
WG Attack Taxonomy

Marc Dacier, Herve Debar, Thorsten Holz (note taker), Engin Kirda, Jan Kohl-
rausch, Christopher Kruegel (chair), Konrad Rieck, James Sterbenz

Introduction

The starting point of this working group was the question about the kinds of attacks
that can be detected by inspecting in network traffic. In general, we identified four
major problems that network-based intrusion detection systems are facing:

1. Encrypted network traffic
2. Application-level attacks
3. Performance
4. Evasion attack.

An obvious problem in this area is payload inspection of encrypted traffic: since

the network-based intrusion detection system (NIDS) commonly has no access to the
encryption keys, it can not decrypt the captured data and, therefore, no analysis is
possible. From a network perspective it is thus hard to deal with encrypted traffic.
However, more and more traffic within networks uses some form of encryption (e.g.,
IPSec or SSL) and, thus, we need to develop approaches to also deal with this kind of
network traffic in the future. Traditional attack venues such as buffer overruns or
exploits of input validation errors have been known for a long time and are widely
understood. As a result, a large number of defense mechanisms have been devised
[16, 18]. For client-side attacks, however, only a few viable defense solutions have
emerged so far. These techniques often focus on one particular problem area only and
fail to address the larger and more general problem of unauthorized information flow
attacks. A distinctive feature of client-side attacks is that security problems often
cannot be traced to a particular vulnerability that can be easily fixed. In fact, the dan-
ger is precisely that the client’s security policy is not obviously and immediately
violated. In case of a cross-site scripting attack, the malicious script is truly sent by
the trusted server and thus, has to be granted the privilege to access the session to-
kens. Similarly, when a user enters sensitive data into a web form on a phishing site
or installs spyware, agreeing to the license, one could argue that there is no problem
because a deliberate action is taken and information is voluntarily disclosed. Such a
point of view, however, neglects the fact that there is an implicit security requirement
of users who do not want to disclose their sensitive data. Thus, even when the same-
origin policy is not violated by a cross-site scripting attack, there is an implicit policy
that dictates that no sensitive user data should be disclosed to unauthorized parties.
Furthermore, sending of code from server to client becomes more and more common
(e.g., AJAX sends JavaScript over the network) and this new interaction model poses
further challenges since a NIDS would need to inspect and verify the code. By moni-

Dagstuhl Seminar Proceedings 08102
Perspectives Workshop: Network Attack Detection and Defense
http://drops.dagstuhl.de/opus/volltexte/2008/1495

2 Marc Dacier, Herve Debar, Thorsten Holz (note taker), Engin Kirda, Jan Kohlrausch,
Christopher Kruegel (chair), Konrad Rieck, James Sterbenz

toring network traffic, such attacks are not easy to identify as they occur at the appli-
cation-level: the NIDS would need to understand the context of requests and also keep
track of the application state. That is, one needs to understand the application logic
and try to detect attacks, which is hard even given the current network speed. Given
the fact that networks are getting faster at a higher pace then processing power in-
creasing, this is clearly a problem. Furthermore, so called traffic blending attacks and
similar evasion attacks pose several challenges for NIDS [2, 3].

State of the Art

Detecting scan activity in network traffic has attracted a lot of interest in the re-
search community over the last few years. As a result, there are several systems and
algorithms that can be used to detect either port scans or to identify worm propagation
[7, 8, 10, 15, 19]. Since nowadays attackers commonly use bots to have control over
an infected machine [20], the research community has developed some systems to
also detect this kind of attack-related traffic [1, 4,5, 6]. Another area of active re-
search is Distributed Denial of Service (DDoS) analysis [11, 12, 13, 17]. A common
approach to deal with this kind of attacks DDoS attacks. Nevertheless, it is still an
open problem how to differentiate between a flash crowd and an actual DDoS attack.
Current traffic monitoring techniques are useful to detect effects of attacks in order to
identify hosts that have been compromised. For example, a bot that has been installed
by a user because of a social engineering attack or with the help of a successful ex-
ploit can be detected by monitoring the network for suspicious behavior: such hosts
commonly generate either lots of scan traffic, are suspicious due to a large amount of
mails sent via these hosts, or generate lots of DNS queries. All such effects can be
easily detected with different traffic monitoring strategies [5, 6]. Furthermore, current
monitoring techniques allow us to detect artifacts of attacks. For example, we can
detect common attack tools, ready-made exploits, or worms based on specific signa-
tures in the network traffic [9, 21].

Challenges

To improve the detection capabilities from a network point of view and to cope
with future challenges in this area, we developed some recommendations for future
work in this area. An application should support a NIDS such that it becomes easier to
check for ongoing attacks. This could for example be achieved by developing proto-
cols in such a way that the NIDS can verify – without too much overhead – whether
or not a given packet is legitimate. Furthermore, additional meta-information which is
sent together with the actual application data could help a NIDS to detect attacks. One
example of such meta-information is proof-carrying code [14], another example is
signed code (with the drawback of requiring a public key infrastructure). Presumably
such changes also need to address the interaction model such that the communication
is more regular and not too much state needs to be kept by a NIDS. Another option

WG Attack Taxonomy 3

would be to develop application specific filters that can be deployed in front of serv-
ers to protect them.

We require a deeper analysis and metrics to define the complexity of an attack. He-
re, we understand the complexity of an attack as the difficulty to see this attack at the
network level. Clearly, certain attacks are directly visible on the network, for exam-
ple, as malformed packets (e.g., ARP attacks), as deviations in the number of packets
that are sent (e.g., denial of service), or as unexpected target of packets (e.g., hijacked
DNS traffic is sent to a malicious DNS server). However, other attacks are not imme-
diately detectable. In particular, attacks that target application-level flaws could be
perfectly legitimate from a network perspective, but might arrive at an unexpected
point in time or in an unintended order. This would require more complex analysis,
requiring the NIDS to keep state or to understand application-level semantics. These
facets should be captured by the proposed complexity metric. When such a metric is
available, it could guide the designers of NIDS to focus on certain classes of attacks
that security officer (who has to deploy these solutions) to determine those classes of
threats for which additional levels of protection are required.

An additional area of future work is behavior-based detection of attacks: if we can
understand the current, normal configuration of a system, then we can detect devia-
tions from this profile as an attack. To achieve this goal, we need to develop algo-
rithms to understand what operations are normal based on the current configuration
(e.g., information about the network configuration, the running services, the clients
that make use of these services, ..). With the help of this information, we can then
develop technique to achieve behavior-based rather than knowledge-based detection
of attacks. However, it is then still challenging to detect covert channels or stealing of
information at the network level, thus additional techniques need to be developed to
counter these threats. Another open problem that needs to be addressed is the question
how much deep packet inspection is needed to detect attacks. With the steady increase
of network speed, less time can be spent analyzing each single packet. We need to
develop metrics and scenarios that are useful to answer the question in what circum-
stances netflow data is enough and in what cases more information is needed. A flexi-
ble infrastructure in which the network measurements can be adjusted during runtime
would be useful to help network-based detection of attacks.

References

[1] James R. Binkley and Suresh Singh. An algorithm for anomaly-based botnet detection. In
Proceedings of the 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet,
pages 7–7, 2006.

[2] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: formal reason-
ing and practical techniques. In Proceedings of the 13th ACM conference on Computer and
Communications Security, pages 59–68, 2006.

[3] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee. Poly-
morphic blending attacks. In Proceedings of the 15th USENIX Security Symposium, pages
17–17, 2006.

[4] Jan Goebel and Thorsten Holz. Rishi: identify bot contaminated hosts by irc nickname
evaluation. In Proceedings of the First Workshop on Hot Topics in Understanding Botnets,
pages 8–8, 2007.

4 Marc Dacier, Herve Debar, Thorsten Holz (note taker), Engin Kirda, Jan Kohlrausch,
Christopher Kruegel (chair), Konrad Rieck, James Sterbenz

[5] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee. BotHunter:
Detecting malware infection through ids-driven dialog correlation. In Proceedings of the
16th USENIX Security Symposium (Security’ 07), August 2007.

[6] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting botnet command and
control channels in network traffic. In Proceedings of the 15th Annual Network and Distrib-
uted System Security Symposium (NDSS’08), February 2008.

[7] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast Portscan Detec-
tion Using Sequential Hypothesis Testing. In IEEE Symposium on Security and Privacy
2004, Oakland, CA, May 2004.

[8] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm signature
detection. In Proceedings of the 13th USENIX Security Symposium, pages 19–19, 2004.

[9] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic Worm Detection
Using Structural Information of Executables. In Proceedings of the International Sympo-
sium on Recent Advances in Intrusion Detection (RAID), volume 3858 of LNCS, pages
207–226, 2005.

[10] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez. Hamsa: Fast
signature generation for zero-day polymorphicworms with provable attack resilience. In
Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages 32–47, 2006.

[11] Jelena Mirkovic, Gregory Prier, and Peter L. Reiher. Attacking ddos at the source. In
Proceedings of the 10th IEEE International Conference on Network Protocols, pages 312–
321, 2002.

[12] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense mecha-
nisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, 2004.

[13] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Stefan
Savage. Inferring internet denial-of-service activity. ACM Trans. Comput. Syst., 24(2):115–
139, 2006.

[14] George C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.
[15] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating signa-

tures for polymorphic worms. In Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 226–241, 2005.

[16] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer Net-
works, 31(23-24):2435 -2463, 1999.

[17] Vern Paxson. An analysis of using reflectors for distributed denial-of-service attacks.
SIGCOMM Comput. Commun. Rev., 31(3):38–47, 2001.

[18] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the
13th USENIX conference on System administration, pages 229–238, 1999.

[19] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical automated
detection of stealthy portscans. Journal of Computer Security, 10(1-2):105–136, 2002.

[20] The Honeynet Project. Know Your Enemy: Tracking Botnets, March 2005.
http://www.honeynet.org/papers/bots/.

[21] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast containment of scanning
worms. In Proceedings of the 13th USENIX Security Symposium, pages 3–3, 2004.

