enforcing node cooperation in
mobile ad hoc networks. Notably, [Michiardi 2004] proposed CORE as a collaborative
reputation mechanism motivating nodes to forward packets, and used a game theoretical
approach to assess the features and validate the mechanism. The author relied on a cooperative
game that uses a two-period structure: players first decide whether or not to join a coalition, and
then both the coalition and the remaining players choose their behavior non-cooperatively.
Additionally, the model employs a preferential structure as suggested by the ERC-theory
[Bolton and Ockenfels 2000]; even though the use of such theory for ad hoc networks is not
argued in more detail by the author. The study of the model demonstrates that there is a Nash
equilibrium where at least half of the total number of nodes cooperate. The authors also
considered the case where nodes may have a continuous strategy space where they may choose
their cooperation levels instead of discretely choosing just between cooperation and defection. If
nodes have identical ERC preferences and are interested enough in being close to the equal
share, the study reveals that the grand coalition is stable i.e., no player has an incentive to leave

98

the coalition. Such interesting analytical result is not very well defended by the author as a
validation of the proposed mechanism since the assumption that the nodes will be very much
interested in achieving equality of shares may not be met in practice.

Rather than to be expressly conceived for a specific mechanism, [Zhao et al. 2009] proposed
a general and generic game theoretical framework to model and analyze cooperation incentive
policies. The model studies, instead of game equilibriums, the game dynamics where strategies
change according to two learning models: the current-best (CBLM) and the opportunistic
(OLM) learning models. In CBLM, each peer chooses the strategy that has the highest payoff.
In the second learning model OLM, each peer randomly chooses another peer as its teacher. If
the teacher has a better payoff than the peer, the latter adapts to the teacher’s strategy. OLM is
similar to evolutionary game concepts where the so-called teacher is the co-player of the peer.
The main parameter of comparison between these learning models is robustness: a system is
robust if it stays at a high contribution level even with perturbation such as peer arrivals or
departures from the network. The mathematical analysis demonstrates that a system with CBLM
is less robust than with OLM; this latter being alike a typical evolutionary game model.
Moreover, the analysis allows comparing two incentive policies: the mirror incentive policy
under which a peer provides service with the same probability as the requester serves other
peers in the system, and the proportional incentive policy whereby the peer serves the requester
with a probability equal to the requester’s contribution to consumption ratio. The study shows
that the mirror incentive policy may lead to a complete system collapse, while the proportional
incentive policy can lead to a robust system. This result demonstrates that a policy motivating
fairness in terms of contributions and consumptions of resources achieves better stability than
participatory incentives.

[Lai et al. 2003] opted also for an evolutionary study of applications in P2P systems. The
authors proposed a model that they called a generalized form of the Evolutionary Prisoner’s
Dilemma (EPD). Though the model is very similar to the traditional EPD, they argued that the
new model permits asymmetric transactions between a client peer and a server peer. Peers
decide to cooperate or not based on a reciprocative decision function that sets the probability to
cooperate with a given peer X to the ratio, rounded to a value in [0, 1], (cooperation X
gave)/(cooperation X received), such function is comparable to the proportional incentive policy
in [Zhao et al. 2009]. The authors simulated EPD under various situations and obtained several
results. They showed that techniques relying only on private history, where solely peer
experiences are taken into account, fail in inciting cooperation among peers as the population
size increases. However, techniques based on shared history better scales to large populations.
Additionally, results demonstrate that cooperation with strangers fails to encourage cooperation
in the presence of whitewashers. Therefore, the authors proposed an adaptive policy in which
the probability of cooperation with strangers becomes equal at time t+1 to pC

t+1 = (1-µ)×pC
t +

µ×Ct, where Ct=1 if the last stranger cooperated and =0 otherwise. Simulations validate the
adaptive policy by demonstrating that incentives based on such policy make the system
converge to higher levels of cooperation.

[Feldman et al. 2006] have studied in more depth the whitewashing problem in P2P systems
using a game theoretical model that particularly takes into account heterogeneity of users’
behavior. In order to sustain the system when the societal generosity is low, punishment
mechanisms against free-riding users are required. The proposed punishment mechanism
consists on imposing a penalty on free-riding behavior with probability (1-p). The optimal value
for the probability p is defined by the maximum obtained performance of the system. Still, such
mechanism can be undermined by the availability of cheap pseudonyms through which a free-
rider may choose to whitewash. To measure the effect of whitewashing behavior, the authors
computed system performance considering the cases of permanent identities and free identities,
in addition to different turnover rates that represent user arrival and departure rates (arrivals and

99

departures are assumed type-neutral i.e., they do not alter the type distribution). Their study
demonstrates that the penalty mechanism is effective when both the societal generosity and the
turnover rate are low; otherwise a notable societal cost due to whitewashing is experienced (we
will also come to such result in our study of an evolutionary game model of the audit-based
incentives).

In the remainder of this chapter we will present several game theoretical models describing
various features of our audit-based incentive mechanisms. We endeavor with such models to
validate our mechanism as an influencing force exhorting rational peers to behave in a way that
maximizes the common good of the P2P storage system.

6.2. Repeated signaling game of payment-based incentives

In this section, we model the P2P storage system as a game. For the sake of game symmetry,
we assume the presence of just two players: the data holder and the data owner verifying the
holder. These players are involved in the strategic process of deciding whether to cooperate or
not on one hand, and to punish or reward on the other hand.

Although the considered games (that will be described in the following) model a payment-
based incentive mechanism, the assumption of reputation incentives may also be sustained with
such games given that the reward is the positive reputation gained by the holder and the
punishment is a negative reputation; however the considered models imply also that the reward
gained by the holder is deduced from the owner’s outcome and the punishment inflicted to the
selfish holder is reimbursed to the owner. So, the presented models are more adequate for
reputation mechanisms that are based on a quota system.

Our game models show how incentives can be built based on the regular verification of the
correct storage of data, as promised by holders. Cooperation incentives are expressed as
payments: the holder is rewarded for a correct response while it is charged when responding
incorrectly. The outcome of this modeling is the validation of the existence of cooperation
equilibria after a series of verifications, and the evaluation of the parameters to be taken into
account to design proper payment-based incentives. Two games are introduced that respectively
model the holder's strategy and the owner's strategy.

6.2.1. Game elements

The essential elements of our game model are:

- Players: data owner denoted O and data holder denoted H.
- Payoffs: Payoffs represent the preference ordering of players over game outcomes.
- Information: information set for a player summarizes what the player knows when it

gets to make a decision.
- Chance: probability distribution over chance events. We represent chance events by a

random move of nature which is a pseudo-player whose actions are purely mechanical
and probabilistic.

6.2.2. Game models

The P2P storage is modeled as a Bayesian game. In such a game, information about the
characteristics of other players is incomplete, and nature is introduced as a player for modeling
uncertainty.

Figure 46 illustrates the structure of our one-stage game in the extensive form (in the form of
a tree where there is a complete description of how the game is played over time). A one-stage

100

game corresponds to the phase of one challenge conducted by O towards H. Notations used in
figures are explained in Table 6. The parameters G, R, R’ and D, in Table 6, are measured in the
same units, e.g., the number of data bytes or data chunks stored. Also regarding data stored in a
distributed fashion, we presume that the remote storage space has more value than local storage
space, which explains that G>R>D.

Table 6 Notations

Notations Explication

Players
O data owner
H data holder

Errors
M malfunction of H
N normal function of H

Types
C H is cooperative
S H is selfish
F H is faulty

Signals
s succeed O’s challenge
f fail O’s challenge

Actions
rw reward H
fg do not do anything
pn punish H

Payoffs

G distributed storage gained by O
D supplementary storage provided by H
R reward charge, such that R>S>0
R’ punishment charge, such that G-R>R’>0

Chance
q

probability of challenge’s success for a
selfish holder H

d Probability of hardware failure (for H)

The game (depicted in Figure 46) models the fact that the holder H may follow two possible

strategies, or in game theoretical terms, be of two types: cooperative, that is, it will store
owner’s data until its retrieval; or selfish, that is, it will destroy data chunks with probability 1-
q.

These types are respectively referred as “C” and “S”. If H chooses the type “C”, it succeeds
in answering a challenge requested by O as modeled by the emission of signal “s”. However, it
may fail because of a hardware crash or error for instance, which occurs with probability d, and
is modeled by the emission of signal "f". The failure to answering a challenge is either an
incorrect response to the challenge or, more frequently, no response at all (after some time-out).
If H chooses type “S”, we assume that it may successfully answer a challenge only with a
probability equal to q(1-d). Otherwise, it will behave like a faulty peer. In addition, real faults
may still happen with probability d.

This probability q of a correct answer from a selfish holder may be due to several reasons.
The selfish holder may restrain from answering the owner pretending to be offline, and then the
probability q is the probability that the owner is fooled with such “no response” (we assume that
a holder of type “C” is always available for verifications). Moreover, the used verification
protocol can be probabilistic such that the holder may destroy a portion of the data and still be
able to answer verification relating to the remainder of the data. The verifier may be also
another third peer that may neglect to perform the verification task, and then q is the probability
that the verifier does not check the remote data that have been actually destroyed by the holder.

The owner O is not informed about H’s type, which is why O cannot distinguish between
“C” and “S” despite the fact that H's signal is seen by O. Such situations that cannot be
discriminated belong to the same so-called “set of information”. The two sets of information I
and II depicted in the game diagram correspond respectively to success and failure signals.

101

Figure 46 Modeling the holder strategy

In this section, we will consider a simplified version of the game of Figure 46, in which the
risk of hardware failure for H is simply neglected (d=0). This simplification allows easier
computations in the next sections, while focusing on holder strategies.

Figure 47 Modeling the owner strategy

The game model of Figure 46 is a sequential game with asymmetric distribution of
information, since the holder H is informed about its type, but the owner O is not informed.
However, O can probabilistically determine H's type based on its prior beliefs, such beliefs
typically reflecting H’s reputation. With every verification performed, O updates its beliefs
according to Bayes’ formula. To describe O’s prior beliefs about H’s type, we derive a second
game model depicted in Figure 47. This model is a typical signaling game, that is, players have
asymmetric information. The game is modeling the owner strategy: the game will use signals

102

based on H's type as determined by the Nature. H, the informed player, has different types given
by nature; while H knows its type, O does not. Based on the knowledge of its own type, H sends
signals which O can observe but which do not provide perfect information about H's type. In
our model for instance, the set of information III may describe a cooperative or selfish H, and
the set IV may describe a selfish or faulty H.

6.2.3. Equilibria

The solution of the game, which constitutes player's best response to the actions of the other
player, is called an equilibrium. The following sections define the Nash equilibrium and the
perfect Bayesian equilibrium of the game.

Nash Equilibrium: To define the Nash equilibrium of the game, the normal form of the

game of Figure 46 (which lists each player’s strategies and the payoffs that result from each
possible combination of choices) is presented below in Table 7.

Table 7 Normal form of the game of Figure 46

O’s payoff

rw pn

H’s payoff
C (R - D, G-R) (-R’ - D, R’)
S (R - qD, -R) (-R’ - qD, R’)

We assume that G-R > R’. If H chooses the type “C”, then O, by strict dominance, chooses

the action “rw” because the payoff associated to “rw” (= G - R) is higher than the payoff
associated to “pn” (= R’). By choosing “rw”, the better response by H is “S” because R – D < R
- qD, and so, O will prefer to choose “pn” because R’ > 0 > -R. At this point, neither O or H can
have a benefit by changing to another strategy. So, (“S”, “pn”) is a Nash equilibrium. The
normal form game leads to an equilibrium where non-cooperation is the best response for
players.

Compared to the extensive form game, the normal form game lacks the information on
whether O is informed or not about the type of H. The view of incomplete information is not
represented within the normal form. Another equilibrium, the perfect Bayesian equilibrium,
takes into account this view.

Perfect Bayesian Equilibrium: A perfect Bayesian equilibrium is a strategy profile σ* =

(σ1*, σ2*) and posterior beliefs µ(· | m) such that:

1) ∀ type t, w�∗ � tA�Ft'�P����w�, wg∗, >��
2) ∀ signal m, wg∗ � tA�Ft'���∑ D�>|F��g�F, wg, >�
 �

3) D�>|F� � ��
��P∗�6|
�∑ ��
���P∗�6|
���o

Finding the perfect Bayesian Equilibrium of the game means finding the following
probabilities ([Ghassemi 2006]): w�∗��|p� � 1 w�∗��|p� � 0 w�∗��|�� � u w�∗��|�� � 1 + u w�∗��|�� � 0 w�∗��|�� � 1 wg∗�Af|�� � �� wg∗���|�� � �� � 0 wg∗�e�|�� � f� � 1 + �� wg∗�Af|�� � �g � 0 wg∗���|�� � �g wg∗�e�|�� � fg � 1 + �g

103

Thus, the belief update equations are as follows: D�p|�� � e�p�e�p� ? e���u D��|�� � e���ue�p� ? e���u D��|�� � 0

D�p|�� � 0 D��|�� � e����1 + u�e����1 + u� ? e��� D��|�� � e���e����1 + u� ? e���

H’s payoffs corresponding to each type is given by: ���w�, wg∗, p� � ���� ? ��� + �� + � ���w�, wg∗, �� � u����� ? ��� ? ��fg + �� + �� + ��fg ���w�, wg∗, �� � +��fg

Expected O’s payoffs for each signal sent by H is given by:

� D�>|���g��, wg, >�
 � �� \- e�p�e�p� ? e���u + � + ��] ? ��
� D�>|���g��, wg, >�
 � ��fg

Finding the solution of the game depends on the sign of �- ��������5��x�� + � + ��� that

corresponds to whether the following inequality holds or not: e�p� [���5��� H��H����5��� (6.2.3)

There are two case solutions:

- Case 1: if e�p� [�5�� , then σ2* is maximized for u1=1 and w2=1. Because R + R’ – D

> 0, σ1* is maximized for q = 1. The perfect Bayesian equilibrium is the strategy where:

w�∗��|�� � 1 w�∗��|�� � 0 wg∗�Af|�� � 1 wg∗���|�� � 0 wg∗�e�|�� � 0 wg∗�Af|�� � 0 wg∗���|�� � 0 wg∗�e�|�� � 1 e���e�p� ¡ - + � + ��� ? ��

The equilibrium of the game leads to a strategy where O and H cooperate.

- Case 2: if e�p� _ �5�� , then σ2* is maximized for w2=1 only. The choice of u1 is

dependent on q and vice versa. If u1=0, then σ1 is maximal for q=0, and for q=0, σ2 is
maximal for u1=1, and for u1=1, σ1 is maximal for q=1, however, for q=1, σ2 is maximal
for u1=0, and so on. There is no perfect Bayesian equilibrium for this case.

6.2.4. Repeated game

We analyze a class of repeated games in which the informed player's type is persistent and
the history of actions is perfectly observable. This context rightly represents the periodic
iteration of the verification protocol performed by the owner to assess whether the holder is still
storing the data it promises to keep. The analyzed repeated game is the game of Figure 46 and
Figure 47 iterated while maintaining H’s type. These games are played for finite times, but no

104

player knows the exact game termination time. The probability p captures the probability of
“natural” termination of the repeated game (e.g., loss of connection between O and H).
Additionally, the owner O has the possibility to stop the repeated game if it detects the
selfishness or the failure of H (H is of type “S” or “F”). The payoff at the i th period is designated
by gi=(gi

H, gi
O). The sum of per-period payoffs is given by:

� � ¢��1 + e��£
�* ��¤, ��1 + e��£

�* ��¥¦

Action profiles

From the signals sent per-period by H, O may infer the type of H. There are three distinct
possible action profiles:

d) (s, rw), (s, rw), (s, rw), …
e) (s, rw), (s, rw), …, (s, rw), (f, pn)
f) (f, pn)

If the signal is “s”, then, the best response of O is to play “rw”. If the signal changes from
“s” to “f”, O concludes that H is of type “S” and the action played is “pn”. If the signal is “f”
from the the first round, O infers that the type of H is either “S” or “F”, for both cases it is better
to play the action “pn”.

Numerical evaluation

The games of Figure 46 and Figure 47 are iterated and evaluated within different scenarios.
Games’ parameters are measured in MB (Mega Bytes) unit (1 MB=106 bytes). We intend with
such evaluations to define the impact of the probability of game termination p and also the
requirements on the values of the reward and punishment to achieve full cooperativeness of the
holder.

At first, we consider the repeated game of Figure 46. H chooses the strategy that maximizes
its payoff. To make H choose the type “C” over “S”, its outcome by choosing “C” must be
higher than its outcome choosing “S”. If the owner adheres to the action profiles presented
earlier, the payoff of H if it chooses the type “C” is derived as: �"�"¤ � � + �e

H’s payoff if it chooses the type “S” is:

�"x"¤ � u� ? �1 + u��+��� + u�1 + u�1 + e�

Cooperation is more advantageous for H, if the inequality �"�"¤ ¨ �"x"¤ holds for every p.

From this inequality, we derive the lower bound of the probability p (for q≠1): e ¨ �H©H�� (6.2.4.a)

Since, we assumed in the beginning that R > D, then
�H©H�� _ 0 ; which means that the

inequality (6.2.4.a) is always achieved for any value of p. So, choosing the type “C” results in a
higher outcome than the type “S” for any probability of game termination p.

Figure 48 depicts H’s payoffs varying p. The figure shows that the gap between the payoff of
H with type “C” and its payoff with type “S” increases inversely proportional to p: for low value
of p the gap counts in hundreds to thousands MBs (the graph shows truncated �"�"¤ for low p)

105

compared to a ten or so MBs with high value of p. The figure also demonstrates that the holder
with type “S” always achieves a higher outcome �"x"¤ with high value of q (e.g., q=0.9) then
with low q (q=0.1).

Figure 48 Payoffs of H with type “S” and “C” (truncated) varying p and q. G=30, R=20, R’=5, D=10.

Additionally, the outcome �"x"¤ gets exponentially higher with low probability p. These
results demonstrate that the repetition of the game (low p) motivates the holder H to cooperate
since it obtains a high payoff with cooperation than with selfishness taking into account the fact
that the owner follows the action profiles of 0.

Here, we consider the repeated game of Figure 47. The payoff of the owner O is dependent
on whether the holder H has opted for the type “C” or “S”. If the type of H is “C” then the
payoff of O, if this latter follows the presented action profiles, is derived as: �"�"¥ � - + �e

However, if H chooses rather the type “S” then the payoff of O becomes:

�"x"¥ � u�+�� ? �1 + u���1 + u�1 + e�

The owner is faced with the alternatives of whether to stop the game by punishing the holder

(playing “pn”) or to continue rewarding the holder whenever this latter answers correctly to its
challenge (playing “rw”). If the owner has prior beliefs on the probabilities that the holder may
choose one type or the other, p(C) and p(S), the owner then may decide on these alternatives
based on the following inequality: e�p� 	 �"�"¥ ? e��� 	 �S¥ ¨ �� (6.2.4.b)

This inequality (6.2.4.b) means that the average payoff of O if it commits to the game is

higher than its payoff if it calls off the game (by directly punishing H). If this inequality is
obtained then O chooses to continue the game; otherwise, it is more advantageous for O to stop
the game. The inequality (6.2.4.b) is obtained when: e�p� ¨ ��e�;

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

p

g
H

gH
"C"

gH
"S"

: q=0.1

gH
"S"

: q=0.3

gH
"S"

: q=0.5

gH
"S"

: q=0.7

gH
"S"

: q=0.9

106

��e� � e � u�� ? e���<1 + u�1 + e�=- + �1 + u��� ? e����

The inequality of (6.2.3) presented previously in finding the perfect Bayesian equilibrium of

the game corresponds to p(C) ≥ V(1) (case of p=1).
Figure 49 illustrates the function V(p) varying the probability of selfish holder success to

challenges q. The figure gives the asymptotic lower bound (q=1) of the probability p(C) over
which O deems acceptable to continue the game with H. Based on its prior beliefs about H, O
can decide whether to play with H or not. The figure shows that the lower bound of p(C)
increases with the probability p which means that the iterated version of the game is less risky
for O than one-stage game. Iteration of the game then motivates the owner to be cooperative and
to play the game with the holder; albeit the fact that its prior belief on the probability p(S) that
this latter is selfish is not null. This observation is even sustained by the fact that if p=0 (i.e., the
game never ends), then V(0)=0 which means that O always gains a higher payoff if it cooperates
with H than the one obtained by not playing the game.

Figure 49 The minimum value for p(C) acceptable for O to continue the game varying p and q. G=30,
R=20, R’=5, D=10.

The value of the reward gained by H if it successfully answers O’s challenge and also the
value of the punishment lost by H if otherwise it sends an incorrect response to O have an
impact on the minimum value of p(C). We can define such impact by computing the maximum
asymptotic lower bound of p(C) (i.e., V(1) for q=1) that becomes equal to:

��1��� � � ? ��-

This latter equality demonstrates that increasing R and R’ increases the lower bound of p(C).

So, increasing R and R’ reduces the cooperativeness of the owner. This is a quiet an interesting
result to find out that increasing the punishment that O acquires if H fails has a negative impact
on the cooperation of O. This is because the punishment is also obtained by O if it does not
cooperate and stops the game by declaring that H has been selfish. That’s why, increasing R’
increases also O’s payoff of non cooperation that may exceed its payoff of cooperation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

V
(p

)

q=0.1
q=0.3
q=0.5
q=0.7
q=0.9
q=1

107

Figure 50 depicts the function V(p) for different values of R and R’. The figure shows that
increasing R increases the lower bound of p(C) that even attains the limit 1 for some given
reward R (=35 and R’=0). Increasing R’ also increases the lower bound of p(C) that significantly
increases with p (compared to increasing R). We may notice that for low value of p, O’s
cooperation is better stimulated by increasing R’ than R because we have a smaller raise in the
lower bound of p(C) by increasing R’ than R by the same value (=10); whereas for high value of
p, the lower bound of p(C) considerably increases by increasing R’ than R. This result is due to
the fact that iteration of the game (low p) increases the chances of O to obtain the punishment
value R’ if it chooses to cooperate and if the type of H is “S” and this compensates the acquiring
of this value by not cooperating (playing “pn” at the beginning of the game).

Figure 50 The minimum value for p(C) acceptable for O to continue the game varying R and R’. G=30,
D=10, q=0.5.

Additionally, the figure illustrates the fact that increasing the gain G obtained by the owner if
the holder is cooperative makes the lower bound of p(C) decreases, as a result of the fact that
the gain is only obtained when the owner cooperates. In conclusion, owner’s cooperation is
better stimulated by minimizing the reward and the punishment values R and R’ (R=D and
R’=0) and maximizing the storage gain G.

Discussion

The repeated game of Figure 46 represents an interaction between a data owner and a data
holder from a data holder perspective. For this repeated game, we aim to encourage the
cooperation of the holder by making its cooperative behavior the best strategically choice to
make. The result on the probability p shows that iteration of the game favors the
cooperativeness of H. On the other hand, the repeated game of Figure 47 illustrates the
interaction of a data owner with a holder from the owner perspective. For this repeated game,
we aim, this time, to guide the owner in choosing the best response to holder actions based on
the prior beliefs about this very holder (these prior beliefs may correspond to holder’s
reputation). We showed that the cooperativeness of the owner increases by iterating the game.
We identified which actions the owner must follow for a given probability p(C). For this, we
showed the inequalities that the reward R and the punishment R’ should verify.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

v(
p

)

R=10, R'=0, G=30
R=20, R'=0, G=30
R=30, R'=0, G=30
R=10, R'=20, G=30
R=10, R'=0, G=40
R=10, R=20, G=40

G

R

R'

108

6.3. Evolutionary game model of reputation-based incentives

An evolutionary game model describes the evolution of strategies within large populations as
a result of many local interactions, each involving a small number of randomly selected
individuals. An individual plays only once; it plays in a one shot game against another randomly
selected player with the goal of maximizing its utility (fitness) in that game.

This section presents an evolutionary game model of the P2P storage system with which it is
demonstrated that peers using the audit-based reputation strategy will dominate the system.
Audits are obtained from periodic checking of storage at holders based on a deterministic
detection of data destruction.

6.3.1. Game model

In the proposed system, an owner stores data replicas at r holders. It appoints m verifiers for
its data replica that will periodically check storage at holders. The system is modeled as an
evolutionary game [Friedman 1998]: “an evolutionary game is a dynamic model of strategic
interaction with the following characteristics: (a) higher payoff strategies tend over time to
displace lower payoff strategies; (b) there is inertia; (c) players do not intentionally influence
other players’ future actions”.

One-stage game

The one-stage game represents an interaction between one data owner, r data holders, and m
verifiers randomly chosen. Thus, the considered game players are an owner, r holders, and m
verifiers. The one-stage interaction consists of several phases:

- Storage phase: the owner stores data at the r holders. At this phase, holders may decide to
keep data stored or to destroy them depending on their strategy (see next paragraph
“Evolutionary game”). Holders that crash or leave the system without any notice are
considered as defectors contrary to our previous work with the Bayesian game.

- Delegation phase: the owner sends verification information to the m verifiers in order to
be able to periodically check data at holders. Whether to cooperate with the owner in
verifying data is determined by each verifier’s strategy (see next paragraph “Evolutionary
game”).

- Verification phase: a verifier can decide whether the holder has been cooperative based
on the results of a verification protocol and take potential action depending on its
strategy. A verifier whose strategy is to cooperate will send the owner the results it
obtained by auditing the holder. A non-cooperative verifier may mimic a cooperative
strategy by sending a bogus result. Verifiers are not more trusted than other peers and
may lie about verification, for instance reporting an absence of response to a challenge
for a cooperative holder. A verifier might also be framed by a malicious holder trying to
make it appear as a non-cooperative verifier. Some verifiers may also crash or leave the
system, and be unable to communicate results of verifications. The owner therefore
cannot determine with certainty whether a verifier chose to adopt a cooperative strategy.
One negative result from a verifier is also not enough for the owner to decide that the
holder is non cooperative. Such a notification may however be used as a warning that the
holder may have destroyed its data. Based on such a warning, the owner would replicate
the endangered data, therefore maintaining or even increasing storage reliability to his
advantage.

109

- Retrieval phase: the owner retrieves its data from the r holders. If one holder destroyed
the data, the owner decides on potential action towards that holder depending on its
strategy (see next paragraph “Evolutionary game”).

Data storage is a long-term process during which several peers may have been storing data
from multiple owners; we define the evolutionary game that models our P2P storage application
as a sequence of a random number of such simultaneous one-stage interactions.

Evolutionary game

Our proposed game is similar to the game in [Brandt and Sigmund 2006] where players have
either the role of the donor or the role of the recipient. The donor can confer a benefit b to the
recipient, at a cost -c to the donor. We consider three roles in our game: owner, holder, and
verifier; any peer may play several of these roles throughout the game. In a one-stage game, the
owner is considered a recipient, the r holders and m verifiers are donors. The owner gains b if at
least one holder donates at a cost –c; however if no holder donates then the owner gains βb if at
least one verifier donates at a cost –αc (α≤1) for each verifier (Figure 51 summarizes the
model). The latter case corresponds to the situation where the cooperative verifier informs the
owner of the data destruction, and then the owner may replicate its data elsewhere in the
network thus maintaining the security of its data storage.

Figure 51 One-stage game model

110

Holders and verifiers have the choice between cooperating, which we call interchangeably
donate, or defecting:

- Cooperation whereby the peer is expected to keep others’ data in its memory and to
verify data held by other peers on behalf of the owner.

- Defection whereby the peer destroys the data it has accepted to hold, and also does not
verify others’ data as it promised to.

Storage of data and their verification are two independent actions. Appendix C studies the
behavior of peers that may defect in one of these actions independently of the other. The
following instead considers peers with some determined behavior that take these two actions as
falling under the same objective: either to cooperate or to shirk.

The peers’ strategies that we consider for study are:

- Always cooperate (AllC): the peer always decides to donate, when in the role of the
donor.

- Always defect (AllD): the peer never donates in the role of the donor.
- Discriminate (D): the discriminator donates under conditions: if the discriminator does

not know its co-player, it will always donate; however, if it had previously played with
its co-player, it will only donate if its co-player donates in the previous game. This
strategy resembles Tit-For-Tat but differs from it in that both the owner (the donor) and
its verifiers may decide to stop cooperating with the holder in the future.

6.3.2. Observations

Let us consider a scheme (see Figure 52) inspired from epidemic models which categorize
the population into groups depending on their state [Jones and Sleeman 1983]. Two states are
distinguished: “not known” and “known” states. Because of the random selection of holders and
verifiers among all peers and given the presence of churn, there are always nodes potentially in
the “not known” state.

Figure 52 System dynamics

We denote the number of peers that a given peer in average does not know at a certain time t
by D and the number of peers that it knows on average at time t by K. Peers that may join the
system are peers who were invited by other members with a fixed invitation rate λ. Peers are
leaving the system with a fixed departure rate of µ.

111

The rate σ designates the frequency of encounter between two peers, one of them being the
holder (i.e., the probability that a peer knows about the behavior of another peer). The rate σ
depends on the replication rate r and verification distribution m; indeed it is derived in average
as:

w � 1 + �1 + UAª + 1� 	 �1 + UAª + 1 ? UAª + 1 	 �1 + Fª + 2��«Hg

γ being the average storage rate of peers and N being the total number of peers in the system.

The formulation of the rate σ takes into account the probability that the observing peer chooses
the observed peer as a holder of its data (the peer stores data at rate γ) and the probability that
another peer from the N-2 remaining peers chooses the observed peer as a holder and the
observing peer as a verifier for it.

We denote the total number of peers in the storage system - excluding the observing peer - as
n = D + K. The dynamics of K and D are given by the following equations: ���> � B� + �w ? D�� ���> � w� + D� � w� + �w ? D��

Since n = D + K: ���> � �B + D��

Let q be the probability that the discriminator knows what a randomly chosen co-player

chose as a holder strategy in a previous one-stage game (the discriminator being an owner or
verifier in that game). The probability q is equal to K/n, hence: �u�> � ��/�>� + ���/�>�g

Thus, �u�> � w + �w ? B�u

At time t=0, the set of peers in state K is empty. Over time, peers in state D enter state K with

rate σ. A new peer joining the system is assigned state D meaning that initially q(0)=0. The
result of the above differential equation is thus: u�>� � ww ? B �1 + GH��5J�
�

The limit of q(t) when t → ∞ is σ/(σ+ λ). If we consider a system without churn (λ=0), the

limit becomes 1.

6.3.3. Fitness

We respectively denote the frequency (i.e., fraction in the population of playing peers) of
strategies AllC by x, AllD by y, and D by z. The expected values for the total payoff obtained by
the three strategies are denoted by UAllC, UAllD and UD, and the average payoff in the population
by: � � ' 	 �¬� ? (�¬© ? ® 	 �©

112

The average payoffs that are also called fitness for each strategy are defined in the following.
At time t, a participating peer will have r times more chances to be chosen as a holder and m

times more chances to be chosen as verifier than to be chosen as an owner.
A peer playing the strategy ALLC will always cooperate: it will donate at a cost –c if it is

chosen as a holder or at a cost –αc if it is chosen as a verifier. It will gain a benefit b if it is
chosen as an owner and at least one of its data holders is not a defector, otherwise, it may gain a
benefit βb if at least one of its verifiers is not a defector. �¬� � +A� + F�� ? ��1 + ($� ? ¯�<($�1 + (6�= � +��A ? F�� ? ��1 + ($? ¯($�1 + (6��

A peer playing the strategy ALLD will never cooperate, so it will never donate. It will gain a

benefit b if it is chosen as an owner and at least one of its data holders is not any of these types:
a defector (type occurs with frequency, i.e., probability y) or a discriminator that knows the peer
(type occurs with probability qz on average). Otherwise, the peer may gain a benefit βb if at
least one of its verifiers is not of any of the former two types. �¬© � ��1 + �(? u®�$� ? ¯�<�(? u®�$�1 + �(? u®�6�= � ��1 + �(? u®�$? ¯�(? u®�$�1 + �(? u®�6��

A peer playing the strategy D will always cooperate if it does not know the recipient or the

latter was cooperative in a previous interaction. It will donate at a cost –c if it is chosen as a
holder or at a cost –αc if it is chosen as a verifier. It will gain a benefit b if it is chosen as an
owner and at least one of its data holders is not a defector, otherwise, it may gain a benefit βb if
at least one of its verifiers is not a defector. �© � +��A ? F���1 + u(� ? ��1 + ($? ¯($�1 + (6��

Strategies with higher fitness are expected to propagate faster in the population and become

more common. This process is called natural selection.

6.3.4. Replicator dynamics

The basic concept of replicator dynamics is that the growth rate of peers taking a strategy is
proportional to the fitness acquired by the strategy. Thus, the strategy that yields more fitness
than average fitness of the whole system increases, and vice versa. We will use the well known
differential replicator equations: �'�> � '��¬��� + �� @°@
 � (��¬��© + �� (6.3.4) �®�> � ®��© + ��
6.3.5. Evolutionary stable strategy

A Strategy is said to invade a population of strategy players if its fitness when interacting
with the other strategy is higher than the fitness of the other strategy when interacting with the
same strategy. An evolutionarily stable strategy (ESS) is a strategy which no other strategy can
invade if all peers adopt it.

113

Case x≠0, y=0, z≠0: This case corresponds to a fixed point in the replicator dynamics, which
means that a mixture of discriminating and altruistic population can coexist and are in
equilibrium.

Case x≠0, y≠0, z=0: In this case, the replicator dynamics of both altruistic and defector

populations are: �'�> � +'(��A ? F�� ¡ 0 �(�> � '(��A ? F�� [0

The population of defectors wins the game and the ESS is attained at x=0 and y=1.

Case x=0, y≠0, z≠0: The dynamics of the populations of defectors and discriminators are

derived as: �(�> � (®���A ? F���1 + u(� ? ����(� + ��(? u®�� �®�> � (®�+��A ? F���1 + u(� ? ����(? u®� + ��(��

where the function f is defined as follows: ���� � �$ + ¯�$�1 + �6�

The equilibrium point (x=0, y=y0, z=z0) for which defectors and discriminators may coexist

corresponds to the solution(s) of the following equation: �(�> � �®�> � 0

The equilibrium point is then defined as follows: ��A ? F���1 + u(*� � �<��(* ? u®*� + ��(*�=

Table 8 describes equilibrium values in some particular cases. More cases for equilibrium

values will be examined in the next section.

Table 8 Finding the equilibrium for x=0, y≠0, z≠0.
Conditions y0 z0

r=1, m=0, b≠c, u�>�
±£²³́ ��5J min �max ��w + ��w ? B��� + ��w , 0� , 1� min \max \ �B�� + ��w , 0] , 1]

r=0, m=1, b≠c, u�>�
±£²³́ ��5J min \max \¯�w + ���w ? B��¯� + ���w , 0] , 1] min \max \ ��B�¯� + ���w , 0] , 1]

Case x≠0, y≠0, z≠0: There is one stationary point (x=0, y=y0, z=z0) for which defectors will

exploit and eventually deplete all cooperators. The amount of defectors will first increase, and
then converges to the equilibrium where there is either coexistence with discriminators, or
winning over them, or losing to them depending on storage system parameters.

6.3.6. Numerical evaluation

The evolutionary game is simulated within a custom simulator using the differential
equations of section 6.3.4. Simulations involve several scenarios with various storage system
parameters in order to capture their impact on the convergence of the system to an equilibrium.

114

In our simulations, we consider that in each day of simulated time, 3 files are stored per peer
with average file size of 500MB. The verification metadata corresponding to each file having an
average size of 10KB is stored at the appointed verifiers. There are 10 newcomers to the storage
system per month for an equivalent number of peers leaving it. These newcomers are detaining
the same strategy as their hosts because we assume that the arrival and departures of peers are
strategy-neutral i.e., they do not alter the strategy distribution (we assume that the dynamics of
strategies solely depend on their payoffs as in the replicator dynamics of 6.3.4).

Figure 53 Frequency of cooperators vs. defectors over time. m=5, r=3, β=0.1, α=20.10-6, λ=10/month,
N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0.8, y(0)=0.2, and z(0)=0.

Initial frequency of strategies: Figure 53 shows the frequency of cooperators and defectors
over time, and demonstrates that with time cooperators will be eliminated from the system by
these defectors. The presence of discriminators in the system does not prevent cooperators from
being evicted from the system; however, discriminators and defectors will converge to an
equilibrium where both coexist (see Figure 54).

Figure 54 Frequency of the three strategies over time. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3
files/day, b=1, c=0.01, x(0)=0.6, y(0)=0.1, and z(0)=0.3.

This equilibrium is perturbed by the injection of a large population of defectors, as illustrated
in Figure 55 (by varying the initial frequency of z). If discrimination becomes a minor strategy
in the population (z(t) ≤ 0.2), it is completely eliminated from the system. However, if a small
population of defectors is injected, discriminators still converge to the same equilibrium.

0 30 60 90
0

0.2

0.4

0.6

0.8

1

Time (in days)

F
re

qu
en

cy
 o

f c
oo

p
er

at
or

s
vs

. d
ef

ec
to

rs

x(t)
y(t)

0 30 60 90 120 150 180 210 240 270
0

0.2

0.4

0.6

0.8

Time (in days)

F
re

q
ue

n
cy

 o
f

st
ra

te
g

ie
s

x(t)
y(t)
z(t)

115

The minimum initial frequency for which the population of discriminators achieves an
equilibrium where their frequency is not null is denoted zmin(0) (~0.2). There are two equilibria
that are determined by the initial population of discriminators: (x=0, y=1, z=0) if z(0) ≤ zmin(0)
and (x=0, y=y0, z=z0) if z(0) ≥ zmin(0).

Figure 55 Frequency of discriminators at equilibrium varying z(0). m=5, r=3, β=0.1, α=20.10-6, λ=10/month,
N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0.

The discriminators do not win over defectors, because the latter may still have a good payoff
if they interact with some discriminators that do not know them yet, for instance for
discriminators that just entered the system, or defectors that just joined in. Additionally,
defectors do not always win over the discriminators because there are discriminators that
already know them and that always choose to defect with them. The figure shows also a little
decrease in the frequency of discriminators before converging to the equilibrium. The decrease
is due to the fact that discriminators act as cooperators in the beginning of the game since they
do not know the behavior of defectors yet.

Figure 56 Frequency of discriminators at equilibrium varying r. m=5, β=0.1, α=20.10-6, λ=10/month,
N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5.

Number of verifiers and replicas: Varying the number r of data replicas or the number m
of verifiers changes differently the equilibrium point. Increasing r favors defectors (see Figure
56). This is because the fitness gain of discriminating owners is overwhelmed by the fitness loss
that results from data storage cost -c that is always paid by discriminating holders. Increasing r
increases data reliability, thus increasing chances of having the benefit b. But, this benefit is

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z(0)

z(
2

ye
ar

s)

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

r

z(
2

ye
ar

s)

116

perceived by both populations of discriminators and defectors without favoring one over the
other.

Figure 57 Frequency of discriminators at equilibrium varying m. r=3, β=0.1, α=20.10-6, λ=10/month,
N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5.

Increasing m increases the equilibrium value of discriminators frequency (see Figure 57).
This is due to the fact that increasing m makes higher the chances to obtain a benefit βb.
However, increasing m increases also the cost of data verification -αc. Even if this cost is just
paid by discriminating verifiers, it is still modest compared to the benefit perceived in
proportion (α<<1).

Figure 58 also illustrates the fact that increasing the storage rate that in return increases the
probability of encounter σ leads to an increase in the equilibrium value of discriminators’
frequency because more discriminators get acquainted with more defectors. The figure defines
he storage rate under which discriminators are eliminated from the system by defectors.

Figure 58 Frequency of discriminators at equilibrium varying the average storage rate γ in #file/hour. m=5,
r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, b=1, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5.

Churn: The peer arrival rate λ affects the probability q, and hence the equilibrium point of
the game (see Figure 59). For a low churnout value (small λ), the frequency of discriminators at
equilibrium is high; whereas for a high churnout value, the frequency at equilibrium decreases.
For high churnout, peers are not able to get acquainted with all peers since there are always new
peers in the system, and defectors may take advantage of the lack of knowledge of

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

m

z(
2

ye
ar

s)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

niew

z(
2

 y
ea

rs
)

117

discriminators about the system to gain benefit and remain in the game. For a system without
churnout (λ=0), discriminators win against defectors that are eliminated from the game.

Figure 59 Frequency of discriminators at equilibrium varying the arrival rate λ in #newcomers/hour. m=5,
r=3, β=0.1, α=20.10-6, N=1000, γ=3 files/day, b=1, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5.

Benefit and cost: Figure 60 depicts the impact of the benefit b and of the cost c on the
frequency of discriminators at equilibrium. The figure shows that b and c have opposite effects
on the equilibrium frequency of discriminators: increasing b increases the frequency whereas
increasing c makes it decrease. If the storage cost is small, it will be compensated by the benefit.
In contrast, if the storage cost is high (c≥0.01×b), discriminators cannot cope with this high cost
and they will be eliminated from the system by defectors. Additionally, the figure shows that the
equilibrium point varies in function of b and c.

Figure 60 Frequency of discriminators at equilibrium varying the ratio c/b. m=5, r=7, β=0.1, α=0.001,
λ=0.01, σ=0.05, b=0.05, x(0)=0, y(0)=0.5, and z(0)=0.5.

Discussion: Simulation results prove that there exist parameter values for which
discriminators, who use an audit-based mechanism, may win against free-riding defectors.
Discriminators are not hopeless when confronting defectors, even if the latter may dominate
altruists (always cooperate strategy). At the equilibrium of the game, both discriminators and
defectors may coexist if there is churn in the system otherwise discriminators will dominate.
The number of verifiers m increases the frequency of discriminators at the equilibrium.
Whereas, a costly storage or an increase of the replication rate r reduce this frequency.

In the proposed reputation-audit based approach of 5.2, the discriminators do not always
cooperate with newcomers; they only cooperate with them with some probability p. We have

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

lambda

z(
2

 y
ea

rs
)

10
-3

10
-2

10
-1

0

0.2

0.4

0.6

0.8

1

c/b

z(
2

 y
e

ar
s)

118

studied such type of discriminating behavior taking into account a new type of defectors that
whitewash i.e., leave the system and rejoin with a new identity to escape its punishment. Results
are presented in Appendix B. They demonstrate that the probabilistic cooperation with strangers
of discriminators is not sufficient to fully dominate defectors. Thus, it is required to further
prevent or at least mitigate the whitewashing behavior by controlling the peer entry into the
system, for instance the joining of peers may be by invitation, or using a cryptographic puzzle
or even imposing a fee.

6.4. Summary

In this chapter, we presented several game theoretical models of our audit-based cooperation
incentive mechanism. The Bayesian game model illustrating the probabilistic verification
protocol allows solutions where both parties of the game are cooperative for well identified
payment parameters and repetition frequency. Additionally, the audit-based strategy that relies
on a deterministic verification protocol wins over the free-riding strategy in a closed system; if
not, with some particular conditions, it coexists with free-riders at a high frequency. Thus, using
these game models, we validate the inherent incentive capability property of the proposed
payment and reputation-based approaches that aim at steering peers towards cooperative
behavior.

6.5. Relevant publication

1. Nouha Oualha, Pietro Michiardi, and Yves Roudier. A game theoretic model of a
protocol for data possession verification. TSPUC 2007, IEEE International Workshop
on Trust, Security, and Privacy for Ubiquitous Computing, June 18, 2007, Helsinki,
Finland.

2. Nouha Oualha and Yves Roudier. Evolutionary game for peer-to-peer storage audits. In
the 3rd International Workshop on Self-Organizing Systems (IWSOS’08), December 10-
12, Vienna, Austria.

3. Nouha Oualha and Yves Roudier. A Game Theoretical Approach in Securing P2P
Storage against Whitewashers. In the 5th International Workshop on Collaborative Peer-
to-Peer Systems (COPS’09), June 29 - July 1, 2009, Groningen, Netherlands.

119

Chapter 7

7. Conclusion and future work

Peer-to-Peer (P2P) systems have emerged as an important paradigm for distributed data
storage in the way they exploit and efficiently make use of untapped peers’ storage resources.
Outsourcing data from a single location to multiple peers in a network is probably the only
solution for increasing data availability and fault-tolerance on a large scale while reducing if not
suppressing storage maintenance costs. In this thesis, we addressed the security and cooperation
issues that such an application is likely to be exposed to when effectively deployed in the wild.

Summary and contributions

We first discussed the security issues associated with P2P data storage. The correct operation
of a P2P storage system relies on the fair and effective cooperation of peers. Unfortunately,
peers may misbehave in various ways. Data holders may pretend to be storing some data which
they in fact destroyed. With replication based approaches, peers may collude to store a single
data replica thereby defeating mechanisms to ensure reliability. Collusion may not be the sole
way to do so, since Sybil attackers may generate several identities and deceitfully use them.

We describe elements of a modular architecture for such a system encompassing the security
and cooperation mechanisms necessary to ensure the correct and secure operation of a P2P data
storage system. We describe how a trusted environment may make it easier to prevent some
misbehaviors, in particular if peer identification, data integrity verification, and trust
management may be assured by dedicated hardware or trusted platforms rather than performed
by peers themselves.

Hidden actions of non cooperative peers can be revealed using a new type of protocol that
we call data possession verification. Such protocols enable a verifier to detect whether some
data that are stored remotely have been corrupted. We propose three different such protocols
with different verification capabilities, in particular regarding delegation.

The behavior of data holders can be evaluated based on the results obtained out of such
protocols. Such audits form the basic observation primitives of the cooperation incentive
mechanisms that we propose for stimulating cooperation and inciting correct behaviors. The
originality of the incentive mechanism stems from the optimistic peer behavior evaluation,
following a very different approach compared with cooperation incentives in MANETs: while
peer behavior can only be decided at the end of the storage period, audits can be performed on a
regular basis and we consider that a peer behaves well as long as no data corruption is detected.
We propose two incentive mechanisms, one reputation-based and the other remuneration-based.
Both mechanisms are designed not only to incent to cooperative behavior but also to establish
trust as well as to detect and punish misbehaving peers. These constitute essential features of a
security mechanism for such applications given the possibility of purely malicious attacks.

The effectiveness of our security and cooperation achieved by our proposed audit-based
mechanisms is demonstrated through non-cooperative game theoretical models. We first
evaluate the effectiveness of our incentives with various observation primitives both
probabilistic and deterministic. Evolutionary games are also introduced in order to evaluate the
macroscopic equilibria achieved.

120

The following is a summary list of the contributions of this thesis:

- P2P data storage architecture: organization principles for security mechanisms at various
layers of the system, and interest of introducing a trusted computing base as a security
infrastructure.

- Cryptographic protocols for remote data possession verification
o Probabilistic-based approach: realizes a good performance by conceding verification

determinism, and allows open verifiability of the stored data.
o Restricted deterministic approach: achieves an efficient verification trading off

security and performance with verification periodicity (availability).
o Deterministic-based approach: realizes a good performance to security tradeoff.

- P2P data storage and maintenance mechanism: introduction of a reactive data
rejuvenation process in order to achieve storage reliability and availability on the long
term. The process relies on the operation of an erasure code based data maintenance
protocol.

- Cooperation incentive mechanisms: open and scalable reputation-based and
remuneration-based mechanisms that do not require a trusted infrastructure, and are
resilient to various attacks.

- Game theoretical models: validate the incentive property of proposed mechanisms at
micro and macroscopic levels of granularity.

Perspectives
Our work presented primitives for evaluating the behavior of peers with respect to storage.

The feedback resulting from such evaluations mainly serves cooperation incentive mechanisms.
However, peers, in particular data owners, also need to adapt their storage strategies based on
such evaluations. Detecting a storage fault should trigger a data regeneration process to ensure
the long-term reliability of data storage. However, the effectiveness of such a process not only
depends on the availability of enough holders, as we modeled it, but also on the time it takes to
transfer data blocks between peers. A performance analysis of such a process would certainly
bring more realistic estimations as to the bandwidth and churn requirements of a P2P storage
application.

The security mechanisms developed in this thesis, and in particular cooperation incentives,
are crucial in forecasting how trusted a peer can be and in stimulating its cooperation. Although
they were tuned for P2P data storage in this work, other P2P applications (say for instance P2P
IP telephony) would definitely benefit from such security and cooperation mechanisms. For
instance, Internet providers are deploying Wifi relays for IP telephony with the cooperation of
end-users that accept to configure their ADSL boxes to carry this service in exchange of the
capability to use it. A finer grained yet self-organizing regulation of such infrastructures might
be achieved with remuneration-based incentives in particular. Wuala for instance has started
deploying its data storage infrastructure with such an approach. Remuneration-based
cooperation incentives also pave the way for multi-service architectures that would then make it
possible for heterogeneous platforms to cooperate efficiently and exchange some bandwidth for
some storage for instance.

Protection against Sybil attackers and whitewashers is a central issue in many P2P
applications. It should be noted that completely self-organized approaches can only mitigate
such attacks while at the same time imposing a penalty on honest peers. We discussed the use of
a trusted computing base, as provided by some tamper-resistant hardware, as a possible
solution. Although costly in terms of deployment, it may indeed provide an interesting and
scalable solution to this problem. In particular, the TCG architecture is increasingly deployed in
corporate hardware, thus making it an interesting candidate. In particular direct anonymous

121

attestation mechanisms may link some data to a unique platform while preserving platform
privacy. There is also an increasing trend to establish dynamic trust based on existing static trust
relationships, as illustrated with the emergence of services based on social networks (e.g.,
Skype, Facebook, hi5, LinkedIn, MySpace). In such systems, small groups of peers may easily
be established based on the graph of relationships. Dunbar’s rule determines that a given peer
can maintain stable social relationships with 150 other peers. This may mean that P2P
applications developed in the future may exhibit topologies very different from those used in
P2P file sharing in which a peer may connect with 3000 others, as witnessed within BitTorrent
“swarms” for instance. Scalability will undoubtedly remain an important research challenge in
such systems as well and may trigger the development of more efficient protocols for managing
the interconnection of multiple groups of well connected peers.

122

123

Appendix A Diffie-Hellman based deterministic verification

We propose a second deterministic verification approach that is based this time on the
hardness of the Diffie-Hellman problem: finding the value of gxy given an element g a generator
of a multiplicative group (typically a finite field or an elliptic curve group) and the values of gx
and gy.

Tree-based number generation

We work in a group G of prime order p with generator g. The protocol relies on the idea that
l number of values allows deriving n number of values where n > l. We employ a binary tree to
generate these values in a top-down manner, where the values consist of the leaves, and the
generator g is at the root.

The tree construction is defined as (see
Figure 61 for an example): at tree level i, the value of the child in the left is equal to the value

of its parent, whereas the value of the child on the right is the value of its parent multiplied by
gxi

 where x is a random number in ℤ*
p-1 (the value of x is chosen such that the values on the

leaves are all distinct).

2xgg×

g

g xgg×

g xgg×
2xx ggg ××

3

2
xggh ×=gh =1

32

4
xx gggh ××=

2

3
xggh ×=

3

6
xx gggh ××=xggh ×=5

32

8
xxx ggggh ×××=

2

7
xx gggh ××=

Figure 61 Tree-based number generation. n=23.

From the proposed tree construction, we are able to generate n distinct numbers just knowing
g and x and performing O(n) exponentiations.

An original property of the tree-based construction is that if we consider a generator of the
form gr, then we obtain numbers of the form hi

r where hi is a number generated from the tree at
root g. This property is obtained due to the fact that the only operation that is carried out all
along the tree is the multiplicative operation in the group G that is commutative.

Protocol description

The verification protocol comprises the following phases (summarized in Figure 62):
- Storage phase: the owner splits its data into n (n=2l) blocks (not necessarily with the

same size) of size less than |p-1| (“|M|” means size of M). All blocks can be easily
mapped to random numbers {di} 1≤i≤n in ℤ*

p-1. The blocks are sent to the appointed holder
for the data storage. This latter should keep the blocks stored until the time of their
retrieval by the owner. The holder should also keep the order of block indexes
unchanged.

- Delegation phase: the owner chooses a random number x that will be used to construct
tree-based random numbers as explained in the previous section. Generated random

124

numbers are denoted {hi} 1≤i≤n. Then, the owner computes the value T=Πn
i=1hi

di. This value
is sent to the verifier assigned to the holder of {di} 1≤i≤n, along with the secret x and the
generator g. The verifier should keep the random number x secret.

- Verification phase: the verifier generates a random number r, then it computes the
numbers {(gxi)r} 0≤i≤l. where l is the height of the tree. These numbers are sent to the holder
to be used to generate random numbers {h’ i} 1≤i≤n based on the tree construction with root
gr that actually results in h’ i=(hi)

r for each i. The holder then computes the product
R=Πn

i=1h’ i
di that will be sent back to the verifier. This latter has just to check whether the

equality R=(T)r holds or not.

Storage

Owner Holder
Split data d in n chunks: {di} 1≤i≤n
send {di} 1≤i≤n

{ di} 1≤i≤n

Store {di} 1≤i≤n

Delegation

Owner Verifier
Generate random number x
Generate n numbers {hi} 1≤i≤n based on x and g
Compute: T= Πn

i=1hi
di

Send T, x, g

T, x, g

Store T, x, g

Verification

Verifier Holder
Generate random number r
Compute g’ i =(gxi

)r for each i in [1, l]
Send {g’ i} 1≤i≤l

If R=(T)r then “accept” else “reject”

{ g’ i} 1≤i≤l

R

Generate {h’ i} 1≤i≤n from {g’ i} 1≤i≤l

Compute R = Π
n
i=1h’ i

di
Send R

Figure 62 Deterministic verification protocol

Security analysis
The commutative property of the multiplicative group G produces random numbers from the

generator gr of this form h’ i=(hi)
r for each i in [1, n] ({ hi} 1≤i≤n is the set of numbers produced

from the generator g) which results in the equality that the verifier checks:

� � % r��@:
"

�� � %��r��$�@:
"

�� � %��r��@:�$"
�� � �$

Additionally, the holder is not able to compute the response to the verifier’s challenge

without knowing the data blocks. Actually, it cannot infer the random number r or the secret
number x from the distinct received numbers {(gxi)r} 0≤i≤l thanks to the Diffie-Hellmann problem.
The tree-based approach produces distinct generated random numbers. The owner and after the
verifier may check this property by choosing the right values for x and for r. Therefore, the
holder receives distinct numbers that it cannot deduce from them the secret numbers x and r
assuming the Diffie-Hellman problem hard to resolve.

Performance analysis

In the proposed verification protocol, the verifier should keep small verification information
that consists of the secret x, the generator g and the number T ∈ ℤp. The holder should keep the
data blocks without any additional storage overhead.

125

The challenge message is composed of a set of l random numbers where l is the height of the
tree then l=log2(n). The response message consists of a random number in ℤp.

The main weakness of the protocol is the computation complexity. The verification process
entails l exponentiations in ℤ*

p-1 and l exponentiations in ℤp at the verifier side. On the other
hand, the tree-based generation of random numbers requires l exponentiations in ℤ*

p-1 and n
exponentiations in ℤp. Moreover, the holder performs other n exponentiations in ℤp using the
data blocks.

Table 9 Summary of resource usage of the deterministic verification protocol (n corresponds to data size)

 Storage usage Computation complexity Communication
overhead

At holder O(n) O(n) (upstream) O(1)
At verifier O(1) O(log(n)) (upstream) O(log(n))

126

127

Appendix B Managing whitewashers

An inherent problem to a cooperation incentive mechanism implemented into a dynamic
system where peers may join or leave at any time is the whitewashing problem. Whitewashers
are peers that repeatedly misbehave then leave the storage system and rejoin with new identities
thus escaping punishment imposed by the incentive mechanism. In order to deal with such
whitewashers, the paper presents a penalty mechanism against strangers that attempts to counter
whitewashers and it describes also a theoretical game that models such mechanism and attempts
to capture the point of tradeoff between restricting whitewashers and encouraging newcomers to
participate into the system.

Whitewashing problem

The proposed P2P storage system relies first and foremost on holder and verifier cooperation
to properly function. Therefore, it may be exposed to several attacks due to peer misbehavior
such as data destruction or corruption or even collusion between peers. Peer collusion can be
mitigated through proper selection of data holders and verifiers. For instance, the random
selection of peers within a structured P2P system limits pre-set collusions among these peers
(for details refer to 0). On the other hand, peer participation and data preservation can be
stimulated thanks to the use of cooperation incentive mechanisms.

Still, such mechanisms are vulnerable to whitewashers that repeatedly leave the storage
system and rejoin with new identities thus escaping any punishment caused by their previous
misbehavior. With new identities, peers have a clean record: good reputation rating or a default
initial amount of credits without debts to pay.

Particularly in a so open and dynamic P2P system where peers are able to freely join,
disconnect, reconnect, and leave the system, whitewashing becomes an eminent attack. Such
attack undermines the operation of the cooperation incentive mechanism since whitewashers are
not motivated to cooperate because otherwise they are not punished and they are eventually
cutting down the utilization of their storage resources: they consume but do not contribute.
Without peer cooperation, the system may collapse in the tragedy of the commons [Hardin
1968].

Penalty over newcomers

There are several solutions to the whitewashing problem. The first approach relies on a
central trusted authority that assigns strong identities to peers (linked to real-world identities).
Alternatively, the authority may impose the payment of membership fees. However,
additionally to introducing a single point of failure, such approach reduces the decentralized
nature of P2P systems.

Without a trusted third party, another option is to impose penalties on all newcomers: an
insider peer may only probabilistically cooperate with newcomers (like in BitTorrent [Piatek et
al. 2007]), or peers may join the system only if an insider peer with limited invitation tickets
invites them [Lesueur et al. 2008]. This option seems to be detrimental to the scalability of the
system; it has even been shown that this degrades the total social welfare [Feldman et al. 2006]
because whitewashing behavior is not observable and thus the penalty affects all newcomers
either cooperative ones or whitewashers.

This appendix studies the latter solution. The countering measure against whitewashing
consists of a penalty mechanism. The imposed penalty is performed by each peer that does not
cooperate with strangers with probability 1-p. The penalty may be also represented as service
degradation by (1-p)-fraction imposed on each newcomer. The probabilistic strategy attempts to
reach a point of tradeoff between restricting whitewashers and encouraging newcomers to join
and participate into the system.

128

In the proposed P2P storage system, the penalty mechanism corresponds to making each
peer accept to store or verify a newcomer’s data only with some given probability p.

In the remainder of this appendix we will present a game theoretical model describing the
features of a P2P storage system and capturing the whitewashing problem in such system. We
endeavor with such model to discuss the ability of the strategy based on the probabilistic
cooperation with strangers in coping with whitewashers.

Game model

We consider the evolutionary game of the audit-based approach described in 6.3. We may
analogously make correspond a whitewasher to some defectors with probability w, AllDw, and a
probabilistic stranger strategy to a discriminator Dp that will only cooperate with peers that it
does not know with probability p.

Strategies

Our study considers two types of strategies: the peers that follow the desired behavior in the
P2P storage system and particularly use the penalty mechanism to deal with strangers, and the
peers that defect and whitewash.

Discriminators are peers that adhere to the following strategy (corresponding to the audit-
based strategy in 5.2):

- Discriminate and probabilistically cooperate with strangers (Dp): the discriminator donates
under conditions: it donates with probability p with a stranger and probability 1 with a peer
that previously donated. A discriminator may know that a peer has donated in a previous
game in the case where that peer was a holder and the discriminator was its verifier or the
owner of the data the peer was storing.

Defectors are peers that not only defect but also probabilistically whitewash to cover up their
defection:

- Always defect and probabilistically whitewash (AllDw): the peer never donates in the role of
the donor and may be a whitewasher with probability w so that it is not identified by a
discriminator. The value w may represent the average rate (per generation) at which
defectors change identities.

Fitness
We respectively denote the frequency (fitness) of strategies AllDw by y, and Dp by z. The

expected values for the total payoff obtained by the two strategies are denoted by UAllD
w and

UD
p, and the average payoff in the population by: � � (�¬©º ? ® 	 �©z

To simplify the formulation of the fitness for each strategy, we will use the following

functions: ���� � +��A ? F�� 	 � ���� � ��1 + �$? ¯�$�1 + �6��

The function f(u) gives the cost paid by a peer for storing and verifying data for a fraction u

of peers. On the other hand, the function g(u) gives the benefit obtained if a fraction u of peers
defect as holders and as verifiers of the peer’s data.

129

Let q be the probability that the discriminator knows what a randomly chosen co-player
chose as a holder strategy in a previous one-stage game (the discriminator being an owner or
verifier in that game). The probability q is computed in 6.3.2.

A peer playing the strategy AllDw will never cooperate, so it will never donate. It will gain a
benefit b if it is chosen as an owner and at least one of its data holders is not any of these types:
a defector or a discriminator that knows the peer or that probabilistically defects because either
it does not know the peer or the peer itself is a whitewasher. Otherwise, the peer may gain a
benefit βb if at least one of its verifiers is not of any of the former two types. �¬©º � �<(? u�1 + f�® ? <f ? �1 + u��1 + f�=�1 + e�®=

 � ��1 + e�1 + u�1 + f��®�

A peer playing the strategy Dp will cooperate if the recipient was cooperative in a previous

interaction or will probabilistically cooperate if it does not know the latter. It will donate at a
cost –c if it is chosen as a holder or at a cost –αc if it is chosen as a verifier. It will gain a benefit
b if it is chosen as an owner and at least one of its data holders is not a defector or a
discriminator that the peer previously defects with it (the peer defects with a fraction p of
discriminators that it does not know), otherwise, it may gain a benefit βb if at least one of its
verifiers is not a defector or again a discriminator that the peer previously defects with it. �©z � � �e ��1 + u�<�1 + f�(? ®= ? f(� ? ue®� ? ��(? �1 + e�®� � �<e�1 + u�1 + f��1 + ®��= ? ��1 + e®�

The dynamics of strategies’ fitness follow the differential replicator equations defined

below: �(�> � (��¬��©º + �� �®�> � ®��©z + ��

The basic concept of replicator dynamics is that the growth rate of peers taking a strategy is

proportional to the fitness acquired by the strategy. Thus, the strategy that yields more fitness
than average fitness of the whole system increases, and vice versa.

Simulation experiments

Figure 63 Frequency of defectors and discriminators. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3
files/day, b=1, c=0.01, y(0)=0.5, and z(0)=0.5.

30 60 90
0

0.2

0.4

0.6

0.8

1

Time (in days)

F
re

q
ue

nc
y

o
f d

e
fe

ct
o

rs
vs

. d
is

ci
m

in
at

or
s

y(t)
z(t)

130

Using the above differential equations, the model is simulated within several scenarios to
capture the impact of various parameters on the convergence of the system to an equilibrium.

We consider files with an average size of 500MB that are stored at a rate of 3 files per day
and per peer. The verification metadata corresponding to each file has an average size of 10KB.
Newcomers to the storage system arrive at a rate of 10 peers per month. These newcomers are
assumed detaining the same strategy as their hosts.

Figure 64 Frequency of discriminators at equilibrium varying their initial frequency. m=5, r=3, β=0.1,
α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01.

Figure 63 shows the convergence of the storage of the system to an equilibrium where only
discriminators are active. Defectors are totally eliminated by discriminators.

There is a little increase in the population of defectors in the beginning of the evolutionary
game due to the fact that discriminators are still not able to distinguish between a discriminator
and a defector. However, with time they have a good knowledge of discriminators (fraction p of
them) and defectors (fraction (1-w) of them).

Figure 65 Frequency of discriminators at equilibrium varying their probability of cooperation with
strangers p. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, y(0)=0.5, and z(0)=0.5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z(0)

z(
2

 y
e

a
rs

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

z(
2

 y
e

a
rs

)

131

Varying the probability of whitewashing w in the system affects also the frequency of
discriminators at equilibrium. For sufficiently high w, defectors invade the population of
discriminators and win the game. For instance, if all defectors are whitewashers, discriminators
are eliminated from the game.

Figure 66 Frequency of discriminators at equilibrium varying the probability of whitewashing w. m=5, r=3,
β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, y(0)=0.5, and z(0)=0.5.

Figure 64 depicts the frequency of discriminators varying their initial frequency. The figure
demonstrates that the equilibrium where only discriminators are present in the system is only
achieved if there is enough population of discriminators in the system. Otherwise, the defectors
win the game by eliminating discriminators.

The equilibrium where only discriminators are active depends also on the probability of
cooperation of discriminators with strangers. Figure 65 demonstrates that if this probability is
sufficiently high, the frequency of discriminators decreases and may attain zero.

The social welfare is the total sum of peer payoffs. It illustrates the well-being of the
community of peers as a whole. Figure 67 shows that this welfare is maximized for a defined
value of the probability of cooperation of discriminators with strangers p (0.5<p<0.9) and if the
discriminators are not eliminated from the system (probability of whitewashing w <0.7).

Discriminators are the only contributors to the game therefore their presence increases the
payoff of peers. Their cooperation may be undermined by the presence of defectors that use the
system without contributing and particularly whitewashers that defect and go without being
detected by the discriminators. Increasing p, it certainly increases the benefit for all peers but at
the same time it increases the cost due to the presence of defectors. Figure 67.c demonstrates
that there is an optimal value for p that achieves the highest social welfare and this optimal
depends on w.

Figure 68 depicts the variation of the social welfare with the replication rate r and the
verification distribution factor m. The figure shows that there is an optimal value for the
replication rate r for which the social welfare is maximized (r~3). Exceeding this value, the
social welfare decreases until reaching the value zero i.e., the system collapses. Increasing r
makes the benefit obtained by the owner increase since the chances to select a cooperative
holder are improved; however the replication rate r affects also the cost of cooperation that is
solely paid by discriminators.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w

z(
2

 y
e

a
rs

)

132

(a) (b)

(c)

Figure 67 Social welfare at equilibrium varying (a) the probability of cooperation p, (b) probability of
whitewashing w, and both of them. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01,

y(0)=0.5, and z(0)=0.5.

Varying m has less impact on the social welfare because the cost charged on discriminators
is minimized by the significantly low unit cost value αc (α=20.10-6). The social welfare
increases by increasing m (small increase) since a high value of m means better chances to have
a verifier that is discriminator and then gain a benefit βb if all holders are defectors.

Figure 69 demonstrates that there is a maximum value for tolerable churn. If peers arrive in
the system at a high rate, discriminators may not be able to distinguish sufficiently quickly
defectors and they may then be eliminated from the system. Churn can be tolerated until a given
rate identified in the figure (λ~0.9) for the considered system parameters.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

S
o

ci
a

l W
e

lfa
re

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w

S
oc

ia
l W

el
fa

re

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

133

(a) (b)

Figure 68 Social welfare at equilibrium varying (a) replication rate r (m=5) and (b) verification
distribution factor m (r=3). β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day, b=1, c=0.01, p=w=0.5,

y(0)=0.5, and z(0)=0.5.

Figure 69 Social welfare at equilibrium varying the churn λ. m=5, r=3, β=0.1, α=20.10-6, N=1000, γ=3
files/day, b=1, c=0.01, p=w=0.5, y(0)=0.5, and z(0)=0.5.

Discussion
Simulation results demonstrate that discriminators are not hopeless in front of defectors and

that even they may win over them for a judicious choice of system parameters, notably the
fraction of discriminators in the system should be initially not null, the replication rate and the
churn sensed in the system should not be considerably high.

The results show also that there is an optimal probability p for the penalty mechanism that
achieves a high social welfare for the whole P2P storage system. However, a non-zero welfare
is only obtained if the whitewashing phenomena is restricted to a given fraction of defectors.
For instance, if all defectors are whitewashing discriminators are entirely eliminated and the
system collapses. This result motivates the requirement to supplement the proposed penalty

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

r

S
oc

ia
l W

e
lfa

re

0 10 20 30
0.86

0.8602

0.8604

0.8606

0.8608

0.861

0.8612

0.8614

m
S

o
ci

al
 W

el
fa

re

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

lambda

S
oc

ia
l W

e
lfa

re

134

mechanism with other means that prevent or at least limit the whitewashing behavior such as
controlling the peers that join the system using a cryptographic puzzle [Vishnumurthy et al.
2003] the payment of a membership fee. Another solution is to force or motivate peers to stay
online a minimum amount of time in the system like in Wuala53 (1/w is then increased) because
peer connection time must be taken into consideration.

53 http://wua.la/en/home.html

135

Appendix C Dissymmetric peer defection

Peers in the P2P network are autonomous and may behave in various ways. It is interesting
to consider strategies where a peer wants to make others believe that it behaves well while
minimizing its network cost. A peer following such strategy will properly store assigned data,
will even correctly answer to verifiers, but to save network bandwidth, it will not verify other’s
data.

From the evolutionary game model described in Section 6.3.1 of Chapter 6, we may think of
the interactions of three types of populations:

- Storage defectors (denoted SD) are peers that have reduced storage resources and do not
consume them within the P2P storage application (they rather prefer defecting); even
though they cooperate in verifying others’ data.

- Verification defectors (denoted VD) are peers that have more interest in minimizing their
bandwidth consumption than optimizing their storage resources. Therefore, they correctly
store other peers’ data but defect when being verifiers of some others data.

- Discriminators (denoted D) are peers that only cooperate with peers that either they do
not know yet or peers that were previously cooperative holders. If they cooperate, they
correctly keep the data that they have promised to store and also periodically check other
peers’ data.

We designate the fitness of SD, VD, and D strategies respectively x, y, and z. Their
respective payoffs can be respectively derived USD, UVD, and UD. The total payoff is given
as: � � ' 	 �x© ? (�»© ? ® 	 �©

We employ the following function g that gives the benefit gained by a peer having in

average a potential fraction u of peers that do not store its data and a potential fraction v of
peers that do not verify its data: ���, �� � ��1 + �$? ¯�$�1 + �6��

Storage defectors are only charged the costs of verification. They may gain a benefit b
from the storage application if their co-players are not storage defectors or discriminators
that know that they are defectors; otherwise they may gain a benefit βb if their co-players are
not verification defectors or again discriminators that know their type. �x© � +�F� ? ��' ? u®, (? u®�

The costs paid by verification defectors are storage costs. They may gain a benefit if their
co-players are not defectors. �»© � +�A ? ��', (�

Discriminators pay the storage and verification costs relative to all peers except storage

defecting peers that have been detected. They may gain a benefit if their co-players are not
defectors. �© � +��A ? F�� ? ��', (�

To study the dynamics of their strategies, we rely on the replicator dynamics as seen in

Section 6.3.4 of Chapter 6. First of all, we consider simple cases where they are only one
type of defectors at a time.

Case x(0)=0: we obtain the following differential equation:

136

�(�> � (® 	 �F� ¨ 0

The above inequality means that verification defectors always win over discriminators

because they pay small costs compared to discriminators (only storage costs) and because
also they are not punished for their defection (punishment concerns only non cooperative
holders).

Case y(0)=0: the payoff of discriminators is the same as 6.3.3 of Chapter 6 but with m=0.
The payoff of storage defectors resembles to that of defectors of 6.3.3 even though the
chances to obtain the benefit βb are improved. Storage defectors and discriminators may
coexist at a certain equilibrium that depends on system parameters.

Case z(0)=0: the following differential equation is obtained: �'�> � '(��A + F�� ¨ 0

Since the verification costs are generally less important than storage costs (the size of the

metadata needed for verification is smaller than the data), the above inequality is generally
held. This means that storage defectors win over verification defectors. Tough these costs are
exclusively paid by each population in this particular case. Therefore, the relative costs may
be perceived differently (e.g., r < mα) and then the above inequality may not be obtained.

Case x(0)≠0, y(0)≠0, and z(0)≠0: Figure 70 depicts a simulation of the dynamics of the
three strategies with non null initial frequencies (the same system parameters are taken as
6.3.6). The figure demonstrates that storage defectors at first are the most reproductive (their
frequency increases more importantly than the other strategies). They even eliminate
verification defectors and reduce the frequency of discriminators, but these later catch up
thanks to the growth of their knowledge about the behavior of defectors. With time,
discriminators are able to distinguish defectors from cooperators and subsequently refuse to
cooperate with these defectors. Their costs are then reduced, which allow them to increase in
frequency at the expense of storage defectors.

Figure 70 Frequency of strategies over time. m=5, r=3, β=0.1, α=20.10-6, λ=10/month, N=1000, γ=3 files/day,
b=1, c=0.01, x(0)=0.3, y(0)=0.3, and z(0)=0.4.

The study of dissymmetric peer behavior shows that peers that focus on reducing their
bandwidth utilization may win over cooperative peers since their contributions incur lower

0 60 120 180 240 300 360
0

0.2

0.4

0.6

0.8

Time (in days)

F
re

qu
e

nc
y

of
 s

tra
te

gi
es

x(t)
y(t)
z(t)

137

costs. Although, cooperative peers rely on direct experiences to compute reputation, they may
be affected by this type of defectors in ensuring the security properties of their remote data. The
data stored in the system will only be periodically verified by their owners at game equilibrium.
On the other hand, peers that do not contribute with storage resources are detected and punished
by the reputation system.

138

139

Bibliography

[Acedański et al. 2005] Szymon Acedański, Supratim Deb, Muriel Médard, and Ralf Koetter.
How good is random linear coding based distributed networked storage?. In
Proceeding of 1st Workshop on Network Coding, WiOpt 2005 Riva del
Garda, Italy, April 2005.

[Anceaume and Ravoaja 2006] Emmanuelle Anceaume and Aina Ravoaja. Incentive-Based
Robust Reputation Mechanism for P2P Services. Research Report PI 1816
(2006), IRISA, http://hal.inria.fr/inria-00121609/fr/

[Asokan et al. 1997] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic Protocols
for Fair Exchange. In Proceedings of the 4th ACM Conference on Computer
and Communications Security, Zurich, April 1997.

[Asokan et al. 1998] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols
for optimistic fair exchange. In Proceeding of the IEEE Symposium on
Security and Privacy, 1998, 3-6 May, p. 86-99, Oakland, CA, USA.

[Ateniese et al. 2007] Giuseppe Ateniese and Randal Burns and Reza Curtmola and Joseph
Herring and Lea Kissner and Zachary Peterson and Dawn Song. Provable
data possession at untrusted stores. In Proceedings of the 14th ACM
conference on Computer and communications security, ACM, 2007, 598-
609.

[Ateniese et al. 2008] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini and Gene
Tsudik. Scalable and Efficient Provable Data Possession. In Proceedings of
the 4th International Conference on Security and Privacy in Communication
Networks (SecureComm'08).

[Balfe et al. 2005] Shane Balfe, Amit D. Lakhani and Kenneth G. Paterson. Trusted Computing:
Providing security for Peer-to-Peer Networks. In Proceedings of the 5th
International Conference on Peer-to-Peer Computing (P2P), 2005.

[Beigl 2000] Michael Beigl. MemoClip: A location-based remembrance appliance. Personal and
Ubiquitous Computing Vol. (4), 230-233, Springer-Verlag, September 2000.

[Bellare et al. 1995] Mihir Bellare, Oded Goldreich and Shafi Goldwasser. Incremental
Cryptography and Application to Virus Protection. In Proceedings of the 27th
annual ACM symposium on Theory of computing, p.45-56, May 29-June 01,
1995, Las Vegas, Nevada, United States.

[Bennett et al. 1994] Frazer Bennett, Tristan Richardson, and Andy Harter. Teleporting -
making applications mobile. In Proceedings of IEEE Workshop on Mobile
Computing Systems and Applications, pages 82-84, Santa Cruz, California,
December 1994. IEEE Computer Society Press.

[Bhagwan et al. 2004] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and
Geoffrey M. Voelker. TotalRecall: System Support for Automated
Availability Management. In Proceedings of the 1st ACM/USENIX

140

Symposium on Networked Systems Design and Implementation (NSDI),
San Francisco, CA, March 2004.

[Bishop 2003] Matt Bishop. Computer Security: The Art and Science. Addison-Wesley, Jun
2003.

[Bloom 1970] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. In
Communications of the ACM, 13(7), pp. 422-426, July 1970.

[Blum et al. 1994] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and
Moni Naor. Checking the Correctness of Memories. In 32nd Annual
Symposium on Foundations of Computer Science, pages 90-99, San Juan,
Puerto Rico, 1-4 October 1991.

[Bolton and Ockenfels 2000] Gary E Bolton and Axel Ockenfels. ERC: a theory of equity,
reciprocity, and competition. American Economic Review 2000, vol. 90, pp.
166-193.

[Brandt and Sigmund 2006] Hannelore Brandt and Karl Sigmund. The good, the bad and the
discriminator--errors in direct and indirect reciprocity. Journal of Theoretical
Biology, Volume 239, Issue 2, 21 March 2006, Pages 183-194.

[Buttyán and Hubaux 2001] Levente Buttyan and Jean-Pierre Hubaux. Nuglets: a virtual
currency to stimulate cooperation in self-organized ad hoc networks.
Technical report, EPFL, 2001.

[Buttyán and Hubaux 2003] Levente Buttyan and Jean-Pierre Hubaux. Stimulating Cooperation
in Self-Organizing Mobile Ad Hoc Networks. ACM/Kluwer Mobile
Networks and Applications (MONET) Special Issue on Mobile Ad Hoc
Networks, vol. 8, no. 5, October 2003.

[Carbone et al. 2003] Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A Formal
Model for Trust in Dynamic Networks. BRICS Technical Report RS-03-4,
University Aarhus, 2003.

[Caronni and Waldvogel 2003] Germano Caronni and Marcel Waldvogel. Establishing Trust in
Distributed Storage Providers. In Proceedings of 3rd IEEE International
Conference on P2P Computing, Linkoping, Sweden, September 2003.

[Castro et al. 2002] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay networks.
Symposium on Operating Systems and Implementation, OSDI’02, Boston,
MA, December 2002.

[Chang and Xu 2008] Ee-Chien Chang and Jia Xu. Remote Integrity Check with Dishonest
Storage Server. 13th European Symposium on Research in Computer
Security (ESORICS), 2008.

[Cohen 2003] Bram Cohen. Incentives build robustness in BitTorrent. In Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems, June 2003.

141

[Courtès 2007] Ludovic Courtès. Cooperative Data Backup for Mobile Devices. PhD Thesis,
November 2007.

[Cox and Noble 2002] Landon P. Cox and Brian D. Noble. Pastiche: making backup cheap and
easy. In Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation, Boston, MA, December 2002.

[Cox et al. 1995] Benjamin Cox, J. D. Tygar, and Marvin Sirbu. Netbill security and transaction
protocol. In Proceedings of the 1st USENIX Workshop in electronic
commerce. 77–88, 1995.

[Desmedt and Frankel 1989] Yvo G. Desmedt and Yair Frankel. Threshold Cryptosystems. In
Proceedings on Advances in cryptology, Santa Barbara, California, United
States, pages: 307 – 315, 1989.

[Deswarte et al. 2004] Yves Deswarte, Jean-Jacques Quisquater, and Ayda Saïdane. Remote
Integrity Checking. In Proceedings of 6th Working Conference on Integrity
and Internal Control in Information Systems (IICIS), 2004.

[Dey and Abowd 2000] Anind K. Dey and Gregory D. Abowd. CybreMinder: A context-aware
system for supporting reminders. In Proceedings of 2nd International
Symposium on Handheld and Ubiquitous Computing, HUC 2000, pages:
172-186, Bristol, UK, September 2000. Springer Verlag.

[Dingledine 2000] Roger R. Dingledine. The Free Haven project: Design and deployment of an
anonymous secure data haven. Master’s thesis, MIT, June 2000.

[Douceur 2002] John R. Douceur. The Sybil attack. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS’02). MIT Faculty Club,
Cambridge, MA, 2002.

[Druschel and Rowstron 2001] Peter Druschel and Antony Rowstron. PAST: A large-scale,
persistent peer-to-peer storage utility. In Proceedings of the 8th Workshop on
Hot Topics in Operating Systems, p.75, May 20-22, 2001.

[Duminuco and Biersack 2008] Alessandro Duminuco and Ernst W. Biersack. Hierarchical
codes: how to make erasure codes attractive for peer-to-peer storage
systems. The 8th IEEE International Conference on Peer-to-Peer Computing
(P2P’08), September 8th-11th, 2008, Aachen, Germany.

[Feldman and Chuang 2005] Michal Feldman and John Chuang. The Evolution of Cooperation
under Cheap Pseudonyms. In Proceedings of the 7th International IEEE
Conference on E-Commerce Technology (CEC'05), July 2005.

[Feldman et al. 2006] Michal Feldman, Christos Papadimitriou, John Chuang and Ion Stoica.
Free-Riding and Whitewashing in Peer-to-Peer Systems. Selected Areas in
Communications, IEEE Journal on, Vol. 24, No. 5. (2006), pp. 1010-1019.

[Filho and Barreto 2006] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder
Barreto. Demonstrating data possession and uncheatable data transfer.
Cryptology ePrint Archive, Report 2006/150, 2006. http://eprint.iacr.org

142

[Franklin and Reiter 1997] Matthew K. Franklin and Michael K. Reiter. Fair exchange with a
semi-trusted third party. In Proceedings of The 4th ACM Conference on
computer and communications security, T. Matsumoto, Ed. Zurich,
Switzerland, 1–6, 1997.

[Friedman 1998] Daniel Friedman. On economic applications of evolutionary game theory.
Journal of Evolutionary Economics 8, pp. 15–43, 1998.

[Ghassemi 2006] Farhad Ghassemi. Signaling games, 2006. Available:
http://www.cs.ubc.ca/~kevinlb/teaching/cs532a%20%202006/Projects/Farha
dGhassemi.pdf.

[Glassman et al. 1995] Steve Glassman, Mark Manasse, Martín Abadi, Paul Gauthier, and
Patrick Sobalvarro. The millicent protocol for inexpensive electronic
commerce. In Proceedings of the 4th International World Wide Web
Conference, December 1995.

[Godfrey et al. 2006] Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in
distributed systems. Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communications
(SIGCOMM), 147-158, 2006.

[Goldschlag et al. 1999] David Goldschlag, Michael Reed, and Paul Syverson. Onion Routing
for Anonymous and Private Internet Connections. Communications of the
ACM, vol. 42, num. 2, February 1999.

[Golle at al. 2002] Philippe Golle, Stanislaw Jarecki, Ilya Mironov. Cryptographic Primitives
Enforcing Communication and Storage Complexity. In Proceeding of
Financial Cryptography, pages: 120-135, 2002.

[Golle et al. 2001] Philippe Golle, Kevin Leyton-Brown, Ilya Mironov. Incentives for Sharing
in Peer-to-Peer Networks. In Proceedings of the 3rd ACM conference on
Electronic Commerce, October 2001.

[Hardin 1968] Garrett Hardin. The Tragedy of the Commons. Science, Vol. 162, No. 3859,
Issue of 13, December, 1968, pp. 1243-1248.

[Huang at al. 1999] Andrew C. Huang, Benjamin C. Ling, Shankar Ponnekanti, and Armando
Fox. Pervasive computing: What is it good for?. In Proceedings of the ACM
International Workshop on Data Engineering for Wireless and Mobile
Access, pages 84-91, Seattle, WA, August 1999. ACM Press.

[Jakobsson et al. 2003] Markus Jakobsson, Jean-Pierre Hubaux, and Levente Buttyan. A
Micro-Payment Scheme Encouraging Collaboration in Multi-Hop Cellular
Networks. In Proceedings of Financial Cryptography, La Guadeloupe,
January 2003.

[Jones and Sleeman 1983] Douglas Samuel Jones and B. D. Sleeman. Differential Equations
and Mathematical Biology. London: Allen & Unwin, 1983.

143

[Jøsang and Ismail 2002] Audun Jøsang and Roslan Ismail. The Beta Reputation System. In
Proceedings of the 15th, Bled Electronic Commerce Conference, Bled,
Slovenia, June 2002.

[Jøsang et al. 2005] Audun Jøsang, Roslan Ismail, and Colin Boyd. A Survey of Trust and
Reputation Systems for Online Service Provision. In Proceedings of
Decision Support Systems, 2005.

[Juels and Kaliski 2007] Ari Juels and Burton S. Kaliski PORs: Proofs of retrievability for large
files. Cryptology ePrint archive, June 2007. Report 2007/243.

[Kamvar et al. 2003] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
EigenTrust Algorithm for Reputation Management in P2P Networks. In
Proceedings of the 12th International World Wide Web Conference,
Budapest, May 2003.

[Koblitz 1987] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
Volume 48, pages: 203-209, 1987.

[Koyama et al. 1991] Kenji Koyama, Ueli Maurer, Tatsuaki Okamoto, and Scott Vanstone. New
Public-Key Schemes Based on Elliptic Curves over the Ring Zn. Advances
in Cryptology - CRYPTO '91, Lecture Notes in Computer Science, Springer-
Verlag, vol. 576, pp. 252-266, August 1991.

[Kubiatowicz et al. 2000] John Kubiatowicz, Davic Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells, Ben Zhao. OceanStore: An
architecture for global-scale persistent storage. In Proceedings of the 9th
international Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), November 2000.

[Lai et al. 2003] Kevin Lai, Michal Feldman, Ion Stoica, and John Chuang. Incentives for
Cooperation in Peer-to-Peer Networks. In Proceedings of the 1st Workshop
on Economics of Peer-to-Peer Systems, UC Berkeley, Berkeley, California,
USA, June 2003.

[Lee et al. 2006] Patrick P. C. Lee, John C. S. Lui and David K. Y. Yau. Distributed
collaborative key agreement and authentication protocols for dynamic peer
group. IEEE/ACM Transactions on Networking, 2006.

[Lesueur et al. 2007] François Lesueur, Ludovic Mé, Valérie Viet Triem Tong. Contrôle d'accès
distribué à un réseau Pair-à-Pair. 2nd joint conference on Security in network
architectures and information systems (SAR-SSI’2007), Annecy, France,
June 12-15, 2007.

[Lesueur et al. 2008] François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong. A
Sybilproof Distributed Identity Management for P2P Networks In
Proceedings of the 13th IEEE Symposium on Computers and
Communications (ISCC) 2008, IEEE Computer Society, Marrakech,
Morocco.

144

[Levine et al. 2006] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A Survey of
Solutions to the Sybil Attack. Technical Report 2006-052, University of
Massachusetts Amherst, Amherst, MA, October 2006.

[Li and Dabek 2006] Jinyang Li and Frank Dabek. F2F: reliable storage in open networks. In
Proceedings of the 5th International Workshop on Peer-to-Peer Systems
(IPTPS), February 2006.

[Liang et al. 2006] Jian Liang, Rakesh Kumar, and Keith W. Ross. The FastTrack overlay: A
measurement study. Computer Networks, vol. 50, no. 6, pp. 842-858, April
2006.

[Lillibridge et al. 2003] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and
Michael Isard. A Cooperative Internet Backup Scheme. In Proceedings of
the 2003 Usenix Annual Technical Conference (General Track), pp. 29-41,
San Antonio, Texas, June 2003.

[Marmasse and Schmandt 2000] Natalia Marmasse and Chris Schmandt. Location-aware
information delivery with ComMotion. In Proceedings of 2nd International
Symposium on Handheld and Ubiquitous Computing, HUC 2000, pages
157-171, Bristol, UK, September 2000. Springer Verlag.

[Menezes et al. 1996] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996. Available free (for
personal use) on line from: http://www.cacr.math.uwaterloo.ca/hac/

[Michiardi 2004] Pietro Michiardi. Cooperation enforcement and network security mechanisms
for mobile ad hoc networks. PhD Thesis, December 14th, 2004.

[Miller 1986] Victor Miller. Uses of elliptic curves in cryptography Advances in Cryptology. In
Proceedings of Cryptology Conference (CRYPTO’85), Lecture Notes in
Computer Science, 218 (1986), Springer-Verlag, 417-426.

[Mui et al. 2001] Lik Mui, Mojdeh Mohtashemi, Cheewee Ang, Peter Szolovits, and Ari
Halberstadt. Ratings in Distributed Systems: A Bayesian Approach. In
Proceedings of the Workshop on Information Technologies and Systems
(WITS), 2001.

[Naor and Rothblum 2005] Moni Naor and Guy N. Rothblum. The Complexity of Online
Memory Checking. In Proceeding of 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), pp. 573-584.

[Obreiter and Nimis 2003] Philipp Obreiter and Jens Nimis. A Taxonomy of Incentive Patterns -
the Design Space of Incentives for Cooperation. Technical Report,
Universität Karlsruhe, Faculty of Informatics, 2003.

[Page at al. 1998] Larry Page, Sergey Brin, R. Motwani, and T. Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical Report, Stanford
Digital Library Technologies Project, 1998.

145

[Pham et al. 2000] Thai-Lai Pham, Georg Schneider, and Stuart Goose. Exploiting location-
based composite devices to support and facilitate situated ubiquitous
computing. In Proceedings of 2nd International Symposium on Handheld and
Ubiquitous Computing, HUC 2000, pages 143-156, Bristol, UK, September
2000. Springer Verlag.

[Piatek et al. 2007] Michael Piatek, Tomas Isdal, Thomas Anderson, and Arvind
Krishnamurthy. Do incentives build robustness in BitTorrent?. In
Proceedings of the ACM/USENIX 4th Symposium on Networked Systems
Design and Implementation (NSDI 2007), 2007.

[Popescu et al. 2004] Bogdan C. Popescu, Bruno Crispo and Andrew S. Tanenbaum. Safe and
Private Data Sharing with Turtle: Friends Team-Up and Beat the System. In
12th International Workshop on Security Protocols, Cambridge, UK, April
2004.

[Ratnasamy et al. 2001] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. In Proceedings of
ACM/SIGCOMM, San Diego, CA, Aug. 27–31, 2001.

[Rivest 1997] Ronald L. Rivest. Electronic lottery tickets as micropayments. In Proceeding of
Financial Cryptography, Lecture Notes in Computer Science vol. 1318,
Springer Verlag (1997), pp. 307–314.

[Rivest and Shamir 1996] Ronald L. Rivest and Adi Shamir. Payword and micromint: two
simple micropayment schemes. In Proceeding of Security Protocols
Workshop, Lecture Notes in Computer Science, Vol. 1189, pp. 69--87,
Springer-Verlag, 1997.

[Rowstron and Druschel 2001] Antony Rowstron and Peter Druschel. Pastry: Scalable,
distributed object location and routing for large-scale peer-to-peer systems.
In Proceeding of the IFIP/ACMInternational Conference on Distributed
Systems Platforms, Heidelberg, Germany, November 2001.

[Sandhu and Park 2003] Ravi Sandhu and Jaehong Park. Usage Control: A Vision for Next
Generation Access Control. The 2nd International Workshop on
Mathematical Methods, Models and Architectures for Computer Networks
Security, 2003.

[Schwarz and Miller 2006] Thomas Schwarz, and Ethan L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered storage. In
Proceedings of the IEEE Int'l Conference on Distributed Computing Systems
(ICDCS '06), July 2006.

[Sebé et al. 2007] Francesc Sebe, Josep Domingo-Ferrer, Antoni Martínez-Ballesté, Yves
Deswarte, and Jean-Jacques Quisquater. Efficient Remote Data Possession
Checking in Critical Information Infrastructures. IEEE Transactions on
Knowledge and Data Engineering, 06 Aug 2007. IEEE Computer Society
Digital Library. IEEE Computer Society, 6 December 2007
http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190647

146

[Shacham and Waters 2008] Hovav Shacham and Brent Waters. Compact Proofs of
Retrievability. In Proceedings of Asiacrypt 2008, Lecture Notes in Computer
Science, Vol. 5350, pp. 90-107, Springer-Verlag, 2008.

[Sit and Morris 2002] Emil Sit and Robert Morris. Security Considerations for P2P Distributed
Hash Tables.In Proceeding of the 1st Int'l Workshop Peer-to-Peer Systems
(IPTPS), 2002.

[Solomon and Chapple 2005] Michael G. Solomon and Mike Chapple. Information Security
Illuminated. Jones and Bartlett Publishers, Inc., USA, 2005.

[Spencer et al. 1999] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David
Andersen, and Jay Lepreau. The Flask security architecture: System support
for diverse security policies. In Proceeding of the 8th USENIX Security
Symposium, Washington, DC, USA, page 123139, USENIX Association,
Berkeley, CA, USA, Aug 1999.

[Srivatsa and Liu 2005] Mudhakar Srivatsa and Ling Liu. Countering Targeted File Attacks
using LocationGuard. In Proceedings of the 14th USENIX Security
Symposium (USENIX Security), August 1 - 5, 2005, Baltimore, MD. pp. 81-
96.

[Stoica et al. 2001] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of ACM SIGCOMM 2001, San Deigo, CA
August 2001, pp. 149-160.

[Stutzbach and Rejaie 2004] Daniel Stutzbach and Reza Rejaie. Towards a Better
Understanding of Churn in Peer-to-Peer Networks. Technical Report CIS-
TR-04-06, University of Oregon, November 2004.

[Toka and Maillé 2007] Laszlo Toka and Patrick Maillé. Managing a peer-to-peer backup
system: does imposed fairness socially outperform a revenue-driven
monopoly?. 4th International Workshop on Grid Economics and Business
Models (GECON 2007), August 28, 2007, Rennes, France, pp 150-163.

[Toka and Michiardi 2008] Laszlo Toka and Pietro Michiardi. Analysis of user-driven peer
selection in peer-to-peer backup and storage systems. GameComm 2008, 2nd
ACM-Valuetools International Workshop on Game theory in
Communication networks, October 20, 2008, Athens, Greece, pp 428.

[Turocy and Stengel 2001] Theodore L. Turocy and Bernhard von Stengel. Game theory. Cdam
Research Report lse-cdam-2001-09, London School of Economics, October
2001.

[Vishnumurthy et al. 2003] Vivek Vishnumurthy, Sangeeth Chandrakumar and Emin Gun Sirer.
KARMA: A Secure Economic Framework for P2P Resource Sharing. In
Proceedings of the Workshop on the Economics of Peer-to-Peer Systems,
Berkeley, California, June 2003.

147

[Vogt et al. 2001] Holger Vogt, Henning Pagnia, and Felix C. Gärtner. Using Smart Cards for
Fair Exchange. In Proceedings of the 2nd International Workshop on
Electronic Commerce, Lecture Notes In Computer Science, Vol. 2232, p.
101 - 113, Springer-Verlag, 2001.

[Weatherspoon et al. 2005] Hakim Weatherspoon, Byung-Gon Chun, Chiu Wah So, and John
Kubiatowicz. Long-term data maintenance in wide-area storage systems: A
quantitative approach. Technical Report (2005) UCB/CSD-05-1404, EECS
Department, University of California, Berkeley.

[Weyland et al. 2005] Attila Weyland, Thomas Staub and Torsten Braun. Comparison of
Incentive-based Cooperation Strategies for Hybrid Networks. 3rd
International Conference on Wired/Wireless Internet Communications
(WWIC 2005), pp 169-180, ISBN: 3-540-25899-X, Xanthi, Greece, May 11-
13, 2005.

[Yang and Molina 2003] Beverly Yang and Hector Garcia-Molina. PPay: Micropayments for
Peer-to-Peer Systems. ACM Conference on Computer and Communications
Security (CCS ’03), Washington, DC, USA, October 2003.

[Yu et al. 2006] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman.
SybilGuard: defending against sybil attacks via social networks. IEEE/ACM
Transactions on Networking (ToN), Volume 16, Issue 3, pp. 576-589, June
2008.

[Zhao et al. 2000] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report UCB//CSD-01-1141, University of California, Berkeley, April 2000.

[Zhao et al. 2006] Wenrui Zhao, Yang Chen, Mostafa Ammar, Mark Corner, Brian Levine, and
Ellen Zegura. Capacity Enhancement using Throwboxes in DTNs. IEEE
International Conference on Mobile Ad hoc and Sensor Systems (MASS),
Vancouver, Canada, October 2006.

[Zhao et al. 2009] Bridge Q. Zhao, John C. S. Lui, Dah-Ming Chiu. Analysis of Adaptive
Protocols for P2P Networks. IEEE INFOCOM, Rio de Janeiro, Brazil, 2009.

[Zhong et al. 2008] Ming Zhong, Kai Shen, Joel I. Seiferas. The Convergence-Guaranteed
Random Walk and Its Applications in Peer-to-Peer Networks. IEEE
Transactions on Computers, Vol.57, 2008, p. 619 - 633.

148

149

List of publications

2009

[1] Nouha Oualha and Yves Roudier. A Game Theoretical Approach in Securing P2P Storage
against Whitewashers. In the 5th International Workshop on Collaborative Peer-to-Peer
Systems (COPS’09), June 29 - July 1, 2009, Groningen, Netherlands. Best Paper Award.

2008

[1] Nouha Oualha and Yves Roudier. Evolutionary game for peer-to-peer storage audits. In the
3rd International Workshop on Self-Organizing Systems (IWSOS’08), December 10-12,
Vienna, Austria.

[2] Nouha Oualha and Yves Roudier. Designing Attack Resilient Cooperation Incentives for
Self-Organizing Storage. 1er Workshop sur la sécurité des réseaux autonomes et spontanés
organisé, Loctudy, France, 13-14 october, 2008.

[3] Nouha Oualha and Yves Roudier. Reputation and Audits for Self-Organizing Storage. In the
1st Workshop on Security in Opportunistic and SOCial Networks (SOSOC 2008), Istanbul,
Turkey, September 2008.

[4] Nouha Oualha, Melek Önen, and Yves Roudier. A Security Protocol for Self-Organizing
Data Storage. 23rd International Information Security Conference (SEC 2008), September
2008, Milan, Italy.

2007

[1] Nouha Oualha, Yves Roudier. Securing ad hoc storage through probabilistic cooperation
assessment. WCAN '07, 3rd Workshop on Cryptography for Ad hoc Networks, July 8, 2007,
Wroclaw, Poland.

[2] Nouha Oualha, Pietro Michiardi, Yves Roudier. A game theoretic model of a protocol for
data possession verification. TSPUC 2007, IEEE International Workshop on Trust, Security,
and Privacy for Ubiquitous Computing, June 18, 2007, Helsinki, Finland.

2006

[1] Nouha Oualha and Yves Roudier. Securing cooperative backup for mobile systems.
Programme Initiative du GET, « Réseaux autonomes et spontanés », Novembre 16- 17 2006,
Rennes, France.

