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Abstract

In this paper we propose a theoretical framework to analyze and assess the properties
of overlay networks with the goal of studying problems related to rival resource sharing.
We study optimality goals for the construction of such overlay networks and focus on fair-
ness issues by defining perfectly reciprocal overlays, in which every peer receives exactly the
same amount of resources it offers. We focus on answering the following key question : is
it possible to determine whether a perfectly reciprocal overlay exists for a given physical
network configuration? First, we prove that deciding whether there exists a perfectly recip-
rocal overlay given a fixed underlay can be verified in polynomial time. We also propose an
algorithm to compute an optimal overlay network, if one exists. Second, we prove that the
same decision problem becomes NP-complete if one looks for bounded degree overlays. This
last result is of paramount importance because overlay designers frequently constrain peer
outdegree. Finally, we present a practical application of our framework: throughout numer-
ical simulations we assess the optimality of overlay networks constructed using distributed
algorithms akin to stable matching theory.

1 Introduction

The remarkable scalability that characterizes peer-to-peer applications, for example content
sharing applications such as BitTorrent [16], could not be achieved without users cooperation.
A key requirement is especially users’ contribution with private, often limited, resources such
as CPU, storage and bandwidth. Hence, selfish behavior and free-riding have often emerged as
a real problem from the earliest examples of such cooperative systems [10]. Because the total
amount of tangible and rival resources is limited, an increase in the number of users without a
corresponding raise in the quantity of shared resources would make each user pay the price of
other users’ selfishness.

Some techniques have proven to be efficient in ensuring a fair amount of resource recip-
rocation among a large set of peers, for example tit-for-tat-like enforcement mechanisms [13].
However, the question of whether such mechanisms achieve optimal performance (in the sense of
perfect reciprocity) remain unanswered. Furthermore, it is not well understood if, given a par-
ticular communication graph linking users, each characterized by peculiar resource constraints,
it is possible to designate logical neighborhood relationships that achieve perfect reciprocity. In-
deed, despite a large literature related with peer-to-peer networks, little has been done for the
theoretical assessment of the “fairness” properties in overlay networks. Few formal definitions
can be associated with optimality goals or impossibility results.

We propose in this paper a theoretical framework so that a large set of problems related with
rival resource sharing in overlay networks can be studied. The proposed model distinguishes
(i) the network supporting the communication between peers, that is called underlay, (ii) the
rival resources each peer is giving and receiving to and from the peer-to-peer system and (iii)
the set of pair of peers actually exchanging rival resources, which is commonly known as the
overlay. Although this model is based on strong assumptions, we argue it matches reasonably
well with current networking reality. Furthermore, its relative simplicity allows us to identify
four distinct problems whether the overlay or the resource distribution is known or not. A
suggestion of various optimization objectives completes this generic and theoretic structure
which constitutes the first contribution of this paper. All details are given in Section 3.

The rest of the paper deals with perfectly reciprocal overlays where each peer receives exactly
the same amount of rival resources that it offers. Two arguments motivate this focus: perfectly
reciprocal overlays are also optimal for the total amount of resources exchanged within the
system and ensuring a perfect reciprocity to peers may be a key incentive for them to contribute.
We aim to determine whether a perfectly reciprocal overlay can exist on top of a given network
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configuration. We prove two strong results. First, deciding whether there exists a perfectly
reciprocal overlay given a fixed underlay can be verified in polynomial time. We propose an
algorithm based on an elegant augmentation of the underlay graph. This algorithm also gives
one overlay if a solution exists. Second, the same decision problem becomes NP-complete if one
looks for bounded-outdegree overlays. This last result is of primary importance because most
distributed algorithms for peer-to-peer systems make a peer connect with a limited number of
neighbors. This noteworthy contribution is described in Section 4.

Finally, Section 5 shows a case study using this theoretical framework. Indeed, if this
paper does not give any distributed algorithm for building perfectly reciprocal overlays, it
provides a complete set of algorithms to evaluate them. We focus on overlays obtained using
distributed techniques akin to b-matching [12] and show, using our framework, that in some
cases b-matching-based overlay construction algorithms fails in building perfectly reciprocal
overlays, but that these failure cases are very infrequent when the underlay is a random graph.
The last Section concludes this paper.

2 Related Works

A family of works closely related to ours address the un-coordinated creation of graph topologies
by selfish agents wishing to build communication networks. The seminal work by Fabrikant et.
al. [6] study the design of the Internet graph in which selfish agents mimic the behavior of
Autonomous Systems in building the network. In their model, called the network creation
game, the authors analyze the conflicting goals of constructing a network which minimizes the
construction costs while at the same time making sure its design is optimal (from a selfish point
of view) with respect to some quality of service metrics. When the quality of service metric is
expressed in terms of distance (for example number of hops) between any two nodes, the authors
of [6] show the conditions under which a stable network can emerge and what is its performance
when compared to a network created by a centralized entity whose goal is to maximize the
aggregated quality of the network (they study the so-called price of anarchy).

Another work related to the creation of communication networks is due to Anshelevich et.
al [3, 2]: in their work, called the global connection game, agents are allowed to build edges of
a graph with a global vision of the resulting topology. The goal of the players of this game is
to maximize the quality of the final network without any constraint on uniform connectivity:
each player has a subset of nodes to connect to and a budget that it wishes to utilize the least.
Each player evenly shares the cost of an edge and [2] show conditions (related to the Shapley
[14] value) for the existence of such networks.

In [17] Wang and Li focus on the specific problem of bandwidth allocation in peer-to-
peer overlay networks and propose a market model to match providers and consumers of the
bandwidth resource. In their model, providers compete to attract consumers by adapting the
resource price, while consumers seek at minimizing their costs. They also provide a decentralized
algorithm based on reinforcement learning that achieves an equilibrium wherein nodes use their
optimal strategies and the resource is near-optimally shared.

Authors in [15] target the creation of an overlay network for an n-way broadcast application
in which each one of n overlay nodes wants to push large data files to all other n−1 destinations
while downloading their respective data files. The authors design the Max-Min and Max-Sum
algorithms used by individual nodes to select their neighbors: using these algorithms overlay
nodes maximize the minimum and the aggregate network flows to all possible destinations. The
work in [15] belong to the body of works that deal with selfish neighbor selection [11], which
extend the basic concepts developed in [6].

Our theoretical framework can be used to analyze the “quality” of solutions achieved by
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distributed algorithms that address some specific resource sharing problems. Several works,
including [8], [9] and [12], have modeled the creation of an overlay graph used for resource
sharing as a stable matching problem and designed distributed algorithms to find such overlays.
In this paper we present a case study which study, using a custom simulatior, b-matching based
algorithms and assess their optimality under different settings.

3 Theoretical Framework

3.1 Model and Notations

We denote by V the set of peers that belong to the peer-to-peer system and by E the set of
possible connections between two peers. A possible connection between two peers x and y,
noted {x, y}, indicates the existence of a communication link between x and y over which a
generic resource can be shared. The couple G = (V,E) defines the underlay graph of the
system. In general, peer-to-peer systems designed for the Internet assume G to be a clique, i.e.
every peer may communicate and access resource shared by every other peer in the network.
We note however that the physical infrastructure over which the peer-to-peer systems operates
is not necessarily complete: for instance this is not the case for local area networks, where a
large fraction of peers are placed behind firewalls or NATs or for applications where latency
issues would prevent distant peers to connect. These topologies are covered by a general model
as an underlay graph. For a peer x, the set of peers with which x shares a links in E are its
underlay neighbors, denoted by N(x) where N(x) = {y ∈ V : {x, y} ∈ E}.

At a first glance, undirected graphs depicting underlay neighborhood relations between
peers seem appropriate. However, a peer x could offer resources to a peer y while conversely
y would choose to not reciprocate. This means that an edge between two peers x and y could
be used through −→xy when x provides resources to y, but not through −→yx when y does not. We
believe that undirected edges do not capture all resource sharing strategies between two peers in
peer-to-peer systems. Therefore we formally define the underlay graph as

←→
G = (V,

←→
E ) where

←→
E = {−→xy : {x, y} ∈ E}. This graph is just another way to express G where each edge is
replaced by the two possible oriented edges between vertices of the considered edge.

In most peer-to-peer systems relying on a very dense underlay graph, only a very small
part of the edges in

←→
E is used. Furthermore, as current network protocols do not manage

correctly too many simultaneous connections, it is common to bound the maximal number of
edges from and to a peer in order to let networking resources be used efficiently [1]. We denote
by
←→
E U ⊆

←→
E the set of oriented edges that are actually used by the system. In this work

we do not address dynamic peer-to-peer systems, hence
←→
E U can be seen as a snapshot of a

peer-to-peer system. We denote by N+
U (x) the set of peers which uses resources provided by

x, thus N+
U (x) = {y ∈ V : −→xy ∈

←→
E U}. In the same way, we denote by N−U (x) the set of peers

which provides resources to x, thus N−U (x) = {y ∈ V : −→yx ∈
←→
E U}. Peers V and edges

←→
E U

form the overlay graph. Designing an overlay graph matching some detailed properties from
a complete underlay has been the concern of a majority of studies dealing with peer-to-peer
systems in recent years.

We introduce now the concept of peer resource by referring to the concept of good ri-
valry [4]. Most peer-to-peer applications care of the exchange of non-rival goods, for example
electronic files in file-sharing systems. Indeed, sharing a file with another peer does actually
not prevent its owner to use it. That is, these overlays aim to organize the global set of all
non-rival resources provided by peers, so to handle abundance rather than to manage scarcity.
However, peer-to-peer systems have also to deal with rival goods, i.e. scarce resources that
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are tangible such as bandwidth (e.g. in p2p video streaming applications), processing power
(e.g. in grid computing systems) or storage capacity (e.g. in p2p storage and backup systems).
Sharing scarce rival resources is the main focus of this paper. The amount of rival resources
a peer x is able to offer to other peers in the system is termed R(x). We further assume that
rival resources can be subdivided into several sub-resources that are obviously rival too. This
implies that we can define a function

∑
which that operates on two sub-resources and results

in a resource unit.
For two peers x and y, we denote by w(−→xy) the amount of resources provided by x to y. The

overlay graph we study is then a weighted graph where each edge −→xy in
←→
E U is associated with

a non-null weight w(−→xy). Previous definitions make a peer y belonging to N+
U (x) if and only if

w(−→xy) 6= 0. A peer can not share more resource than it actually owns, formally R(x) is always
greater than

∑
y∈N+

U (x)w(−→xy). In the same way, the amount of resources obtained by a peer x is∑
y∈N−U (x)w(−→yx). Finally, the total amount of rival resources within the entire system is defined

as R =
∑

x∈V R(x). Using these notation, we are able to introduce a configuration C that
consists in an underlay graph

←→
G , an overlay graph (V,

←→
E U , w) and a resource set R = {R(x) :

∀x ∈ V }. A configuration is said feasible when any peer x verifies R(x) ≥
∑

y∈N+
U (x)w(−→xy).

Note that the model introduced in this Section implies two strong albeit realistic assump-
tions. First, the weights assigned to overlay links depend on the resources owned by peers,
hence metrics associated to the underlay network (e.g. available bandwidth, latency of a link,
...) are not taken in consideration when assigning a weight to an overlay link. We argue this
assumption to hold in reality: it is typical to assume network bottlenecks to be located within
the edge of the network, whereas the network core is often idealized. Second, we allow peers
to consume an unlimited amount of resources. Although this assumption may be regarded as
unrealistic, casual network connections of end-users are frequently asymmetric, e.g. xDSL users.
Ignoring in a first instance any bottlenecks in resource consumption allows great simplification
to our model.

3.2 Resource Sharing: Problem Formulation

The model allows to formulate distinct challenges expressed through a configuration C: underlay
graph, overlay weighted graph and resource set. In this work we assume an underlay graph to
be fixed while we let a centralized entity, termed the overlay designer, the task of designing an
overlay graph capable of achieving optimal performance with respect to a family of metrics we
detail further. The designer can be faced to problems of increasing difficulty, depending on the
degrees of freedom available for the system design. We enumerate a set of possible problems,
together with some realistic applications.

Known Overlay Graph, Known Resource Distribution: in this case the overlay graph
is provided to the system designer and resources available to all participating peers follow a
known distribution. However, given a link −→xy in

←→
E U , the link weight w(−→xy) is assumed to be

unknown. This problem refers to the task of evaluating the optimality of a given design, rather
than the design itself. Here, the difficulty is to determine, whenever the edges belonging to a
given overlay graph are used, an assignment of edge weights so that a global objective can be
achieved. The set of solutions to this problem consists of weighted overlay graphs.

Several realistic scenarios may fall into this case. With the development of companies
specialized in peer-to-peer systems, several overlays may actually compete for a market. The
analysis of proposals or the evaluation of competitors calls for the definition of reliable and
objective benchmarks aiming at evaluating the efficiency of an overlay structure. In this case,
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we study if a designer can determine whether (i) there exists an optimal solution to the problem
and (ii) if a given overlay can achieve this optimal solution.

Known Overlay Graph, Unknown Resource distribution: as for the previous problem,
the overlay graph

←→
E U is known and fixed, but neither edge weights nor resource allocation are

known. The problem here is to determine if a resource distribution which needs to be associated
with edge weights exists so as to produce a feasible configuration achieving the global objective.
Note that the solution space to this problem is infinite. Indeed, any new feasible configuration
can be derived by multiplying both the amount of resources and the weights of edges of a feasible
solution by any arbitrary fixed value.

Many practical situations make a designer face to this problem, that could appear unrealistic
at a first glance. Consider for example an existing distributed system where one would like to
upgrade some peers by increasing (or decreasing) the amount of allocated resources originally
offered by these peers without modifying the logical structure that connects peers. Many struc-
tured systems let some exogenous parameters being primal in the choice of neighbors, the most
popular example being Distributed Hash Tables.

Unknown Overlay Graph, Known Resource Distribution: here we assume a fixed and
known set of resources but the overlay graph is to be built. A solution to this problem is a
weighted overlay graph where a subset of links that belong to the underlay network are used
to exchange a well defined amount of resources from one peer to the other. In other words, the
question is to understand whether each peer can determine a resource assignment among all of
its underlay neighbors that achieves optimal performance.

This problem has attracted a lot of attention: several works have been dedicated to the
design of overlay construction mechanisms in which peers are assumed to freely join the system
with a fixed resource budget which is not under the control of the overlay designer. However,
most of previous work focused on the difficult task of handling peer churn and system dynamics.
Instead, the optimality of the overlay structures achieved through these mechanisms has received
little attention to the best of our knowledge.

Unknown Overlay Graph, Unknown Resource Distribution: in this problem we as-
sume the only design constraint to be the underlay network graph, while the overlay graph,
the resource distribution are assumed to be unknown. The question is whether it is possible
to design an optimal overlay graph, together with an optimal assignment of resources which
achieves perfect reciprocation.

This situation is very open, especially when the underlay is seen as a clique. Yet the underlay
may be sometimes very constraining: assume for example a peer-to-peer system to be designed
over a network consisting of several smaller networks linked through few gateways. Another
example is when the underlay relies on a social network, that is the underlay only connects
peers sharing some area of interest.

3.3 Global Objectives for Overlays

Despite its natural distributed construction, the overlay graph is here seen as a single object.
This is in line with users’ perception of the overlay and the services it provides. We aim now to
define an objective metric that could characterize the performance of a particular configuration
C. Formally, we try and address the problem of defining a function f that returns, given a
configuration C, a value from an ordered domain. We are interested in configurations that
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maximize the output of this function. In the following we discuss various functions and we
arbitrarily choose one of them for the sequel of this paper.

Maximizing Resource Sharing: the most natural approach to measure the optimality of a
configuration is to simply account for the total amount of resources received by all peers. Hence
we define a function f1 that measures

∑
i∈V

∑
j∈V w(

−→
ji). This function captures the ability

of each peer to receive a given service from the overlay. The optimal value of f1 is easy to
determine: when a feasible configuration C verifies that the total amount of resources owned by
the peers is comparable to the total amount of exchanged resources, f1(C) is obviously equal to
R. The task of the overlay designer is then to conceive a configuration that optimally exploits
the available resources if such configuration exists.

The problem of f1 is that it does not account for the final resource distribution: some
peers may be very well served while some others may not receive resources at all. This issue
can sometimes be neglected, for example when a common authority such as an operator is in
control of all peers. However, when peers are controlled by un-coordinated entities seeking to
maximize their benefit from the system, then f1 would result in some peers being better-off
by disconnecting from the overlay, thus diminishing the amount of resources available to the
system. This could result in a vicious circle and end up in the service disruption.

Maximizing Peer Utilities: if peers can are assumed to be rational, selfish agents, it is
natural to measure optimality accounting for the ratio between the resources a peer receives and

the resources it provides to the system. For a peer i, we define this ratio as: α(i) =
P

j∈V w(
−→
ji)

R(i) .
Hence, we term f2 the function that measures the system performance and which is defined as
f2 =

∑
i∈V α(i). Unfortunately, f2 suffers from the same problems that affect f1 as it is unfair

with respect to peers with disparate contribution levels.

Introducing Fairness: a traditional way to introduce the notion of fairness into a system
is to define the thresholds αmin and αmax which are respectively the minimal and maximum
contribution ratio that globally characterize the system. We thus define f3 = 1

1+(αmax−αmin)
which is maximized when the difference between αmin and αmax is minimal. Here, the best
configuration is considered as the one guarantying αmax = αmin.

In the sequel of this paper, we focus on perfectly reciprocal overlays, i.e configurations that
maximize the quantity αmin, which we term α for simplicity. We assume self-sustainable peer-
to-peer systems, so no exogenous resources can be injected in the system: the case for α > 1 is
impossible in our setting. Interestingly, we observe that maximizing α (i.e. is equal to one) also
maximizes the values of both functions f1 and f3. Indeed, if α = 1, then, for every peer i, we
have that

∑
j∈V w(

−→
ji) = R(i), which gives

∑
i∈V

∑
j∈V w(

−→
ji) = R and αmax = αmin. Hence,

both f1 and f3 reach their global maximum. Note also that if α = 1, then the value of f2 is
exactly the number of peers of the system.

4 Results for Perfectly Reciprocal Overlays

In this section, we study possible solutions to the resource sharing problems defined in Sec. 3.
In the following we assume global knowledge of the underlay graph: the study of distributed
algorithms to achieve the following solutions is outside the scope of this paper and is subject of
future research. For the sequel, we identify the peers of the overlay graph with x1, · · · , xn and
with e1, · · · , em the set of overlay edges

←→
EU .
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4.1 Basic Results

Known Overlay Graph, Knwon Resource Distribution: In order to solve this problem,
it is sufficient to solve a system of linear equations with 2n equations with m variables. The
unknowns of the system are the weights of the overlay graph: w(ei) with i ∈ {1, · · · ,m}. For
each peer xi, we observe that the sum of the resources that this peer share with other peers is
equal otR(xi). Thus, for peer xi, we the following equation holds:

∑
xj∈N+

U (xi)
w(−−→xixj) = R(xi).

Given the definition of optimality discussed in Sec. 3.3, our goal is to achieve α = 1: this means
that the sum of resources that the peer xi receives from other peers it is connected to is also
R(xi). For xi it holds that:

∑
xj∈N−U (xi)

w(−−→xixj) = R(xi). Summing over all n peers of the
overlay we have a system of 2n linear equations with m variables. If this system is solvable,
then each of its solution provides the assignment of weights such that α = 1. This computation
can be done in O(n.m2) with the Gauss-Jordan elimination process.

Known Overlay Graph, Unknown Resource distribution: In this case, the existence
of an assignment of weights w(ei) and of resources R(xi) for a given peer xi such that the
optimality condition α = 1 is achieved is given by the existence of a solution to a system
of 2n linear equations with m + n variables. As derived for the previous problem, the same
set of equations holds, where the difference is that the R(xi) are now unknowns too. As the
complexity of the Gauss-Jordan algorithm is O(k.l2) where k is the number of equations and l
the number of variables of the system, determining the existence of a solution to the system of
linear equation and the computation of a solution, if one exists, can be done in O(n3.m2).

Unknown Overlay Graph, Unknown Resource Distribution: This problem appears
to be as hard to solve as the two previous cases. At a first glance, we could use the same
linear system of equations previously derived with R(xi), w(−→ei )’s and −→ei ∈

←→
E as unknowns.

However, no isolated peer exists in our system definition (that is, every peer has at least one
physical connection to another peer): hence, there always exists a resource R(xi) and weight
w(ei) assignment such that α = 1.

In practice this means that we always can find a solution when the overlay graph and the
resource distribution are not fixed a-priori. Here we give a possible solution to the problem.
For each peer xi, we let R(xi) = |N(xi)|, where |N(xi)| is the size of peer xi’s neighborhood
in the underlay graph. In order for the optimality condition α = 1 to hold, it is sufficient to
take assign w(−→e ) = 1 for each −→e ∈

←→
E . Hence, for every peer x, we obtain

∑
y∈N+

U (x)w(−→xy) =∑
y∈N−U (x)w(−→yx) = |N(x)| = R(x), and thus we have α = 1.

4.2 Polynomial-Time Decision Algorithm

We discuss here the most difficult problem that deals with the construction of an optimal overlay,
for which the condition α = 1 holds, given a resource distribution R(xi). This problem can be
addressed under different angles. The predominant approach in the literature is to consider a
selfish setting in which every peer determines the best “rewiring” strategy to optimize some local
utility function. Initial efforts, pioneered by [6], define a network creation game in which nodes
have to establish links to distant nodes at a minimum cost while maximizing a distance-based
quality of service metrics and prove the NP-hardness of the problem. Others [11], define the
selfish neighbor selection problem and provide some heuristics based on the k-median problem
on asymmetric distance when the out-degree of a peer (that is the number of connections it
can establish is bounded). We discuss more on the particular case of bounded out-degree in
Sec. 4.3.
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In this paper we make the following observation: the hard problem of establishing an optimal
overlay can be re-conducted to the max-flow problem. In a max-flow problem, the goal is to
find the maximal value that a flow between a single source and a single sink can achieve in a
network where each edge −→xy has a maximal nominal capacity c(−→xy). This problem has been
widely studied in the literature and the two most known algorithms that achieve an optimal
solution are the Ford-Fulkerson [7] and the Edmonds-Karp [5] algorithms. These algorithms
respectively have a time complexity in O(m.f) and O(n.m2) where n is the number of vertices
of the flow network, m the number of edges and f the value of the maximal flow.

We now give some definitions that allow to transform the problem of the overlay creation into
a max-flow problem. We define the networkN = (V ′, E′, c) associated to our problem. We define
the sets of vertices of N as the set containing a sink, a source and for every peer x, we replace it
by the vertices x+ and x−. Formally, we have V ′ = {s, t}∪{x+

i , x
−
i : i ∈ {1, · · · , n}}, where the

node s is the source and the node t is the sink of the network. Now, we create oriented edges
from the source to each vertex x+

i and edges from each vertex x−i to the sink. Moreoever, if there
is an edge {x, y} in the underlay graph, we assign one edge from x+ to y− and one edge from y+

to x−. Thus we can define E′ as E′ = {
−−→
sx+

i ,
−−→
x−i t : i ∈ {1, . . . n}}∪{

−−−→
x+
i x
−
j ,
−−−→
x+
j x
−
i : {xi, xj} ∈ E}.

It remains, to define the capacity of each edge of the network. For every edge
−−→
sx+

i or
−−→
x−i t, we

define its nominal capacity as R(xi) while for all other edges the capacity is unbounded (as
shown later, we also can assign a capacity equal to R). The following proposition holds:

Proposition 1 The value of the maximal flow of N is R iff the maximal value of α is 1.

Proof . For the forward implication, let f be a flow achieving the maximal value R. By the defini-
tion of R and of the capacity of edges, for every i ∈ {1, · · · , n} we obtain that f(

−−→
sx+

i ) = f(
−−→
x−i t) =

R(xi). It is now sufficient to take w(−−→xixj) = f(
−−−→
x+
i x
−
j ). Indeed, due to the flow conservation prin-

ciple, for every peer xi, we directly obtain
∑

xj∈N+
U (xi)

w(−−→xixj) =
∑

xj∈N−U (xi)
w(−−→xjxi) = R(xi),

and thus α = 1.
For the backward implication, assume that α = 1 and that we have an assignment of the

weights which reaches this bound. Now we define a flow f for N as follows: for every vertex xi,
let f(

−−→
sx+

i ) = f(
−−→
x−i t) = R(xi) and for every distinct vertex xi, xj , let f(

−−−→
x+
i x
−
j ) = w(−−→xixj). Now

as α = 1, we have that for every peer xi,
∑

xj∈V w(−−→xixj) =
∑

xj∈V w(−−→xjxi) = R(xi), and thus
we have that f is a well defined flow. Now, as the only neighbors of the source are the x+

i ’s
and as the only neighbors of the sink are the x−i ’s and by the definition of the capacity of this
edges, it is clear that the value of f is a maximal one. �

With this proposition, we state that it is possible to determine if an assignment of weights
such that α = 1 exists. Moreover, as seen in the proof, in the same time we can determine such
an assignment, if it exists. If we use the Ford-Fulkerson algorithm, we obtain a time complexity
in O((n + |E|).R) where E is the number of edges of the underlay graph and if we use the
Edmonds-Karp algorithm, the complexity is in O(n.(n + |E|)2). Figures 4 and 5 provide an
intuitive illustration of our methodology. Fig. 4a is the input to our problem: an underlay graph
with a given resource distribution R(xi) for every peer xi ∈ V . Our goal is to obtain an optimal
overlay network which, for every peer xi ∈ V , assigns the available resources to some selected
neighbors. Fig. 4b represents our first step, in which we proceed with the reduction to a flow
network. In Fig. 5a we show the max-flow network and in Fig. 5b we illustrate the resulting
overlay network which optimally assigns the available resources at every peer such as α = 1.
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4.3 NP-Completeness for Bounded Outdegree Overlays

In this Section we assume a peer xi ∈ V to have not more than d(xi) connections, that is,
the overlay graph has a bounded out-degree: |N+

U (xi)| ≤ d(xi). This assumption is not only
helpful to reduce the search space for the design of an optimal overlay graph, given a resource
distribution R(xi), but stems from practical considerations. Indeed, in most real systems the
number of connections a peer can establish concurrently is limited, both for scalability and
performance reasons.

As for the general case (where we have no constraints on outbound connections), we reduce
the problem of the overlay construction to a max-flow problem: the constraint on the number
of connections a peer can establish becomes a constraint on the out-degree of the network flow.
Hence, the problem is to determine the maximum flow of a edge-capacitated digraph under the
constraint that for each vertex xi ∈ V , the out-degree induced by the flow is less or equal to
d(xi). Formally, we express our problem as follows:
Bounded-outdegree Maximal flow
Instance : Directed graph G = (V,A), specified verticves s and t, capacity c(a) ∈ N∗ for
a ∈ A, bound on out-degree d(v) ∈ N∗ for v ∈ V and positive integer K.
Question : Is there a flow function f : A −→ N such that :

(i) f(a) ≤ c(a) for all a ∈ A,

(ii) for each v ∈ V \ {s, t},
∑

(u,v)∈A f((u, v)) =
∑

(v,u)∈A f((v, u)), i.e. flow is conserved at v,

(iii) for each v ∈ v, |{u ∈ V : f(v, u) 6= 0}| ≤ d(v), i.e. the outdegree of v in the flow is at
most d(v),

(iv)
∑

(u,t)∈A f((u, t))−
∑

(t,u)∈A f((t, u)) ≥ K, i.e. the net flow in t is at least K.

First, let’s recall the definition of the minimum cover problem, which is NP-complete and
then we prove here that our problem is NP-complete even if the digraph induced by V \ {s, v}
is bipartite.
Minimum cover
Instance : Collection C of subsets of a finite set S, positive integer L ≤ |C|.
Question : Does C contain a cover for S of size L or less, i.e. a subset C ′ ⊆ C with |C ′| ≤ L
such that every element of S belongs to at least one member of C ′ ?

Theorem 1 Bounded-outdegree Maximal flow is NP-complete.

Proof . Given an instance of Bounded-outdegree Maximal flow and a flow f , verifying the
conditions (i) to (iv) is polynomial in the size of the problem: hence, Bounded-outdegree
Maximal flow belongs to NP.

We now transform Minimum Cover to Bounded-outdegree Maximal flow. Let C = {C1, · · · , Cm}
a collection of subsets of a finite set S = {x1, · · · , xn} and let L a positive integer such
that L ≤ |C|. We define G = (V,A) with V = {s, t} ∪ S ∪ C and A = {(s, Ci) : i ∈
{1, · · · ,m}}∪{(xi, t) : i ∈ {1, · · · , n}}∪{(Ci, xj) : i ∈ {1, · · · ,m}, j ∈ {1, · · · , n} and xj ∈ Ci}.
Let c((s, Ci)) = |Ci| and c(a) = 1 otherwise and let d(s) = L and d(v) = |V | otherwise and let
K = |S| It is clear that the instance of Bounded-outdegree Maximal flow can be constructed in
polynomial time. We claim that C contains a cover for S of size L or less if and only if there
exists a flow f which respect the conditions (i) to (iv).

Clearly, if we have a minimum cover C ′ of C of size lower or equal to L, then we can define
a mapping φ from S to C ′ such that xi ∈ φ(xi). Then we can define the flow f as f((s, Ci) = 0
if Ci /∈ C ′ and f((s, Ci) = |φ−1(Ci)| otherwise, f((Ci, xj)) = 1 if Ci = φ(xj) and 0 otherwise,
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and f((xj , t)) = 1. One can check that f verifies conditions (i) to (iv) of the definition of
Bounded-outdegree Maximal flow.

Now, let f a flow that fulfills conditions (i) to (iv) of the definition of Bounded-outdegree
Maximal flow. One can check that C ′ = {Ci : f((s, Ci)) 6= 0} is a minimum cover of S of size
lower or equal to L. Indeed, as K = |S|, the definition of the G implies that for every xj ∈ S,
there exists Ci ∈ C ′ such that xj ∈ Ci (we must have that f((Ci, xj)) = 1). Now as d(s) ≤ L,
we have that |C ′| ≤ L. �

We have proved that Bounded-outdegree Maximal flow is NP-complete even if the digraph
is bipartite. Since our original problem is to determine if there exists an overlay graph such
that α = 1 when the digraph is bipartite, then this is also a NP-complete problem.

5 Case Study: b-Matching-Based Overlays

In this Section, we describe a typical application of the theoretical framework: studying the
optimality of a distributed algorithm for overlay construction. The object of this study is the
b-matching theory.

5.1 Non-Optimality of the b-Matching Theory

Stable matching theory (in particular stable roommates problems) provides a fertile ground to
devise distributed algorithms used in peer-to-peer networks. Here we focus on a particular in-
stance of stable-matching theory, namely b-matching. This model has recently provided insights
into peer download rates and a good understanding of upload setting strategy in peer-to-peer
content distribution applications [8, 9, 12]. In such systems and under some constraints, it has
be shown that there exists an unique stable solution matching peers exhibiting similar traits
in terms of up/downlink bandwidth which is optimal and a fast decentralized algorithm has
been designed to reach this stable solution. Given an “acceptance” graph G = (V,E) (which
corresponds here to the underlay graph), each peer x ranks its neighbors in the acceptance
graph according to a preference list. Consider for example a peer x having two neighbors u and
v. If u exhibits, for the peer x, a better ranking than v, then x would prefer to link with u
rather than with v. We focus here on a global ranking, i.e. each vertex i has a global utility
S(i) which induces a total order on peers. The goal for each peer it to maximize its local payoff
by being matched with its best neighbors with respect to global utility values when the degree
of a peer x is bounded by b(x).

The b-matching theory is claimed to build efficient overlays, so is an excellent target for
a study using the proposed framework. Given an underlay graph

←→
G and a resource set R =

{R(x) : ∀x ∈ V }, one can use the b-matching algorithm [12] in order to build an overlay graph
←→
E U . The total order on peers is naturally matched with their resources, that is, the utility of
a peer x is S(x) = R(x). The idea now is to check if, given

←→
G and R, the overlay

←→
E U can be

a perfectly reciprocal overlay. An issue is to fix a value b for peer degrees. We propose to act
as follows. Given

←→
G and R, we first compute an optimal unbounded overlay (

←→
E′U , w) by using

the algorithm proposed in Sec. 4. Then we measure the maximal degree in this overlay graph
max{|N+

U (x)∪N−U (x)| : x ∈ V } and we fix b to this value. The overlay (
←→
E′U , w) can be seen as

a competitor for the b-matching-based overlay
←→
E U in the sense that it is easy to fix to 0 some

links in
←→
E′U in order to have exactly the same number of edges in

←→
E′U than in

←→
E U . Note that

if there is no solution for unbounded overlay graph, we do not run the b-matching algorithm
because we only focus on checking whether the b-matching overlay can reach an existing optimal
configuration.
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As depicted in Fig. 1, a first immediate result is the non-optimality of b-matching overlays.
Indeed, given a basic underlay and a resource set, the b-matching technique fails in building a
perfectly reciprocal overlay although there exists an overlay which achieves this goal for the same
underlay and resource set. The b-matching theory was, to our opinion, a good candidate for a
generic distributed algorithm for building perfectly reciprocal overlays. With this theoretical
non-optimality result, the problem remains open.

1
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2 2

22

222 1

1

1

(b)

Figure 1: (a): An underlay graph with 5 peers where bold edges form the overlay built by the
2-matching and (b): a solution achieving α = 1 such that every peer interact with at most two
other peers

5.2 Efficiency Study on Random Graphs

Even if the b-matching techniques has been proved to not build the optimal overlay in some
cases, we evaluate nevertheless its efficiency when this techniques is applied on random graphs.
We aim to know how frequent does the case where the b-matching fails occur.

We develop a basic simulator with the following settings. Peers are labeled from 1 to n where
n is the number of peers. We use the Erdös-Renyi loopless symmetric graphs G(n, p) as underlay
graph, where p is the probability that a given edge exists, so the expected degree d = p(n− 1).
Resources are uniformly distributed over peers: a generic numerical value indicating the amount
of available resources is assigned in the set [10, 100]. To contravene random effects, each plot
is obtained after 100 iterations. We count the number of underlay and resource set on top of
which a perfectly reciprocal overlay can be built, then the number of times a perfectly reciprocal
configuration can be created from an overlay built by the b-matching technique. It is easy to
evaluate the efficiency of b-matching techniques by computing the ratio of optimal configurations
that may derive from this distributed algorithm.

First, we analyze the impact of the number of edges. We intuitively expect that an almost
empty graph (with a small number of edges) does not have an optimal solution with high
probability whereas a graph which is almost a clique (i.e. a graph where every peer is connected
to each peer) has a high probability to have an optimal solution.

Fig. 2(a) shows the results obtained for a graph with n = 50 peers. The probability for an
edge to exist goes from 0 (the empty graph) to 0.5 (expected degree is roughly 25). The first
interesting result is that as soon as the expected degree is at least 10 (which corresponds to a
probability of 0.2), in most cases (at least 96%) there is an optimal repartition of the resources.
Obviously, given an arbitrary probability p it is always possible to find a random graph G(n, p)
and a resource distribution such that there is no optimal repartition of these resources. However,
our results show that the number of graphs having no optimal overlay is very small. The second
interesting (and surprising) fact is that the b-matching algorithm succeeds in building perfectly
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(a) Comparison of the evolution of percent of graph
having optimal solution and percent of graph having
optimal solution with overlay fixed by the matching al-
gorithm when p increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

ra
tio

 o
f g

ra
ph

 h
av

in
g 

a 
so

lu
tio

n

number of peers

alpha p=0.20
b-matching p=0.20

alpha p=0.15
b-matching p=0.15

alpha p=0.10
b-matching p=0.10

(b) Evolution of percent of graph having optimal solu-
tion and percent of graph having optimal solution with
overlay fixed by the matching algorithm when p = 0.20,
p = 0.15 and p = 0.10 and when the number of peers
increases.

Figure 2:

reciprocal configurations for almost all cases. So the failure case for b-matching techniques seem
very infrequent on random graphs.

We now make vary the number of peers in an interval [0, 100]. Fig. 2(b) shows results for
three values of p: p = 0.10, p = 0.15 and p = 0.20. The b-matching algorithm achieves an
optimal configuration in most cases; furthermore, we observe that as the average degree of the
underlay graph increases, the probability that a given configuration has an efficient resources
allocation imposed by the overlay increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

ra
tio

 o
f g

ra
ph

 h
av

in
g 

a 
so

lu
tio

n

number of peers

alpha
b-matching

Figure 3: Evolution of percent of graph having optimal solution and percent of graph having
optimal solution when the expected degree is 5 and the number of peers increases.

Our last study focuses on the case when the expected degree of the underlay graph is fixed.
Fig. 3 illustrates results for n ∈ [10, 100] when the expected degree of the underlay is bound
to 5. Since the expected degree is fixed, the number of solution decreases when the number of
peers increases. We note that the number of solutions given by the b-matching can be far from
those given in the general case. Indeed, for graphs having 10 peers, 85% of underlays admit a
solution but only 75% of them have a solution based on b-matching. As the number of peers
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increases, this difference decreases: it is null for graphs with 100 nodes.

6 Conclusion and future works

In this paper we have proposed a general framework for the problem of rival resources sharing
in overlay networks. We have focused on perfectly reciprocal overlays, i.e. peer-to-peer systems
where each peers receives exactly the same amount of resources it offers. Given a fixed underlay
graph, the existence of such overlays is a fundamental question. We first show that it is possible
to decide whether a optimal configuration exists in polynomial time. We then prove that the
same problem becomes NP-complete for perfectly reciprocal bounded outdegree overlays. Fi-
nally, we have used the theoretical bound given by this framework with numerical simulations in
order to show the nearly optimality of overlay networks designed by the decentralized algorithm
provided by the b-matching model.

In our study, we have only considered perfectly reciprocal overlays but various other opti-
mization may be considered. In particular, a new global objective for overlay could be to maxi-
mize the number of peers receiving at least k resources. In this case, the optimality is achieved
when all peers receive at least k resources. This case makes especially sense for peer-to-peer live
streaming systems where a peer can play the stream only if it is able to receive enough data,
so if its overlay neighbors can deliver a sufficient amount of bandwidth resources. In another
possible future work, we could go deeper in understanding perfectly reciprocal overlays. More
precisely, many peer-to-peer systems admits a neighborhood size in O(log n). For this family of
overlays, the complexity of determining whether a perfectly reciprocal configuration exists may
be not NP-complete but the problem is still open.
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Figure 4: (a): An example of resource repartition on an underlay graph and (b): the associated
edge-capacitated network (edges with no capacity are edges with unlimited capacity)
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Figure 5: (a): A maximal flow for the network of the Figure 4a and (b) : the associated optimal
overlay graph with resources allocation.
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