
Traceability and Integrity of Execution in Distributed
Workflow Management Systems ?

Frederic Montagut1 and Refik Molva2

1 SAP Labs France, 805 Avenue du Docteur Maurice Donat,
Font de l’Orme, 06250 Mougins, France

2 Institut Eurecom, 2229 Route des Cretes, 06904 Sophia-Antipolis, France
{frederic.montagut@sap.com,refik.molva@eurecom.fr}

Abstract. The execution of business processes in the decentralized setting raises
security requirements due to the lack of a dedicated infrastructure in charge of
management and control tasks. Basic security features including compliance of
the overall sequence of workflow operations with the pre-defined workflow exe-
cution plan or traceability become critical issues that are yet to be addressed. In
this paper, we suggest new security mechanisms capitalizing on onion encryption
and group encryption techniques in order to assure the integrity of the distributed
execution of workflows and to manage traceability with respect to sensitive work-
flow instances. We carry out an in depth analysis of the security properties of-
fered by these mechanisms. Our solution can easily be integrated into distributed
workflow management systems as its design is strongly coupled with the runtime
specification of decentralized workflows.

Key words: Integrity of execution, Traceability, Decentralized workflows

1 Introduction

State of the art business processes may require a decentralized support of execution
[1],[2],[3] because of their dynamicity or unusual execution environments. The flexibil-
ity of a distributed workflow enactment system on the other hand comes at the expense
of security due to the lack a dedicated infrastructure to perform the management and
control tasks during the execution of a business process. As a result, basic security
features such as integrity of workflow execution assuring the compliance of the over-
all sequence of operations with the pre-defined workflow execution plan are no longer
guaranteed. In addition, tracing back the identity of the business partners involved in a
workflow instance becomes an issue without a trusted centralized coordination mecha-
nism selecting workflow participants. As opposed to centralized workflow management
systems, the distributed execution of workflows indeed raises new security requirements
due to the lack of a dedicated coordinator. Yet, existing decentralized workflow manage-
ment systems do not incorporate the appropriate mechanisms to meet the new security
requirements in addition to the ones identified in the centralized setting. Even though
some recent research efforts in the field of distributed workflow security have indeed
? This work has been partially sponsored by EU IST Directorate General as a part of FP6 IST

project R4eGov and by SAP Labs France S.A.S.

2 Traceability and Integrity of Execution in Distributed Workflow Management Systems

Discovery service

Data
transfert

Request

2b
1b

3v2v1v

3b

(1)

(2)

(3)

(4)

(5)

(6)

(7)Execution of

21→M

Fig. 1. Pervasive workflow runtime

been focusing on issues related to the management of rights in business partner assign-
ment or detecting conflicts of interest [4],[5],[6], basic security issues related to the
security of the overall workflow execution such as integrity and evidence of execution
have not yet been addressed. We already tackled some of these problems in a previous
work [7] yet the solution we proposed did not take into account the management of
security policies and business partners’ trustworthiness.

In this paper, we present new mechanisms supporting the secure execution of work-
flows in the decentralized setting. These mechanisms capitalize on onion encryption
techniques [8] and security policy models in order to assure the integrity of the dis-
tributed execution of workflows, to prevent business partners from being involved in a
workflow instance forged by a malicious peer and to provide business partners’ identity
traceability for sensitive workflow instances. The suggested mechanisms can easily be
integrated into the runtime specification of decentralized workflow management sys-
tems as illustrated in this paper using the pervasive workflow model specified in [3].
The remainder of the paper is organized as follows. Section 2 and 3 outline the perva-
sive workflow model and the associated security requirements, respectively. In section
4 our solution is specified while in section 5 the runtime specification of the secure dis-
tributed workflow execution is presented. Section 6 presents the security analysis of the
proposed mechanisms. Finally section 7 discusses related work and section 8 presents
the conclusion.

2 Workflow model

The workflow management system used to support our approach was designed in [3].
This model supports the execution of business processes in environments without in-
frastructure and features a distributed architecture characterized by two objectives:

– fully decentralized: the workflow management task is carried out by a set of devices
in order to cope with the lack of dedicated infrastructure

– dynamic assignment of business partners to workflow tasks: the actors can be dis-
covered at runtime

Having designed an abstract representation of the workflow whereby business partners
are not yet assigned to tasks, a partner launches the execution and executes a first set of
tasks. Then the initiator searches for a partner able to perform the next set of tasks. Once
the discovery phase is complete, a workflow message including all data is sent by the
workflow initiator to the newly discovered partner and the workflow execution further
proceeds with the execution of the next set of tasks and a new discovery procedure. The
sequence composed of the discovery procedure, the transfer of data and the execution

Traceability and Integrity of Execution in Distributed Workflow Management Systems 3

of a set of tasks is iterated till the final set of tasks. In this decentralized setting, the data
transmitted amongst partners include all workflow data. We note W the abstract repre-
sentation of a distributed workflow defined by W = {(vi)i∈[1,n], δ} where vi denotes a
vertex which is a set of workflow tasks that are performed by a business partner from
the receipt of workflow data till the transfer of data to the next partner and δ is the set
of execution dependencies between those vertices. We note (Mi→jp

)p∈[1,zi] the set of
workflow messages issued by bi to the zi partners assigned to the vertices (vjp)p∈[1,zi]

executed right after the completion of vi. The instance of W wherein business partners
have been assigned to vertices is denoted Wb = {Wiid, (bi)i∈[1,n]} where Wiid is a
string called workflow instance identifier. This model is depicted in figure 1. In this pa-
per, we only focus on a subset of execution dependencies or workflow patterns namely,
SEQUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and OR-JOIN.

3 Security requirements

3.1 Authorization

The main security requirement for a workflow management system is to ensure that
only authorized business partners are assigned to workflow tasks during an instance.
In the decentralized setting, the assignment of workflow tasks is managed by partners
themselves relying on a service discovery mechanism. In this case, the business partner
assignment procedure enforces a matchmaking procedure whereby business partners’
security credentials are matched against security requirements for tasks.

3.2 Execution proofs and traceability

A decentralized workflow management system does not offer any guarantee regarding
the compliance of actual execution of workflow tasks with the pre-defined execution
plan. Without any trusted coordinator to refer to, the business partner bi assigned to the
vertex vi needs to be able to verify that the vertices scheduled to be executed beforehand
were actually executed according to the workflow plan. This is a crucial requirement to
prevent any malicious peer from forging a workflow instance.

In our workflow execution model, candidate business partners are selected at run-
time based on their compliance with a security policy. Partners’ involvement in a busi-
ness process can thus remain anonymous as their identity is not assessed in the part-
ner selection process. In some critical business scenarios however, disclosing partners’
identity may be required so that in case of dispute or conflict on the outcome of a sen-
sitive task the stakeholders can be identified. In this case, the revocation of business
partners’ anonymity should only be feasible for some authorized party in charge of
arbitrating conflicts, preserving the anonymity of identity traces is thus necessary.

3.3 Workflow data protection

In the case of decentralized workflow execution, the set of workflow data denoted
D = (dk)k∈[1,j] is transferred from one business partner to another. This raises ma-
jor requirements for workflow data security in terms of integrity, confidentiality and
access control as follows:

4 Traceability and Integrity of Execution in Distributed Workflow Management Systems

1+iSK

iSK

1−iSK

iv1−iv 1+iv
1−ipolPK

ipolPK

iSK
1+ipolPK

1−iSK

1+iSK

ipolPK

iSK
1+ipo lPK

1+iSK

1+ipolPK
1+iSK

1−iSK

iSK
1−iSK

1−iSK iSK 1+iSK

(Od)

(O p)

Retrieve from (Od):

Fig. 2. Key management

– data confidentiality: for each vertex vi, the business partner bi assigned to vi should
only be authorized to read a subset Dr

i of D
– data integrity: for each vertex vi, the business partner bi assigned to vi should only

be authorized to modify a subset Dw
i of Dr

i
– access control: the subsets Dr

i and Dw
i associated with each vertex vi should be

determined based on the security policy of the workflow

4 The solution

4.1 Key management

Two types of key pairs are introduced in our approach. Each vertex vi is first associated
with a policy poli defining the set of credentials a candidate partner needs to satisfy in
order to be assigned to vi. The policy poli is mapped to a key pair (PKpoli , SKpoli)
where SKpoli is the policy private key and PKpoli the policy public key. Thus satisfy-
ing the policy poli means knowing the private key SKpoli , the inverse may however not
be true depending on the policy private key distribution scheme as explained later on in
section 6. The policy private key SKpoli can indeed be distributed by different means
amongst which we distinguish three main types:

– Key sharing: a policy poli is associated with a single private policy key that is
shared amongst principals satisfying poli. A simple key server KSpoli associated
with poli can be used to distribute the policy private key SKpoli based on the com-
pliance of business partners with poli. In this case, the partners satisfying poli share
the same policy private key.

– Policy-based cryptography: a policy poli is expressed in a conjunctive-disjunctive
form specifying the combinations of credentials a principal is required to satisfy to
be compliant with the policy. A cryptographic scheme [9] is used to map creden-
tials to keys denoted credential keys that can be combined to encrypt, decrypt and
sign messages based on a given policy. Some trusted authorities are in charge of
distributing credential keys to requesters when the latter satisfies some assertions
(e.g. (jobtittle=director)∧(company=xcorp)). This scheme provides direct mapping
between a policy and some key material and thus eases policy management as op-
posed to key sharing. No anonymity-preserving traceability solution is however
offered as principals satisfying a given assertion may possess the same credential
key.

– Group cryptography: a policy poli is mapped to a group structure in which a group
manager distributes different private policy keys to group members satisfying poli.

Traceability and Integrity of Execution in Distributed Workflow Management Systems 5

AND
-Split

AND
-Join1v

2v 3v

6v

4v 5v
7v

wDd 11 ∈

rDd 21 ∈ wDd 31 ∈
wDd 61 ∈

rDd 51 ∈

Fig. 3. Workflow example

A single encryption key is used to communicate with group members who however
use their personal private key to decrypt and sign messages. This mechanism offers
an identity traceability feature as only the group manager can retrieve the identity
of a group member using a signature issued by the latter [10]. We note GMpoli

the group manager of the group whose members satisfy poli. The management of
policy key pair is as complex as for the key server solution since a group structure
is required for each specified policy.
Second, we introduce vertex key pairs (PKi, SKi)i∈[1,n] to protect the access to

workflow data. We suggest a key distribution scheme wherein a business partner bi

whose identity is a priori unknown retrieves the vertex private key SKi upon his assign-
ment to the vertex vi. Onion encryption techniques with policy public keys PKpoli are
used to distribute vertex private keys. Furthermore, execution proofs have to be issued
along with the workflow execution in order to ensure the compliance of the execution
with the pre-defined plan. To that effect, we also leverage onion encryption techniques
in order to build an onion structure with vertex private keys to assure the integrity of
the workflow execution. The suggested key distribution scheme (Od) and the execution
proof mechanism (Op) are depicted in figure 2 and specified later on in the paper.

In the sequel of the paper,M denotes the message space, C the ciphertext space and
K the key space. The encryption of a message m ∈ M with a key K ∈ K is noted
{m}K and h1, h2 denote one-way hash functions.

4.2 Data protection

The role of a business partner bi assigned to a vertex vi consists in processing the
workflow data that are granted read-only and read-write access during the execution
of vi. We define a specific structure depicted in figure 4 called data block to protect
workflow data accordingly. Each data block consists of two fields: the actual data dk

and a signature signa(dk) = {h1(dk)}SKa
. We note Ba

k = (dk, signa(dk)) the data
block including the data segment dk that has last been modified during the execution
of va. The data block Ba

k is also associated with a set of signatures denoted Ha
k that is

computed by ba assigned to va. Ha
k =

{
{h1({Ba

k}PKl
)}SKa |l ∈ Ra

k

}
where Ra

k is the
set defined as follows. Ra

k = {l ∈ [1, n]|(dk ∈ Dr
l) and (vl is executed after va) and (vl

is not executed after vp(a,l,k))} where vp(a,l,k) denotes the first vertex executed after va

such that dk ∈ Dw
p(a,l,k)

and that is located on the same branch of the workflow as va

and vl. For instance, consider the example of figure 3 whereby d1 is in Dw
1 , Dr

2, Dw
3 ,

Dr
5 and Dw

6 , v(1,2,1) = v3, R1
1 = {2, 3, 5, 6} and R3

1 = {6}.

6 Traceability and Integrity of Execution in Distributed Workflow Management Systems

aPK
kd

)(1 kdh

kd

)(1 kdh

aSK

iPK

iSK kd

)(1 kdh

aSK

Fig. 4. Access to workflow data

When the business partner bi receives the data block Ba
k encrypted with PKi (i.e.

he is granted read access on dk), he decrypts the structure using SKi in order to get
access to dk and signa(dk). bi is then able to verify the integrity of dk using PKa,
i.e. that dk was last modified after the execution of va. Further, if bi is granted write
access on dk, he can update the value of dk and compute signi(dk) yielding a new data
block Bi

k and a new set Hi
k. If on the contrary bi receives Ba

k encrypted with PKm (in
this case vm is executed after vi), bi can verify the integrity of {Ba

k}PKm by matching
h1({Ba

k}PKm
) against the value contained in Ha

k .
The integrity and confidentiality of data access thus relies on the fact that the private

key SKi is made available to bi only prior to the execution of vi. The corresponding
distribution mechanism is presented in the next section.

4.3 Vertex private key distribution mechanism

The objective of the vertex private key distribution mechanism is to ensure that only the
business partner bi assigned to vi at runtime and whose identity is a priori unknown
can access the vertex private key SKi. To that effect, the workflow structure in terms
of execution patterns is mapped with an onion structure Od so that at each step of the
execution a layer of Od is peeled off using SKpoli and SKi is revealed. The complete
building process is specified in [7], the main results on the distribution of vertex private
keys with respect to various workflow patterns are thus only reminded in this section.

Definition 1. Let X a set. An onion O is a multilayered structure composed of a set of
n subsets of X (lk)k∈[1,n], such that ∀k ∈ [1, n] lk ⊆ lk+1. The elements of (lk)k∈[1,n]

are called layers of O, in particular, l1 and ln are the lowest and upper layers of O,
respectively. We note lp(O) the layer p of an onion O.

Definition 2. Let A = (ak)k∈[1,j] and B = (bk)k∈[1,l] two onion structures, A is said
to be wrapped by B, when ∃k ∈ [1, l] such that aj ⊆ bk.

SEQUENCE workflow pattern An onion structure assuring the distribution of vertex
private keys is sequentially peeled off by partners. Considering a sequence of n vertices
(vi)i∈[1,n] b1 assigned to v1 initiates the workflow with the onion structure O.

O :

8<
:

l1 = {SKn}
li =

�
{li−1}PKpoln−i+2

, SKn−i+1

	
for i ∈ [2, n]

ln+1 =
�
{ln}PKpol1

	
For i ∈ [2, n − 1] the partner bi assigned to vi receives {ln−i+1(O)}PKpoli

, reads
ln−i+1(O) using SKpoli to retrieve SKi and sends {ln−i(O)}PKpoli+1

to bi+1.

Traceability and Integrity of Execution in Distributed Workflow Management Systems 7

AND-SPLIT workflow pattern n business partners are concurrently contacted by a
single partner, n different onions are therefore concurrently sent.

AND-JOIN workflow pattern Since there is a single workflow initiator, the AND-
JOIN pattern is preceded in the workflow by an AND-SPLIT pattern. When n − 1
branches merge into a vertex va, va is executed if and only if n − 1 messages are
received. The vertex private key SKa is thus divided into n−1 parts contained in n−1
onions to be received by va. Besides, in order to avoid redundancy, the onion structure
associated with the sequel of the workflow execution right after va is only included in
one of the onions received by va.

OR-SPLIT workflow pattern This is an exclusive choice, a single onion is sent
depending on the result of the OR-SPLIT condition. The onions associated with the
branches that can be executed are thus wrapped beforehand.

OR-JOIN workflow pattern Since there is a single workflow initiator, the OR-JOIN
is preceded in the workflow by an OR-SPLIT pattern. A single branch is executed de-
pending on the choice made at the previous OR-SPLIT in the workflow, thus a single
onion is sent to the vertex into which the branches merge.

Complete key distribution scheme The onion Od enabling the vertex private keys
distribution during the execution of the workflow depicted in figure 3 is defined as
follows.

Od = {{SK1, {SK2, {SK3, {SK61 ,

Sequel afterv6z }| {
{SK7}PKpol7

}PKpol6
}PKpol3

}PKpol2| {z }
First AND-SPLIT branch

,

{SK4, {SK5, {SK62}PKpol6
}PKpol5

}PKpol4| {z }
Second AND-SPLIT branch

}PKpol1
}

The onions associated with the two branches forming the AND-SPLIT pattern are
wrapped by the layer corresponding to v1. Only the first AND-SPLIT branch includes
the sequel of the workflow after v6.

4.4 Execution proofs and traceability

Along with the workflow execution, an onion structure Opi is built at each execution
step i with vertex private keys in order to allow business partners to verify the integrity
of the workflow execution and optionally to gather anonymity-preserving traces when
traceability is required during the execution of a workflow. Based on the properties we
introduced in section 4.1, group cryptography is the only mechanism that meets the
needs of the policy private key distribution when identity traceability is needed. In that
case, we define for a workflow instance, the workflow arbitrator War who is a trusted
third party able to disclose business partners’ identity in case of dispute. The workflow

8 Traceability and Integrity of Execution in Distributed Workflow Management Systems

arbitrator is contacted to revoke the anonymity of some business partners only in case
of dispute, this is an optimistic mechanism.

The onion structure Op is initialized by the business partner b1 assigned to v1 who
computes Op1 =

{
{h1(PW)}SKpol1

}
where PW is called workflow policy and is de-

fined as follows.

Definition 3. The workflow specification SW denotes the set SW = {W, (Jr
i , Jw

i ,
poli)i∈[1,n], h1} where Jr

i = {k ∈ [1, j]|dk ∈ Dr
i } and Jw

i = {k ∈ [1, j]|dk ∈ Dw
i }

(Jr
i and Jw

i basically specify for each vertex the set of data that are granted read-only
and read-write access, respectively). SW is defined at workflow design phase.

The workflow policy PW denotes the set PW = SW ∪{Wiid,War, h2}∪{PKi|i ∈
[1, n]}. PW is a public parameter computed by the workflow initiator b1 and that is
available to the business partners involved in the execution of W .

The onion structure Op is initialized this way so that it cannot be replayed as it is
defined for a specific instance of a workflow specification. If traceability is required dur-
ing the execution of some business processes, the signatures of business partners with
policy private keys are collected during the building process of Op so that anonymity
can be later on revoked in case of dispute. Group encryption is used in this case to dis-
tribute policy private key and b1 is in charge of contacting a trusted third party, sending
it (h1(PW), PW) to play the role of workflow arbitrator for the instance.

At the step i of the workflow execution, bi receives Opi−1 and encrypts its upper
layer with SKi to build an onion Opi

which he sends to bi+1 upon completion of vi. If
traceability is required, bi encrypts {Opi−1 , {h1(PW)}SKpoli

} with SKi instead. Con-
sidering a set (vi)[1,n] of vertices executed in sequence and assuming that traceability
is needed we get:

Op1 =
�
{h1(PW)}SKpol1

	
Op2 =

�
{Op1 , {h1(PW)}SKpol2

}SK2

	
Opi =

�
{Opi−1 , {h1(PW)}SKpoli

}
SKi

	
for i ∈ [3, n]

The building process of Opi
is based on workflow execution patterns ; yet since

it is built at runtime contrary to the onion Od, this is straightforward. First, there is
no specific rule for OR-SPLIT and OR-JOIN patterns. Second, when encountering an
AND-SPLIT pattern, the same structure Opi

is concurrently sent while in case of an
AND-JOIN, the n − 1 onions received by a partner bn are wrapped by a single struc-
ture: Opn

=
{
{Op1 , Op2 , .., Opn−1 , {h1(PW)}SKpoln

}
SKn

}
. Considering the example

depicted in figure 3 and assuming traceability is not required, at the end of the workflow
execution the onion Op is defined as follows.

Op = {{{{{{h1(PW)}SKpol1
}SK2}SK3| {z }

First AND-SPLIT branch

, {{{h1(PW)}SKpol1
}SK4}SK5| {z }

Second AND-SPLIT branch

}SK6}SK7}

{h1(PW)}SKpol1
is sent by b1 assigned to v1 to both b2 and b4 assigned to v2

and v4, respectively. The onion structure associated with the two branches forming the
AND-SPLIT pattern thus includes {h1(PW)}SKpol1

twice.
In order to verify that the workflow execution is compliant with the pre-defined plan

when he starts the execution of the vertex vi, the business partner bi assigned to vi just

Traceability and Integrity of Execution in Distributed Workflow Management Systems 9

dO
)(1 WPsign

WP
PO

iPK iP K 1+iPK

a
kH

)(1+ka dsign
1+kd

)(ka dsign
kd

a
kH 1+

Fig. 5. Workflow message structure

peels off the layers of Opi−1 using the vertex public keys of the vertices previously
executed based on SW . Doing so he retrieves the value {h1(PW)}SKpol1

that should
be equal to the one he can compute given PW , if the workflow execution has been so
far executed according to the plan. In case traceability is required by the execution, bi

also verifies the signatures of the business partners assigned to the vertices (vjp)p∈[1,ki]

executed right before him i.e. bi decrypts {h1(PW)}SKpolp
for all p ∈ [1, ki]. If bi

detects that a signature is missing he contacts War to declare the workflow instance in-
consistent. In fact, business partners are in charge of contacting the workflow arbitrator
when a signature is not valid and those who do not declare corrupted signatures are held
responsible in place of partners whose signature is missing. In case of conflict on the
outcome of some workflow tasks, the onion Op is sent to the workflow arbitrator who
is able to retrieve the signatures with policy private key of the stakeholders using PW

and with the help of some group managers the corresponding identities.

4.5 Vertex key pair generation

Vertex key pairs have to be defined for a single instance of a workflow specification
in order to avoid replay attacks. To that effect, we propose to capitalize on ID-based
encryption techniques [11] in the specification of the set (PKi, SKi)i∈[1,n]. For all
i ∈ [1, n] (PKi, SKi) is defined by:�

PKi = h1(Wiid ⊕ SW ⊕ vi)
SKi = s× h2(PKi)

where s ∈ Z∗q for a prime q. s is called master key and is held by the vertex private key
generator [11] who is in our case the workflow initiator. The signature scheme proposed
in [12] can be used to compute the ID-based signatures required by the mechanisms we
proposed. The public parameters such as the system public key (usually called Ppub)
should be included in PW . This vertex key pair specification has a double advantage.
First vertex key pairs cannot be reused during any other workflow instance and sec-
ond vertex public keys can be directly retrieved from W and Wiid when verifying the
integrity of workflow data or peeling off the onion Op.

4.6 Communication protocol

In order to support a coherent execution of the mechanisms presented so far, workflow
messages exchanged between business partners consist of the set of information that is
depicted in figure 5.

Workflow data (dk)k∈[1,j] are all transported between business partners and satisfy
the data block specification. A single message may include several copies of the same

10 Traceability and Integrity of Execution in Distributed Workflow Management Systems

data block structure that are encrypted with different vertex public keys based on the
execution plan. This can be the case with AND-SPLIT patterns. Besides, workflow data
can be stored in two different ways depending on the requirements for the execution.
Either we keep the iterations of data resulting from each modification in workflow mes-
sages till the end of the execution or we simply replace data content upon completion
of a vertex. The bandwidth requirements are higher in the first case since the size of
messages increases as the workflow execution proceeds further.

PW is required to retrieve vertex and policy public keys and specifies the workflow
execution plan.

The two onion structures Od and Op are also included in the message.
Upon receipt of the message depicted in figure 5 a business partner bi assigned to

vi retrieves first the vertex private key from Od. He then checks that PW is genuine i.e.
that it was initialized by the business partner initiator of the workflow assigned to v1.
He is later on able to verify the compliance of the workflow execution with the plan
using Op and finally he can process workflow data.

5 Secure execution of decentralized workflows

In this section we specify how the mechanisms presented so far are combined to support
the secure execution of a workflow in the decentralized setting. After an overview of the
execution steps, the secure workflow execution is described in terms of the workflow
initiation and runtime specifications.

5.1 Execution process overview

Integrating security mechanisms to enforce the security requirements of the decentral-
ized workflow execution requires a process strongly coupled with both workflow design
and runtime specifications. At the workflow design phase, the workflow specification
SW is defined in order to specify for each vertex the sets of data that are accessible in
read and write access and the credentials required by potential business partners to be
assigned to workflow vertices. At workflow initiation phase, the workflow policy PW

is specified and the onion Od is built. The workflow initiator builds then the first set of
workflow messages to be sent to the next partners involved. This message generation
process consists of the initialization of the data blocks and that of the onion Op.

At runtime, a business partner bi chosen to execute a vertex vi receives a set of
workflow messages. Those messages are processed to retrieve SKi from the onion Od

and to access workflow data. Once the vertex execution is complete bi builds a set of
workflow messages to be dispatched to the next partners involved in the execution. In
this message building process, the data and the onion Op are updated.

The set of functional operations composing the workflow initiation and runtime
specifications is precisely specified later on in this section. In the following N i

k denotes
the set defined by N i

k = {l ∈ [1, n]|dk ∈ Dr
l and vl is executed right after vi}. Consider

the example of figure 3: d1 is accessed during the execution of the vertices v1, v2 and
v5 thus N1

1 = {2, 5}.

Traceability and Integrity of Execution in Distributed Workflow Management Systems 11

5.2 Workflow initiation

The workflow is initiated by the business partner b1 assigned to the vertex v1 who issues
the first set of workflow messages (M1→jp)p∈[1,z1]. The workflow initiation consists of
the following steps.
1. Workflow policy specification: generate (PKi, SKi)i∈[1,n] and assign War

2. Initialization of the onion Od

3. Data block initialization: compute ∀k ∈ [1, j] sign1(dk)
4. Data block encryption: ∀k ∈ [1, j] determine N1

k and compute ∀k ∈ [1, j],∀l ∈ N1
k

{B1
k}PKl

5. Data block hash sets: ∀k ∈ [1, j] determine R1
k and compute ∀k ∈ [1, j],∀l ∈ R1

k

{h1({B1
k}PKl

)}SK1

6. Initialization of the onion Op: compute Op1

7. Message generation based on W and (N1
k)k∈[1,j]

The steps one and two are presented in sections 4.5 and 4.3, respectively. The work-
flow messages are generated with respect to the specification defined in figure 5 and
sent to the next business partners involved. This includes the initialization of the onion
Op and that of data blocks which are encrypted with appropriate vertex public keys.

5.3 Workflow message processing

A business partner bi being assigned to a vertex vi proceeds as follows upon receipt of
the set of workflow messages (Mjp→i)p∈[1,ki] sent by the ki business partners assigned
to the vertices (vjp)p∈[1,ki] executed right before vi.
1. Retrieve SKi from Od

2. Data block decryption with SKi based on Jr
i

3. Execution proof verification: peel off the onion Op

4. Data integrity check based on W and PW

5. Vertex execution
6. Data block update: compute ∀k ∈ Jw

i signi(dk) and update dk content
7. Data block encryption: ∀k ∈ Jr

i determine N i
k and compute ∀k ∈ Jr

i ,∀l ∈ N i
k

{Bi
k}PKl

8. Data block hash sets: ∀k ∈ Jw
i determine Ri

k and compute ∀k ∈ Jw
i ,∀l ∈ Ri

k

{h1({Bi
k}PKl

)}SKi

9. Onion Op update: compute Opi

10. Message generation based on W and (N i
k)k∈[1,j]

After having retrieved SK1 from Od, bi verifies the integrity of workflow data and
that the execution of the workflow up to his vertex is consistent with the onion Op.
Workflow data are then processed during the execution of vi and data blocks are updated
and encrypted upon completion. Finally bi computes Opi

and issues the set of workflow
messages (Mi→jp)p∈[1,zi] to the intended business partners.

6 Security analysis

The parameters that are relevant to the security properties offered by the mechanisms
presented in this paper are mainly twofold. First, there are several alternatives with

12 Traceability and Integrity of Execution in Distributed Workflow Management Systems

respect to the management of the key pair (PKpoli , SKpoli), including simple key
distribution based on the policy compliance, group key management or policy-based
cryptography, on which the security properties verified by our solution depend. In fact,
the main difference between the three policy private key distribution schemes we iden-
tified comes from the number of business partners sharing the same policy private key.
As a matter of fact, the more partners share a given private key the easier it is for some
unauthorized peer to get this private key and get access to protected data. Besides, the
trustworthiness of business partners can not be controlled, especially when it comes to
sharing workflow data with unauthorized peers once the vertex private key has been re-
trieved. In this context, the mechanisms presented in this paper verify some properties
that do not depend on the underpinning policy private key distribution scheme while
some other do. In the security evaluation of our solution, we make two assumptions:

– Security of policy keys: the public key encryption scheme used in the specification
of the policy key pair (PKpoli , SKpoli) is semantically secure against a chosen
ciphertext attack and the associated signature scheme achieves signature unforge-
ability

– Security of vertex keys: the public key encryption scheme used in the specification
of the vertex key pair (PKi, SKi) is semantically secure against a chosen cipher-
text attack and the associated signature scheme achieves signature unforgeability

6.1 Inherent security properties

Proposition 1. Integrity of execution. Vertex private keys are retrieved by business
partners knowing policy private keys associated with the policies specified in the work-
flow. Assuming that business partners do not share vertex private keys, the integrity
of the distributed workflow execution is assured i.e. workflow data are accessed and
modified based on the pre-defined plan specified by means of the sets Jr

i and Jw
i .

Proof. This property is ensured by the onion Od which assures distribution of the vertex
keys used for accessing workflow data based on the workflow execution plan.

Assuming that a workflow initiator builds Od based on the methodology specified
in 4.3 and under the policy key security assumption, we claim that it is not feasible for
an adversary A to extract the vertex private key SKi from Od if A does not know the
set of policy private keys (SKpolik

)k∈[1,l] associated with the set of vertices (vik
)k∈[1,l]

executed prior to vi in W . This is true as the structure of Od is mapped to W .

Proposition 2. Resilience to instance forging. Upon receipt of a workflow message,
a business partner is sure that a set of business partners knowing policy private keys
associated with the policies specified in the workflow have been assigned to the vertices
executed so far provided that he trusts the business partners satisfying the policy pol1.

Proof. This property is enforced by the onion Op whose building process is based on
the workflow structure and vertex private keys. As stated in the previous claim, ver-
tex private keys can only be retrieved by business partners knowing some policy private
keys. We also claim that an adversary that does not verify a policy can not forge a work-
flow instance, i.e. that the adversary can not produce a workflow message pertaining to
a valid workflow instance.

Traceability and Integrity of Execution in Distributed Workflow Management Systems 13

Assuming that a workflow initiator builds Op based on the methodology specified
in 4.4 and under the policy key security assumption, we claim that the onion structure
Op is unforgeable. The unforgeability property relies on two further properties:
1. a genuine onion structure Op built during a previous instance of a workflow can not

be replayed ;
2. an onion structure Op can not be built by an adversary that is not trusted by business

partners.
The first property is enforced by the fact that an onion structure Op properly built

is bound to a specific workflow policy PW and thus can not be reused during an at-
tempt to execute a malicious workflow instance. The second property is straightfor-
ward under the policy key security assumption as the policy-based signature scheme
achieves signature unforgeability. Thus an adversary can not produce a valid onion
Op1 =

{
{h1(PW)}SKpol1

}
.

Proposition 3. Data Integrity. Assuming that business partners do not share vertex
private keys they retrieve from the onion Od, our solution achieves the following data
integrity properties:

– Data truncation and insertion resilience: any business partner can detect the dele-
tion or the insertion of a piece of data in a workflow message

– Data content integrity: any business partner can detect the integrity violation of a
data block content in a workflow message

Proof. The first property is ensured as the set of workflow data blocks that should be
present in a workflow message is specified in PW , the workflow message formatting has
thus to be compliant with the workflow specification. The second property is assured by
the fact that an adversary can not modify a given data block without providing a valid
signature on this data block. This property relies on the unforgeability of the signature
scheme used in the data block and hash set specifications.

These three security properties are sufficient to enable a coherent and secure exe-
cution of distributed workflows provided that business partners are trustworthy and do
not share their policy or vertex private keys. The latter assumption is in fact hard to
assess when sensitive information are manipulated during the workflow. We therefore
introduced the traceability mechanism to meet the requirements of sensitive workflow
executions.

6.2 Revocation of a business partner anonymity

The main flaw of the basic security mechanisms we outlined is that the involvement of
business partners in a workflow can remain anonymous thus preventing the detection
of potential malicious peers who somehow got access to some policy private keys. To
overcome this limitation when required, traceability with group cryptography has to be
used during the execution of a business process. In this case the anonymity revocation
mechanism provided with group cryptography can be seen as a penalty for business
partners thus preventing potential malicious behaviors such as vertex private key sharing
with unauthorized peers. Besides, policy private keys distributed by a group manager
are intended for individual use which makes key leakage highly unlikely.

14 Traceability and Integrity of Execution in Distributed Workflow Management Systems

The following claims hold when the policy private key distribution scheme is based
on group encryption techniques and traceability is required in the execution of work-
flows. As corollary of this assumption, we assume that vertex private keys are not shared
with unauthorized peers, proposition 3 is thus verified.

Proposition 4. Integrity of execution. The integrity of the distributed workflow execu-
tion is ensured or the workflow instance is declared inconsistent by the selected work-
flow arbitrator. Integrity of the distributed workflow execution consists in this case in
performing the following tasks:

– workflow data are accessed and modified based on the pre-defined plan specified
by means of the sets Jr

i and Jw
i ;

– signatures with policy private key are stored by the business partners involved in
the workflow execution.

Proof. Anonymity revocation is here a means to force business partners to behave prop-
erly during the execution of a workflow. If any malicious business partner is involved,
he will not store his signature and we claim that the workflow instance will no longer be
a valid one. The mechanism we proposed for anonymity revocation is as we mentioned
optimistic and four scenarios can actually occur:

– A business partner detects that a signature is missing during the course of the work-
flow execution

– Each business partner stored his signature
– A set of business partners did not store their signature while some other partners

did not declare the missing signatures to the workflow arbitrator
– A set of business partners assigned to vertices contiguously executed till the end of

the workflow did not store their signature
In the first case, the workflow instance will be declared inconsistent by the workflow

arbitrator. In the second case, trustworthy business partners have been involved in the
workflow and their identity can be easily traced back by the workflow arbitrator. In the
third case which is in fact highly unlikely to occur, the business partners who have not
declared the missing signatures become responsible in place of the business partners
who cheated. In the last case, nobody can be held responsible as apparently a group
of untrustworthy business partners was involved in a fraud attempt and the workflow
instance is declared inconsistent.

6.3 Discussion

As mentioned in the security analysis, group cryptography associated with anonymity
revocation provides a full-fledged solution that meets the requirements of sensitive
workflow instances. The other policy private key distribution schemes can be in fact
used when the workflow execution is not sensitive or the partners satisfying the policies
required by the workflow are deemed trustworthy. Our solution can still be optimized
to avoid the replication of workflow messages. A business partner may indeed send the
same workflow message several times to different partners satisfying the same secu-
rity policy resulting in concurrent executions of a given workflow instance. Multiple
instances can be detected by the workflow arbitrator when traceability is required or
a solution based on a stateful service discovery mechanism can be also envisioned to
solve this problem.

Traceability and Integrity of Execution in Distributed Workflow Management Systems 15

7 Related work

Security of cross-organizational workflows in both centralized and decentralized set-
tings has been an active research field over the past years mainly focusing on access
control, separation of duty and conflict of interests [13],[14],[6] issues. However, in the
decentralized setting issues related to the integrity of workflow execution and work-
flow instance forging, which are tackled in our paper have been left aside. In [5],[4]
mechanisms are proposed for the management of conflicts of interest [15] during the
distributed execution of workflows. These pieces of work specify solutions in the de-
sign of access control policies to prevent business partners from accessing data that
are not part of their classes of interest. These approaches do not address the issue of
policy enforcement with respect to integrity of execution in fully decentralized work-
flow management systems. Nonetheless, the access control policy models suggested in
[5],[4] can be used to augment our work especially in the specification of the sets Jr

i

and Jw
i at workflow design time.

Onion encryption techniques have been introduced in [8] and are widely used to
enforce anonymity in network routing protocols [16] or mobile agents [17]. In our ap-
proach, we map onion structures with workflow execution patterns in order to build
proofs of execution and enforce access control on workflow data. As a result, more
complex business scenarios are supported by our solution than usual onion routing solu-
tions. Furthermore, combined with policy encryption techniques, our solution provides
a secure runtime environment for the execution of fully decentralized workflows sup-
porting runtime assignment of business partners, a feature which had not been tackled
so far.

Finally, our approach is suitable for any business scenarios in which business roles
can be mapped to security policies that can be associated with key pairs. It can thus be
easily integrated into existing security policy models such as chinese wall [15] security
model.

8 Conclusion

We presented mechanisms towards meeting the security requirements raised by the ex-
ecution of workflows in the decentralized setting. Our solution, capitalizing on onion
encryption techniques and security policy models, protects the access to workflow data
with respect to the pre-defined workflow execution plan and provides proofs of execu-
tion to business partners. In addition, those mechanisms combined with group cryptog-
raphy provide business partners’ identity traceability for sensitive workflow instances
and can easily be integrated into the runtime specification of decentralized workflows.
Our future work will focus on the integration of these security mechanisms into a trans-
actional framework that we developed for the pervasive workflow model.

References

1. Barbara, D., Mehrotra, S., Rusinkiewicz, M.: Incas: Managing dynamic workflows in dis-
tributed environments. Journal of Database Management 7(1) (1996)

16 Traceability and Integrity of Execution in Distributed Workflow Management Systems

2. Cichocki, A., Rusinkiewicz, M.: Providing transactional properties for migrating workflows.
Mob. Netw. Appl. 9(5) (2004) 473–480

3. Montagut, F., Molva, R.: Enabling pervasive execution of workflows. In: Proceedings of the
1st IEEE International Conference on Collaborative Computing: Networking, Applications
and Worksharing, CollaborateCom. (2005)

4. Atluri, V., Chun, S.A., Mazzoleni, P.: A chinese wall security model for decentralized work-
flow systems. In: CCS ’01: Proceedings of the 8th ACM conference on Computer and Com-
munications Security. (2001) 48–57

5. Chou, S.C., Liu, A.F., Wu, C.J.: Preventing information leakage within workflows that exe-
cute among competing organizations. J. Syst. Softw. 75(1-2) (2005) 109–123

6. Kang, M.H., Park, J.S., Froscher, J.N.: Access control mechanisms for inter-organizational
workflow. In: SACMAT ’01: Proceedings of the sixth ACM symposium on Access control
models and technologies. (2001) 66–74

7. Montagut, F., Molva, R.: Enforcing integrity of execution in distributed workflow manage-
ment systems. Technical Report RR-07-192, SAP Labs France - Eurecom Institute (2007)

8. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion routing.
In: IEEE Symposium on Security and Privacy, USA (1997) 44–54

9. Bagga, W., Molva, R.: Policy-based cryptography and applications. In: FC’ 2005, 9th Inter-
national Conference on Financial Cryptography and Data Security, Roseau, The Common-
wealth of Dominica. (2005)

10. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-
resistant group signature scheme. Lecture Notes in Computer Science 1880 (2000) 255–271

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, CA, USA. (2001) 213–229

12. Paterson, K.: Id-based signatures from pairings on elliptic curves. Electronics Letters 38(18)
(2002) 1025–1026

13. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authorization con-
straints in workflow management systems. ACM Trans. Inf. Syst. Secur. 2(1) (1999) 65–104

14. Hung, P.C.K., Karlapalem, K.: A secure workflow model. In: ACSW Frontiers ’03: Pro-
ceedings of the Australasian information security workshop conference on ACSW frontiers.
(2003) 33–41

15. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium on
Security and Privacy. (1989) 206 –214

16. Kong, J., Hong, X.: Anodr: anonymous on demand routing with untraceable routes for
mobile ad-hoc networks. In: MobiHoc ’03: Proceedings of the 4th ACM international sym-
posium on Mobile ad hoc networking & computing. (2003) 291–302

17. Korba, L., Song, R., Yee, G.: Anonymous communications for mobile agents. In: MATA ’02:
Proceedings of the 4th International Workshop on Mobile Agents for Telecommunication
Applications, London, UK, Springer-Verlag (2002) 171–181

18. Nanda, M.G., Karnik, N.: Synchronization analysis for decentralizing composite web ser-
vices. In: SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing. (2003)
407–414

19. Tripathi, A.R., Ahmed, T., Kumar, R.: Specification of secure distributed collaboration sys-
tems. In: ISADS ’03: Proceedings of the The Sixth International Symposium on Autonomous
Decentralized Systems (ISADS’03). (2003) 149

