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Abstract— As opposed to centralized workflow management
systems, the distributed execution of workflows can not rely on
a trusted centralized point of coordination. As a result, basic
security features including compliance of the overall sequence
of workflow operations with the pre-defined workflow execution
plan or traceability become critical issues that are yet to
be addressed. Besides, the detection of security inconsistencies
during the execution of a workflow usually implies the complete
failure of the workflow although it may be possible in some
situations to recover from the latter. In this paper, we present
security solutions supporting the secure execution of distributed
workflows. These mechanisms capitalize on onion encryption
techniques and security policy models in order to assure the
integrity of the distributed execution of workflows, to prevent
business partners from being involved in a workflow instance
forged by a malicious peer and to provide business partners’
identity traceability for sensitive workflow instances. Moreover,
we specify how these security mechanisms can be combined with
a transactional coordination framework in order to recover from
faults that may be caught during their execution. The defined
solutions can easily be integrated into distributed workflow
management systems as our design is strongly coupled with the
runtime specification of decentralized workflows.

Index Terms— Decentralized workflows, Security, Fault man-
agement

I. INTRODUCTION

Distributed workflow management systems [1], [2] eliminate
the need for a centralized coordinator that can be a performance
bottleneck in some business scenarios. Because of this flexibility,
the execution of workflows in the decentralized setting raises new
security requirements as opposed to usual centralized workflow
management systems. Distributed workflow systems can not in-
deed rely on a trusted centralized coordination mechanism to
manage the most basic execution primitives such as message
routing between business partners. As a result, basic security
features such as integrity of workflow execution assuring the
compliance of the overall sequence of operations with the pre-
defined workflow execution plan are no longer guaranteed. In ad-
dition, tracing back the identity of the business partners involved
in a distributed workflow instance becomes an issue without a
trusted centralized coordination mechanism selecting workflow
participants. Yet, existing decentralized workflow management
systems do not incorporate the appropriate mechanisms to meet
the new security requirements in addition to the ones identified
in the centralized setting. Even though some recent research
efforts in the field of distributed workflow security have indeed
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Fig. 1. Pervasive workflow runtime

been focusing on issues related to the management of rights
in business partner assignment or detecting conflicts of interest
[3],[4],[5], basic security issues related to the security of the
overall workflow execution such as integrity and evidence of
execution have not yet been addressed. Besides, faults that may
occur during the execution of security mechanisms are often
considered unrecoverable and lead to the complete failure of a
workflow instance while in some failure scenarios some simple
recovery mechanisms can be specified to resume a workflow
execution that has failed.

In this paper, we present security solutions supporting the
secure execution of distributed workflows. These mechanisms
capitalize on onion encryption techniques [6] and security pol-
icy models in order to assure the integrity of the distributed
execution of workflows, to prevent business partners from being
involved in a workflow instance forged by a malicious peer and
to provide business partners’ identity traceability for sensitive
workflow instances. The design of the suggested mechanisms is
strongly coupled with the runtime specification of decentralized
workflow management systems which eases their integration into
existing distributed workflow management solutions. Moreover,
we specify how these security mechanisms can be combined
with a transactional coordination framework in order to recover
from faults that may be caught during the execution of these
security solutions so that the detection of security inconsistencies
no longer imply the complete failure of a workflow execution.

The remainder of the paper is organized as follows. In section
II, we give an overview of the distributed workflow management
system and the coordination protocol that will be used throughout
the paper to illustrate our approach. Section III outlines the
security requirements associated with the execution of workflows
in the decentralized setting. In section IV our solution is spec-
ified while in section V the runtime specification of the secure
distributed workflow execution is presented. Section VI presents
the security analysis of the proposed mechanisms. In section VII
we present how the security solutions we propose in this paper
can be integrated within the transactional protocol presented in
section II. Finally section IX discusses related work and section
X presents the conclusion.

II. WORKFLOW MODEL AND FAULT MANAGEMENT SYSTEM

The workflow management system used to support our ap-
proach was designed in [2]. This model called pervasive workflow
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supports the execution of business processes in environments
without infrastructure and features a distributed architecture char-
acterized by two objectives:
• fully decentralized: the workflow management task is carried

out by a set of business partners in order to cope with the
lack of dedicated infrastructure

• dynamic assignment of business partners to workflow tasks:
the actors can be discovered at runtime

Having designed an abstract representation of the workflow
whereby business partners are not yet assigned to tasks, a partner
launches the execution and executes a first set of tasks. Then
the initiator searches for a partner able to perform the next set of
tasks. Once the discovery phase is complete, a workflow message
including all data is sent by the workflow initiator to the newly
discovered partner and the workflow execution further proceeds
with the execution of the next set of tasks and a new discovery
procedure. The sequence composed of the discovery procedure,
the transfer of data and the execution of a set of tasks is iterated
till the final set of tasks. In this decentralized setting, the data
transmitted amongst partners include all workflow data. We note
W the abstract representation of a distributed workflow defined by
W = {(vi)i∈[1,n], δ} where vi denotes a vertex which is a set of
workflow tasks that are performed by a business partner from the
receipt of workflow data till the transfer of data to the next partner
and δ is the set of execution dependencies between those vertices.
We note (Mi→jp)p∈[1,zi] the set of workflow messages issued by
bi to the zi partners assigned to the vertices (vjp)p∈[1,zi] executed
right after the completion of vi. The instance of W wherein
business partners have been assigned to vertices is denoted
Wb = {Wiid, (bi)i∈[1,n]} where Wiid is a string called workflow
instance identifier. This model is depicted in figure 1. In this paper,
we only focus on a subset of execution dependencies or workflow
patterns namely, SEQUENCE, AND-SPLIT, AND-JOIN, OR-
SPLIT and OR-JOIN. In order to adequately support the execution
of critical workflow instances in this decentralized setting, we
proposed in a previous work [7] a transactional coordination
protocol whose main features are summarized hereafter.

A. Fault management

The coordination protocol we designed meets the two main re-
quirements relevant to the execution of critical workflow instances
in a dynamic and distributed setting:
• Relaxed atomicity: atomicity of the workflow execution can

be relaxed as intermediate results produced by the workflow
may be kept despite the failure of one partner. The specifi-
cation process of transactional requirements associated with
workflows has to be flexible enough to support coordination
scenarios more complex than the coordination rule “all or
nothing” specified for the two phase commit protocol [8].

vb1 kb
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Fig. 3. Business partner registration
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• Dynamic assignment of business partners: the workflow
execution is dynamic in that the workflow partners offering
different characteristics can be assigned to tasks depending
on the resources available at runtime. Business partners’
characteristics have thus to be combined or composed in
a way such that the transactional requirements specified for
the workflow are met.

The execution of this protocol is managed in a centralized
way by the workflow initiator bv1 . The role of the coordinator
consists in issuing coordination decisions based on the state
of the workflow execution. The coordination is assured in a
hierarchical way as some business partners (bvk)k∈[1,j] play the
role of subcoordinators and report directly to bv1 whereas the
remaining partners (bmk )k∈[1,l] report to the business partner bvx
most recently executed 1. This reporting strategy is depicted in
figure 2.

The execution of this protocol takes place in two phases. The
first phase consists of the discovery and registration of all the
partners that will be involved in the critical instance in order
to combine the properties offered by available business partners
[9] in a way such that the workflow execution does not lead to
any inconsistent outcomes. The discovery process through which
business partners that can be assigned to tasks are identified
is performed by the initiator of the workflow by means of a
registration handshake depicted in figure 3. The coordinator bv1
contacts a business partner asking it whether it agrees to commit
to execute the operation a of the workflow whose identifier is
Wiid. Once the newly assigned business partner’s coordinator is
known, bv1 sends the information.

Once all involved business partners are known, the workflow
execution can start supported by the coordination protocol. Busi-
ness partners are sequentially activated based on the workflow
specification. A sample for normal execution of a workflow is
depicted in figure 4. The Activate(W,k,Wiid, D) message is
a workflow message defined in [4], it especially contains the
workflow specification W , the requested task k to be executed,
the workflow data D modified during the execution and the
workflow identifier Wiid. Within the workflow execution local
acknowledgments Ack(Wiid) are used. Each business partner
reports its status to the workflow initiator and once its execution is

1business partner bv
k that is located on the same branch of the workflow as

these bm
k business partners and that has most recently completed its execution.



3

complete it can leave the execution. The Completed(k,Wiid, D)

message sent by a business partner includes a backup copy of the
data modified by the business partner that can be reused later on
for the recovery procedure in case of failure. In the presence of
recoverable faults, business partners can be indeed replaced using
this backup message.

III. SECURITY REQUIREMENTS

As opposed to centralized workflow management systems the
distributed execution of workflows raises security constraints due
to the lack of a dedicated infrastructure assuring the management
and control of the workflow execution. As a result, security
features such as compliance of the workflow execution with the
pre-defined plan are no longer assured. We group the security
requirements we identified for distributed workflow management
systems into three main categories: authorization, proofs of exe-
cution and data protection.

A. Authorization

The main security requirement for a workflow management
system is to ensure that only authorized business partners are
assigned to workflow tasks during an instance. In the decentral-
ized setting, the assignment of workflow tasks is managed by
partners themselves relying on a service discovery mechanism.
In this case, the business partner assignment procedure enforces
a matchmaking procedure whereby business partners’ security
credentials are matched against security requirements for tasks.

B. Execution proofs and traceability

A decentralized workflow management system does not offer
any guarantee regarding the compliance of actual execution of
workflow tasks with the pre-defined execution plan. Without any
trusted coordinator to refer to, the business partner bi assigned to
the vertex vi needs to be able to verify that the vertices scheduled
to be executed beforehand were actually executed according to
the workflow plan. This is a crucial requirement to prevent any
malicious peer from forging a workflow instance.

In our workflow execution model, candidate business partners
are selected at runtime based on their compliance with a security
policy. Partners’ involvement in a business process can thus
remain anonymous as their identity is not assessed in the partner
selection process. In some critical business scenarios however,
disclosing partners’ identity may be required so that in case
of dispute or conflict on the outcome of a sensitive task the
stakeholders can be identified. In this case, the revocation of
business partners’ anonymity should only be feasible for some
authorized party in charge of arbitrating conflicts, preserving the
anonymity of identity traces is thus necessary.

C. Workflow data protection

In the case of decentralized workflow execution, the set of
workflow data denoted D = (dk)k∈[1,j] is transferred from one
business partner to another. This raises major requirements for
workflow data security in terms of integrity, confidentiality and
access control as follows:
• Data confidentiality: for each vertex vi, the business partner
bi assigned to vi should only be authorized to read a subset
Dri of D
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Fig. 6. Policy private key distribution schemes

• Data integrity: for each vertex vi, the business partner bi
assigned to vi should only be authorized to modify a subset
Dwi of Dri

• Access control: the subsets Dri and Dwi associated with each
vertex vi should be determined based on the security policy
of the workflow

The solution we developed towards meeting these security
requirements is presented in the next section.

IV. THE SOLUTION

In this section the mechanisms we designed in order to meet
the security requirements we identified for distributed workflow
systems are specified. The solution is mainly described in terms
of the key management, data protection, execution proofs and
communication protocol.

A. Key management

Two types of key pairs are introduced in our approach. Each
vertex vi is first associated with a policy poli defining the set
of credentials a candidate partner needs to satisfy in order to
be assigned to vi. The policy poli is mapped to a key pair
(PKpoli , SKpoli) where SKpoli is the policy private key and
PKpoli the policy public key. Thus satisfying the policy poli
means knowing the private key SKpoli , the inverse may however
not be true depending on the policy private key distribution
scheme as explained later on in section VI. The policy private
key SKpoli can indeed be distributed by different means amongst
which we distinguish three main types depicted in figure 6:

1) Key sharing: a policy poli is associated with a single policy
private key that is shared amongst principals satisfying poli. A
simple key server KSpoli associated with poli can be used to
distribute the policy private key SKpoli based on the compliance
of business partners with the policy poli. In this case, the business
partners satisfying poli thus share the same policy private key
SKpoli associated with the encryption key PKpoli .

2) Policy-based cryptography: a policy poli is expressed in
a conjunctive-disjunctive form specifying the combinations of
credentials ξk a principal is required to satisfy to be com-
pliant with the policy: poli = ∧mi=1[∨

mi
j=1[∧

mi,j

k=1 ξi,j,k]] where
∧ represents a conjunction (AND) and ∨ a disjunction (OR).
A cryptographic scheme [10] is used to map credentials to
keys denoted credential keys SKξk

that can be combined to
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encrypt, decrypt and sign messages based on a given policy.
Some trusted authorities TA are in charge of distributing cre-
dential keys to requesters when the latter satisfies some asser-
tions (that can be expressed in a conjunctive-disjunctive form
e.g. (jobtittle=director)∧(company=xcorp)). This scheme provides
direct mapping between a policy and some key material and
thus eases policy management as opposed to key sharing. No
anonymity-preserving traceability solution is however offered as
principals satisfying a given assertion may possess the same
credential key.

3) Group cryptography: a policy poli is mapped to a group
structure in which a group manager distributes different policy
private keys to group members satisfying the policy poli. A
single encryption key PKpoli is used to communicate with group
members who however use their personal private key to decrypt
and sign messages. This mechanism offers an identity traceability
feature as only the group manager can retrieve the identity of a
group member using a signature issued by the latter [11]. The
policy private key of the business partner bk is denoted SKbk

poli
.

We note GMpoli the group manager of the group whose members
satisfy the policy poli. The management of policy key pairs is as
complex as for the key server solution since a group structure is
required for each specified policy.

Second, we introduce vertex key pairs (PKi, SKi)i∈[1,n] to
protect the access to workflow data. We suggest a key distribu-
tion scheme wherein a business partner bi whose identity is a
priori unknown retrieves the vertex private key SKi upon his
assignment to the vertex vi. Onion encryption techniques with
policy public keys PKpoli are used to distribute vertex private
keys. Furthermore, execution proofs have to be issued along with
the workflow execution in order to ensure the compliance of
the execution with the pre-defined plan. To that effect, we also
leverage onion encryption techniques in order to build an onion
structure with vertex private keys to assure the integrity of the
workflow execution. The suggested key distribution scheme (Od)

and the execution proof mechanism (Op) are depicted in figure
5 and specified later on in the paper.

In the sequel of the paper, M denotes the message space, C
the ciphertext space and K the key space. Using a key K ∈ K on
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Fig. 8. Access to workflow data

a message m ∈M is noted {m}K (e.g. encryption with a public
key, signature with a private key) and h, h1, h2 denote one-way
hash functions.

B. Data protection

The role of a business partner bi assigned to a vertex vi consists
in processing the workflow data that are granted read-only and
read-write access during the execution of vi. We define a specific
structure depicted in figure 8 called data block to protect workflow
data accordingly. Each data block consists of two fields:
• the actual data: dk
• a signature: signa(dk) = {h(dk)}SKa

We note Bak = (dk, signa(dk)) the data block including the
data segment dk that has last been modified during the execution
of va. The data block Bak is also associated with a set of signatures
denoted Ha

k that is computed by ba assigned to va.

Ha
k =

{
{h({Bak}PKl

)}SKa
|l ∈ Rak

}
where Rak is the set defined as follows. Let l ∈ [1, n].

l ∈ Rak ⇔ l satisfies


dk ∈ Drl
vl is executed after va
vl is not executed after vp(a,l,k)

where vp(a,l,k) denotes the first vertex executed after va such
that dk ∈ Dwp(a,l,k) and that is located on the same branch of
the workflow as va and vl. For instance, consider the example of
figure 7 whereby d1 is in Dw1 , Dr2, Dw3 , Dr5 and Dw6 , v(1,2,1) = v3,
R1

1 = {2, 3, 5, 6} and R3
1 = {6}.

When the business partner bi receives the data block Bak three
cases can occur:

1) bi is granted read access on dk: Bak is encrypted with PKi
and bi decrypts the structure using SKi in order to get access to
dk and signa(dk). bi is then able to verify the integrity of dk
using PKa, i.e. that dk was last modified after the execution of
va.

2) bi is granted write access on dk: bi can (in addition to
what is possible in the first case since write access implies read
access) update the value of dk and compute signi(dk) yielding a
new data block Bik and a new set Hi

k.
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3) bi has no right on dk: bi receives Bak encrypted with PKm
(in this case vm is executed after vi) and he can only verify the
integrity of {Bak}PKm

by matching h({Bak}PKm
) against the

value contained in Ha
k .

The integrity and confidentiality of data access thus relies on
the fact that the private key SKi is made available to bi only, prior
to the execution of vi. The corresponding distribution mechanism
is presented in the next section.

C. Vertex private key distribution mechanism

The objective of the vertex private key distribution mechanism
is to ensure that only the business partner bi assigned to vi at
runtime and whose identity is a priori unknown can access the
vertex private key SKi. To that effect, the workflow structure in
terms of execution patterns is mapped with an onion structure Od
so that at each step of the execution a layer of Od is peeled off
using SKpoli and SKi is revealed.

Definition 4-1 (Onion Structure). Let X a set. An onion O

is a multilayered structure composed of a set of n subsets of X
(lk)k∈[1,n], such that ∀k ∈ [1, n] lk ⊆ lk+1. The elements of
(lk)k∈[1,n] are called layers of O, in particular, l1 and ln are the
lowest and upper layers of O, respectively. We note lp(O) the
layer p of an onion O.

Definition 4-2 (Onion wrapping). Let A = (ak)k∈[1,j] and
B = (bk)k∈[1,l] two onion structures, A is said to be wrapped
by B, when ∃k ∈ [1, l] such that aj ⊆ bk.

We first present how vertex private keys are distributed to
partners with respect to various workflow patterns including SE-
QUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and OR-JOIN
before describing how those are combined in the execution of a
complete workflow.

1) SEQUENCE workflow pattern: Vertex private keys are
sequentially distributed to business partners. In this case, an
onion structure assuring the distribution of vertex private keys
is sequentially peeled off by business partners. Considering a
sequence of n vertices (vi)i∈[1,n], the business partner b1 assigned
to the vertex v1 initiates the workflow execution with the onion
structure O defined as follows.

O :


l1 = {SKn}
li =

{
{li−1}PKpoln−i+2

, SKn−i+1

}
for i ∈ [2, n]

ln+1 =
{
{ln}PKpol1

}
The onion layers are iteratively wrapped to match the SE-

QUENCE pattern and the workflow execution proceeds as de-
picted in figure 9. For i ∈ [2, n−1] the business partner bi assigned
to the vertex vi receives {ln−i+1(O)}PKpoli

, peels one layer off
by decrypting it using SKpoli , reads ln−i+1(O) to retrieve SKi
and sends {ln−i(O)}PKpoli+1

to bi+1.
2) AND-SPLIT workflow pattern: In the case of the AND-

SPLIT pattern, the business partners (bi)i∈[2,n] assigned to the
vertices (vi)i∈[2,n] are contacted concurrently by b1 assigned to
the vertex v1. In this case, n − 1 vertex private keys should
be delivered to (bi)i∈[2,n] and the upper layer of the onion O1

available to b1 therefore wraps SK1 and n−1 onions (Oi)i∈[2,n]

to be sent to (bi)i∈[2,n] as depicted in figure 10.

AND-
SPLITv1

v2

v i

vn
{SK 1,O 2, ... ,O n}

Fig. 10. AND-SPLIT pattern

AND-
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v1

v i

vn−1

vn
On−1={{SK nn−1

}poln}

Oi={{SK ni
}pol n}

O1={{ , SK n1
}pol n }

{ , SK n }

Fig. 11. AND-JOIN pattern

O1 = {SK1, O2, O3, .., On}
Oi =

{
{SKi}PKpoli

}
for i ∈ [2, n]

3) AND-JOIN workflow pattern: Since there is a single work-
flow initiator, the AND-JOIN pattern is preceded in the workflow
by an AND-SPLIT pattern. In this case, the vertex vn is executed
by the business partner bn if and only if the latter receives
n − 1 messages as depicted in figure 11. In order to meet this
requirement, the vertex private key SKn is divided into n − 1

parts and defined by

SKn = SKn1 ⊕ SKn2 ⊕ ...⊕ SKnn−1

The key SKni is simply included in the onion Oi sent by bi to
bn. Besides, in order to avoid redundancy, the onion structure λ
associated with the sequel of the workflow execution right after
vn is only included in one of the onions received by bn. Each
(bi)i∈[1,n−1] therefore sends the onion Oi defined as follows to
bn.

O1 = {{λ, SKn1}PKpoln
}

Oi =
{
{SKni}PKpoln

}
for i ∈ [2, n− 1]

4) OR-SPLIT workflow pattern: This is an exclusive choice
and the business partner b1 assigned to the vertex v1 only needs
to send one message.

O1 = {SK1, O2, O3, .., On}
Oi =

{
{SKi}PKpoli

}
for i ∈ [2, n]

The onion O1 is available to the business partner b1. This is
the same structure as the AND-SPLIT pattern, yet the latter only
sends the appropriate onion Oi to the business partner assigned to
the vertex vi depending on the result of the condition associated
with the OR-SPLIT pattern.

5) OR-JOIN workflow pattern: Since there is a single work-
flow initiator, the OR-JOIN is preceded in the workflow by an
OR-SPLIT pattern. The business partner assigned to vn receives
in any cases a single message thus a single vertex private key is
required that is sent by one of the business partners (bi)[1,n−1]

depending on the choice made at the previous OR-SPLIT in the
workflow. the business partner bn thus receives in any cases the
onion O defined as follows.

O =
{
{λ, SKn}PKpoln

}
where λ is an onion structure associated with the sequel of the
workflow execution right after vn.
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6) Complete key distribution scheme: The procedure towards
building an onion structure corresponding to the workflow struc-
ture can be implemented using for instance a breath first search
algorithm starting from the last vertex of the workflow and
wherein the workflow graph is read backward. This is rather
straightforward and the procedure is only sketched throughout an
example. Let’s consider the workflow depicted in figure 7. The
onion Od enabling the vertex private key distribution during the
execution of the workflow is defined as follows.

Od = {{SK1, {SK2, {SK3, {SK61 ,

Sequel afterv6︷ ︸︸ ︷
{SK7}PKpol7︸ ︷︷ ︸

First AND-SPLIT branch

}PKpol6
}PKpol3

}PKpol2︸ ︷︷ ︸
First AND-SPLIT branch

, {SK4, {SK5, {SK62︸ ︷︷ ︸
Second AND-SPLIT branch

}PKpol6
}PKpol5

}PKpol4︸ ︷︷ ︸
Second AND-SPLIT branch

}PKpol1
}

The onions associated with the two branches forming the AND-
SPLIT pattern are wrapped by the layer corresponding to the
vertex v1. Only the first AND-SPLIT branch includes the sequel
of the workflow after v6. The overall structure of the onion is of
course based on the SEQUENCE pattern.

D. Execution proofs and traceability

Along with the workflow execution, an onion structure Opi is
built at each execution step i with vertex private keys in order
to allow business partners to verify the integrity of the workflow
execution and optionally to gather anonymity-preserving traces
when traceability is required during the execution of a workflow.
Based on the properties we introduced in section IV-A, group
cryptography is the only mechanism that meets the needs of
the policy private key distribution when identity traceability is
needed. In that case, we define for a workflow instance, the
workflow arbitrator role that is assumed by a trusted third party.

Definition 4-3 (Workflow arbitrator). The workflow arbitra-
tor, denoted War , is a trusted third party able to disclose business
partners’ identity in case of dispute. The workflow arbitrator is
contacted to revoke the anonymity of some business partners only
in case of dispute, this is an optimistic mechanism.

The onion structure Op is initialized by the business partner b1
assigned to v1 who computes Op1 =

{
{h(PW )}SKpol1

}
where

PW is called workflow policy and is defined as follows.
Definition 4-4 (Workflow Policy). The workflow specification

SW denotes the set SW defined by SW = {W, (Jri , J
w
i ,

poli)i∈[1,n], h} where

Jri = {k ∈ [1, j]|dk ∈ Dri } and Jwi = {k ∈ [1, j]|dk ∈ Dwi }

The sets Jri and Jwi basically specify for each vertex the set of
data that are granted read-only and read-write access, respectively.
SW is defined at workflow design phase.

The workflow policy PW denotes the set defined by:

PW = SW ∪ {Wiid,War, h1, h2} ∪ {PKi|i ∈ [1, n]}

PW is a public parameter computed by the workflow initiator
b1 and that is available to the business partners involved in the
execution of W .

The onion structure Op is initialized this way so that it cannot
be replayed as it is defined for a specific instance of a workflow

specification. If traceability is required during the execution of
some business processes, the signatures of business partners with
policy private keys are collected during the building process of
Op so that anonymity can be later on revoked in case of dispute.
Group encryption is used in this case to distribute policy private
keys and the business partner b1 is in charge of contacting a
trusted third party when the workflow is instantiated, sending
it (h(PW ), PW ) to play the role of workflow arbitrator for the
instance.

At the step i of the workflow execution, bi receives Opi−1 and
encrypts its upper layer with SKi to build an onion Opi which he
sends to bi+1 upon completion of vi. If traceability is required,
bi signs {Opi−1 , {h(PW )}

SK
bi
poli

} with SKi instead. Considering

a set (vi)[1,n] of vertices executed in sequence assigned to the
business partners (bi)[1,n] and assuming that traceability is needed
(i.e. group cryptography is used) we get:

Op1 =
{
{h(PW )}

SK
b1
pol1

}
Op2 =

{
{Op1 , {h(PW )}

SK
b2
pol2

}SK2

}
Opi =

{
{Opi−1 , {h(PW )}

SK
bi
poli

}
SKi

}
for i ∈ [3, n]

The building process of Opi is based on workflow execution
patterns ; yet since it is built at runtime contrary to the onion Od,
this is straightforward:
• There is no specific rule for OR-SPLIT and OR-JOIN

patterns as during the workflow execution, this will result
in the execution of a single branch (exclusive choice),

• When encountering an AND-SPLIT pattern, the same struc-
ture Opi is concurrently sent while in case of an AND-JOIN,
the n− 1 onions received by a partner bn are wrapped by a
single structure:

Opn =
{
{Op1 , Op2 , .., Opn−1 , {h(PW )}

SKbn
poln

}
SKn

}
.

Considering the example depicted in figure 7 and assuming
traceability is not required, at the end of the workflow execution
the onion Op is defined as follows.

Op = {{{{{{h(PW )}SKpol1
}SK2}SK3︸ ︷︷ ︸

First AND-SPLIT branch

,

{{{h(PW )}SKpol1
}SK4}SK5︸ ︷︷ ︸

Second AND-SPLIT branch

}SK6}SK7}

{h(PW )}SKpol1
is sent by b1 assigned to v1 to both b2 and b4

assigned to v2 and v4, respectively. The onion structure associated
with the two branches forming the AND-SPLIT pattern thus
includes {h(PW )}SKpol1

twice. The overall structure is mapped
to the SEQUENCE pattern and layers are iteratively wrapped by
a new layer as the workflow instance proceeds further.

In order to verify that the workflow execution is compliant
with the pre-defined plan when he starts the execution of the
vertex vi, the business partner bi assigned to vi just peels off
the layers of Opi−1 using the vertex public keys of the vertices
previously executed based on SW . Doing so he retrieves the value
{h(PW )}SKpol1

that should be equal to the one he can compute
given PW , if the workflow execution has been so far executed
according to the plan. In case traceability is required by the
execution, bi also verifies the signatures of the business partners
assigned to the vertices (vjp)p∈[1,ki] executed right before him i.e.
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Fig. 12. Workflow message structure

bi verifies {h(PW )}
SK

bp
polp

for all p ∈ [1, ki]. If bi detects that

a signature is missing he contacts the workflow arbitrator War

to declare the workflow instance inconsistent. In fact, business
partners are in charge of contacting the workflow arbitrator
when a signature is not valid and those who do not declare
corrupted signatures are held responsible in place of partners
whose signature is missing. In case of conflict on the outcome
of some workflow tasks, the onion Op is sent to the workflow
arbitrator who is able to retrieve the signatures with policy private
key of the stakeholders using PW and with the help of some group
managers the corresponding identities.

E. Vertex key pair generation

Vertex key pairs have to be defined for a single instance of a
workflow specification in order to avoid replay attacks. To that
effect, we propose to capitalize on ID-based encryption techniques
[12] in the specification of the set (PKi, SKi)i∈[1,n]. For all
i ∈ [1, n] (PKi, SKi) is defined by:{

PKi = h1(Wiid ⊕ SW ⊕ vi)
SKi = sh2(PKi)

where s ∈ Z∗q for a prime q. s is called master key and is
held by the vertex private key generator [12] who is in our case
the workflow initiator. The signature scheme proposed in [13]
can be used to compute the ID-based signatures required by the
mechanisms we proposed. The public parameters such as the
system public key (usually called Ppub) should be included in
PW . This vertex key pair specification has a double advantage.
First vertex key pairs cannot be reused during any other workflow
instance and second vertex public keys can be directly retrieved
from W and Wiid when verifying the integrity of workflow data
or peeling off the onion Op.

F. Communication protocol

In order to support a coherent execution of the mechanisms
presented so far, workflow messages exchanged between business
partners consist of the set of information that is depicted in figure
12.
• Workflow data: the set (dk)k∈[1,j] of workflow data is

transported between business partners and each piece of
data satisfy the data block specification. A single message
may include several copies of the same data block structure
that are encrypted with different vertex public keys based
on the execution plan. This can be the case with AND-
SPLIT patterns. Besides, workflow data can be stored in
two different ways depending on the requirements for the
execution. Either we keep the iterations of data resulting
from each modification in workflow messages till the end
of the execution or we simply replace data content upon
completion of a vertex. The bandwidth requirements are
higher in the first case since the size of messages increases
as the workflow execution proceeds further.

• PW : PW is required to retrieve vertex and policy public keys
and specifies the workflow execution plan.

• Od and Op: the two onion structures Od and Op are also
included in the message.

Upon receipt of the message depicted in figure 12 a business
partner bi assigned to vi retrieves first the vertex private key from
Od. He then checks that PW is genuine i.e. that it was initialized
by the business partner initiator of the workflow assigned to v1.
He is later on able to verify the compliance of the workflow
execution with the plan using Op and the integrity of workflow
data. Finally he can process workflow data.

V. SECURE EXECUTION OF DECENTRALIZED WORKFLOWS

In this section we specify how the mechanisms presented so
far in this paper are combined to support the secure execution
of a workflow in the decentralized setting. After an overview of
the execution steps, the secure workflow execution is described
in terms of the workflow initiation and runtime specifications.

A. Execution process overview

Integrating security mechanisms to enforce the security require-
ments identified for the decentralized execution of workflows
requires a process strongly coupled with both workflow design
and runtime specifications. At the workflow design phase, the
workflow specification SW is defined in order to specify for each
vertex the sets of data that are accessible in read and write access
and the credentials required by potential business partners to be
assigned to workflow vertices. At workflow initiation phase, the
workflow policy PW is specified and the onion Od is built. The
workflow initiator builds then the first set of workflow messages
to be sent to the next partners involved. This message generation
process consists of the initialization of the data blocks and that
of the onion Op.

At runtime, a business partner bi chosen to execute a vertex
vi receives a set of workflow messages. Those messages are
processed to retrieve SKi from the onion Od and to access
workflow data. Once the vertex execution is complete bi builds
a set of workflow messages to be dispatched to the next partners
involved in the execution. In this message building process, the
data and the onion Op are updated.

The set of functional operations composing the workflow
initiation and runtime specifications is precisely specified later
on in this section. In what follows N i

k denotes the set defined as
follows. Let l ∈ [1, n]

l ∈ [1, n]⇔ l satisfies
{
dk ∈ Drl
vl is executed right after vi

Consider the example of figure 7: d1 is accessed during the
execution of the vertices v1, v2 and v5 thus N1

1 = {2, 5}.

B. Workflow initiation

The workflow is initiated by the business partner b1 assigned
to the vertex v1 who issues the first set of workflow messages
(M1→jp)p∈[1,z1]. The workflow initiation mainly consists of the
following steps.
Step 1 : Workflow policy specification: generate

(PKi, SKi)i∈[1,n] and assign War

Step 2 : Initialization of the onion Od
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Step 3 : Data block initialization: compute ∀k ∈ [1, j] sign1(dk)

Step 4 : Compute N1
k and R1

k ∀k ∈ [1, j]

Step 5 : Data block encryption: compute ∀k ∈ [1, j], ∀l ∈ N1
k

{B1
k}PKl

Step 6 : Data block hash sets: compute ∀k ∈ [1, j], ∀l ∈ R1
k

{h({B1
k}PKl

)}SK1

Step 7 : Initialization of the onion Op: compute Op1
Step 8 : Message generation based on W and (N1

k )k∈[1,j]

The steps one and two are presented in sections IV-E and IV-C,
respectively. The workflow messages are generated with respect to
the specification defined in figure 12 and sent to the next business
partners involved. This includes the initialization of the onion
Op and that of data blocks which are encrypted with appropriate
vertex public keys.

C. Workflow message processing

A business partner bi being assigned to a vertex vi pro-
ceeds as follows upon receipt of the set of workflow messages
(Mjp→i)p∈[1,ki] sent by the ki business partners assigned to the
vertices (vjp)p∈[1,ki] executed right before vi.
Step 1 : Retrieve SKi from Od
Step 2 : Data block decryption with SKi based on Jri
Step 3 : Execution proof verification: peel off the onion Op
Step 4 : Data integrity check based on W and PW
Step 5 : Vertex execution
Step 6 : Compute N i

k ∀k ∈ J
r
i and Rik ∀k ∈ J

w
i

Step 7 : Data block update: compute ∀k ∈ Jwi signi(dk) and
update dk content

Step 8 : Data block encryption: compute ∀k ∈ Jri ,∀l ∈ N i
k

{Bik}PKl

Step 9 : Data block hash sets: compute ∀k ∈ Jwi , ∀l ∈ Rik
{h({Bik}PKl

)}SKi

Step 10 : Onion Op update: compute Opi

Step 11 : Message generation based on W and (N i
k)k∈[1,j]

After having retrieved SK1 from Od, bi verifies the integrity
of workflow data and that the execution of the workflow up to
his vertex is consistent with the onion Op. Workflow data are
then processed during the execution of vi and data blocks are
updated and encrypted upon completion. Finally bi computes Opi

and issues the set of workflow messages (Mi→jp)p∈[1,zi] to the
intended business partners.

VI. SECURITY ANALYSIS

The parameters that are relevant to the security properties
offered by the mechanisms presented in this paper are mainly
twofold. First, there are several alternatives with respect to the
management of the key pair (PKpoli , SKpoli), including simple
key distribution based on the policy compliance, group key
management or policy-based cryptography, on which the security
properties verified by our solution depend. In fact, the main dif-
ference between the three policy private key distribution schemes
we identified comes from the number of business partners sharing
the same policy private key. As a matter of fact, the more partners
share a given private key the easier it is for some unauthorized
peer to get this private key and get access to protected data.
Besides, the trustworthiness of business partners can not be
controlled, especially when it comes to sharing workflow data
with unauthorized peers once the vertex private key has been
retrieved. In this context, the mechanisms presented in this paper

verify some properties that do not depend on the underpinning
policy private key distribution scheme while some other do. In the
security evaluation of our solution, we make two assumptions:
• Security of policy keys: the public key encryption

scheme used in the specification of the policy key pair
(PKpoli , SKpoli) is semantically secure against a chosen ci-
phertext attack and the associated signature scheme achieves
signature unforgeability.

• Security of vertex keys: the public key encryption scheme
used in the specification of the vertex key pair (PKi,

SKi) is semantically secure against a chosen ciphertext
attack and the associated signature scheme achieves signature
unforgeability.

The theorems presented in this section have been proven in a
previous work [14] and are only reminded.

A. Inherent security properties

Theorem 6-1 (Integrity of execution). Vertex private keys
are retrieved by business partners knowing policy private keys
associated with the policies specified in the workflow.

Assuming in addition that business partners do not share vertex
private keys, the integrity of the distributed workflow execution is
assured i.e. workflow data are accessed and modified based on
the pre-defined plan specified by means of the sets Jri and Jwi .

Theorem 6-2 (Resilience to instance forging). Upon receipt
of a workflow message, a business partner is sure that a set of
business partners knowing policy private keys associated with
the policies specified in the workflow have been assigned to
the vertices executed so far provided that he trusts the business
partners satisfying the policy pol1.

Theorem 6-3 (Data Integrity). Assuming that business part-
ners do not share vertex private keys they retrieve from the onion
Od, our solution achieves the following data integrity properties:
• Data truncation and insertion resilience: any business part-

ner can detect the deletion or the insertion of a piece of data
in a workflow message

• Data content integrity: any business partner can detect the
integrity violation of a data block content in a workflow
message

These three security properties are sufficient to enable a coher-
ent and secure execution of distributed workflows provided that
business partners are trustworthy and do not share their policy or
vertex private keys. The latter assumption is in fact hard to assess
when sensitive information are manipulated during the workflow.
We therefore introduced the traceability mechanism to meet the
requirements of sensitive workflow executions.

B. Revocation of a business partner anonymity

The main flaw of the basic security mechanisms we outlined
is that the involvement of business partners in a workflow can
remain anonymous thus preventing the detection of potential
malicious peers who somehow got access to some policy private
keys. To overcome this limitation when required, traceability
with group cryptography has to be used during the execution
of a business process. In this case the anonymity revocation
mechanism provided with group cryptography can be seen as a
penalty for business partners thus preventing potential malicious
behaviors such as vertex private key sharing with unauthorized
peers. Besides, policy private keys distributed by a group manager



9

are intended for individual use which makes key leakage highly
unlikely.

The following theorems hold when the policy private key
distribution scheme is based on group encryption techniques and
traceability is required in the execution of workflows. As corollary
of this assumption, we assume that vertex private keys are not
shared with unauthorized peers, theorem 6-3 is thus verified.

Theorem 6-4 (Integrity of execution). The integrity of the
distributed workflow execution is ensured or the workflow in-
stance is declared inconsistent by the selected workflow arbitrator.
Integrity of the distributed workflow execution consists in this case
in performing the following tasks:
• workflow data are accessed and modified based on the pre-

defined plan specified by means of the sets Jri and Jwi ;
• signatures with policy private key are stored by the business

partners involved in the workflow execution.

C. Discussion

As mentioned in the security analysis, group cryptography
associated with anonymity revocation provides a full-fledged so-
lution that meets the requirements of sensitive workflow instances.
The other policy private key distribution schemes can be in
fact used when the workflow execution is not sensitive or the
partners satisfying the policies required by the workflow are
deemed trustworthy. Our solution can still be optimized to avoid
the replication of workflow messages. A business partner may
indeed send the same workflow message several times to different
partners satisfying the same security policy resulting in concurrent
executions of a given workflow instance. Multiple instances
can be detected by the workflow arbitrator when traceability
is required or a solution based on a stateful service discovery
mechanism can be also envisioned to solve this problem.

VII. INTEGRATION WITHIN THE COORDINATION PROTOCOL

In this section we discuss the possible integration of the
security mechanisms specified in this paper within the transac-
tional protocol presented in section II. We thus assume in what
follows that the term workflow instance refers to the execution
of a distributed workflow that is supported by the transactional
protocol presented in section II and that implements the security
mechanisms outlined in this paper.

There are various types of security faults that can be raised
during the execution of the security mechanisms we have just
specified and that need to be handled by the coordination protocol
so that a workflow instance can recover when these security
faults are caught. In the fashion of typical execution faults a
failure recovery strategy has to be defined for security faults. In
a first approach, one could regard security faults as failures to
execute and directly integrate them into the transactional protocol
execution. This approach would however lead to consider a strict
atomicity within a workflow instance as the security mechanisms
we specified are executed by all the business partners involved in
a workflow instance thus making the latter prone to failures. This
approach is as a result not suited to meet the requirements that
are relevant to assuring consistency of workflow instances with
respect to relaxed atomicity constraints. We thus choose to define
security-fault handling mechanisms that rely on the workflow
arbitrator and thus group cryptography techniques introduced in
section IV-D, in order to manage the recovery procedure when

security faults occur. In this case, the failure recovery strategy
associated with the complete failure of a workflow instance due
to a security fault consists in penalizing the business partner that
caused the fault. The specification of possible penalties that can
be issued to business partners is out of the scope of this work but
one could think to legal compensations.

The security-fault handling mechanisms that we designed are
integrated into the ones defined in the context of transactional fail-
ures in order to first recover from security faults that do not lead
to the complete failure of a workflow instance without canceling
the workflow instance as well as penalize business partners that
may cause security faults from which it is not possible to recover.
This approach not only enables the detection of security faults but
also their recovery whenever possible while preserving relaxed
atomicity constraints required by the execution of workflows.
Security solutions are indeed often only considered a means to
detect inconsistencies within the execution of applications but the
way to properly handle these inconsistencies is left aside. On the
contrary, we consider in this work these two aspects, security
inconsistencies do not indeed always imply complete failure of a
workflow execution.

We first describe the different types of security faults that can be
raised during the security mechanism execution before specifying
the recovery mechanisms designed to handle the latter.

A. Security faults

There are six main types of security faults that can be en-
countered during the execution of a distributed workflow instance
implementing the security mechanisms we presented, as follows.

1) Data decryption fault: a business partner is not able to
decrypt a piece of data that he is allowed to access based on the
workflow specification during the execution of the vertex to which
he is assigned. The data decryption fault can be raised at anytime
during a workflow instance and is forwarded to the coordination
protocol as it keeps a business partner from carrying out a vertex
execution.

2) Data integrity fault: : a business partner detects that a piece
of data has been altered in the workflow message he has just
received. The data integrity fault can be raised at anytime during
a workflow instance and is forwarded to the coordination protocol
as it keeps a business partner from carrying out a vertex execution.

3) Vertex private key retrieval fault: a business partner can not
retrieve a vertex private key from the onion Od. The vertex private
key retrieval fault can be raised at anytime during a workflow
instance and is forwarded to the coordination protocol as it keeps
a business partner from carrying out a vertex execution.

4) Proof of execution fault: a business partner can not assess
the validity of the onion Op i.e. that all signatures are valid.
The proof of execution fault can be raised at anytime during a
workflow instance and is forwarded to the coordination protocol
as it keeps a business partner from carrying out a vertex execution.

5) Discovery fault: : no candidate business partner satisfying
the policy associated with a vertex can be found. The discovery
fault can only be raised during the replacement of business
partners since the transactional protocol execution requires the
assignment of all business partners to workflow vertices prior to
the workflow instantiation. This fault is in fact equivalent to the
failure of the associated vertex and of course is critical enough to
be forwarded to the coordination protocol, we however consider
it a transactional failure rather than a security fault.
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Fig. 13. Business partner registration when security mechanisms are used

6) Encryption, decryption or signature fault: an error occurred
during the encryption, the decryption or the signature process of
some data that is not due to an invalid signature or a key material
issue. The “Encryption, decryption or signature fault” only refers
to computational or accidental faults that may occur during the
operation execution and we consider that these operations are
retriable. This fault is therefore not forwarded to the coordination
protocol.

These various types of faults are basically derived from the
sequence of operations specified in section V-C and that is exe-
cuted by all business partners involved in a distributed workflow
instance. The four types of security faults that are forwarded to
the coordination protocol, can be in some cases handled without
having to declare the complete failure of a workflow instance if
these faults occurred accidentally. The workflow execution can
indeed recover using a simple backup of corrupted workflow
messages since the operations that can raise these faults are
executed prior to any workflow data processing. When however
it is not possible to recover from them using basic fault handling
mechanisms, the workflow arbitrator has to be contacted. Our goal
towards designing appropriate security-fault handling mechanisms
therefore consists in the enforcement of the following property:

(P3) Should a security fault from which it is not possible to
recover occur, the identity of the business partner that made
an error or behaved maliciously can be traced back

The design of the corresponding security-fault handling mech-
anism that is presented next thus assumes that the policy private
key distribution scheme implemented is group cryptography so
that business partners’ identities can be easily traced back using
the mechanisms specified in this paper.

B. Business partner registration

During the course of the normal business partner registration
phase that takes place within the transactional protocol execution,
we add a security handshake wherein the business partner selected
to execute a given vertex transmits to the critical zone initiator
his signature with policy private key of the workflow policy.
This handshake can be seen as a commitment that the business
partner will behave correctly during the workflow instance. The
business partner registration is depicted in figure 13. The critical
zone initiator contacts a candidate business partner asking him
whether he agrees to commit to execute the operation a of the
workflow whose workflow policy is PW . In case he accepts and
this means that he trusts the business partner initiator of the
critical zone who satisfies the policy pol1, the candidate business
partner acknowledges with a signature on the workflow policy
with his policy private key SKbi

poli
. Once the newly assigned

business partner’s coordinator for the transactional protocol ex-
ecution is known, bv1 sends the information and acknowledges
the registration with a signature on PW with his policy private

bx
v bi

m

{M i j , {hM i j}SK poli
bi }PK pol x

{{h M i j }SK pol x
bx }PK pol i

Fig. 14. Workflow message backup when security mechanisms are used

key. The following registration mechanism assumes as for the
basic security mechanisms that the selected business partner trusts
business partners satisfying the policy associated with the first
vertex of a critical zone.

C. Workflow message backup process

The workflow data backup procedure implemented by the basic
transactional protocol is also modified in order to handle the
security faults we identified. In this case, we store the workflow
message that has been issued by a business partner of type bmk to
the next business partner involved in the workflow instance. The
workflow message backup copy is still handled by the business
partner bvx most recently executed. The workflow message backup
procedure is depicted in figure 14. The business partner bmi is in
charge of assessing the validity of the message that he sends to
the business partner bvx most recently executed, this is why he
signs the message he sends with his policy private key SKbi

poli
.

The business partner bvx acknowledges the receipt of the workflow
message signing it with his policy private key SKbx

polx
. Of course

at each step of the procedure both business partners verify the
validity of the signature provided by the other and may ask for a
new transmission if they do not match.

D. Recovering from security-faults

Security faults which occur accidentally, such as these that
result from transmission errors and the like, can be simply
recovered using backup workflow messages that are stored by
the business partners of type bvx and that should be valid. It
is indeed the responsibility of the business partner that backed
up the workflow message that should be retransmitted to ensure
the validity of the latter. This statement is actually enforced by
the signature provided by business partners during the message
backup procedure. If backup workflow messages are valid, there
exists a restoration point in the workflow execution such that the
execution is still consistent from both transactional and security
perspectives so that the worfklow execution can be restarted from
that point if required. If the backup workflow message is however
not valid, the recovery procedure fails and the workflow instance
arbitrator is contacted to mediate the case as specified in the next
section.

E. Handling security-faults when the recovery procedure fails

When security faults can not be recovered after several re-
transmissions of a backup workflow message, the mediation of
the workflow instance arbitrator is required. The reasons why
the recovery procedure fails are in fact not limited to malicious
behaviors and our procedure to handle recovery failures does
not depend on these various reasons as our primary goal is the
anonymity revocation of the business partner that caused the fault.
There are mainly four situations that require the mediation of the
workflow arbitrator:
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1) Failure to recover from a “Data decryption fault”: based
on the signatures and workflow messages sent by the two business
partners that were involved in the backup procedure of the
corrupted workflow message, the workflow arbitrator determines
whether the business partner of type bvx that stored this message
has caused the corruption or whether the other business partner
backed up a message wherein a piece of data was not properly
encrypted with the appropriate vertex public key. Based on the
outcome of the mediation, the workflow arbitrator can either ask
for a new generation of the corrupted workflow message with
workflow data correctly encrypted or declare the workflow in-
stance inconsistent and penalize the business partner who caused
the fault.

2) Failure to recover from a “Vertex private key retrieval
fault”: based on the signatures and workflow messages sent by
the two business partners that were involved in the backup proce-
dure of the corrupted workflow message, the workflow arbitrator
determines whether the business partner of type bvx that stored this
message has caused the corruption, whether the other business
partner backed up a message that was corrupted or whether the
workflow initiator generated an onion Od that was corrupted in the
first place. Based on the outcome of the mediation, the workflow
arbitrator can either ask for a retransmission of the corrupted
workflow message should a valid copy of it be available, ask the
workflow initiator to generate a new onion Od corresponding to
the current state of the workflow execution (i.e. the upper layer
of this onion is associated with the vertex during the execution
of which the fault was raised) or declare the workflow instance
inconsistent and penalize the business partner that caused the
fault.

3) Failure to recover from a “Data integrity fault”: based on
the signatures and workflow messages sent by the two business
partners that were involved in the backup procedure of the
corrupted workflow message, the workflow arbitrator determines
whether the business partner of type bvx that stored this message
has caused the corruption or whether the other business partner
backed up a message that was corrupted in the first place. Based
on the outcome of the mediation, the workflow arbitrator can
either ask for a retransmission of the corrupted workflow message
should a valid copy of it be available or declare the workflow
instance inconsistent and penalize the business partner that caused
the fault.

4) Failure to recover from a “Proof of execution fault”: based
on the signatures and workflow messages sent by the two business
partners that were involved in the backup procedure of the
corrupted workflow message, the workflow arbitrator determines
whether the business partner of type bvx that stored this message
has caused the corruption or whether the other business partner
backed up a message that was corrupted in the first place. Based
on the outcome of the mediation, the workflow arbitrator can
either ask for a retransmission of the corrupted workflow message
should a valid copy of it be available or declare the workflow
instance inconsistent and penalize the business partner that caused
the fault. In case the fault is the result of a signature missing in the
onion Op, the business partner that did not store it can be easily
identified since the workflow initiator gathers all signatures prior
to the workflow instantiation.

It should be noted that these situations wherein workflow
message retransmission is not sufficient to recover are in fact
highly unlikely to occur since the integration within the business
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Fig. 15. Integration of the security mechanisms within a workflow system

partner registration process of a signature retrieval mechanism
enabling anonymity revocation can be seen as a penalty for
business partners that may cause security faults.

VIII. IMPLEMENTATION

We developed a security library in order to implement the
mechanisms presented in this paper. The implementation supports
the following encryption algorithms:
• IBE: we use the Java Cryptography Extension (JCE)

provider presented in [15] that is an implementation of the
ID-based cryptosystem specified in [12],

• RSA-ECB: we use the Bouncy Castle [16] JCE provider that
implements the RSA-ECB algorithm.

The RSA-ECB encryption algorithm is only used for demon-
stration purposes as the IBE implementation is resource-
consuming ; the RSA-CBC scheme would be more suitable
for deployment but is unfortunately not implemented by the
JCE provider we have used. The security library has been
integrated into the implementation of the pervasive workflow
system introduced in section based on the sequence of operations
specified in the sections V-B and V-C. The basic principles of the
pervasive workflow engine implementation leveraging the security
mechanisms we presented are depicted in figure 15. Due to the
distributed nature of the pervasive workflow system, the pervasive
workflow engine is deployed on each business partner involved
in a workflow instance. Its implementation is composed of the
following modules:
• Engine wrapper: this module implements the pervasive

workflow business logic executed by a business partner as
specified in section II.

• BPEL engine: the pervasive workflow implementation lever-
ages the BPEL [17] workflow description language, a BPEL
workflow engine is therefore used as an interpreter for
pervasive workflow specifications.

• Partners’s applications: the set of applications and services
available on a business partner’s device. They are contacted
by the BPEL process.

The complete security mechanism execution is handled by the
engine wrapper that forwards decrypted data only to the BPEL
workflow engine. Once the results are sent back by the BPEL
engine to the engine wrapper, the latter processes data and builds
the workflow messages that are sent to the next business partners
involved in the distributed workflow execution.

As specified in section VII the security mechanisms have been
integrated into a coordination framework whose implementation
principles are depicted in figure 16. The coordination stack is
composed of the following components:
• Transactional coordinator: this component is supported by

the critical workflow initiator. On the one hand it implements
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Fig. 16. Fault management framework

the business partner assignment procedure as part of the
composition manager module and on the other hand it is in
charge of assuring the coordinator role of the transactional
protocol.

• Transactional submanager: this component is deployed on
the other partners and is in charge of forwarding coordination
messages from the local workflow engine to the appropriate
subcoordinator or coordinator and conversely.

IX. RELATED WORK

Security of cross-organizational workflows in both centralized
and decentralized settings has been an active research field over
the past years [18], [19] mainly focusing on access control,
separation of duty and conflict of interests issues. However, in
the decentralized setting issues related to the integrity of workflow
execution and workflow instance forging, which are presented in
this paper have been left aside. This section discusses related work
in the access control, separation of duty and conflict of interests
research fields, before presenting related work in the area of onion
encryption.

A. Separation of duty and conflict of interests

The management of conflict of interests within a workflow
execution consists in enforcing that workflow data which are
sensitive for a business partner can not be accessed by business
partners that are competitors (in the marketing sense) of the
latter within the workflow instance. In the centralized setting
whereby workflow management and control tasks rely on a
trusted coordinator, solutions can be found to manage workflow
data accordingly, however in the decentralized setting wherein
all workflow data are transferred between partners this is a
challenging issue.

In [4] and [3] mechanisms are proposed for the management
of conflict of interests [20] during the distributed execution of
workflows. These pieces of work specify solutions in the design
of access control policies to prevent business partners from
accessing data that are not part of their classes of interest. These
approaches do not address the issue of policy enforcement with
respect to integrity of execution in fully decentralized workflow
management systems yet they appear to complement our security
mechanism design. The access control policy models suggested

in [4] and [3] can indeed be used to augment our work especially
in the specification of the sets Jri and Jwi at workflow design time
so that the mechanisms we designed to enforce access control on
workflow data integrate solutions for the management of conflict
of interests.

The separation of duty principle within a workflow execution
consists in ensuring that two or more distinct business partners
should be involved in the completion of a set of related workflow
tasks [21]. As for the management of conflict of interests, existing
solutions such as the one presented in [22] can be used to augment
our work at workflow design time in the specification of more
fine-grained workflow policies associated with vertices.

B. Access control within workflow management systems

The enforcement of access control policies within workflow
management systems has been a quite active research field over
the past years especially in the centralized setting, only few
contributions do however tackle this issue in the decentralized
setting.

Most approaches rely on the Role Based Access Control
model [23], [24] to implement access control policies within the
execution of a workflow [25]. In the centralized setting, many
access control infrastructures have been as well proposed for
business processes executed in the Service Oriented Architecture
paradigm [26], [24], [27].

In [28], [5] centralized infrastructures are proposed which
protect resources that should be accessed during the execution
of a workflow based on credentials provided by business partners
involved in the workflow instance. In [29] a similar approach
based on XACML [30] is presented to enforce access control
policies so that BPEL activities are executed by authorized users
during the execution of BPEL processes. Despite solid contri-
butions, these approaches do not however meet the requirements
introduced in the decentralized setting as they rely on a centralized
component to issue access control decisions. They are as a matter
fact designed to protect local resources rather than workflow
data that are transferred between business partners without a
centralized point of coordination in charge of business partner
assignment and access control policy enforcement.

Some pieces of work have also tackled security issues within
distributed collaborative applications. In [31] a solution enforcing
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RBAC policies is presented to protect the access to peers part
of a peer-to-peer community. In this approach peers are able to
make access control decisions autonomously without relying on
an external policy decision point. Finally in [32] an access control
model is also proposed that however do not include the notion
of role and thus is not appropriate to meet the requirements we
identified for distributed workflows.

C. Onion encryption techniques

Onion encryption techniques have been introduced in [6]
and are widely used to enforce anonymity in network routing
protocols [33] or mobile agents [34]. In the approach presented
in this paper, we apply onion encryption techniques within a
new application domain that is workflow-based applications and
that introduces new requirements. We map onion structures with
workflow execution patterns in order to build proofs of execution
and enforce access control on workflow data. As a result, more
complex business scenarios are supported by our solution than
usual onion routing solutions. Furthermore, combined with policy
encryption techniques, our solution provides a secure runtime
environment for the execution of fully decentralized workflows
supporting runtime assignment of business partners, a feature
which had not been tackled so far. Existing solutions based on
onion ring encryption developed in other application domains can
not indeed be directly used to meet security requirements specified
within decentralized workflow management systems.

X. CONCLUSION

We presented mechanisms towards meeting the security re-
quirements raised by the execution of workflows in the decen-
tralized setting. Our solution, capitalizing on onion encryption
techniques and security policy models, protects the access to
workflow data with respect to the pre-defined workflow execution
plan and provides proofs of execution to business partners. In
addition, those mechanisms combined with group cryptography
provide business partners’ identity traceability for sensitive work-
flow instances and can easily be integrated into the runtime
specification of decentralized workflows. Our approach is suitable
for any business scenarios in which business roles can be mapped
to security policies that can be associated with key pairs. It can
thus be easily integrated into existing security policy models such
as the chinese wall [20] security model.

We also showed how these security mechanisms can be inte-
grated into a transactional coordination framework. The goal of
this approach is to make sure that detecting security faults does
not necessarily mean the complete failure of the process execu-
tion. We presented the corresponding security-fault mechanisms
relying on the workflow arbitrator to handle critical situations.

Finally, an implementation work based on Web services tech-
nologies and identity-based encryption techniques has been pur-
sued as a proof of concept of our theoretical work.
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