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ABSTRACT
When multiple microphones are available estimates of inter-channel
delay, which characterise a speaker’s location, can be used as fea-
tures for speaker diarization. Background noise and reverberation
can, however, lead to noisy features and poor performance. To
ameliorate these problems, this paper presents a new approach to
the discriminant analysis of delay features for speaker diarization.
This novel and nonetheless unsupervised approach aims to increase
speaker separability in delay-space. We assess the approach on
subsets of four standard NIST RT datasets and demonstrate a rel-
ative improvement in diarization error rate of 25% on a separate
evaluation set using delay features alone.

Index Terms— Speaker diarization, multiple distant micro-
phones

1. INTRODUCTION

Speaker diarization involves the detection of speaker turns within
an audio document (segmentation) and the grouping together of all
same-speaker segments (clustering). Over recent years the commu-
nity has placed emphasis on the conference meetings scenario, where
there is typically more than one, table-top microphone. The question
then is how best to use this additional information? There are two
general approaches in the literature: the first involves the beamform-
ing of the multiple signals to create a single enhanced signal prior
to conventional acoustic feature extraction; the second involves the
use of the inter-channel delay estimates themselves as features for
diarization. This paper is concerned with the second approach.

Previous work has assessed the use of inter-channel delay fea-
tures which may be used either on their own [1, 2], or combined with
acoustic features [3, 4, 5]. Delay features are now very popular and
of the six sites that submitted results for the NIST Rich Transcrip-
tion (RT) 2007 evaluation [6] all report some experiments which use
estimates of inter-channel delay. Background noise and reverbera-
tion, however, commonly lead to inaccurate delay estimates and this
could account for the relatively poor performance that is achieved
with delay features alone or the only modest improvement when
they are combined with acoustic features. This has led to a number
of recent proposals to improve the reliability of inter-channel delay
features. Anguera et al. [4] report a complete front end comprised
of N -best inter-channel delay estimation, noise thresholding and a
dual pass Viterbi decoding scheme. More recently Otterson [7] in-
vestigated delay estimates from all-microphone pairs used in combi-
nation with energy ratios and principal component analysis (PCA).
None of these approaches, however, is discriminant and thus they
do not necessarily increase speaker separability. Discriminant ap-
proaches generally require supervision, i.e. the very speaker labels

that diarization aims to discover, thus they are not suitable for our
work.

Inspired by the recent work of Yang et al. [8] this paper presents
a new approach to the discriminant analysis of inter-channel delay
features which allows, for the first time, the learning of a discrim-
inant feature transformation that is suitable for speaker diarization.
This novel and nonetheless unsupervised approach aims to increase
speaker separability in delay-space and hence the effectiveness of
inter-channel delay features. We report speaker diarization experi-
ments to assess the merit of the approach using delay features inde-
pendently of acoustic features, i.e. not combined with acoustic fea-
tures.

The remainder of this paper is organised as follows. Section 2
describes our baseline features. The unsupervised discriminant anal-
ysis (UDA) approach is described in Section 3. Our experimental
work is described in Section 4 before our conclusions are presented
in Section 5.

2. FEATURE EXTRACTION

In this section we describe our baseline feature extraction which in-
volves speech activity detection and delay estimation.

2.1. Speech activity detection

Speech activity detection (SAD) is an essential element of any di-
arization system and one that could be performed using delay fea-
tures. Whilst this is the subject of our ongoing research this was
not the objective of the research reported here and so we opted to
use the SAD system that was used for LIA’s submission to the NIST
RT‘07 evaluation. The SAD system uses summed channels as its
input and the features are 12 un-normalised linear frequency cep-
stral coefficients (LFCC) plus energy augmented by their first and
second derivatives. The classifier is based on iterative Viterbi decod-
ing and model adaptation applied to a two-state HMM, where one
state is for speech and the other is for non-speech. Each state is ini-
tialised with a 32-component GMM trained on separate data using
an EM/ML algorithm and state transition probabilities are fixed to
0.5. Finally, some state duration rules are applied in order to refine
the speech/non-speech segmentation. The SAD stage is the only one
to use acoustic features; inter-channel delay features are used every-
where else.

2.2. Delay estimation

We assume an unknown number of stationary speakers who are
seated around a conference table on which are placed a number, m,
of stationary microphones. There are thus mC2 = m!/(2∗(m−2)!)
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unique combinations of microphone pairs, so for 4 microphones
there are 6 delay features and for 7 microphones there are 21 delay
features. The inter-channel delay is estimated during speech periods
from sliding windows of 0.5 seconds in length and with a window
rate of 10 Hz using a standard generalised cross correlation with
phase transform (GCC-PHAT) algorithm [9]. The set of feature vec-
tors is represented by X = x1,x2, ...,xP . Each xp is composed of
mC2 features representing the delay between different microphone
pairs, i.e.:

x
T
p = (xp1,2 , xp1,3 , ..., xp1,m), (xp2,3 ...xp2,m), ..., (xpm−1,m

),

where T indicates the transpose and xpk,l
represents the estimated

delay between the speech signals from microphones k and l in sam-
ple window p. The delay features are optionally processed by UDA,
as is described in the next section, and are then fed directly into the
diarization system as is described later in Section 4.

3. UNSUPERVISED DISCRIMINANT ANALYSIS

We seek a projection y = WT x in which (i) the inter-cluster
(speaker) separability is maximised and (ii) the intra-cluster (speaker)
separability is minimised. A suitable projection may be obtained by
maximising the Fisher criterion:

J(w) =
JB(w)

JW (w)
=

wT SBw

wT SW w
, (1)

where SB and SW are the between-class and within-class scatter
respectively. JB(w) and JW (w) are the corresponding scatters in
the projected space. This is linear discriminant analysis (LDA), and
we rely upon the sample labels being available in order to estimate
cluster variance; LDA is a supervised approach and as such is not
suitable for speaker diarization. Thus we require an unsupervised
approach and in this paper we investigate a variant of LDA known
as unsupervised discriminant analysis (UDA) which was proposed
in 2006 by Yang et al. [8]. Some of this work originates from He et
al. [10].

Rather than using the sample labels to estimate the between and
within-class scatter, as is done in LDA, UDA estimates local scatter,
SL, in place of SW and non-local scatter, SN , in place of SB in
Equation 1. This is achieved by way of an adjacency matrix, H,
which is calculated according to:

Hij =

j
1 if ‖xi − xj‖

2 < δ,
0 otherwise, (2)

which indicates whether or not any two samples xi and xj have
a Euclidean distance less than a pre-defined, empirically optimised
threshold δ. The adjacency matrix, H, defines pairs, or groups of
samples which are to be regarded as within-class and negates the
need for class labels thus allowing the calculation of an LDA-like
projection without supervision. In [8] it is shown how the adjacency
matrix is used to estimate the local scatter as follows:

SL =
1

2

PX
i=1

PX
j=1

Hij(xi − xj)(xi − xj)
T

=
1

2

 
PX

i=1

PX
j=1

Hijxix
T
i +

PX
i=1

PX
j=1

Hijxjx
T
j

−2

PX
i=1

PX
j=1

Hijxix
T
j

!

= (XDX
T −XHX

T ) = XLX
T , (3)

where the diagonal elements of D are equal to the column sums
of H. Each element Dii indicates the number of samples within a
Euclidean distance of δ to each sample i and acts to normalise their
contribution to the resulting local scatter matrix SL. L = D−H is
referred to as the Laplacian matrix [8, 10].

The non-local scatter matrix is calculated in exactly the same
way as in Equation 3 except that each element Hij inH is replaced
by 1−Hij to give a newmatrixHN which for any sample i indicates
all other samples j which are to be considered as between-class.
Thus the non-local scatter is estimated according to SN = XLNXT

where LN = DN −HN and where each element ofDN is equal to
the column sum ofHN .

In the transformed space the local and non-local scatter are
wT SLw and wT SNw respectively and thus, in now identical
fashion to LDA, we determine a projection from the following
generalised eigenvalue problem:

SNw = λSLw. (4)

In the usual manner the projection w into a d−dimensional space
(d < mC2) is formed from the generalised eigenvectors which cor-
respond to the d largest positive eigenvalues.

In addition to the locality defining threshold, δ, we have found it
necessary to introduce one additional parameter. We have found that
GCC-PHAT can produce a small number of anomalous delay esti-
mates in the delay vectors x. These are simply noisy delay estimates
which can lead to inaccuracies in the adjacency matrix H. This in
turn produces poor estimates of the local and non-local scatter ma-
trices and ineffective UDA projections.

We introduce a locality defining mask, Θ, which is used to re-
duce the effect of noisy delay estimates and thus to improve the re-
sulting UDA projection. With our modification the calculation of
Equation 2 takes into account only a percentage, θ, of the dimen-
sions in xi and xj which have the smallest Euclidean distance; the
remaining values are essentially treated as missing data. For any xi

and xj , the top half of Equation 2 is thus modified to ‖Θ·(xi−xj)‖
2

where the · symbol indicates element wise multiplication and where
the elements of Θ are equal to one for the θ × mC2 dimensions
with the smallest Euclidean distance and zero otherwise. The lo-
cality defining mask could be introduced into the diarization system
itself, namely for the likelihood calculation in the Viterbi decoding
stage. Whilst it may well lead to instability problems with iterative
Viterbi decoding and adaptation this is nonetheless something that
we intend to investigate.

In Section 4.4 we present diarization results as a function of
the two UDA parameters, δ and θ, and have achieved a significant
improvement in performance with this modification to the original
UDA algorithm that was proposed in [8].

4. EXPERIMENTALWORK

Here we describe the datasets used for our experimental work, the
baseline diarization system, and our results. To assess the merit of
the approach whilst avoiding interactions between delay and acous-
tic features, we report speaker diarization experiments using delay
features independently of acoustic features, i.e. not combined.

4.1. Databases

Our experiments were performed using subsets of four standard
NIST RT speaker diarization datasets. The ‘04 and ‘05 datasets
were used for development and the ‘06 and ‘07 datasets were used
for evaluation. We removed from each dataset all shows with fewer

4062



than 3 microphones; 2 microphone channels give a single-order fea-
ture vector for which there is no capacity for feature transformation.
As illustrated in Tables 1 and 2 there then remain 12 shows in the
development set and 10 shows in the evaluation set.

4.2. Diarization system

The diarization system follows a fairly standard agglomerative clus-
tering approach. We start with a 16-state (speaker) HMM which is
initialised with a k-means algorithm. Each state has only a single
Gaussian and a diagonal covariance matrix. Iterative Viterbi decod-
ing and adaptation are performed until the model converges. State
merging is controlled with aΔBIC algorithm and is controlled with a
conventional penalty parameter, λ, which is the same for every show
within any one experiment. If state merging is performed then the
process is repeated starting from the Viterbi decoding and adapta-
tion stage and this continues until no further states warrant merging.
The aim is for one state of the HMM to eventually represent a single
speaker. Except for minor modifications to accommodate differing
feature dimensions the back-end diarization system is identical for
all experiments. Except where explicitly stated otherwise, all system
parameters are empirically optimised on the development set and are
applied without modification to the evaluation set.

4.3. Baseline results

Here we present a number of experiments where speaker diarization
performance is reported in terms of diarization error rates (DERs)
as specified by NIST, e.g. [11]. The DER incorporates both SAD
and speaker error rates. Average development set SAD scores of
3.0% and 1.3% for the miss probability and false alarm rate respec-
tively give an indication of performance. Differences between DER
scores and average SAD scores give an indication of speaker error
rates which might be more suited to assess the work presented here.
Nonetheless, the reporting of DER scores rather than speaker error
rates is more appropriate to facilitate the comparison of our results
to those of others.

Here we report two sets of experiments. The first set aims to
assess speaker diarization performance using the raw delay features
described in Section 2. The results of this experiment form a baseline
against which may be compared performance using UDA-derived
feature transformations. The second set of experiments use con-
ventional PCA-derived feature transformations and provide another
baseline to help evaluate the benefit of the discriminative attributes
of UDA.

For the first set of experiments the size of the feature vector de-
pends on the number of available microphones. The second columns
of Tables 1 and 2 show the number of microphones and correspond-
ing raw feature dimensions for each show. The performance of the
baseline system is illustrated in the third columns of Tables 1 and
2 for the development and evaluations sets respectively. For the de-
velopment set the DER varies greatly with a minimum of 9% and a
maximum of 68% DER. The average DER is 34%. With the same
configuration minimum, maximum and average DERs of 10%, 50%
and 32% respectively are achieved on the evaluation set (Table 2).

For the second set of experiments the raw full-order features
are processed with conventional PCA. For these experiments (and
those below using UDA) we decided to evaluate performance us-
ing the same number of feature dimensions for each audio show and
investigate 1 and 2 dimension feature transformations. Results are
illustrated in the fourth and fifth columns of each Table for 1 and 2
dimension transformations respectively. Average diarization perfor-

mances of 38% and 40% are worse than for the baseline which shows
that accounting soley for the global variance does not produce good
perfomance and that a more discriminatory approach is required.

4.4. UDA results

In order to optimise UDA performance we ran a first set of exper-
iments to choose a stable ΔBIC penalty factor λ and then, with a
fixed λ, a second set of experiments in order to optimise the lo-
cality defining parameters δ and θ. An illustration of performance
obtained from 2-dimension UDA feature transformations is given
in Figure 1. The top plot (a) shows DER performance against the
locality defining threshold, δ, for an empirically optimised locality
defining threshold of θ=0.6. The solid profile shows performance
for the development set and shows a minimum DER of 21% for δ=5.
The dashed profile shows performance for the evaluation set. Perfor-
mance is noticeably worse across the range but the optimum value
of δ=2.5 compares well to that for δ=5 where the DER is 24%. Both
profiles are reasonably flat near to δ=5.

Figure 1 (b) shows DER performance against the local defining
mask, θ, for optimised δ=5. The solid profile illustrates performance
for the development set and again shows a DER of 21% at θ=0.6.
The dashed profile illustrates performance for the evaluation set and
again shows a DER of 24% at θ=0.6. These values correspond to
those in Figure 1 (a) for δ=5. The evaluation set profile shows a sec-
ond trough around θ=0.85. This may be caused by a poorly tuned
locality defining threshold which does not translate well from the de-
velopment set to the evaluation set. The profile is nonetheless below
the corresponding baseline DER of 32% between θ values of 0.55
and 0.95 and shows merit in the UDA approach.

Both 1 and 2 dimension UDA transformations were optimised
in the same fashion and performance is summarised in Tables 1 and
2. Whilst UDA does not bring improvements for each show, devel-
opment set DERs of 20% and 21% for 1 and 2 UDA dimensions
respectively compare favourably with the baseline DER of 34% and
those of PCA. However, the 1 dimension system does not translate
well to the evaluation set and brings an improvement of only 1% ab-
solute in DER (31% cf. 32%). The 2 dimension transformation fares
much better and reduces the DER to 24%. This corresponds to a
relative improvement of 25%.

5. CONCLUSIONS

When signals from multiple microphones are available it is possible
to use estimates of inter-channel delay as features for diarization.
However, whilst acoustic and delay features have been successfully
combined improvements in performance coming solely from delay
features is often small. This is thought to be caused by background
noise and reverberation which can lead to inaccurate estimates of
delay and could account for the performance gap between diarization
performance with acoustic-only and delay-only features.

This paper describes what is believed to be the first assessment
of a recently proposed unsupervised approach to the discriminant
analysis of delay features which aims to increase speaker separabil-
ity in a reduced-dimension delay-space. The approach shows merit
on four standard NIST RT datasets. Using two-dimension UDA-
derived feature transformations reasonably consistent improvements
are observed on both development and evaluation datasets on which
a baseline DER of 32% is shown to be reduced to 24% through the
proposed approach and delay features alone. This amounts to a rela-
tive improvement of 25%.
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# mics/ Base- PCA UDA
Show feats. line d1 d2 d1 d2
CMU 20050228-1615 3/3 36 26 8 9 8
CMU 20050301-1415 3/3 45 10 10 10 10
ICSI 20000807-1000 6/15 9 62 62 18 17
ICSI 20010531-1030 6/15 40 45 45 31 34
ICSI 20011030-1030 6/15 30 58 68 21 23
ICSI 20011113-1100 6/15 38 83 83 53 50
LDC 20011121-1700 10/45 39 14 39 13 13
LDC 20011207-1800 4/6 68 16 34 10 23
NIST 20030623-1409 7/21 31 19 20 20 21
NIST 20030925-1517 7/21 41 44 60 31 28
NIST 20050412-1303 7/21 15 32 33 19 11
NIST 20050427-0939 7/21 19 51 37 12 13
Average 6/15 34 38 40 20 21

Table 1. Development dataset summary: the number of micro-
phones and raw feature dimensions for each show and their respec-
tive baseline, PCA and UDA (both 1 and 2 dimensions) DER perfor-
mances. Average DERs are time weighted. The shows are subsets
of the NIST RT‘04 and RT‘05 evaluation data.

# mics/ Base- PCA UDA
Show feats. line d1 d2 d1 d2
CMU 20061115-1030 3/3 34 19 21 21 21
CMU 20061115-1530 3/3 37 46 11 49 16
NIST 20051024-0930 7/21 25 34 41 16 18
NIST 20051102-1323 7/21 18 28 30 12 14
NIST 20051104-1515 7/21 10 21 19 27 7
NIST 20060216-1347 7/21 23 30 47 22 24
VT 20050408-1500 4/6 36 36 42 40 36
VT 20050425-1000 7/21 41 52 27 56 15
VT 20050623-1400 4/6 50 35 48 35 52
VT 20051027-1400 4/6 50 44 43 30 53
Average 5/10 32 34 33 31 24

Table 2. As for Table 1 except for the evaluation dataset where data
are subsets of the NIST RT‘05 and RT‘06 evaluation data.

The feature transformation approach proposed here is intended
to derive more robust features in a reduced-dimension delay-space.
Using inverse transforms it might be possible to adapt the approach
in order to attenuate noise in the original space. This would have
obvious application in beamforming which could also contribute to
improved speaker diarization performance.
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