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Abstract— Near-orthogonal transmission over MIMO broadcast
channels with limited feedback is addressed, identifying the
intrinsic tradeoffs that govern the system performance in terms
of sum rate. A low-complexity scheme is proposed for joint
scheduling and beamforming, which employs feedback in the
form of quantized channel directions and lower bounds on each
user’s received SINR, given a maximum orthogonality factor
ε between transmit beamforming vectors (ε = 0 if orthogonal
beamforming). We assume a simple power allocation, which
consists of distributing the available power equally over the active
beams. In a system with K active users and a given average
SNR, we show that the sum rate is a function of the number
of antennas, the number of active beams (considered less than
or equal to the number of antennas), the orthogonality factor ε
and the quantization codebook size. A practical rate function is
derived for the described system which approximates the average
sum rate accurately as validated through computer simulations.
Based on the proposed rate function, optimality of SDMA
vs. TDMA systems with asymptotically large number of users
is shown. In addition, we provide a performance comparison
between the proposed algorithm with limited feedback and other
approaches with different level of channel state information at
the transmitter.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can signifi-
cantly increase the spectral efficiency by exploiting the spatial
degrees of freedom created by multiple antennas. In point-
to-point MIMO systems, the capacity increases linearly with
the minimum of the number of transmit/receive antennas,
irrespective of the availability of channel state information
(CSI) [1],[2]. In the MIMO broadcast channel, it has recently
been proven [3] that the sum capacity is achieved by dirty
paper coding (DPC) [4]. However, the applicability of DPC
is limited due to its computational complexity and the need
for full channel state information at the transmitter (CSIT).
Several downlink techniques based on Space Division Multiple
Access (SDMA) have been proposed [5], achieving the same
asymptotic sum rate as that of DPC.

The capacity gain of multiuser MIMO systems is highly
dependent on the available CSIT. While having full CSI at the
receiver can be assumed, this assumption is not reasonable
at the transmitter side. Several limited feedback approaches
have been considered in point-to-point systems [6], [7], [8],
where each user sends to the transmitter the index of a
quantized version of its channel vector from a codebook.
An extension for MIMO broadcast channels is made in [9],
in which each mobile feeds back a finite number of bits
regarding its channel realization at the beginning of each block
based on a codebook. An SDMA extension of opportunistic
beamforming [10] using partial CSIT in the form of individual
signal-to-interference-plus-noise ratio (SINR) is proposed in
[11], achieving optimum capacity scaling for large number of
users.

In [12],[13], a simple scheme for joint scheduling and beam-
forming based on limited feedback is proposed. The receivers
compute and feed back a scalar metric that can be interpreted
as an upper bound on the SINR. Note that a scheme with sim-
ilar metric is also reported in [14]. In this paper, we propose
instead a system in which each mobile user feeds back a lower
bound on the SINR given certain orthogonality conditions that
need to be satisfied by the beamforming vectors. The proposed
system can ensure a lower bound on each user’s achievable rate
thus avoiding outage events, without need of link adaptation
(a second step of feedback).

Near-orthogonality transmission was discussed in [15] for
MIMO broadcast channels, as an efficient technique that
can guarantee certain per-user SIR. In [16], a simple power
allocation technique is proposed for Random Beamforming
(RBF), which consists of activating/deactivating certain beams
for transmission, performing equal power allocation among the
active beams. In our work, we combine this type of simple
power allocation policy with near-orthogonal transmission.
The ability of this system to adapt the number of transmit
beams and orthogonality properties gives rise to the need for
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joint optimization in order to maximize the system throughput.
This provides a simple - yet practical - way to balance
the available multiuser diversity and multiplexing gain. The
system increases the multiplexing gain by activating more
beams, while a relaxation in the orthogonality conditions for
user scheduling provides an increase in multiuser diversity. We
introduce a rate function approximation that enables an easier
analysis of such systems and provide simulations to illustrate
its validity. Numerical results are further given to observe the
behavior of the system sum rate with different levels of CSIT.

II. SYSTEM MODEL

We consider a multiple antenna broadcast channel consisting
of M antennas at the transmitter and K ≥ M single-
antenna receivers. The received signal yk of the k-th user is
mathematically described as

yk = hH
k x + nk, k = 1, . . . ,K (1)

where x ∈ C
M×1 is the transmitted signal, hk ∈ C

M×1

is the channel vector, and nk is additive white Gaussian
noise at receiver k. We assume that each of the receivers has
perfect and instantaneous knowledge of its own channel hk,
and that nk is independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian with zero mean and
unit variance. The transmitted signal is subject to an average
transmit power constraint P , i.e., E{‖x‖2} = P . For the
throughput analysis, we consider an homogeneous network
where all users have the same signal-to-noise ratio (SNR).
Due to the noise variance normalization to one, P takes on
the meaning of average SNR.

We consider an i.i.d. block Rayleigh flat fading channel, whose
parameters are considered invariant during each coded block,
but are allowed to vary independently from block to block. We
focus on the ergodic sum rate, which means that the capacity
is averaged over the fading distribution, and thus the block
size does not affect our results. Let H ∈ C

K×M refer to the
concatenation of all channels, H = [h1 h2 . . .hK ]H , where
the k-th row is the channel of the k-th receiver. Define Q as the
set of all possible subsets of cardinality M of disjoint indices
among the complete set of user indices K = {1, · · · ,K}. Let
S ∈ Q be one such group of M users selected for transmission
at a given time slot. Then H(S), W(S), s(S), y(S) are the
concatenated channel vectors, beamforming vectors, uncorre-
lated data symbols and received signals respectively for the set
of scheduled users S. When concatenating the beamforming
matrix W(S) prior to transmission, the signal model can be
described as follows

y(S) = H(S)W(S)s(S) + n (2)

At the k-th mobile, the received signal is given by

yk =
∑
i∈S

hH
k wisi + nk, k = 1, . . . , K (3)

For the selected set of users S scheduled for transmission, the
beamforming matrix is given by

W(S) = V(S)Λ(S)1/2 (4)

where the columns of V(S) are the normalized beamforming
vectors and Λ(S) is a diagonal power allocation matrix.

Notation: We use bold upper and lower case letters for
matrices and column vectors, respectively. (·)T , and (·)H

stand for transpose and Hermitian transpose, respectively. E(·)
denotes the expectation operator. The notation ‖x‖ refers to
the Euclidean norm of the vector x, and ∠(x,y) refers to the
angle between vectors x and y.

III. NEAR-ORTHOGONAL BEAMFORMING WITH LIMITED

FEEDBACK

Near-orthogonal transmission was first studied in [15] as an
efficient technique that can guarantee certain per-user SIR. We
define a set of ε-orthogonal vectors with orthogonality factor
ε as follows

Sε =
{S| ∣∣vH

i vj

∣∣ ≤ ε ∀ i, j ∈ S} (5)

which in fact measures the degree of non orthogonality. Given
an ε factor fixed by the Base Station (BS), the columns of the
normalized beamforming matrix V(S) are constrained to be
ε-orthogonal.

In our work, we perform joint beamforming and scheduling in
a system where limited feedback is present at the transmitter
side. In order to clearly identify the tradeoff between multiuser
diversity and multiplexing gain in near-orthogonal transmis-
sion, we simplify the codebook design, beamforming strategy
and scheduling algorithm. A greedy scheduling algorithm is
introduced based on scalar feedback of each user’s lower
bound on the SINR and quantized channel indexes, for the
purpose of ensuring ε-orthogonality and a minimum per-user
SINR. The analysis and results provided in our work can
indeed be applied for any ε ∈ [0, 1]. However, we speak of
near-orthogonal transmission since this value will tend to be
small in order to obtain good rates and reduce the complexity
of the scheduling algorithm.

The number of active beams for transmission Mo and orthog-
onality factor ε are system parameters that can be adapted in
order to maximize the system sum rate. As we show analyt-
ically and through simulations, given K active users with a
certain average SNR, a pair {ε,Mo} exists that maximizes the
average sum rate. In a realistic system, these parameters can
be set at every time slot for throughput maximization.

In what follows, we show in detail the different elements of the
proposed approach: beamforming, power allocation, codebook
design, feedback strategy and scheduling algorithm.
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A. Beamforming and Power Allocation

As simple transmission technique we consider transmit
matched filtering (TxMF), which consists of using as normal-
ized beamforming vectors the quantized channel directions of
users scheduled for transmission. Each user feeds back to the
base station an index corresponding to its quantized channel
direction from a codebook known to both the user and the base
station. The design of quantization codebooks is discussed in
the next subsection.

We propose a simple ON/OFF power allocation technique for
transmission, which consists of transmitting equal power P

Mo

over Mo active beams, with 1 ≤ Mo ≤ M . Hence the value of
the elements on the diagonal of the power allocation matrix
Λ(S) is equal to P

Mo
for active beams and zero otherwise.

Even though this strategy is not optimal, it allows the system
to rapidly adapt the number of beams to varying scenarios in
order to improve the throughput.

B. Codebook Design

Consider a B-bit quantization codebook Vk containing L =
2B unit norm vectors in C

M , which is assumed to be known to
both the receiver and the transmitter. The normalized channel
vector of user k to be quantized is hk = hk/ ‖hk‖, which
corresponds to the channel direction.

The optimal vector quantizer is difficult to find and the solution
to this problem is not yet known. As codebook design goes
beyond the scope of the paper, we adopt the geometrical
framework presented in [8]. The unit norm sphere U on
which a random vector hk lies is partitioned into N decision
regions {C̄ki; i = 1, . . . , L,∀k}, where C̄ki = {hk ∈ U :
|hH

k vki|2 ≥ |hH

k vkj |2,∀j �= i, 1 ≤ j ≤ L,∀k}. If the channel
hk ∈ C̄ki, the receiver k feeds back the index i. Since hk is
uniformly distributed over U , we have that Pr{hk ∈ C̄ki} ≈
1/L,∀i. Thus, we can consider the following approximated
quantization cell [8], [17]

C̃ki = {h̄k ∈ U : 1 − |h̄H
k vki|2 ≤ δ}, ∀i, k

for δ = 2−B/(M−1). The quantization error is defined as
sin2 θk = sin2(∠(h̄k,vk)) = 1 − ∣∣h̄H

k vk

∣∣2 [8], [17], where
vk is the quantized channel direction of user k.

Using this framework, the cumulative distribution function
(CDF) of the quantization error is given by [8], [17]

Fsin2 θk
(x) =

{
δ1−MxM−1 0 ≤ x ≤ δ
1 x > δ

C. Feedback Strategy

At each time slot, each receiver determines its ’best’ vector
from the codebook based on its current channel realization hk,
i.e., the codeword that optimizes a certain objective function.

Similarly to [7], [8], we assume that each receiver quantizes
its channel to the vector that maximizes the inner product

vk = arg max
v∈Vk

|hH

k v|2 = arg max
v∈Vk

cos2(∠(hk,v)) (6)

Each user sends the corresponding quantization index back to
the transmitter through an error-free and zero-delay feedback
channel using B bits. Note that this model is equivalent to the
finite rate feedback model proposed by [7], [9].

In order to perform the task of user scheduling, the users
feed back a scalar value that corresponds to a lower bound
on the expected SINR. This lower bound is a function of the
channel realization and average transmit power (normalized
noise power is assumed), as well as system parameters fixed
by the base station:

• Maximum orthogonality factor ε
• Number of active beams Mo

For user k and index set S, the multiuser interference
can be expressed as Ik(S) =

∑
i∈S,i �=k

P
Mo

|hH
k vi|2 =

P
Mo

‖hk‖2
Ik(S), where Ik(S) denotes the interference over

the normalized channel hk. Define IUBk
as the upper bound on

Ik and θk = ∠(hk,vk). Based on the work developed in [18]
for arbitrary orthogonality between beamforming vectors, we
propose the following lower bound on the SINR of the k-th
user

SINRk ≥ ‖hk‖2 cos2 θk

‖hk‖2
IUBk

+ Mo

P

(7)

where

IUBk
= αk cos2 θk + βk sin2 θk + 2γk sin θk cos θk (8)

and
αk = (Mo − 1)ε2

βk =
{

0 if Mo = 1
1 + (Mo − 2)ε otherwise

γk = (Mo − 1)ε

(9)

D. Proposed Scheduling Algorithm

As our optimization criterion is to maximize the system
throughput, it is desirable to schedule a set of M users with
large channel gains and mutually orthogonal beamforming
vectors. We propose a simple greedy approach, in which the
first selected user corresponds to the one with the largest scalar
metric SINRk. At the i-th selection step, i = 2, . . . ,Mo,
the algorithm selects the user with largest SINRk among the
remaining users that are ε-orthogonal to the quantized channels
of users selected in the i− 1 previous steps. An outline of the
proposed scheduling algorithm is shown in Table I.

Note that this algorithm is equivalent to the one proposed in
[5], [19], [20], with the difference that here we use as metric
a lower bound on the SINR.
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TABLE I

OUTLINE OF SCHEDULING ALGORITHM

MS

Compute & Feedback SINRk ≥ ‖hk‖2 cos2 θk

‖hk‖2IUBk
+ Mo

P

quantization index i ∈ {1, . . . , L}
BS

Initialize Set S = ∅
Loop For i : 1 . . . Mo repeat

Set SINRi
max = 0

Loop For k : 1 . . . K, k /∈ S repeat

If SINRk > SINRi
max and

∣∣vH
k vj

∣∣ ≤ ε∀j ∈ S
SINRk → SINRi

max and ki = k
Select ki → S

In the proposed system we assume that if the algorithm fails to
find a set of Mo ε-orthogonal users, the BS sets Mo → Mo−1
and requests retransmission of SINRk feedback at the current
time slot. The operation is repeated within a time slot until a
set of ε-orthogonal users is found. At the next time slot, the
value of Mo is restored to its initial value. This assumption
makes easier the task of comparing the proposed rate function
with a simulation scenario, ensuring that at each time slot
there always exists an ε-orthogonal set to be scheduled. It
corresponds to a system with the ability to adapt the number
of beams within each time slot, hence feedback is assumed
to be exchanged fast between base and mobile station. In a
system with M = 2 antennas, this would correspond to a
switch between SDMA and TDMA transmission.

IV. RATE FUNCTION APPROXIMATION

In this section we derive a function to approximate the average
sum rate that the system with near-orthogonal transmission can
provide, given knowledege of each user’s SINR lower bound.
Denoting the lower bound on SINR of equation (7) as s, we
derive an approximation on its CDF using mathematical tools
from [21], which is given by

Fs(s) ≈ 1 − e
−Mos

P (1−αs)

δM−1 (1 + m)M−1
(10)

where m =
2γs

[
γs+

√
γ2s2+(1−αs)βs

]
+(1−αs)βs

(1−αs)2

Let the ordered variate si:K denote the i-th largest among K
i.i.d. random variables. From known results of extreme order
statistics [22] we have that the CDF of s1 = max

1≤i≤K
si:K is

Fs1 = (Fs(s))K . According to the proposed user selection
algorithm, the SINR of the first selected user is the maximum
SINR over K i.i.d. random variables. However, at the i-th
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Fig. 1. Comparison of analytical and simulated average sum rate for
K = 25 users, SNR = 10 dB.

selection step (i-th beam) the search space gets reduced since
the ε-orthogonality condition needs to be satisfied. Hence, the
i-th user is selected over Ki i.i.d. random variables yielding
a CDF for the maximum SINR given by Fsi

= (Fs(s))Ki . Its
mean value can be approximated as

E(si) ≈
∫ 1/α

0

1 − (Fs(s))Kids (11)

which approximates well the mean of si for small values of
ε. An approximation of Ki can be calculated through the
probability that a random vector in C

M×1 is ε-orthogonal to a
set with i−1 vectors in C

M×1, which is equal to Iε2(i,M−i) [5],
Ix(a, b) being the regularized incomplete beta function. By
using the law of large numbers [20], we can find the following
approximation:

Ki ≈ KIε2(i − 1,M − i + 1) (12)

The average sum rate in a system with Mo active beams can
be bounded as follows by using Jensen’s inequality

SR =
Mo∑
i=1

E [log2 (1 + si)] ≤
Mo∑
i=1

log2 [1 + E (si)] (13)

Using equation (13) and solving the integral in equation (11)
for the CDF of s described in (10), we obtain the following
theorem after some approximations

Theorem 1. Given ε-orthogonal transmission in a system with
Mo active beams, the average sum rate is approximated as
follows

RMo≈
Mo∑
i=1

log2

[
1+

Ki∑
n=1

(−1)n−1

δn(M−1)

(
Ki

n

)
1

α

(
1+

Cn

α
e

Cn
α Ei

(
−Cn

α

))]
(14)
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where C = Mo

P + (M − 1)β, α and β are as described in
equation (9) and the exponential integral function is used,
defined as Ei(x) =

∫∞
−x

e−t

t dt.

In practice, since Ki has to be an integer, we round it to the
nearest integer greater than or equal to Ki. Note that, as a
particular case of the equation above, a simpler expression
can be derived for Mo = 1, given by

R1 ≈ log2

[
1 +

K∑
n=1

(−1)n−1

δn(M−1)

(
K

n

)
P

n

]
(15)

Assuming retransmission of SINR values as discussed in the
previous section, the BS sets Mo → Mo − 1 if the algorithm
fails to find a set of Mo ε-orthogonal users. In a system with
M = 2 antennas, the probability of not finding 2 ε-orthogonal
users is given by p =

[
1 − ε2

]K−1
. Hence, the approximated

rate in the described scenario is given by

R ≈ pR1 + (1 − p)R2 (16)

where R1 and R2 (RMo
with Mo = 2) are as described

in equations (14) and (15) respectively. Figure 1 shows a
comparison of analytical and simulated average sum rates
in such system, with M = 2 antennas, K = 25 users and
SNR = 10 dB. Each user has a simple codebook designed as
described in previous section with B = 1 bit, different from
user to user. Note that the jitter in the analytical curve is due
to the rounding effect of Ki.

V. TDMA VS. SDMA

In this section we provide asymptotical results showing that
SDMA can provide higher rates than TDMA (Mo = 1)
in near-orthogonal MIMO systems as the number of users
increases. We also illustrate by simulations the impact of
average SNR values on the optimal choice of the system
parameters Mo and ε. First, note that the number of available
users at the i-th step can be bounded as Ki ≥ ε2(M−1) as
shown in [5]. The worst case scenario for SDMA is given
by ε = 1, since in that case the SINR bound becomes
very pessimistic. For finite SNR, even when the proposed
transmission scheme sets ε = 1, we can easily obtain from
equations (14) and (15) the following result

Theorem 2. Given an arbitrary ε, SDMA outperforms TDMA
asymptotically with the number of users K by a factor

lim
K→∞

RMo

R1
= Mo (17)

Hence SDMA exploits the multiplexing gain. In Figure 2 we
show the evolution of the optimal value of ε for varying
SNR in a cell with large number of users, K = 1000, and
M = 2 antennas. The simulated system performs switching
from SDMA to TDMA when ε-orthogonal sets are not found,
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Fig. 2. Simulated lower bound on the sum rate with transmit matched
filtering as a function of the orthogonality factor ε for large K.

as discussed in section III. A shift to the right in the position
of the maximum implies that the number of ε-orthogonal users
found at the second step (K2) also increases, hence using 2
beams for transmission and thus exploiting the benefits of
SDMA rather than TDMA. Therefore, Figure 2 shows that
as the SNR decreases, a system based on near-orthogonal
transmission tends to select SDMA over TDMA.

VI. NUMERICAL RESULTS

Figure 3 shows a performance comparison in terms of average
sum rate versus orthogonality factor ε for various transmis-
sion systems. The simulated system has M = 2 antennas
and a simple codebook of B = 1 bits. The number of
active users is K = 10 and the average SNR = 20 dB.
Transmit matched filtering approaches with different channel
state information at the transmitter (CSIT) are compared.
The upper curve corresponds to optimal transmit matched
filtering, with perfect CSIT and exhaustive search. Hence,
its average rate is not a function of the orthogonality factor.
The lower curve corresponds to the proposed system, whereas
the third curve corresponds to the sum rate of a system with
second step of full CSIT feedback. This means that, given a
set of users selected for transmission, the BS requests full
channel information from those users to perform transmit
matched filtering. We can see that the bound becomes looser
as ε increases, since the bound on the SINR becomes more
pessimistic. In the simulated system with K = 10 users,
the maximum average sum rate occurs when the system sets
orthogonality ε = 0. This means that the system forces
that at each time slot only one beam will be active, since
there is zero probability of finding two quantized random
channels perfectly orthogonal, assuming different quantization
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Fig. 3. Sum rate with transmit matched filtering as a function of the
orthogonality factor ε for K = 10 users, SNR = 20 dB.

codebooks for each user. Thus, in the simulated scenario with
reduced number of users, TDMA (one active beam per time
slot) is the optimal transmission technique while in systems
with large number of users SDMA is optimal as shown in
previous section.

VII. CONCLUSIONS

A scheme for near-orthogonal transmission in MIMO broad-
cast channels with limited feedback has been introduced.
Based on simple scalar feedback and transmit matched filtering
along quantized channels, joint beamforming and scheduling
is performed. For the described system, a rate function ap-
proximation has been given, which has been shown to fit well
the simulated average sum rate. This function is a powerful
design tool for systems based on similar limited feedback
scenarios, where a greedy algorithm reduces the amount of
multiuser diversity at each selection step. In a system with K
active users and a given average SNR, fixing the number of
antennas and codebook size, we have shown that the sum rate
is a function of the number of active beams (considered less
or equal than the number of antennas) and the orthogonality
factor ε. Hence, the benefits obtained from multiuser diversity
and multiplexing gain can be conveniently balanced in a
real scenario by approppriately choosing these parameters.
In a realistic system, they can be set at every time slot for
throughput maximization.
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