
Compliance Proofs for Collaborative Interactions using Aspect-Oriented
Approach

Adomas Svirskas1,2, Carine Courbis1, Refik Molva1, Justinas Bedžinskas2
1Institut Eurécom, Sophia-Antipolis, France; 2Vilnius University, Vilnius, Lithuania

{adomas.svirskas, carine.courbis, refik.molva}@eurecom.fr; justinas.bedzinskas@gmail.com

Abstract

Service Oriented Architecture approach in general

and the Web services technology in particular play
significant role in modern collaborative environments.
However, it is not enough to have the business
functionality of the partners packaged as (Web)
services; there is also a need for business-aligned
order of interaction between these services (business
protocols). Furthermore, it is necessary to guarantee
that these protocols are enacted in compliance with the
effective policies and regulations. This paper discusses
business protocol compliance issues and suggests
some techniques for enhancement of business
protocols for better compliance. Such enhancements,
for example, can support the proposed structured
proof of compliance concept and its construction
mechanism, which together address the issues of both
correct course of collaboration at its critical steps and
existence of a tangible proof of correctness of the
whole collaborative interaction. Such proof, consisting
of individually signed and time-stamped evidence
statements, can serve for various audit purposes and,
if necessary, in the court of law.

1. Introduction

The concepts of Service Oriented Architecture
(SOA) and the recent developments in Web services
field provide promising opportunities for integrating
data, applications and business processes. The latter,
however, is the most complex case of integration as it
requires strong support for both business process
semantics and technical infrastructure in order to tackle
heterogeneity at all levels. Long-running interactions
among the involved services can only be successful
when the parties involved in the interactions follow
commonly agreed protocols and provably comply with
the external policies and regulations dictated by the
legislative acts.

There are two types of protocols in coordination of
service interactions – peer-to-peer and centrally
managed. A process of specifying the business
protocols in advance, distributing them to the parties
and subsequent common run-time enactment of the
protocols on peer-to-peer basis (without the central
“hub”) is known as service choreography. Potential
example of such interaction can be a B2B purchasing
transaction: request for quote, negotiation, placement
of a purchase order, getting information about goods
delivery process, payment, etc.

Choreography is well suited for multi-party
interactions where parties belong to different domains
of control and centralized collaboration management is
not possible (or undesirable). Such interactions are
referred to as collaborative interactions throughout
this paper. Web Services Choreography Description
Language [25] is the current standard of choreography
in WS domain. As opposed to this interaction style, the
orchestration specifies individual behavior of a
participant in choreography by defining a description
on a process to be executed. Orchestration assumes
existence of an entity, which is the central point of
control and governs overall workflow of activities, by
composing a new service from existing services.

Having commonly agreed public collaboration
protocols helps companies and government agencies to
move closer to organizational interoperability. There
are various issues such as correct specification and
verification of the protocols, mapping between the
public protocols and private implementation
mechanisms, protocol lifecycle support by the
collaboration partners (adaptivity issues) [1], etc. All
these issues are, to a different degree, shared by all the
parties and the solutions require common agreements,
tools and resources to be provided by each party.

However there are a number of issues related to the
involvement of third-parties: government regulatory
agencies, law enforcement bodies, civil liberty and/or
consumer protection organizations, etc. In other words,

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

collaborative interactions of commercial and/or
government organizations are increasingly regulated
by growing number of national and international legal
acts, bills and other external rules, in addition to the
internal policies and procedures to comply with. There
are different kinds of regulations, including corporate
governance, security, privacy, financial reporting (e.g.
Sarbanes Oxley, Basel II), trade & tariff,
environmental, or combined, like the USA Patriot Act.
These external policies affect all the participants of the
interactions, as opposed to the internal policies of each
participant and are, in most cases, legally binding.

Therefore, collaborative interactions in e-Business
and e-Government areas need to be compliant with the
applicable regulations and the participants must be able
to prove their compliance to avoid sanctions and
penalties. Compliance, in short, can be defined as an
act or process of complying with a demand or
recommendation, observance of official requirements
[2]. Our work aims to complement existing business
protocols and business rules solutions in the context of
SOA/Web services in order to increase levels of
provable compliance of multi-party collaborations. We
introduce the concept of compliance structured proof -
a verification process of mandatory collaborative
interaction steps. The outcome of this process is a
single document containing digital signatures,
timestamps and other necessary artifacts to prove the
validity of the collaboration.

In order to produce such proof of compliance
document, the interaction description and enactment
need to be enhanced with additional features to
validate the course of interaction and contribute to the
proof construction at each critical step. We use the
AOSD (Aspect-Oriented Software Development)
approach [3] for enhancing both the orchestrated (the
first prototype has already been implemented) and
choreographed collaboration protocols, and,
potentially, interoperability gateways. The latter is a
uniform, policy-driven, software service, deployed on
the boundary of each participant’s domain to connect
the internal systems using public choreographed
protocols [1]. There is some related work [4, 5], which
demonstrates usage of aspects to enhance orchestrated
collaborations – BPEL [6] processes, in particular.
Some more general AOP approach to enhance Web
services interactions is described in [7].

The rest of this paper is structured as follows.
Section 2 discusses compliance issues and potential
solutions in the SOA context and explains why our
solution can be useful. Section 3 describes the main
features of our compliance structured proof concept;
Section 4 explains the business protocol enhancement

approach, followed by Section 5, which concludes the
paper.

2. Compliance in SOA-based interactions

According to Tabet [8], the compliance problem is
complex and impacts both the functional and technical
sides of the business processes within an organization.
Requirements to comply with regulations and internal
policies often are not understood in a normalized way,
creating a high degree of redundancy. From the
organizational point of view, one of the initiatives
aimed to provide help to the IT managers and
architects is the OMG Regulatory Compliance Alliance
(ORCA), established by the Object Management
Group [9]. The Global Regulatory Information
Database (Compliance GRID) [10] is an open database
of rules, regulations, standards, and government
guidance artifacts. The goal is to provide the de facto
compliance reference guide for global (IT) compliance
managers.

From these explanations we can see that in
collaborative SOA-based peer-to-peer interactions we
can have situations when legitimacy of some actions
(and/or the whole result of the multi-step multi-party
collaborative interaction) can be questioned. We have
identified the following main questions:

• Have the necessary actions been performed
or not at all? Is the whole result of collaboration
valid or not?

• Have the actions been performed in the
right order and accordingly to the regulations?

• Were these persons authorized to authorize
the actions?

• Who certified the correctness and
compliance of the actions?

• At what time exactly the actions have been
performed?

• Has the evidence and/or timestamp itself
not been tampered with?

• Is the evidence ready to be used in the
court of law, according to the legislation in effect?
These and similar questions are notoriously difficult

to answer even within the boundaries of one
corporate/administrative domain where full access to
all the ICT resources is possible (if compliance
measures are put in place). Therefore, in multi-party
collaborations with limited trust between partners, such
questions often become practically unanswerable
without a special mechanism agreed and put in place in
advance. The proposed solution aims to help
answering these questions.

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

As it was mentioned before, the task of applying
compliance rules is complex and resource-consuming,
yet unavoidable. A potential solution is to institute
controls that enhance the transparency of
communications, bringing to light any material
deficiencies and highlighting key information that may
be material to compliance. This allows controlling the
way the key data is processed, distributed, retained,
and accessed in day-to-day operations.

Speaking more technically, there is a need for IT
tools, which would allow:

• Declarative description of interactions and
processes (business protocols), as discussed before;

• Support of data lifecycle (creation,
retention, access, flow);

• Verification that the controls meet the
regulations (and so can be shown to be compliant
through computational means) [8].
Ross-Talbot [2] discusses the notion of Declarative

Compliance Systems Architecture, an approach based
on declarative description of collaborative processes
and business rules - logical statements about how a
system operates, be expressed in the language of the
business, referring to real-world business entities [11].
According to Yang et al. [11], business rules can
represent, among other things, typical business
situations such as escalation ("send this document to a
supervisor for approval") and managing exceptions
("make sure that we deal with this within 30 min or as
specified in the customer's service-level agreement").

Externalization (isolation, outboarding) of
policies/rules (a policy can be defined as a declarative
specification of guidelines, rules of conduct,
organization, and behavior of entities in a given
environment [12]) from business processes helps
creating not only reusable, more generic processes, but
also reusable and executable sets of rules that
maximize business agility and improve visibility,
helping to achieve better compliance. There are
different rule languages, techniques, frameworks and
tools assisting developers to achieve such separation.

It is important, however, to achieve a certain level
of standardization when specifying rules and policies.
The RuleML [13] is a rapidly evolving rule
interchange platform for Distributed systems and Web
services particular, including Semantic Web Rules and
Semantic Web services. Ross-Talbot et al. in [12]
introduce a policy specification language extending
RuleML to handle various policy descriptions
embedding rules and constraints marked-up in the
RuleML language for Web services. The RuleML
family of languages provides the expressive power of a
declarative rules language with a markup approach

enabling modular sublanguages integration for various
policy representations [12]. This lays a good
foundation for factoring the requirements to leverage
commonalities by finding common rules and managing
them together, thus eliminating redundancies in data,
processes, and systems.

As we can see, many business rules are about
obligations, they specify action that must be
performed. Sometimes, however, systems and people
do not act according to the business rules, intentionally
or not. This is where compliance becomes important.
Rules can ensure compliance within IT Systems,
however IT systems cannot always carry out real
business actions, and sometimes they can only
inform/direct people in the business to act [8]. This is
one of the main drivers for some complementary
techniques, which would help to build evidence of
compliance, to be introduced. The proposed
compliance structured proof concept, described in the
next section, aims to serve such purpose by providing a
mechanism to specify which interaction steps are
critical, enforce their ordered enactment and collect
testimonies signed by authorized principals that the
steps were performed in compliance with the policies.

3. Proposed compliance proof approach

As discussed above, declarative descriptions of the
collaborative processes and externalized business rules
(controls) can help to achieve regulatory compliance of
the interactions, however additional tools are needed to
verify that the controls meet the regulations. More
precisely, automatic verification of processes and rules
is highly desirable, so that the execution can be shown
to conform to the description.

For this purpose, we introduce the notion of
structured proof - a verification process of mandatory
(and critical) collaborative interaction steps, resulting
in a single document containing digital signatures,
timestamps and other necessary artifacts to prove the
validity of the collaboration. In the context of
collaborative multi-party interactions among
commercial bodies, public administrations, judicial
institutions from, quite often, different countries, it can
be useful to have a mechanism that would be twofold:

• Enforce, at runtime, that the critical
interactions are performed by the right (duly
authorized) person, group, or service and these
interactions follow the right order of execution and,
maybe, at the right time, if time constraints are in
effect.

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

• Produce a tangible proof of interaction
validity that can be stored and used, in front of a
court, in case of a dispute and/or investigation.
The proof – as a set of evidences – is incrementally

constructed by adding evidence after the execution of
each critical collaboration step:

• Sufficient (in terms of amount and
accuracy) data must be collected to produce an
evidence of the correctness of the collaborative
interaction. Evidence can include either a
timestamp or a digital signature of one or more
documents, certain data exchanged between parties,
and/or previous evidences.

• It should not be possible to tamper with the
individual evidences, i.e. no alterations are allowed
after the evidences have been produced, as
described above.

• No collaboration party should be able to
deny any evidence they have produced during the
interaction.

3.1. Phased structured proof mechanism

The whole process of structured proof can be
decomposed into three distinct phases, as follows:

The design phase: during this phase, the critical
(compliance) steps of a given inter-domain
collaborative interaction (workflow) description are
specified (marked). In addition, the types of necessary
evidence(s) are attached to the critical steps, denoting
the information to be produced as evidence and the
principals responsible for that. This information, which
effectively describes how to produce a complete
structured proof document, is specified by those
responsible for interaction compliance and is
subsequently used by the services implementing the
concept. All the information is contained in a
document, referred to as compliance path (CP)
document. The concept of compliance path is also
used in other areas, for example construction industry
for checking of buildings design compliance to the
energy codes etc. The purpose is the same as we are
discussing – to show, that the procedures are compliant
with the regulations.

The injection/enhancement phase: this phase is
needed to “bracket” the critical collaboration steps by
“injecting” the invocations of the services responsible
for verification of previous critical steps and the
evidence production at the end of each critical step. In
other words, the description of the original interactions
is enhanced by inserting additional code (advice in an
aspect) according to the information contained in the
compliance path document. The latter, as mentioned

before, indicates which steps are considered critical
and also contains “evidence templates” for these steps.
Section 4 describes the proposed solution of automated
enhancement of collaborative interaction descriptions
(and supporting enactment mechanisms, e.g.
interoperability gateways [1]) with non-functional
features.

The run time phase: during the enactment of the
inter-domain interactions, two actions related to the
structured proof mechanism must take place at each
critical step – verification and evidence production.

Firstly, the verification procedure (Figure 1) takes
as its input a) the structured proof document being
constructed, b) the compliance path document, and c) a
pointer to the current “location” of the critical step in
the overall interaction.

Definitions:

KSA1 - private key of actor A1
KPA1 - public key of actor A1
h - a hash function
KSTTP - private key of the Trusted Third Party
KPTTP - public key of the Trusted Third Party

Validation of a signature:

Signature = [h(value)]KSA1
h(value) =? Decryption(signature) = [Signature]KPA1
= [[h(value)]KSA1]KPA1

Validation of a timestamp:

Timestamp = [time | h(value)]KSTTP
Decryption(timestamp) = [timestamp]KPTTP = [[time |
h(value)]KSTTP]KPTTP = time | h(value)

Figure 1. Run-time verification of the steps

Using these input parameters, the procedure can

check whether all the expected evidences have been
produced by the right principals and the content of
evidences is valid. If the conditions are met, the
pending critical step (a business service) can be
invoked. Otherwise, a breach of foreseen compliance
path is detected and a human interaction is required or
the collaboration needs to be suspended.

At each critical step, the verification (enforcement
of the collaboration course) of previous critical steps is
performed before the step can be invoked. When the
business actions of the step are performed, production
of evidences can take place, provided that the action
did not end with an exception, i.e. the step
“succeeded”.

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

In this case, the evidence production procedure
commences, taking as its input the information about
evidence(s) to be produced and, as input/output, the
structured proof document. As mentioned before, there
are two types of evidences: signature and timestamp.
Timestamp evidence is produced by a trusted third
party (the timestamp authority) that takes as input the
hash code of the value to sign with the current time
using its private key. The value to timestamp can be a
previous evidence to indicate when the action has been
done, the whole structured proof document, or an
arbitrary value from the message related to the step. In
a complex multi-domain/multi-country collaboration
case, synchronization between the time stamping
authorities is an issue itself. This issue, of course, is
out of the scope of our work. There are research
projects (such as BALTICTIME [14]) dedicated to
developing the interface between National Time
Standard Authorities (NTSA) and Time Stamping
Authorities (TSA) ensuring coherent time scale
synchronization and time scale transfer between
atomic clocks of NTSA and time stamp server of TSA.
Our solution would rely on presence of such TSA, as
long as it delivers on its promise:

e-Document+eSignature+eTime Stamp = Legal Power

Signature evidence is produced by an actor of the

collaboration, which takes value to sign as input along
with the previously produced evidence. Then the
respective hash codes are calculated and signed (one
signature) with the actor’s private key. Objects to be
signed can be external documents (accessible via an
URI, for example), inline data fragments exchanged
between partners, and previous signatures or
timestamps contained in the structured proof
document. As this digital signature is generated by
encrypting data with the private key of an actor, it
serves the purposes of proving data origin and
integrity, as well non-repudiation.

It is necessary to point out, that in many cases such
evidence is roughly equivalent to a paper-based
signature, i.e. it can attest something which has or has
not been performed. Compliance structured proof, in
other words, is a set of affidavits - formal statements of
facts, signed by the declarants (or the affiants, more
precisely) and “witnessed” electronically, in our case.

3.2. Conceptual solution architecture

A number of different artifacts are needed to
support the whole structured proof lifecycle. Firstly,
we have created two XML schemas to model the data
part of the structured proof mechanism: one for the
structured proof and one for the compliance path. At

the moment we using any GUI tool to facilitate the
design phase of the structured proof; this is subject of
the future work, we are looking into possibilities to use
Domain Specific Languages (and tools) for this.

The injection/enhancement phase is explained in
Section 4. At the run-time, for each compliance-critical
step of the collaborative interaction, three additional
services need to be used, in addition to the business
service itself in order to support the run-time phase of
the structured proof construction. These services can
be described as follows:

The verification service helps to enforce the right
execution order of the compliance-critical steps.
According to the given compliance path specification,
the structured proof document being circulated, and the
current critical step, this service verifies that all the
expected previous evidences are in the right order and
correct. The principal, who has signed the evidence,
must be the one indicated in the compliance path
document as responsible for signing or needs to
delegate the right accordingly. In case of any mismatch
during verification, this service raises an exception.

The signing service is responsible for signing one
or more objects and for inserting the signature
(evidence), into the right place in the structured proof
document. Security of these mechanisms is based on
the asymmetric cryptographic system where the private
key of an actor is used to sign whereas his public one
to decrypt it. As the private keys are very sensitive
items, and anyone possessing the private key can sign
documents claiming to be the person to whom the
private key belongs, each collaborating party must
have a signing service inside their organization to
diminish the risks associated with distribution of the
private keys.

We are using the standardized XML signature
format [15] for digital signatures. As our prototype is
based on the Java Platform, we will be able to use the
newest security features of Java Platform Standard
Edition 6 (Java SE 6), which contains built-in
functionality dedicated to the creation and
manipulation of XML signatures [16]. The new
signature-related features of Java SE 6 API are also
very helpful for integration with the JAXB (Java
Architecture for XML Binding) library [17] to handle
the mapping between XML and Java.

One should bear in mind, however, that Java XML
Digital Signature API's sign and validate
operations are computationally expensive: they can
take up more than 30 percent of CPU time. The
PKCS#11 Cryptographic Token Interface Standard
[18] defines the native programming interfaces to the
cryptographic tokens such as hardware cryptographic
accelerators and smart cards. PKCS#11 provides

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

increased performance and scaling through transparent
access to hardware cryptographic acceleration without
requiring modification of existing application code if
Java Cryptography Extension (JCE) [19] has been
configured to use the Sun PKCS#11 provider, which in
turn has been configured to use the underlying
accelerator hardware [20].

Finally, the time stamping service: a trusted third
party (e.g. Time Stamping Authority, as proposed in
[14]), which creates and signs (with its private key) the
timestamps for evidence. Obtained timestamp then
needs to be inserted into the right place of the
structured proof document. A trusted third party that
acts as a notary might also be used to write the
evidences in the structured proof document only when
it has received all of them from the different partners
involved in the interactions who do not trust each
other.

4. Enhancement of collaboration protocols

This section explains the injection/enhancement
phase of the structured proof mechanism in greater
level of detail. In general, the chosen approach can
also be used to add other non-functional features to
Web services interactions. Our goal is to control the
correct sequence of critical interactions steps and
collect the evidences (testimonies) of compliance with
the foreseen policies, expressed as compliance path, in
this case.

If we look into the real collaboration protocol
descriptions (e.g. BPEL), we can notice that the
implementation details of a feature such as structured
proof mechanism can be scattered across different
artifacts of collaboration protocol description.
Enhancing a workflow definition with such a feature is
complex and error-prone as the enhancement cross-
cuts across different artifacts of different nature. For
example, in the case of a BPEL process, the artifacts
that need to be enhanced are the following: the BPEL
process description itself; the WSDL (Web Service
Description Language) of the BPEL Web service; the
Process Deployment Descriptor (PDD) document; the
Web Service Deployment Descriptor (WSDD)
document, and maybe the Java stub of the BPEL Web
service. Therefore, when a new feature needs to be
introduced, an automated method to modify these
artifacts altogether consistently would be highly
desirable. We believe that an aspect-oriented approach
is appropriate for this.

In this case, a module (an aspect), containing all the
information related to the enhancements of different
artifacts, is necessary. Such aspect has to be designed

and created when a new feature needs to be plugged
into the collaboration. As the entire enhancement
information is kept now in one place, creating and
maintaining such module is easier than maintaining
several artifacts. An aspect is composed of three parts,
like AspectJ [21], the most mature AOP language to
specify aspects on Java classes:

• The pointcuts part, which specifies the
locations (such as the invocation of some service in
a BPEL process) where the enhancements should
be injected

• The advice part, which indicates what kind
of enhancement must be performed (such as add a
new invoke activity in a BPEL document) before
the invocation of functional service;

• The inter-type declarations, which indicate
structural information such as new instance
variables in Java classes. In our case, we will call
them inter-protocol declarations. Examples of such
declarations are namespaces, service names, port
numbers, and WSDL of the new Web services to
be invoked etc.
A service – aspect-weaver – is doing the actual

injection of the pieces of advice at the locations
selected by the pointcuts in the different artifacts. The
weaver service “interprets” an aspect and
automatically injects the enhancements into the
different documents. In comparison, the AspectJ
weaver only deals with one data format – Java classes,
while our solution can process many types of artifacts.

The mechanism used to denote the aspects needs to
be generic enough to meet the enhancement needs of
both orchestrated and choreographed workflows i.e.
only the aspect weavers are workflow language (such
as BPEL) and, if necessary, deployment platform
dependent, whereas the aspect language itself is
platform-independent. The latter also needs to be easy
to understand and use by people who are neither
workflow nor aspect-oriented technology experts. For
example, when designing the pointcut mechanism to
select nodes in the XML documents, we are
considering these alternatives: XPath [22], a powerful
but rather complex language, or some potentially
easier mechanism to select one or more WS service
invocations.

As it was mentioned earlier, there are a number of
technical artifacts to be modified when injecting the
new features. Some of these artifacts are used to
describe the process itself while the other ones are
used to deploy the process. The weaver is organized as
a set of transformers, which can be configured into
different combinations in particular environments. The
need for such flexibility is dictated by the fact that

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

some of the artifacts depend on particular BPEL
engine and the application servers used to deploy
individual services. Figure 2 shows an overview of the
proposed architecture, which allows injecting new
security features into a BPEL process description.

Figure 2. Overall picture of the interaction

enhancement solution architecture

Figure 3 illustrates functionality of the BPEL
process transformer, which has the following main
(and other, as depicted) features:

• Namespaces of the new verifier and signer
services (WS) are added in the process node

• Partner link for each WS are added into the
partnerLinks node

• New fault & compensate handlers may be
added if needed by the new WS

• New invoke activities to new WS are added to
“bracket” the critical step

• New link elements need to be declared if the
workflow uses links to explicitly connect a
source activity to a target activity instead of
following the activities nested directly

Looking from the deployment point of view, the
Process Deployment Descriptor (PDD, .pdd) file
describes the relationship between the partner links
defined in the BPEL (the process description itself) file
and the implementation required to interact with actual

partner endpoints. The .pdd file indicates where the
actual endpoint references are. An endpoint reference
conveys the information needed to access a Web
service endpoint, which indicates a specific location
for accessing a Web service using a specific protocol
and data format.

B

C

A

B
D

BPEL Process
Transfomer

B
C

AS1

B

S2

D

Links

Assigns

Invokes

Namespaces

Partnerlinks

Variables

receive

reply

invokes

Added

Modified

LEGEND

B : The BPEL WS
A, C and D : WS of the original workflow
S1 : Security WS 1 (e.g. verifier of sp)
S2 : Security WS 2 (e.g. signer)

Fault Handlers Compensation Handlers

Figure 3. BPEL process transformer architecture

During deployment of a process, each role defined

in a partner link is assigned an endpoint reference.
Using endpoint references in deployment makes
possible the dynamic selection of a service partner.
The .pdd file is an integral part of the deployment
package for the process; therefore it needs to be
modified accordingly, along with the BPEL file itself,
during the enhancement step:

• Service binding information (partnerLink
element) of the new services needs to be added
into the partnerLinks element of PDD

• The namespace and WSDL location of the new
WS need to be added into the wsdlReferences
element of PDD

In our case the PDD file format [23] is specific to
the ActiveBPEL product available from Active
Endpoints, Inc., which we are using for our
experiments.

Such modular organization of the weaver increases
its applicability and reusability – different “pipelines”
of transformers can meet different needs. A particular
instance of the weaver can be assembled dynamically
based of the aspect description and the configuration,
which matches particular deployment needs. For the
sake of brevity we discussed here only the BPEL and
PDD transformers.

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

5. Conclusions

The number of complex multi-domain/multi-

country collaborations is constantly increasing, as the
SOA concepts and supporting tools are maturing. To
avoid repudiations of execution and ensure compliance
with the business rules as well as the external policies
and regulations, new mechanisms need to be proposed.

This paper proposes a mechanism of compliance
structured proof that can enforce, at runtime, the
critical interactions and produce a tangible proof of
interaction validity that can be used in a court of law if
applicable. The outcome of this process is a single
document containing digital signatures, timestamps
and other necessary artifacts to prove the validity of
the collaboration. Such compliance proof is
incrementally constructed by adding signatures and
timestamps after the execution of each critical
collaboration step. In addition to that, the mechanism
verifies that each critical step along the compliance
path is performed in correct order, i.e. having the
previous critical steps properly completed. If a breach
of the foreseen compliance path is detected, an
exception is raised and the collaboration is suspended.

In order to inject, in a systematic way, this
mechanism into any existing collaboration, this paper
proposes to use an AOSD-based approach. The aspects
contain the necessary pieces of information to enhance
the orchestrated and choreographed collaborations, as
well as interoperability gateways with non-functional
features such as the explained compliance structured
proof mechanism.

A first prototype of the solution has been
implemented using BPEL orchestration platform. This
prototype will be used to assess solution performance
and suitability before moving towards enhancing
choreographed interactions. A good case study for
application of such compliance proof mechanism can
be collaboration between public administrations of
different EU Member States in legal/law enforcement
domain where validity of interaction steps is highly
important.

6. Acknowledgements

The work presented here is partially funded by the
European Commission under contract IST-2004-
026650 through the project R4eGov [24]. The authors
would like to thank members of the organizations
involved in R4eGov for their contribution: SAP
Research Labs, Thales Security, University of
Hamburg, Unisys Belgium, Europol, Eurojust,
Austrian Federal Government and others.

We also thank our master-level students at Institut
Eurécom – M. Serpantie, C. Lanza, H. Kadri and R.
Cosson – for their contribution to this work.

10. References

[1] Svirskas A. et al., Adaptive Support of Inter-Domain
Collaborative Protocols using Web Services and Software
Agents, Frontiers in Artificial Intelligence and Applications,
volume 155, IOS Press, 2007
[2] Ross-Talbot, S., A Declarative Compliance Systems
Architecture, European Business Rules Conference, 2005
[3] Kiczales, G. et al. Aspect Oriented Programming,
ECOOP, 1997
[4] Courbis, C. & Finkelstein, A., Weaving Aspects into Web
Service Orchestrations, Proceedings of the 3rd International
Conference on Web Services (ICWS), 2005
[5] Charfi A. & Mezini M., Aspect-Oriented Workflow
Languages Proceedings of the 14th International Conference
on Cooperative Information Systems (CoopIS), 2006
[6] BPEL, Web Services Business Process Execution
Language, OASIS, version 2, 2007
[7] Ortiz G., Hernández, J., Sánchez, F., Model Driven
Extra-Functional Properties for Web Services, Proceedings
of the IEEE Services Computing Workshops (SCW'06), 2006
[8] Tabet, S., SOA and Regulatory Compliance, 2004
[9] OMG Regulatory Compliance Alliance (ORCA)
[10] ORCA's Global Regulatory Information Database
[11] Yang, J. et al., “A Rule Based Approach to the Service
Composition Life-Cycle”, Proceedings of the Fourth
International Conference on Web Information Systems
Engineering (WISE'03), 2003
[12] Ross-Talbot, S. et al. “A generalized RuleML-based
Declarative Policy specification language for Web Services”,
2004
[13] Schema Specification of RuleML 0.91, the Rule Markup
Initiative, 2006
[14] Reinforcing eGovernment services in Baltic States
through legal and accountable digital Time stamp
(BALTICTIME), an EU IST FP6 STREP research project
[15] W3C, XML_Signature Syntax and Processing, W3C
recommendation, Feb 2002
[16] Sun Microsystems, The Java Tutorial, Trail: Security,
Lesson: Generating and verifying Signatures
[17] Sun Microsystems, Java Architecture for XML Binding
[18] PKCS#11 – Cryptographic Token Interface Standard
[19] Sun Microsystems, Java Cryptography Extension, 2006
[20] Sun Microsystems, JCE and Hardware Acceleration/
Smartcard Support for Java Platform SE 6, 2006
[21] AspectJ, The AspectJ Programming Guide, AspectJ v5
[22] XML Path Language (XPath), Version 1.0, W3C
Recommendation, 1999
[23] ActiveBPEL, PDD Format for ActiveBPEL 2.0
[24] Towards e-Administration in the large (R4eGov), an EU
IST FP6 Integrated research project
[25] Web Services Choreography Description Language,
WS-CDL, W3C Recommendation, 2005

2007 IEEE Congress on Services (SERVICES 2007)
0-7695-2926-7/07 $25.00 © 2007

