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Abstract

As opposed to centralized workflow management systems, the distributed ex-
ecution of workflows can not rely on a trusted centralized point of coordination.
As a result, this flexible decentralized setting raises specific security requirements,
such as the compliance of the overall sequence of operations with the pre-defined
workflow execution plan, that are not yet met by existing decentralized workflow
infrastructures. In this paper, we propose new security mechanisms capitalizing on
onion encryption techniques and security policy models in order to assure the in-
tegrity of the distributed execution of workflows and to prevent workflow instance
forging to name a few features. These mechanisms can easily be integrated into
distributed workflow management systems as our design is strongly coupled with
the runtime specification of decentralized workflows.
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1 Introduction

Distributed workflow management systems [3, 8, 13] eliminate the need for
a centralized coordinator that can be a performance bottleneck in some business
scenarios. This flexibility introduced by decentralized workflows on the other hand
raises new security requirements like integrity of workflow execution in order to
assure the compliance of the overall sequence of operations with the pre-defined
workflow execution plan. As opposed to usual centralized workflow management
systems, the distributed execution of workflows can not indeed rely on a trusted
centralized coordination mechanism to manage the most basic execution primitives
such as message routing between business partners. Yet, existing decentralized
workflow management systems appear to be limited when it comes to integrating
security mechanisms that meet these specific requirements in addition to the ones
identified in the centralized setting. Even though some recent research efforts in the
field of distributed workflow security have indeed been focusing on issues related
to the management of rights in business partner assignment or detecting conflicts of
interest [1, 7, 10] basic security issues related to the security of the overall workflow
execution such as integrity and evidence of execution have not yet been addressed.

In this paper, we propose new mechanisms supporting the secure execution of
workflows in the decentralized setting. These mechanisms, capitalizing on onion
encryption techniques [15] and security policy models, assure the integrity of the
distributed execution of workflows and prevent business partners from being in-
volved in a workflow instance forged by a malicious peer. Our solution can easily
be integrated into the runtime specification of decentralized workflow management
systems as illustrated in this paper using the pervasive workflow model specified
in [13]. The remainder of the paper is organized as follows. Section 2 and 3
outline the pervasive workflow model and the associated security requirements,
respectively. In section 4 our solution is specified while in section 5 the runtime
specification of the secure distributed workflow execution is presented. In section
6 the security properties of the mechanisms we designed are validated. Finally
section 7 discusses related work and section 8 presents the conclusion.

2 Workflow model

The workflow management system used to support our approach was designed
in [13]. This model supports the execution of business processes in environments
without infrastructure and features a distributed architecture characterized by two
objectives:

• fully decentralized: the workflow management task is carried out by a set of
devices in order to cope with the lack of dedicated infrastructure

• dynamic assignment of business partners to workflow tasks: the actors can
be discovered at runtime
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Figure 1: Pervasive workflow runtime

Having designed an abstract representation of the workflow whereby business part-
ners are not yet assigned to tasks, a partner launches the execution and executes a
first set of tasks. Then the initiator searches for a partner able to perform the next
set of tasks. Once the discovery phase is complete, a workflow message including
all data is sent by the workflow initiator to the newly discovered partner and the
workflow execution further proceeds with the execution of the next set of tasks and
a new discovery procedure. The sequence composed of the discovery procedure,
the transfer of data and the execution of a set of tasks is iterated till the final set of
tasks. In this decentralized setting, the data transmitted amongst partners include
all workflow data. We note W the abstract representation of a distributed work-
flow defined by W = {(vi)i∈[1,n], δ} where vi denotes a vertex which is a set of
workflow tasks that are performed by a business partner from the receipt of work-
flow data till the transfer of data to the next partner and δ is the set of execution
dependencies between those vertices. We note (Mi→jp)p∈[1,zi] the set of workflow
messages issued by bi to the zi partners assigned to the vertices (vjp)p∈[1,zi] exe-
cuted right after the completion of vi. The instance of W wherein business partners
have been assigned to vertices is denoted Wb = {Wiid, (bi)i∈[1,n]} where Wiid is a
string called workflow instance identifier. This model is depicted in figure 1. In this
paper, we only focus on a subset of execution dependencies or workflow patterns
namely, SEQUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and OR-JOIN.

3 Security requirements

As opposed to centralized workflow management systems the distributed ex-
ecution of workflows raises security constraints due to the lack of a dedicated in-
frastructure assuring the management and control of the workflow execution. As
a result, security features such as compliance of the workflow execution with the
pre-defined plan are no longer assured. We group the security requirements we
identified for distributed workflow systems into three main categories: authoriza-
tion, proof of execution and data protection.
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Figure 2: Workflow example

3.1 Authorization

The main security requirement for a workflow management system is to ensure
that only authorized business partners are assigned to workflow tasks throughout an
instance. In the decentralized setting, the assignment of workflow tasks is managed
by business partners themselves relying on a service discovery mechanism. In this
case, the business partner assignment procedure enforces a matchmaking proce-
dure whereby business partners’ security credentials are matched against security
requirements for tasks.

3.2 Execution proofs

A decentralized workflow management system does not offer any guarantee re-
garding the compliance of actual execution of workflow tasks with the pre-defined
execution plan. Without any trusted coordinator to refer to, the business partner bi

assigned to the vertex vi needs to be able to verify that the vertices scheduled to be
executed beforehand were actually executed according to the workflow plan. This
is a crucial requirement to prevent any malicious peer from forging a workflow
instance.

3.3 Workflow data protection

In the case of decentralized workflow execution, the set of workflow data de-
noted D = (dk)k∈[1,j] is transferred from one business partner to another. This
raises major requirements for workflow data security in terms of integrity, confi-
dentiality and access control as follows:

• data confidentiality: for each vertex vi, the business partner bi assigned to vi

should only be authorized to read a subset Dr
i of D

• data integrity: for each vertex vi, the business partner bi assigned to vi should
only be authorized to modify a subset Dw

i of Dr
i

• access control: the subsets Dr
i and Dw

i associated with each vertex vi should
be determined based on the security policy of the workflow
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4 The solution

4.1 Key management

Two types of key pairs are introduced in our approach. Each vertex vi is first
associated with a policy poli defining the set of credentials a candidate partner
needs to satisfy in order to be assigned to vi. The policy poli is mapped to a
key pair (PKpoli , SKpoli) where SKpoli is the policy private key and PKpoli the
policy public key. Thus satisfying the policy poli is equivalent to knowing the
private key SKpoli . The policy private key SKpoli can be distributed by a simple
key distribution server based on the compliance of business partners with policy
poli or by means of a more sophisticated cryptographic scheme such as group
key distribution [17] or policy-based encryption [2]. Second, we introduce vertex
key pairs (PKi, SKi)i∈[1,n] to protect the access to workflow data. We suggest
a key distribution scheme wherein a business partner bi whose identity is a priori
unknown retrieves the vertex private key SKi upon his assignment to the vertex vi.
Onion encryption techniques with policy public keys PKpoli are used to distribute
vertex private keys. Furthermore, execution proofs have to be issued along with
the workflow execution in order to ensure the compliance of the execution with
the pre-defined plan. To that effect, we also leverage onion encryption techniques
in order to build an onion structure with vertex private keys to assure the integrity
of the workflow execution. The suggested key distribution scheme (Od) and the
execution proof mechanism (Op) are depicted in figure 3 and specified later on in
the paper.

In the sequel of the paper,M denotes the message space, C the ciphertext space
and K the key space. The encryption of a message m ∈ M with a key K ∈ K is
noted {m}K and h1, h2 denote one-way hash functions.

4.2 Data protection

The role of a business partner bi assigned to a vertex vi consists in process-
ing the workflow data that are granted read-only and read-write access during
the execution of vi. We define a specific structure depicted in figure 4 called
data block to protect workflow data accordingly. Each data block consists of
two fields: the actual data dk and a signature signa(dk) = {h1(dk)}SKa

. We
note Ba

k = (dk, signa(dk)) the data block including the data segment dk that has
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last been modified during the execution of va. The data block Ba
k is also associ-

ated with a set of signatures denoted Ha
k that is computed by ba assigned to va.

Ha
k =

{
{h1({Ba

k}PKl
)}SKa |l ∈ Ra

k

}
where Ra

k is the set defined as follows.
Ra

k = {l ∈ [1, n]|(dk ∈ Dr
l ) and (vl is executed after va) and (vl is not executed

after vp(a,l,k)
)} where vp(a,l,k)

denotes the first vertex executed after va such that
dk ∈ Dw

p(a,l,k)
and that is located on the same branch of the workflow as va and vl.

For instance, consider the example of figure 2 whereby d1 is in Dw
1 , Dr

2, Dw
3 , Dr

5

and Dw
6 , v(1,2,1) = v3, R1

1 = {2, 3, 5, 6} and R3
1 = {6}.

When the business partner bi receives the data block Ba
k encrypted with PKi

(i.e. he is granted read access on dk), he decrypts the structure using SKi in order
to get access to dk and signa(dk). bi is then able to verify the integrity of dk using
PKa, i.e. that dk was last modified after the execution of va. Further, if bi is
granted write access on dk, he can update the value of dk and compute signi(dk)
yielding a new data block Bi

k and a new set H i
k. If on the contrary bi receives

Ba
k encrypted with PKm (in this case vm is executed after vi), bi can verify the

integrity of {Ba
k}PKm by matching h1({Ba

k}PKm) against the value contained in
Ha

k .
The integrity and confidentiality of data access thus relies on the fact that the

private key SKi is made available to bi only prior to the execution of vi. The
corresponding distribution mechanism is presented in the next section.

4.3 Vertex private key distribution mechanism

The objective of the vertex private key distribution mechanism is to ensure
that only the business partner bi assigned to vi at runtime and whose identity is a
priori unknown can access the vertex private key SKi. The basic idea behind this
mechanism is to map the workflow structure in terms of execution patterns with an
onion structure Od so that at each step of the workflow execution a layer of Od is
peeled off using SKpoli and SKi is revealed.

Definition 4-1. Let X a set. An onion O is a multilayered structure composed
of a set of n subsets of X (lk)k∈[1,n], such that ∀k ∈ [1, n] lk ⊆ lk+1. The elements
of (lk)k∈[1,n] are called layers of O, in particular, l1 and ln are the lowest and upper
layers of O, respectively. We note lp(O) the layer p of an onion O.

Definition 4-2. Let A = (ak)k∈[1,j] and B = (bk)k∈[1,l] two onion structures,
A is said to be wrapped by B, when ∃k ∈ [1, l] such that aj ⊆ bk.

We first present how vertex private keys are distributed to partners with respect
to various workflow patterns including SEQUENCE, AND-SPLIT, AND-JOIN,
OR-SPLIT and OR-JOIN before describing how those are combined in the execu-
tion of a complete workflow.

4.3.1 SEQUENCE workflow pattern

Vertex private keys are sequentially distributed to business partners. In this
case, an onion structure assuring the distribution of vertex private keys is sequen-
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Figure 5: SEQUENCE pattern

tially peeled off by partners. Considering a sequence of n vertices (vi)i∈[1,n] b1

assigned to v1 initiates the workflow execution with the onion structure O defined
as follows.

O :


l1 = {SKn}
li =

{
{li−1}PKpoln−i+2

, SKn−i+1

}
for i ∈ [2, n]

ln+1 =
{
{ln}PKpol1

}
The workflow execution further proceeds as depicted in figure 5. For i ∈ [2, n−

1] the business partner bi assigned to the vertex vi receives {ln−i+1(O)}PKpoli
,

peels one layer off by decrypting it using SKpoli , reads ln−i+1(O) to retrieve SKi

and sends {ln−i(O)}PKpoli+1
to bi+1.

4.3.2 AND-SPLIT workflow pattern

In the case of the AND-SPLIT pattern, the business partners (bi)i∈[2,n] assigned
to the vertices (vi)i∈[2,n] are contacted concurrently by b1 assigned to the vertex
v1. In this case, n− 1 vertex private keys should be delivered to (bi)i∈[2,n] and the
upper layer of the onion O1 available to b1 therefore wraps SK1 and n− 1 onions
(Oi)i∈[2,n] to be sent to (bi)i∈[2,n] as depicted in figure 6.

O1 = {SK1, O2, O3, .., On}
Oi =

{
{SKi}PKpoli

}
for i ∈ [2, n]

4.3.3 AND-JOIN workflow pattern

Since there is a single workflow initiator, the AND-JOIN pattern is preceded in
the workflow by an AND-SPLIT pattern. In this case, the vertex vn is executed by
the business partner bn if and only if the latter receives n− 1 messages as depicted
in figure 7. The vertex private key SKn is thus divided into n−1 parts and defined
by SKn = SKn1 ⊕ SKn2 ⊕ ...⊕ SKnn−1 . The onion Oi sent by bi thus includes
SKni . Besides, in order to avoid redundancy, the onion structure λ associated with
the sequel of the workflow execution right after vn is only included in one of the
onions received by bn. Each (bi)i∈[1,n−1] therefore sends Oi to bn where

O1 = {{λ, SKn1}PKpoln
}

Oi =
{
{SKni

}PKpoln

}
for i ∈ [2, n− 1]
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4.3.4 OR-SPLIT workflow pattern

This is an exclusive choice, v1 sends one message to the appropriate participant.

O1 = {SK1, O2, O3, .., On}
Oi =

{
{SKi}PKpoli

}
for i ∈ [2, n]

O1 is available to the participant assigned to v1. This is the same structure as the
AND-SPLIT pattern, yet the latter only sends the appropriate Oi to vi depending
on the result of the OR-SPLIT condition.

4.3.5 OR-JOIN workflow pattern

Since there is a single workflow initiator, the OR-JOIN is preceded in the work-
flow by an OR-SPLIT pattern. The partner assigned to vn receives in any cases a
single message thus a single vertex private key is required that is sent by one of the
(bi)[1,n−1] depending on the choice made at the previous OR-SPLIT in the work-
flow. bn thus receives in any cases:

O =
{
{λ, SKn}PKpoln

}
where λ is an onion structure associated with the sequel of the workflow execution
right after vn.

4.3.6 Complete key distribution scheme

The procedure towards building an onion structure corresponding to the work-
flow structure is rather straightforward and it is only sketched throughout an exam-
ple. Let’s consider the workflow depicted in figure 2. The onion Od enabling the
vertex private keys distribution during the execution of the workflow is defined as
follows.

Od = {{SK1, {SK2, {SK3, {SK61 ,

Sequel afterv6︷ ︸︸ ︷
{SK7}PKpol7︸ ︷︷ ︸

First AND-SPLIT branch

}PKpol6
}PKpol3

}PKpol2︸ ︷︷ ︸
First AND-SPLIT branch

, {SK4, {SK5, {SK62︸ ︷︷ ︸
Second AND-SPLIT branch

}PKpol6
}PKpol5

}PKpol4︸ ︷︷ ︸
Second AND-SPLIT branch

}PKpol1
}
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The onions associated with the two branches forming the AND-SPLIT pattern
are wrapped by the layer corresponding to v1. Only the first AND-SPLIT branch
includes the sequel of the workflow after v6.

4.4 Execution proofs

Along with the workflow execution, an onion structure Opi is built at each
execution step i with vertex private keys in order to allow business partners to
verify the integrity of the workflow execution. The onion structure is initialized by
the business partner b1 assigned to v1 who computes Op1 =

{
{h1(PW )}SKpol1

}
where PW is called workflow policy and is defined as follows.

Definition 4-3. The workflow specification SW denotes the set SW = {W,
(Jr

i , Jw
i , poli)i∈[1,n], h1} where Jr

i = {k ∈ [1, j]|dk ∈ Dr
i } and Jw

i = {k ∈
[1, j]|dk ∈ Dw

i } (Jr
i and Jw

i basically specify for each vertex the set of data that are
granted read-only and read-write access, respectively). SW is defined at workflow
design phase.

The workflow policy PW denotes the set PW = SW ∪ {Wiid, h2} ∪ {PKi|i ∈
[1, n]}. PW is a public parameter computed by the workflow initiator b1 and that
is available to the business partners involved in the execution of W .

The onion structure Op is initialized this way so that it cannot be replayed as it
is defined for a specific instance of a workflow specification.

At the step i of the workflow execution, bi receives Opi−1 and encrypts its upper
layer with SKi to build an onion Opi which he sends to bi+1 upon completion of
vi. Considering a set (vi)[1,n] of vertices executed in sequence we get:

Op1 =
{
{h1(PW )}SKpol1

}
Op2 =

{
{Op1}SK2

}
Opi =

{
{Opi−1}SKi

}
for i ∈ [3, n]

The building process of Opi is based on workflow execution patterns ; yet since
it is built at runtime contrary to the onion Od, this is straightforward. First, there is
no specific rule for OR-SPLIT and OR-JOIN patterns. Second, when encountering
an AND-SPLIT pattern, the same structure Opi is concurrently sent while in case
of an AND-JOIN, the n−1 onions received by a partner bn are wrapped by a single
structure: Opn =

{
{Op1 , Op2 , .., Opn−1}SKn

}
.
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In order to verify that the workflow execution is compliant with the pre-defined
plan when he starts the execution of the vertex vi, the business partner bi assigned to
vi just peels off the layers of Opi−1 using the vertex public keys of the vertices pre-
viously executed based on SW . Doing so he retrieves the value {h1(PW )}SKpol1

that should be equal to the one he can compute given PW , if the workflow execu-
tion has been so far executed according to the plan.

Considering the example depicted in figure 2, at the end of the workflow exe-
cution the onion Op is defined as follows.

Op = {{{{{{h1(PW )}SKpol1
}SK2}SK3︸ ︷︷ ︸

First AND-SPLIT branch

,

{{{h1(PW )}SKpol1
}SK4}SK5︸ ︷︷ ︸

Second AND-SPLIT branch

}SK6}SK7}

{h1(PW )}SKpol1
is sent by b1 assigned to v1 to both b2 and b4 assigned to v2

and v4 respectively. The onion structure associated with the two branches forming
the AND-SPLIT pattern thus includes {h1(PW )}SKpol1

twice.

4.5 Vertex key pair generation
Vertex key pairs have to be defined for a single instance of a workflow specifica-

tion in order to avoid replay attacks. To that effect, we propose to capitalize on ID-
based encryption techniques [5] in the specification of the set (PKi, SKi)i∈[1,n].
For all i ∈ [1, n] (PKi, SKi) is defined by:{

PKi = h1(Wiid ⊕ SW ⊕ vi)
SKi = s× h2(PKi)

where s ∈ Z∗q for a prime q. s is called master key and is held by the vertex private
key generator [5] who is in our case the workflow initiator.

This vertex key pair specification has a double advantage. First vertex key pairs
cannot be reused during any other workflow instance and second vertex public keys
can be directly retrieved from W and Wiid when verifying the integrity of workflow
data or peeling off the onion Op.

4.6 Communication protocol

In order to support a coherent execution of the mechanisms presented so far,
workflow messages exchanged between business partners consist of the set of in-
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formation that is depicted in figure 8.
Workflow data (dk)k∈[1,j] are all transported between business partners and

satisfy the data block specification. A single message may include several copies
of the same data block structure that are encrypted with different vertex public
keys based on the execution plan. This can be the case with AND-SPLIT patterns.
Besides, workflow data can be stored in two different ways depending on the re-
quirements for the execution. Either we keep the iterations of data resulting from
each modification in workflow messages till the end of the execution or we simply
replace data content upon completion of a vertex. The bandwidth requirements
are higher in the first case since the size of messages increases as the workflow
execution proceeds further.

PW is required to retrieve vertex and policy public keys and specifies the work-
flow execution plan.

The two onion structures Od and Op are also included in the message.
Upon receipt of the message depicted in figure 8 a business partner bi assigned

to vi retrieves first the vertex private key from Od. He then checks that PW is
genuine i.e. that it was initialized by the business partner initiator of the work-
flow assigned to v1. He is later on able to verify the compliance of the workflow
execution with the plan using Op and finally he can process workflow data.

5 Secure execution of decentralized workflows

In this section we specify how the mechanisms presented so far are combined
to support the secure execution of a workflow in the decentralized setting. After
an overview of the execution steps, the secure workflow execution is described in
terms of the workflow initiation and runtime specifications.

5.1 Execution process overview

Integrating security mechanisms to enforce the security requirements of the
decentralized workflow execution requires a process strongly coupled with both
workflow design and runtime specifications. At the workflow design phase, the
workflow specification SW is defined in order to specify for each vertex the sets
of data that are accessible in read and write access and the credentials required
by potential business partners to be assigned to workflow vertices. At workflow
initiation phase, the workflow policy PW is specified and the onion Od is built.
The workflow initiator builds then the first set of workflow messages to be sent
to the next partners involved. This message generation process consists of the
initialization of the data blocks and that of the onion Op.

At runtime, a business partner bi chosen to execute a vertex vi receives a set
of workflow messages. Those messages are processed to retrieve SKi from the
onion Od and to access workflow data. Once the vertex execution is complete bi

builds a set of workflow messages to be dispatched to the next partners involved

13



in the execution. In this message building process, the data and the onion Op are
updated.

The set of functional operations composing the workflow initiation and runtime
specifications is precisely specified later on in this section. In the following N i

k

denotes the set defined by N i
k = {l ∈ [1, n]|dk ∈ Dr

l and vl is executed right after
vi}. Consider the example of figure 2: d1 is accessed during the execution of the
vertices v1, v2 and v5 thus N1

1 = {2, 5}.

5.2 Workflow initiation

The workflow is initiated by the business partner b1 assigned to the vertex v1

who issues the first set of workflow messages (M1→jp)p∈[1,z1]. The workflow ini-
tiation consists of the following steps.

1. Workflow policy specification: generate (PKi, SKi)i∈[1,n]

2. Initialization of the onion Od

3. Data block initialization: compute ∀k ∈ [1, j] sign1(dk)

4. Data block encryption: ∀k ∈ [1, j] determine N1
k and compute ∀k ∈ [1, j],

∀l ∈ N1
k {B1

k}PKl

5. Data block hash sets: ∀k ∈ [1, j] determine R1
k and compute ∀k ∈ [1, j],

∀l ∈ R1
k {h1({B1

k}PKl
)}SK1

6. Initialization of the onion Op: compute Op1

7. Message generation based on W and (N1
k )k∈[1,j]

The steps one and two are presented in sections 4.5 and 4.3, respectively. The
workflow messages are generated with respect to the specification defined in figure
8 and sent to the next business partners involved. This includes the initialization of
the onion Op and that of data blocks which are encrypted with appropriate vertex
public keys.

5.3 Workflow message processing

A business partner bi being assigned to a vertex vi proceeds as follows upon
receipt of the set of workflow messages (Mjp→i)p∈[1,ki] sent by the ki business
partners assigned to the vertices (vjp)p∈[1,ki] executed right before vi.

1. Retrieve SKi from Od

2. Data block decryption with SKi based on Jr
i

3. Execution proof verification: peel off the onion Op

14



4. Data integrity check based on W and PW

5. Vertex execution

6. Data block update: compute ∀k ∈ Jw
i signi(dk) and update dk content

7. Data block encryption: ∀k ∈ Jr
i determine N i

k and compute ∀k ∈ Jr
i ,∀l ∈

N i
k {Bi

k}PKl

8. Data block hash sets: ∀k ∈ Jw
i determine Ri

k and compute ∀k ∈ Jw
i ,∀l ∈

Ri
k {h1({Bi

k}PKl
)}SKi

9. Onion Op update: compute Opi

10. Message generation based on W and (N i
k)k∈[1,j]

After having retrieved SK1 from Od, bi verifies the integrity of workflow data
and that the execution of the workflow up to his vertex is consistent with the onion
Op. Workflow data are then processed during the execution of vi and data blocks
are updated and encrypted upon completion. Finally bi computes Opi and issues
the set of workflow messages (Mi→jp)p∈[1,zi] to the intended business partners.

6 Security

There are several alternatives with respect to the management of the key pair
(PKpoli , SKpoli), including simple key distribution based on the policy compli-
ance, group key management or policy-based cryptography. Amongst those al-
ternatives, we only discuss the policy based cryptography scenario as part of the
security evaluation of our solution. In the following, we make two assumptions:

• IND-PB-CCA: the policy-based encryption scheme used in the specification
of (PKpoli , SKpoli)[1,n] is semantically secure against a chosen ciphertext
attack for policy-based encryption and the associated policy-based signature
scheme achieves signature unforgeability [2]

• IND-CCA: the public key encryption scheme used in the specification of
(PKi, SKi)[1,n] is semantically secure against a chosen ciphertext attack
the associated signature scheme achieves signature unforgeability

Claim 6-1. The integrity of the distributed workflow execution is ensured. This
basically means that workflow data are accessed and modified by authorized busi-
ness partners based on the pre-defined plan specified by means of the sets Jr

i and
Jw

i .

Proof: This property is ensured by the onion Od which assures the vertex key
distribution used in the access to workflow data based on the workflow execution
plan.
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Assuming that a workflow initiator builds Od based on the methodology speci-
fied in 4.3 and under IND-PB-CCA, we claim that it is not feasible for an adversary
A to extract the vertex private key SKi from Od if A does not satisfy the set of
policies (polik)k∈[1,l] associated with the set of vertices (vik)k∈[1,l] executed prior
to vi in W . This is true as the structure of Od is mapped to W .

Claim 6-2. Upon receipt of a workflow message, a business partner is sure
that the workflow has been properly executed so far provided that he trusts the
business partners satisfying the policy pol1.

Proof: This means that an adversary that does not verify a policy that is trusted
by some business partners can not forge a workflow instance, i.e. that he can not
produce a workflow message faking a valid workflow instance. This property is
enforced by the onion Op.

Assuming that a workflow initiator builds Op based on the methodology spec-
ified in 4.4 and under IND-PB-CCA, we claim that the onion structure Op is un-
forgeable. To assure the unforgeability property, we need to verify that:

1. a genuine onion structure Op built during a previous instance of a workflow
can not be replayed

2. an onion structure Op can not be built by an adversary that is not trusted by
business partners

The first property is enforced by the fact that an onion structure Op properly
built by trustworthy peers is bound to a specific workflow policy PW and thus
can not be reused during an attempt to execute a malicious workflow instance.
The second property is straightforward under IND-PB-CCA as the policy-based
signature scheme achieves signature unforgeability. Thus an adversary can not
produce a valid onion Op1 =

{
{h1(PW )}SKpol1

}
.

Claim 6-3. Assuming that business partners involved in a workflow instance
do not share vertex private keys they retrieve from the onion Od, our solution
achieves the following data integrity properties:

• Data truncation and insertion resilience: any business partner can detect
the deletion or the insertion of a piece of data in a workflow message

• Data content integrity: any business partner can detect the integrity viola-
tion of a data block content in a workflow message

Proof: The first property is ensured as the set of workflow data blocks that
should be present in a workflow message is specified in PW , the workflow message
formatting has thus to be compliant with the workflow specification. The second
property is assured by the fact that an adversary can not modify a given data block
without providing a valid signature on this data block. This property relies on
the unforgeability of the signature scheme used in the data block and hash set
specifications.
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These three security properties enable a coherent and secure execution of dis-
tributed workflows, yet our solution can still be optimized to avoid the replication
of workflow messages. A business partner may indeed send the same workflow
message several times to different partners satisfying the same security policy re-
sulting in concurrent executions of a given workflow instance. A solution based on
a stateful service discovery mechanism can be envisioned to cope with this prob-
lem.

7 Related work

Security of cross-organizational workflows in both centralized and decentral-
ized settings has been an active research field over the past years mainly focusing
on access control, separation of duty and conflict of interests [4, 9, 10] issues.
However, in the decentralized setting issues related to the integrity of workflow
execution and workflow instance forging, which are tackled in our paper have been
left aside. In [7, 1] mechanisms are proposed for the management of conflicts of
interest [6] during the distributed execution of workflows. These pieces of work
specify solutions in the design of access control policies to prevent business part-
ners from accessing data that are not part of their classes of interest. These ap-
proaches do not address the issue of policy enforcement with respect to integrity of
execution in fully decentralized workflow management systems. Nonetheless, the
access control policy models suggested in [7, 1] can be used to augment our work
especially in the specification of the sets Jr

i and Jw
i at workflow design time.

Onion encryption techniques have been introduced in [15] and are widely used
to enforce anonymity in network routing protocols [11] or mobile agents [12]. In
our approach, we map onion structures with workflow execution patterns in order to
build proofs of execution and enforce access control on workflow data. As a result,
more complex business scenarios are supported by our solution than usual onion
routing solutions. Furthermore, combined with policy encryption techniques, our
solution provides a secure runtime environment for the execution of fully decen-
tralized workflows supporting runtime assignment of business partners, a feature
which had not been tackled so far.

Finally, our approach is suitable for any business scenarios in which business
roles can be mapped to security policies that can be associated with key pairs. It
can thus be easily integrated into existing security policy models such as chinese
wall [6] security model.

8 Conclusion

We presented mechanisms towards meeting the security requirements raised by
the execution of workflows in the decentralized setting. Our solution, capitalizing
on onion encryption techniques and security policy models, protects the access to
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workflow data with respect to the pre-defined workflow execution plan and pro-
vides proofs of execution to business partners. Those mechanisms can easily be
integrated into the runtime specification of decentralized workflow management
systems and are further suitable for fully decentralized workflow supporting the
runtime assignment of business partners to workflow tasks. We believe that the
mechanisms underpinning our approach will foster the development of dynamic
business applications whereby workflow actors do not need to rely on a dedicated
infrastructure to provide their resources as one of the major flaws slowing down
this trend was the lack of security.
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