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Abstract

Hop-by-hop data aggregation is a very impor-
tant technique used to reduce the communication
overhead and energy expenditure of sensor nodes
during the process of data collection in a Wireless
Sensor Network (WSN). However, the unattended
nature of WSNs calls for data aggregation tech-
niques to be secure. Indeed, sensor nodes can be
compromised to mislead the base station by in-
jecting bogus data into the network during both
forwarding and aggregation of data. Moreover,
data aggregation might increase the risk of confi-
dentiality violations: If sensors close to the base
station are corrupted, an adversary could easily
access to the results of the “in network” com-
putation performed by the WSN. Further, nodes
can also fail due to random and non-malicious
causes (e.g. battery exhaustion), hence availabil-
ity should be considered as well.
In this paper we tackle the above issues that af-
fect data aggregation techniques by proposing a
mechanism that: i) provides both confidentiality
and integrity of the aggregated data so that for
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any compromised sensor in the WSN the infor-
mation acquired could only reveal the readings
performed by a small, constant number of neigh-
boring sensors of the compromised one; ii) de-
tects bogus data injection attempts; iii) provides
high resilience to sensor failures. Our protocol
is based on the concept of delayed aggregation
and peer monitoring and requires local interac-
tions only. Hence, it is highly scalable and intro-
duces small overhead; detailed analysis supports
our findings.

keywords: Wireless Sensor Networks, Se-
cure data aggregation, bogus data injection attack,
node failure, peer monitoring, resilience.

1 Introduction

A Wireless Sensor Network (WSN) is a collec-
tion of sensors characterized by a size that can
range from a few hundred sensors to a few hun-
dred thousands or possibly more. A WSN can be
deployed in harsh environments to fulfil the re-
quirements of both military and civil applications
[1]. Due to the lack of a network infrastructure,
sensors build a wireless multi-hop network in an
autonomous way. Moreover, since power supply
of each individual sensor is provided by a bat-
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tery, both communication and computation activ-
ities must be optimized. In particular, radio com-
munications are more demanding than computa-
tional operations in terms of energy consumption
[26, 29, 32]. To that effect,data aggregation
has been put forward as an essential technique to
achieve power efficiency by reducing data redun-
dancy and minimising bandwidth usage. Data ag-
gregation consists of processing data collected by
sensor nodes at each intermediate node en route
to the sink in order to minimising the number of
messages transmitted in the WSN.

The data sensed by a WSN is routed to a base
station (BS) that can be viewed as a device that
does not suffer from the limitations of the sen-
sors and that acts as a gateway towards the Inter-
net. Sensor networks must be robust and durable
in order to overcome individual sensor failure
due to either malicious (e.g. destruction) or non-
malicious (e.g. malfunctioning) events. Indeed, it
is likely that WSNs will be deployed in situations
where an adversary may be motivated to disrupt
the function of the network. For instance, an ad-
versary may compromise a node in the network
and gain access to its keying material. Further-
more, it is possible for a sensor to fail to properly
execute the protocol due to HW or SW failures.
In this paper, we focus on security threats that
mainly target the data aggregation mechanism in
a WSN, namely: Confidentiality violations of the
aggregate data sensed by the WSN and data poi-
soning attacks, aiming at tampering with aggre-
gate value computed by the WSN. The main con-
tribution of our work is the design of an aggrega-
tion protocol that is resilient to node exposures:
Compromising a node should not allow the ad-
versary to jeopardize the whole computation per-
formed by the WSN.

We assume that sensors use symmetric key en-
cryption to provide confidentiality [2, 5]. It is
worth noticing how key management impacts data
aggregation. On one hand, providing all sensors
with a single shared key is not a robust solution,
since a single node compromise would impact the

security of the whole WSN. On the other hand,
pairwise key distribution as suggested in [10], is a
more robust solution. However, even in this case,
if the adversary is able to compromise a single
node that has aggregated a sufficient amount of
data, information leakage on the aggregated data
becomes possible. Meanwhile there is an inherent
conflict between data confidentiality and data ag-
gregation due to the fact that data aggregation re-
quires intermediate nodes to access data in clear-
text in order to process it whereas data confiden-
tiality calls for end-to-end encryption of each data
segment between the sensors and the sink. Ho-
momorphic encryption techniques appear to be
the mandatory solution to this conflict since they
allow some operations to be performed on en-
crypted data. Hence, we resort to homomorphic
encryption schemes that allow sensors to perform
the aggregation over encrypted data. In this case,
single node compromise does not cause any infor-
mation leakage of the aggregated data [4].

Our proposal at glance: In a standard tree-
based data aggregation solution, each sensor node
would compute the aggregate sum of all its inputs
one level down in the tree hierarchy and pass the
computed value up in the hierarchy. In our pro-
posal, nodes perform delayed aggregation; each
node aggregates the encrypted values of sensed
data provided by nodes down in the hierarchy and
passes up in the hierarchy a triplet that consists of:
The result of the aggregate computation, the num-
ber of contributors to the aggregate value, and the
encryption of the node’s own reading. In addition
to the basic data aggregation, our proposal also
involves a mechanism for integrity verification:
Some peer nodes of the WSN monitor the data ex-
changed by neighboring nodes in order to perform
the data aggregation operation and to compare the
result they compute with the aggregate value for-
warded by their neighbors. Delayed aggregation
thus trades off a slight increase in communication
overhead during the aggregation phase in return
for the capability to perform result-checking.

Contributions: This paper presents a data ag-
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gregation protocol based on additive homomor-
phic encryption to provide data confidentiality.
Furthermore, we introduce a local peer monitor-
ing mechanism to detect the injection of false
data. In particular, the proposed protocol is:

• Secure, since in a successful attack on the
aggregated data, an oblivious adversary has
to compromise at least a number of sensors
proportional to the number of readings the
aggregated data is composed by;

• Efficient, since each sensor is required
to perform only local communications to
achieve the global task carried out by the
WSN;

• Robust with respect to both false data injec-
tion and confidentiality;

• Scalable, since the protocol continues to pro-
vide the above properties as the number of
sensors in the WSN increases. For instance,
our protocol is still effective for a WSN com-
posed of 65,516 sensors;

• Resilient: A node compromise would only
compromise the node itself and its neighbor-
ing nodes; this could provide access to the
readings of these nodes, but not to the aggre-
gated values received by these nodes.

Organization: The paper is organized as fol-
lows: Section 2 reports on the related work in the
field, while Section 3 states the rationale and the
assumptions our solution relies on. In Section 4
we formalize our security requirements, while in
Section 5 we describe our secure data aggrega-
tion protocol. In Section 6 we discuss the proper-
ties provided by our protocol. Finally, Section 7
presents some concluding remarks.

2 Related Work

Early work in data aggregation for WSN as-
sumed every node to be honest [16, 27]. This

restrictive assumption has been relaxed in [25],
addressing the problem of a single compromised
node. However, the proposed protocol may be
vulnerable if just a pair of parent and child nodes
at the logical tree used to convey data to the BS
are compromised. Further, each aggregator sen-
sor has to forward a number of messages that is
proportional to the number of contributors. The
work in [5] enables the BS to verify whether the
aggregated value provided by the WSN is a good
approximation of the values that are actually col-
lected by the sensors even when a fraction of the
sensor nodes are corrupted. However, this objec-
tive is achieved via interactive proof between the
aggregators and the central server (BS). Hence,
due to the computational and communication cost
incurred by this scheme the aggregators are less
likely to be common sensors. The work in [39]
analyses the security of various aggregation func-
tions that could be used in WSN. The author de-
scribes attacks against these existing aggregation
schemes and provides a framework to evaluate the
security of these schemes.

The Concealed Data Aggregation (CDA) con-
cept was first introduced in [21, 22]. The CDA
is a solution for end-to-end encryption that uses
homomorphic encryption functions to enforce se-
cure data aggregation in the context of WSNs. In
[42] the CDA concept is further extended: The
authors present a generalization of the approach
for a class of routing protocols and also propose a
key predistribution algorithm that limits the capa-
bility of an adversary to disrupt confidentiality of
the aggregated data.

Another work [4], leveraging the key concepts
introduced in [21, 22], introduces a new scheme
that addresses both confidentiality issues and ef-
ficient data-aggregation algorithms. This scheme
relies on a simple but provably secure homomor-
phic encryption function. However, some draw-
backs affect this scheme: First, it is not robust
against node compromise, that is a single node
failure can disrupt the whole WSN computation;
second, the data packet size is not optimal; finally,
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there is the need to piggyback toward the BS ei-
ther the IDs of all nodes that contributed to the
computation or the IDs of the nodes that did not
contribute.

Recently, in [6] the authors presented the first
algorithm for provably secure hierarchical in-
network data aggregation. The proposed algo-
rithm incurs a node congestion message overhead
of O(∆ log2 n), where∆ is the maximum degree
of any node in the aggregation tree. The main al-
gorithm is based on performing the SUM aggre-
gation securely by first forcing the adversary to
commit to its choice of intermediate aggregation
results, and then having the sensor nodes indepen-
dently verify that their contributions to the aggre-
gate are correctly incorporated. However, while
this proposal achieves integrity, the confidential-
ity of the aggregated value is not addressed. In
this scheme, the closer to the BS the compro-
mising nodes, the more information is leaked to
an adversary. Adding confidentiality to the pro-
posed scheme, while retaining integrity, is not ad-
dressed. A recent improvement to this algorithm
is discussed in [17]. A further contribution to
the field of data aggregation in WSN is in [3],
where the authors present a novel outlier elim-
ination technique designed for sensor networks.
This technique is called RANBAR and it is based
on the RANSAC (RANdom SAmple Consensus)
paradigm —well-known in computer vision and
in automated cartography—. The proposed RAN-
BAR algorithm is capable to handle a high percent
of outlier measurement. However, their proposal
rely on a strong pre-assumption, namely that the
sample is i.i.d. in the unattacked case. Further,
this latter proposal, as the former one, does not
address the confidentiality of the aggregated data.
A recent solution inspired by these proposals, but
taking into consideration security issues as well,
can be found in [37].

Our proposal takes the structure of the aggrega-
tion tree as given and leverages results that allow
to establish pairwise keys between nodes in the
WSN. One method for constructing an aggrega-

tion tree is described in TAG [32] while, as for
pairwise key establishment, following the semi-
nal work in [15], several solutions nowadays ex-
ist, that provide a secure pairwise key establish-
ment [2, 10, 11, 44].

Finally, note that a form of delayed aggrega-
tion — as expressed in the previous section— was
used in [23] and [6] with totally different goals:
In the former paper to implement a quantile sum-
mary algorithm; in the latter to balance the path
length in the aggregation tree.

3 System model

3.1 Adversary model

We identify theobjectivesthat an adversary has
in thwarting a WSN as twofold:

• The adversary could be interested in eaves-
dropping the aggregated value computed by
a relevant fraction of the nodes in the WSN.
Note that this scenario can easily occur
within the data aggregation framework, in
which a hierarchy is imposed over nodes. In-
deed, the impact of a node compromise in-
creases as the distance of that node from the
BS decreases;

• The adversary could provide the BS with bo-
gus data, so that the decision process of the
BS could be possibly disrupted or subverted
towards incorrect decisions. This goal has
been described in [5] as astealthyattack, i.e.,
to cause the querier to accept a false aggre-
gate that is higher or lower than the true ag-
gregate value. It is out of the scope of the
paper to consider denial-of-service (DoS) at-
tacks where the goal of the adversary is to
prevent the querier from getting any aggre-
gation result at all. Furthermore, any mali-
ciously induced extended loss of service is a
detectable anomaly which will (eventually)
signal the presence of the adversary; subse-
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quent protocols or manual intervention are
assigned the task to resolve the problem.

Finally, note that the injection of bogus or
forged data also depletes the constrained re-
sources of sensor nodes, shortening the net-
work lifetime. Hence, data injection attacks
must be detected as early as possible.

In this paper we consider an adversary able to
compromise any sensor in the WSN. In particular,
we refer to theoblivious adversary: At each step
of the attack sequence, the next sensor to be tam-
pered with is chosen randomly among the ones
that have yet to be compromised. This adversary
model has been adopted also in [4, 10, 15, 31] to
cite a few.

3.2 Sensor failure model

Sensors can fail due to either malicious (e.g.
destruction, capture and re-programming) or non-
malicious (e.g. malfunctioning, battery exhaus-
tion) events. For the latter case, we assume that a
sensoruf can fail with a probabilityfp which is
equal for every sensor and does not depend on the
history of sensor failure or compromise. That is,
Pr[uf fails|ui1 , . . . , uij already failed ∨
uh1

, . . . , uhm
already compromised] =

Pr[uf fails] = fp. We refer to this model
asrandom failure model.

We note that a sensor that fails is less harmful
from the point of view of security for our scheme,
as compared to a sensor that has been captured
and reprogrammed.

We also make the conservative assumption that
once a sensor fails, it can be considered as cor-
rupted by the adversary. The consequence is that
if we can prove our protocol to be resilient to the
adversary model with probability (1-ǫ), then the
resilience in the random failure model is at least
(1-ǫ).

3.3 Aggregation function

In this paper we follow the idea first introduced
in [25] and consider the value computed (in a dis-
tributed way) by the WSN as the result of a func-
tion that accepts as inputs the readings of a rea-
sonable portion of the sensors the WSN is com-
posed of.

In this work we focus on themean valueof the
readings, as it has been done for example in [4]
and [39]. This choice allows to compare our re-
sults with previous work on secure data aggrega-
tion, and in particular with [4]. However, we point
out that the mechanisms described hereafter can
be adapted to support the computation of several
aggregated values besides the mean.

3.4 Network setup

We consider a large sensor network with
densely deployed nodes. Due to dense de-
ployment, nodes may have overlapping sensing
ranges, hence events can be detected by multi-
ple nodes providing a certain level of redundancy
in sensed data. As in other data aggregation pro-
tocols, e.g. [25], we assume a topological tree
rooted at the base station, as the one presented in
[33]. There are various methods for constructing
the aggregation tree based on different application
requirements [20, 32, 43]. Our solution does not
rely on a specific tree construction algorithm.

Note that data aggregation requires all sensors
to send their data to the BS within the same sam-
pling period. Hence, in the following we assume
that sensors haveloosely synchronized clocks[14,
18, 19, 38] and the aggregation scheme to op-
erate in rounds. Time synchronization has been
leveraged to design several solutions for security
in WSN, like [5, 36, 44].

As a direct consequence of the high density
and redundancy in data acquisition that charac-
terizes the WSN network under investigation, in
our model we assume the existence of a mecha-
nism that assigns a certain portion of sensors to
cover the role ofpeer monitoringnodes. Peer
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monitoring nodes are used to verify that the ag-
gregation process is carried out correctly, i.e. they
detectthe subversive activity aiming at compro-
mising the integrity of the aggregated data. Peer
monitors are selected during the setup of the topo-
logical tree to achieve data aggregation, wherein
nodes usually take up the role of data aggregators
(see Section 5). It should be noted that the mech-
anism used to designate roles should not statically
assign the function carried out by a sensor node:
A sensor could play different roles at different in-
stants of time. However, for the sake of clarity,
we assume roles to be static in the following dis-
cussion. It is outside the scope of this current
work to describe a mechanism to select peer mon-
itors: however, we point the reader to numerous
related works that treat sensor selection as a min-
imum or dominant covering set problem [24, 9].
In particular, [41] discusses distributed algorithms
to select backup sensors to complement aggrega-
tion topologies. Such mechanisms can be easily
adapted to solve the problem of selecting a min-
imum set of peer monitors that would cover the
aggregation tree.

When taking up the role of a peer monitor
a sensor exploits the broadcast nature of radio
communications and processes messages that are
not originally destined to it, instead of discarding
them. Note that a node assigned to this role does
not bear any additional energetic costs, in terms of
communication, as compared to any other node in
the network. Indeed, all active nodes receive (and
spend energy to do so) any message sent within
their wireless transmission range. Peer monitors
are asked to support only a small additional over-
head (which is analyzed in Section 6.5) that is the
trade-off to accept to enjoy data integrity.

3.5 Sketch of the protocol

In this section we provide an overview of the
aggregation protocol (see Figure 1), which is de-
scribed in more detail in section 5. A Sensor can
be either an aggregator or a peer-monitor.

uc1 uc2

uc3

ua

uw2uw1

sensor node

peer monitor

Figure 1. Sketch of the aggregation protocol:
Aggregators, contributors and peer monitor-
ing nodes on a partial tree.

During the ith round, the aggregatorua —
assuming the aggregator hasj contributors—
combines the aggregated valuesAcq,i (q = 1 . . . j)
with each contributionscq,i to generate a new
aggregated valueAa,i; Then, nodeua will in-
voke its sensing function, and will encrypt the
sensed data (sa, i). Node ua will then send to
the aggregatorub up in the hierarchy the triple
< sa,i, Aa,i, na,i >, wherena,i is the number of
sensors that contributed toAa; Note that if the ag-
gregator is a leaf in the tree hierarchy, it will send
the triple< sa,i, 0, 0 >. In the following, to ease
the notation, we will not report the second index
relative to the current round, unless required by
the context.

Peer monitoring sensorsuw,i, which we de-
scribe in details in Section 5.1, receive the same
data as the aggregator and act as independent veri-
fiers checking if the aggregator correctly executed
the aggregation function over the received values.

4 Security requirements

We have identified the following requirements
for secure data aggregation protocols:

• Confidentiality: As discussed in Section 3.3,
confidentiality of the aggregated data is a
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fundamental property of a secure aggrega-
tion protocol;

• Resilience: As sensors have a short lifetime,
data aggregation protocols need to be de-
signed to be resilient to sensor failure;

• Scalability: As the size of a WSN can
vary over time, secure aggregation protocols
should scale with the number of sensors;

• Efficiency: As stated in Section 3.1 re-
sources, e.g. energy and bandwidth, are
scarce in a WSN. An efficient protocol for
secure data aggregation should perform an
early detection of false data injection1.

4.1 Data confidentiality

In this subsection we introduce the crypto-
graphic primitives used in the following. Our fo-
cus here is on a homomorphic encryption scheme
allowing arithmetic operations to be performed on
ciphertexts.

Formally, letEnc() denote a probabilistic en-
cryption scheme. LetM be the message space
andC the ciphertext space such thatM is a group
under operation

⊕

andC is a group under oper-
ation

⊗

. Enc() is a (
⊕

,
⊗

)-homomorphic en-
cryption scheme if for any instanceEnc() of the
encryption scheme, givenc1 = Enck1(m1) and
c2 = Enck2(m2), there exists a keyk such that
c1

⊗

c2 = Enck(m1

⊕

m2).
To provide data confidentiality we will adopt

and modify the additively homomorphic encryp-
tion scheme presented in [4]. In this scheme
Enc(m1, r1, p) = m1 + r1 (mod p), wherem1 is
the message to encrypt,r1 is the key, andp is the
modulus over which the sum is computed. The
aforementioned encryption scheme supports addi-
tively homomorphic encryption operations since
Enc(m1, r1, p) + Enc(m2, r2, p) = (m1 + r1

1It is outside the scope of this paper to study the actions
to be taken upon a detection event.

(mod p)) + (m2 + r2 (mod p)) = m1 + m2 +
r1 + r2 (mod p) = Enc(m1 + m2, r1 + r2, p).

In the present work, the keyri is generated by
a sensor via a stream cipher keyed with the se-
cret keyki and the unique identifier (id) of the
message to encrypt. While in the work presented
in [4] the secret keyki associated to a sensor is
shared only between the sensor and the BS, in our
work the secret keyki is also shared among neigh-
boring sensors. In Section 2 we pointed to recent
techniques to implement pairwise secret sharing
in a WSN.

It should be noted that the homomorphic en-
cryption function used in this work could be in-
spired by other solutions as well, like the one in
presented in [12], which has also been adopted in
[42].

4.2 Key setup

We now discuss on the cryptographic key setup
that we assume in our system. We assume sen-
sor nodes to share pairwise secret keys with their
physical neighbors, and that each sensor node can
establish a pairwise shared key with another node
that is multiple hops away. The pairwise key es-
tablishment schemes proposed in [31] or in [10]
where two nodes only need to know their IDs to
establish a shared key can be used to achieve our
requirements. We stress that both of these works
have been shown to be affordable for sensor net-
works in terms of computational constraints and
communication overheads.

As in [4], we also assume each sensor nodeui

to be capable of generating a keystreamri by us-
ing a stream cipher, such as RC4, keyed with the
sensor’s secret keyki and a unique message iden-
tifier id. The secret keyki is pre-computed and
shared (in a secure way) between sensorui, the
BS, and all neighbors ofui. Nodeui can share
the keyki with its neighborhood using the pair-
wise key it shares with each of its neighbors.

Before proceeding any further, we wish to point
out that the key setup discussed in this section ap-
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pears to be subject to the following attack. Dis-
tributing secret keys to a neighborhood implies
that an adversary may compromise a single sen-
sor and to be able to recover a number of keys
(ki, ri) that is equal to the size of the neighbor-
hood. In Section 6.2 we show that although we
cannot prevent this kind of attack, our scheme
bounds the impact of such an attack to the neigh-
borhood of the compromised node, while still pro-
viding guarantees on the confidentiality of the ag-
gregated data.

5 The aggregation protocol

As discussed in Section 3, we assume the WSN
to be organized in a logical tree with peer moni-
toring and aggregator roles assigned. In this sec-
tion, we focus on the normal operation of the ag-
gregation protocol. A snapshot of the tree hierar-
chy, with examples of aggregators and peer mon-
itors can be found in Figure 1. Furthermore, data
aggregation is assumed to be performed so as to
obtain the mean value of the data sensed by the
WSN.

Note that all operations shown in the sequel of
this section are performed modulusp, wherep is
a suitable prime number.

Aggregator: As sketched in section 3.5, the
core idea of the protocol proposed in this work
is that the aggregator sensorua does not com-
pute the mean on its own reading, but only
uses the readings of its contributory sensors (that
is, the aggregators one level down in the tree-
aggregation hierarchy). The encrypted reading of
sensorua (sa) will be aggregated by the sensor
ub towards which sensorua is contributor, as im-
posed by the logical aggregation hierarchy.

For each contributing sensorucq
(q =

1 . . . j), aggregatorua receives the triple<
scq

, Acq
, ncq

>, wherescq
is the encrypted read-

ing of contributing sensorucq
, Acq

is the received
aggregated value computed byucq

andncq
is the

number of contribution that generated the aggre-
gated valueAcq

.

Sensorua then ”unfolds” the aggregated data
received by every contributing sensor and in-
cludes the readings received by everyucq

to the
new aggregated value:

Aa =

∑j

q=1(Acq
∗ n−1

cq
) +

∑j

q=1 scq

nA

where:

na = nc1 + . . . + ncj
+ j.

During the computation of the aggregated data,
two cases may occur: Either all sensors sent their
contribution, or some sensors (ucm

) did not send
their contribution. In the latter case,ua adds
to the aggregated function the key (rcq

) these
sensors would have sent if the communication
had taken place. Finally,ua sends to the sensor
up in the hierarchy its current reading encrypted
with the random datara, the aggregated valueAa,
and the number of contributors so far (na). Note
that, unlike the algorithm proposed in [4], we
introduce a division (mod p). The division is
equivalent to compute the inverse of the number
nA and to perform a modular multiplication;
however, note that the modulus is relatively
small, hence the implementation of the extended
Euclidian algorithm is quite efficient [28]. The
pseudo code of the steps executed by sensorua is
reported in Algorithm 1.

5.1 Peer monitoring sensors

As discussed in Section 3.4, the role of peer
monitoring nodes (termeduw in the sequel of
this section) is to verify that an aggregator sensor
ua correctly performed the aggregation function.
Figure 1 shows a snapshot of the aggregation hi-
erarchy and two peer monitors,uw1

anduw2
.

Before delving into the details of the peer mon-
itoring operation we first give a definition.

Definition 1 Peer monitoring set. Given an ag-
gregator sensorua we define the set of peer mon-
itoring nodes associated to sensorua, termed
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Algorithm 1 : Theaggregationalgorithm ex-
ecuted byua.

Aggregate(contributors list : ID list)

Input : The list of the sensors that are contributors
of ua (contributors list).

Output : The encrypted locally sensed data (sa), the
locally computed aggregated valueAa, and
the number of contributorsna to the
aggregated data.

ncq
: [1 . . . n], contrib list = contributors list ;

while Truedo
contrib list = contributors list ;
tmp = 0; na = 0 ;
while not (contrib list = ∅) do

Receive(ucq
∈ contrib list, <

scq
, Acq

, ncq
>, time out) ;

if time out then
for eachucq

∈ contrib list do
rcq

= generate(ucq
) ;

tmp = tmp + rcq
;

contrib list = contrib list\{ucq
};

end
else

contrib list = contrib list\{ucq
};

inv = inverse(ncq
, p) ;

tmp = tmp+Acq
∗ inv + scq

(mod p);
na = na + ncq

+ 1;
end

end
inv = inverse(na, p);
Aa = tmp ∗ inv (mod p) ;
\∗ sensing phase\∗ ;
sa = sense() ;
ra = generate(ua) ;
sa = sa + ra (mod p) ;
Send(ub, < sa, Aa, na >) ;

end

W(ua), as the set of sized of nodes that are within
the wireless radio range ofua and that are not
part of the aggregation tree.

We assume the setW(ua) to be built during the
construction of the aggregation topology and to be
known byua and by alluw ∈ W(ua). We further
assume that the set of sensors that are supposed to
contribute with their data to nodeua (as dictated
by the aggregation topology) is also known by all
uw ∈ W(ua).

By exploiting the broadcast nature of radio
communications, a peer monitoring sensoruw ∈
W(ua) might be able to receive the same data
transmitted to the nodeua. Hence,uw could
perform the same checks ofua (e.g. checking
bounds) and could further check if the aggregated
data computed byua matches with its own com-
puted aggregated value. However, due to the rel-
ative distance between nodes, a monitoring node
might not be in the transmission range of sensor
uc thus being unable to receive the data sent toua

by uc
2. In the following, we distinguish between

the case in which a peer monitor has all the con-
tributor nodes in its communication range (direct
observation) and the case in which this is not pos-
sible.

For the case wherein direct observation is pos-
sible, let us consider the aggregating sensorua.
Suppose that sensoruc sends its reading (sc)
together with the aggregated dataAc and the
number of sensors that contributed toAc (<
sc, Ac, nc >) to sensorua. A peer monitoring
nodeuw overhears all messages sent by sensor
uc and performs exactly the same computations
that take place atua. Whenua sends its triple
< sa, Aa, na > upstream,uw is able to ver-
ify whether the aggregated valueAa sent byua

matches its locally computed valueAâ. More-
over, the peer monitoring node will also perform
the following checks: On the data reading, as-
sessing whether this data follows in the expected

2For example, sensoruw2
in Figure 1 cannot overhear

data sent byuc1
to ua.
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bounds; on the number of contributors so far, that
should not exceedn, or some other finer value, if
available. Note that if it is not possible to perform
the former two checks (for instance, the sensed
data cannot be bound, or the valuen is unknown
to the peer monitoring), our proposal for the in-
tegrity of the aggregated data would still stood.

When direct observation is not possible, the
normal execution of the aggregation protocol
should be slightly modified. First, observe that if
the contribution of a sensoruc cannot be observed
by a peer monitoring nodeuw, thenuc can reach
uw within at most two hops. Indeed, by defini-
tion, nodesuc anduw are in the communication
range ofua. In this case, besides its normal op-
eration, an aggregator nodeua is asked to act as
a relay node, retransmitting all data required by
the peer monitoring nodeuw to verify the valid-
ity of aggregation. Data relaying may be subject
to integrity attacks, hence each contributoruc ap-
pends to the message sent to the aggregator sen-
sorua an HMAC keyed with the pairwise keyuc

shares withuw. We recall now that our protocol,
as well as all aggregation protocols available in
the literature, works in rounds (synchronization
is required). This implies that a peer monitor-
ing sensoruw is able to detect if an aggregator
nodeua did not abide to the protocol, failing to
forward all contributions touw. Note that a peer
monitoring sensoruw will raise an alarm if an ex-
pected contribution was not received. It is out of
the scope of this paper to detail how to deal with
such an anomaly, but a possible solution could be
to remove the misbehaving sensor from the WSN
when the number of its missing contributions ex-
ceeds a given threshold. The pseudo code of a
peer monitoring sensor is reported in Algorithm
2.

One could argue that having a sensorua acting
as a relay node for a fraction of contributor sen-
sors that cannot be monitored may imply a signif-
icant overhead. However, as discussed in Section
6.5, an aggregator will be asked to forward a num-
ber of messages proportional to the number of its

contributors, that is a constant, small number of
nodes. This induce a communication overhead
that is reasonably low as compared to the bene-
fits offered by our scheme.

Moreover, in Section 6.2 we focus on those
attacks performed by malicious peer monitoring
nodes that do not fall in our adversary model but
need to be discussed for the sake of completeness.

5.2 Features provided by the proposed protocol

In this section we highlight the features of the
proposed aggregation protocol, while a detailed
analysis is developed in Section 6.

• With the proposed aggregation protocol
there is no need to send to the BS neither the
list of the sensors that executed the aggrega-
tion function, nor the list of missing partici-
pants; this feature is not provided by [4];

• By using peer monitoring sensors, the pro-
posed protocol allows local, early, and coop-
erative detection of bogus data injection;

• The aggregation protocol requires only the
exact number of bits needed to compute the
aggregate function (for instance, the average
values over the readings);

• As sensors compute the aggregated data
without taking into account their own read-
ings, with the proposed protocol it is possi-
ble for the peer monitoring nodes to check
not only the aggregated value, but also sin-
gle sensor readings;

• In our scheme, peer monitoring sensors do
not send data messages, except for alarm
messages. This implies that the density
of peer monitoring nodes does not increase
medium access contention: If necessary, we
could increase the resilience of the aggre-
gation protocol by increasing the number
of peer monitoring nodes (see Section 6.1)
without any performance degradation;

10



Algorithm 2 : The peer monitoring algorithm
executed byuw.

Peer Monitor(contributors list : ID list) ;

Input : The list of the sensors that are contributors of
ua (contributors list);

Output : An alarm if the computation performed by the
aggregator does not match the result of the local
computation.

min, max : data range, n : WSN size ;
while Truedo

tmp = 0; n̂a = 0; contrib list = contributors list
;
while not (contrib list = ∅) do

Receive(ucq
∈ contrib list, < scq

, Acq
, ncq

>
, time out) ;
if time out then

for eachucq
∈ contrib list do

rcq
= generate(ucq

) ;
tmp = tmp + rcq

;
contrib list = contrib list\{ucq

} ;
end

else
rcq

= generate(ucq
) ;

\∗ bound checking\∗ ;
if (scq

− rcq
(mod p)) /∈ [min, max] then

Recovery () ;
else

contrib list = contrib list\{ucq
} ;

inv = inverse(ncq
, p) ;

tmp = tmp+Acq
∗ inv + scq

(mod p);
n̂a = n̂a + ncq

+ 1;
end

end
end
\∗ Verification phase\∗ ;
inv = inverse(n̂a, p);
Âa = tmp ∗ inv (mod p);
Receive(ua, < sa, Aa, na >);
if time out then

Recovery () ;
else

if (Aa = Âa) and (na = n̂a) and (na ≤ n)
then

skip
end
RaiseAlarm ()

end
end

• A single node corruption would not reveal
any other information than the readings of
the corrupted node and the readings of its
neighbors; that is, an adversary can only ob-
tain a (small) constant number of readings
without being able to recover any informa-
tion on the aggregated data, as discussed in
Section 6.2.

Table 1 provides a summary comparison of the
protocol proposed in this paper with relevant re-
lated work in the literature. With HBH we refer to
the case in which sensors encrypt data on a hop-
by-hop basis, while No Agg. refers to a situation
in which there is no data aggregation: Each read-
ing is sent to the BS. CMT refers to the proposal
appeared in [4]. In next section a detailed analysis
of the proposed protocol is reported.

6 Analysis and discussion

6.1 Resilience

In order to analyse resilience of our protocol
with respect to the adversary model introduced
in Section 3.1, we assume that the adversary can
compromiseα randomly chosen sensors; we want
to evaluate what is the probabilityǫ for the adver-
sary to inject bogus data.

Note that the sensors to be compromised are
randomly selected among the ones that are not
yet compromised. This means that every sensor
can be compromised with probability less than
α/(n − α). As we have seen in Section 3.2, the
above assumption can be used to provide an upper
bound on the probability that compromised sen-
sors can succeed in injecting a bogus data.

The relationship between the failure probabil-
ity fp and the number of sensors compromised by
the adversary is given byfp < α/(n − α). In the
sequel of this section,fp can also be considered
the fraction of the total number of sensors that can
be corrupted by an adversary.

To provide an upper bound on resilience, note
that we cannot have more thann peer moni-
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Table 1. Comparison of the properties of the different Data A ggregation approaches.
Model Properties

sensor failure confidentiality message length
resilience independent from

WSN size

Our Yes Yes Yes
CMT [4] No Yes No
HBH Yes No Yes
No Agg. Yes Yes No

toring sets in a WSN. The probability for the
WSN to be jeopardized(Pr[J ]) is given by
the probability that at least one of the moni-
toring sets is completely under the control of
the adversary. Let us indicate withPr[jM ] =
max{Pr[j1], . . . ,Pr[jn]} the monitoring set that
has the highest probability to be corrupted. Fur-
ther, we recall that for a peer monitoring set of
size d̂, the probability to be entirely corrupted is
given byf d̂

p , since the maximum ofPr[ji] is ob-
tained by the monitoring set that has theleast
number of peer monitoring sensors (d), hence
Pr[jM ] = fd

p . Thus, an upper bound on the over-
all probability to jeopardy the WSN security is:

Pr[J ] ≤ Pr [j1 ∨ j2 ∨ . . . ∨ jn] ≤ nPr[jM ] = n×fd
p .

(1)

In Figures 2(a), 2(b) we plot Equation 1. On
the x axis we report the number of sensors
in the WSN, varying this value in the range
[256, . . . , 65516], while on they axis we show
the probability that the WSN can be jeopardized
(Pr[J ]). In Figure 2(a) and 2(b) we take into ac-
count two single node failure probabilities, that
is fp = 2−4 and fp = 2−5 (i.e., as noted in
Section 3.2 this parameters reflect a situation in
which the adversary can corrupt up ton/17 and
n/33 sensors). We also vary the number of
peer monitoring sensorsd in the range[4, . . . , 6].
Within each figure, we magnify the behavior of
the curves for a choice of the x-axis in the range
[63000, . . . , 65516], while the y-axis values are

selected to grant visibility to the curve with the
lowest values. Note that the lowest value on the
y-axis is always provided byd = 6; this is coher-
ent with the intuition that the bigger the number
of peer monitors, the smaller the probability of
compromising our scheme.

In Figure 2(a) the probability of jeopardizing
the WSN is not negligible whend = 4, even
for a small network size. However, note that as
the number of peer monitoring sensors is at least
d = 5, this probability is always below the value
of 0.07, while for small networks (e.g. below
10,000 nodes) this probability is as little as 0.001.
When the number of monitoring sensors reaches
the valued = 6, the corresponding probability
is negligible: It is less than 0.00006 for a WSN
with up to 10,016 nodes, while increases only up
to 0.004 for a WSN with 65,516 nodes.

The same qualitative behavior can be observed
in Figure 2(b). In particular, whend = 4 and
the network size is less than or equal to10, 016
nodes, the probability that our protocol does not
detect the injection of bogus data is always lower
than 0.01, while this value slowly increases up to
0.06 when considering 65,516 nodes. Ford = 5,
with 10,016 nodes the probability to jeopardize
the WSN is less than 0.0003, while it increases up
to 0.002 when considering 65,516 nodes. Finally,
for d = 6 we have that for each size of the WSN
in the range[256, . . . , 65516], the probabilityǫ is
below 0.0006.

Figures 2(a) and 2(b) support the intuition that
the proposed protocol is highly resilient against
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the oblivious adversary. Indeed, for a wide set of
parameters (for instance, we have assumed the ad-
versary able to compromise1/17 of the network),
d = 6 implies a very small probability for the
oblivious adversary to be successful in injecting
bogus data. Further, we highlight the fact that it
is possible to trade-off the resilience to the oblivi-
ous adversary with a slight increase in the size of
the peer monitoring set: A unity increase in the
value ofd provides an exponential gain in the re-
silience towards the oblivious adversary. It should
be noted that the resilience of our scheme in the
random failure model is equivalent to the one we
obtained for the adversary model.

Finally, note that an exponential gain is
achieved by decreasing the sensor failure proba-
bility (fp). However,fp is not a design param-
eter —for instance, if we use Commercial Off-
The-Shelf sensors, they come with their Mean
Time Between Failure in the technical specifica-
tion sheet. This is why we have been conser-
vative in considering high values forfp, such as
fp = 2−4, 2−5.

6.2 Security analysis

6.2.1 Confidentiality

Data aggregation can be exploited by an adver-
sary to violate the confidentiality of the aggre-
gated data, for example by compromising a few
nodes close to the BS.

In our protocol, we cope with this threat via
encryption using the scheme described in Section
4.1. Referring to the key setup phase described
in Section 4.2, each sensorui distributes to its
neighbors the secret keyki used to generate the
key streamri. Thanks to this feature, if sensor
ui fails, its neighbors can still provide the ran-
dom value that should have been used to mask
the sensed data. This operation is necessary since
the BS, like in [4], derives all the masking values
from the secret keyski it shares with sensors, and
uses these values to decrypt the received aggre-
gate data.
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Hence, distributing secret keys to a neighbour-
hood means that compromising a single sensor
will provide the adversary with a number of keys
that is equal to the number of compromised sen-
sor’s neighbors. However, since in our scheme
every and each node adds an encryption layer (ra)
on the sensed data, the aggregated data will be
still secure, like in [4]. From these considerations
the following lemma holds.

Lemma 1 In our protocol, for the adversary to
captureq readings, it is necessary to capture a
number of nodes that is at least⌈q/M⌉, whereM
is the maximum size of an active neighbourhood.

The above lemma allows the adversary to chose
anyq sensors from the WSN. That is, even if the
adversary is able to compromise all theq sensors
close to the BS, it will get no more thanqM read-
ings. Note that in a scheme where no data con-
fidentiality is enforced, this would result in the
compromising of the confidentiality of the aggre-
gated data.

6.2.2 Impersonation

Here we turn to the attacks through which an ad-
versary can impersonate a legitimate sensor node.
By cloning a corrupted sensor an adversary could
perform the so-called Sybil attack [13] and insert
all produced sensor replicas in the WSN.

In the literature it is possible to find some so-
lutions that deal with the Sybil attack, like [35];
more recent works aim at better identifying the
rationales behind this attack and provide efficient
solutions [7, 8] to cope with it.

Our aggregation protocol thwarts this kind of
attack by construction. Indeed, if the adversary
replicates a captured sensor and deploys it in
different neighbourhoods, these replicas will not
hold the encryption keys that have been previ-
ously shared among sensors; hence, the corrupted
sensor and its replicas can not participate to the
aggregation protocol. If replicas are positioned
within the same neighbourhood of the corrupted

node, a peer monitoring node can easily detect the
attempts of a sensor to inject several readings in a
single time slot.

In case a corrupted node tries to disrupt the
computation performed in the WSN by injecting
an implausible value, that is, a value that exceeds
a certain range[min, . . . , max], an alarm is going
to be raised; indeed, as described in Algorithm 2,
the readingsc provided by a contributor is defined
to fall in the range[min, . . . , max].

6.3 Discussion on peer monitoring nodes

In this section we discuss on some possible
caveats related to the role of peer monitoring
nodes.

A typical example would be for a misbehaving
peer monitoring sensor to report false alarms to
the BS. The impact of false positives can be mit-
igated for example by requiring the source of an
alarm to append its identity —according to a pro-
tocol that could allow identity verification. The
BS could maintain and increment a tally for those
nodes that falsely reported an alarm. Hence, the
BS could take the appropriate action to isolate the
misbehaving sensor if the tally exceeds a certain
threshold. Note that this solution also requires
a mechanism to identify false alarms. Further,
peer monitors could also be the target of attacks.
For example, a threat could be posed by a con-
tributor sensor trying to control its transmission
power with the goal to circumvent the peer moni-
tor; this can be done by modulating the transmis-
sion power such that the signal would be strong
enough to be overheard by a peer monitoring set,
but too weak to be received by the true aggrega-
tor. Though this would require the misbehaving
node to know exactly the transmission power re-
quired to reach each of its neighboring nodes, we
consider this attack feasible. However, this at-
tack would still be detected based on our proto-
col, since peer monitoring nodes verify the result
of the computation performed by the aggregator,
which will not match with the locally computed
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value. Even if the identification of the misbehav-
ing node is difficult, an alarm will be raised to
inform the BS of the inconsistency of the aggre-
gated data.

A more sophisticated attack can be mounted
when multiple nodes collude. For example, sup-
pose an aggregatorua and all the nodes inWa

are corrupted. The aggregator could inject bo-
gus data in the network. The aggregation proto-
col presented in this paper is inherentlyd − 1 re-
silient to collusion attacks, whered is the size of
the smallest peer monitor set. If at least one sen-
sor in the set is not corrupted, it can still notify the
BS of the anomalies perceived during each proto-
col execution.

6.4 Scalability issues

The number of neighbors a sensor can support
is mainly limited by interference and collision is-
sues at the medium access level. In this section,
we investigate the scalability of our scheme with
respect to the network size.

Definex = max{i|fp ≤ 2−i}, then Equation 1
can be rewritten as:

Pr[J ] ≤ 2−xd+log
2

n. (2)

Equation 2 reflects the impact that the parame-
tersd (the size of the peer monitoring set that has
the minimal number of elements) andn (the num-
ber of sensors in the WSN) have on the resilience
to failures. Our objective is to study the effec-
tiveness of our protocol as the size of the WSN
increases, while preservingPr[J ] ≤ ǫ resilience
to bogus data injection.

Let M be the maximum size of an active neigh-
bourhood a sensor can support and fixǫ to be the
upper bound on the probability of failure. In the
following we study the relationship between the
cardinality of the minimum peer monitoring set
and the network size, for a given probabilityǫ.

From Equation 2 we have that:

Pr[J ] ≤ 2−dx+log
2

n ≤ ǫ

is true for

dx ≥ log2 n − log2 ǫ.

Hence, the valuesd can take on are given by:

M > d ≥

⌈

log2 n − log2 ǫ

x

⌉

(3)

where M is the maximum size of an active
neighbourhood, and the equation on the right pro-
vides the minimum value ofd such that our WSN
is still ǫ resilient. In Figures 3(a), 3(b) we plot
Equation 3. On thex axis we represent the net-
work size (in the range[256, . . . , 65516]), while
on they axis we report the minimum number of
monitoring sensors are required to have at leastǫ
resilience. The two figures take into consideration
different values for the failure probabilityfp. In
Figure 3(a) we assume to havefp = 2−4. From
this figure, we observe that when the network size
is less or equal to 16,376 sensors, a monitoring set
of cardinality at least 7and 9 is required to have
ǫ = 2−16, 2−24 respectively. For a network size
between 16,376 and 65,516 sensors, we need a
peer monitoring set of cardinality 8 and 10 if we
want to beǫ resilient, whereǫ is2−16, 2−24 respec-
tively.

The same results hold for the casefp = 2−5,
as can be seen from Figure 3(b). Indeed, we have
taken a conservative approach taking into consid-
eration the upper integer part oflog

2
n−log

2
ǫ

x
, as re-

sults from Equation 3.
From this discussion it follows that our pro-

posed scheme is highly scalable. Indeed, for
a WSN composed of up to 65,516 sensors, for
a value of fp = 2−4, 2−5, to assure anǫ re-
silience for ǫ = 2−16, 2−24, the number of re-
quired peer monitors ranges in[7, . . . , 10]. Note
that 10 neighbors is a very feasible limit on the
number of neighbours a sensor can have [15].
Furthermore, this limit can even be stretched if
we assume that peer monitoring sensors are spe-
cialized sensors (i.e., they do not act neither as
contributor nor as aggregator); in this case it holds
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Figure 3. Peer monitoring density for failure
probability less than ǫ = 2−16, 220, 2−24

the consideration exposed in 5.2 about the possi-
bility of decoupling the physical neighbourhood
limit as for the peer monitoring set.

6.5 Overhead analysis

Transmission overhead Each contributing sen-
sor is required to append an HMAC to each mes-
sage destined to each peer monitoring sensor as-
sociated to it. Note that, as shown above, this
number is in the range[7, . . . , 10], while the size
of the HMAC can be limited to 64 bits, as de-
tailed in the following. Further, note that an ag-
gregator could incur an additional overhead when
it acts as a rely node for nodes that are not in the
direct communication range of the peer monitor-
ing nodes. However, rely is just on-hop limited
and possibly required by just a small subset of the
nodes (if any) in the peer monitoring set. Finally,
it should be noted that monitoring sensors do not
send any messages, unless to rise an alarm.

Computational overhead Our protocol re-
quires contributing sensors to generate the en-
cryption key and the HMACs. Aggregating sen-
sors are further required to generate the encryp-
tion key ki in case of contributors failures. Peer
monitoring sensors carry out the same set of com-
putations performed by the aggregator. However,
note that computing an HMAC can be considered
a lightweight operation.

As opposed to the protocol proposed in [4], our
scheme requires the additional overhead imposed
by HMACs and the presence of peer monitoring
sensors. These limitations are compensated by
the additional properties of our scheme presented
in Table 1. Further advantages of our proposal
are: The smaller message size of the aggregated
data; and, the fact that it does not require the iden-
tity of contributors to be appended.

Finally, recall that the implementation of the
HMAC as discussed in detail in [34] would pro-
duce an output of 64 bits only. The energy de-
voted to compute and to transmit this HMAC has
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been the subject of research [40, 30], and its cost
has been accepted as sustainable by the vast ma-
jority of the literature concerned with security is-
sues for WSN.

7 Concluding remarks

In this paper we present a mechanism for data
aggregation in WSN that enforces both confiden-
tiality and integrity of the aggregated data. The
proposed mechanism is based on a novel appli-
cation of peer monitoring and on a delayed ag-
gregation of sensed data. The security of our
scheme relies on the concept of additive homo-
morphic encryption and on a lightweight key dis-
tribution technique. Moreover, our scheme is
robust against bogus data injection. Resilience
to attacks and to random node failures is also
provided. Our aggregation protocol is scalable,
and we have shown that the network size can
scale up to thousands of sensors with guaran-
tees on the confidentiality and integrity provided
by the scheme. These properties come at a lim-
ited additional cost since the proposed scheme re-
quires only local communications and leverages
lightweight cryptographic primitives.
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