
 1

Context-Aware Security Policy for the Service Discovery

 Slim Trabelsi Laurent Gomez Yves Roudier
 Institut Eurecom SAP Labs France Institut Eurecom

 Slim.trabelsi@eurecom.fr laurent.gomez@sap.com yves.roudier@eurecom.fr

Abstract

Dynamic and self organizing systems like those
found in pervasive computing systems or semantic web
based scenarios raise numerous challenges regarding
security and privacy. Service discovery is a basic
feature of SOA deployment in such systems, given that
entities need to locate services they can describe
without an a priory knowledge. After inherent threats
to service discovery in ubiquitous networks, we
propose a registry based solution in which context-
aware security policies are enforced in order to ensure
privacy and access control for clients and services. We
offer the possibility for the users to specify their
security preferences that will be enforced during the
discovery process. Experimental results based on an
implementation of our approach are finally presented.

1. Introduction

Orchestration is becoming an essential feature for
developing software for increasingly pervasive
systems, in particular with the fast development of
ubiquitous computing. The orchestration technique
obviously comes at a cost: being able to locate
previously unknown services becomes mandatory. The
first orchestration technique applied generally is the
service discovery that allows a dynamic detection of
the available services in the network.

With the emergence of the Web Service technology,
the discovery process should address the heterogeneity
of services and platforms from a technical perspective,
the complex semantics of service descriptions (e.g.
resorting to terminology- or ontology-based
descriptions), specific security and trust requirements,
altogether with scalability. Web Service discovery
solutions like UDDI [1], WS-Discovery [2], were
developed to answer some of these requirements, yet
still do not address most security and trust issues. In
the WS-Discovery protocol for instance, security is
limited to the use of signatures for verifying the
integrity of messages. It is not sufficient to protect
sensitive information about services from becoming
available to rogue users; private information of a user

might also get revealed to a service without any
assessment of that service's potential maliciousness.
This paper discusses how WS-Discovery may be
extended to incorporate appropriate confidentiality and
privacy protections restricting the potential matching
between a client lookup request and a service profile.
In particular, this paper describes how XACML may
be used to implement such functionalities and how it
needs to be extended to incorporate an evaluation of
the context of a user or of the device hosting a service,
an essential feature for enabling service discovery in
ubiquitous computing.

This paper is organized as follows. In the section 2
we introduce the notion of service discovery and we
dress a threat model related to this mechanism. In the
section 3 we describe the proposed solution to
overcome these security failures. In the section 4 we
detail the architectural and the technical aspects of the
implementation. We also provide the performances
results obtained with our implementation. Finally we
compare our approach with related work.
2. Service Discovery and Security
This section introduces service discovery concepts and
goes on to discuss the threats attached to this
mechanism.

2.1. Service Discovery Definition
Communication devices in fixed networks like local

LANs traditionally are assigned a static network
configuration, or at worst use DHCP to dynamically
configure their IP address. With the emergence of new
dynamic networks and services where devices are
pervasive, the discovery techniques are being adapted
in order to find mobile services rather than devices.
This adaptation in particular addresses how to combine
services as a logical layer in such systems together
with the specification of environmental constraints.

Centralized discovery approaches rely on a registry
which plays the role of yellow pages, and which clients
can refer to. A service advertises its capabilities to the
registry, which will store them for a certain amount of
time. A client solicits the registry to find a service by
sending a request containing service preferences,

 2

which the registry tries to match with the most suitable
provider found from the stored advertisements. In that
approach, registries have to be considered by the
services and the clients as a third trusted party.

2.2. Revisiting Service Discovery Threats
This section discusses the threat model of service

discovery services and in particular which parts of such
systems would be worthy targets to adversaries.

2.2.1. Threats and Attacks
The main players of the discovery phase are the

service requester (client) and the service provider
(server), even in the case of a registry based service
discovery. We try here to provide a global idea about
threats and possible attacks that can be built against the
data and resources of service discovery players.
Protocol Messages and Entities
o The registry is not available (service-side)
o Client request disclosure (client-side)
o Interception of request (client-side)
o Message modification or drop (client side)
o Replay of lookup message DoS (client-side)
o Replay of registration message (registry-side)

Service Registration
o Registration to a malicious registry (server-side):

an attacker might fake being a registry
o A service can be deregistered by an unauthorized

party (service-side):
o Wrong registration (registry-side): An attacker can

send a fake registration message to the registry.

Matching Process
o Client lookup disclosure (client-side): client

intentions or activity might be disclosed if the
matching process is open to all services registered.

o Service discovered by unauthorized party (service-
side)

This paper especially focuses on the development of
appropriate policy specifications for the latter category
of threats, and based on XACML. The policy
enforcement mechanism described here makes it
possible, regarding the last threat for instance, to
specify authorized clients through the specification of
their context or their devices physical situation, as
acquired from the environment, as additional and
dynamic attributes of the client in that example.
3. Context-Aware Access Control for

Secure Discovery
This section introduces the architecture of our solution
to supporting contextual attributes as supplementary
constraints for matching client or service profiles at
discovery.

3.1. Discovery Policy
The threat model exposed in the previous section

makes it clear that clients should be able to find a
service matching their preferences, both in terms of the
characteristics of the service and in terms of security
and privacy requirements imposed respectively by the
service and by the client. On the client side, the user
should be sure that only services matching his
preferences would be returned: from his point of view,
trusting a service should therefore go beyond the
simple authentication of the service provider and also
encompass a complete certification process of the
capabilities of the service. On the server side, the
problem is quite similar since the server does not know
the users that can potentially gain access to its service.
They should therefore be accessible only to client they
trust to access them according to a precise behavior
guaranteed by some authority.

Assigning the responsibility to enforce such
discovery policies to a trusted entity of the system is
therefore critical to service discovery. To avoid raising
the complexity of service discovery, we do not propose
to add a new entity to the system together with a
dedicated protocol, but rather to assign this task to the
registry. The choice of the registry as being the trusted
third party in charge of the policy enforcement is an
absolute requirement in centralized approaches, since
matching already implicitly is a trusted operation, and
matching and policy enforcement are closely tied
together.

Discovery policies [3] may be quite simple: the
client or the service provides rules that describe who
can access their respective profile based on some
attributes. In this paper the discovery policy objective
is twofold:

- Access Control: discovery constitutes a
preliminary form of access control to services by
restricting the clients which will be able to
subsequently contact a service. The sensitive resource
here is the service’s profile that must be hidden to the
non authorized users.

- Privacy Protection: the client can protect the
private information he reveals for each lookup he
performs (identity, intentions, favorite services …)
from an uncontrolled disclosure.

As shown in Figure 1 the usual discovery messages
(publish and lookup) should be accompanied by some
credential (certificate or key) in order to be
authenticated by the registry, by a discovery policy that
will be enforced by the registry in order to protect the
entities according to their desires, the whole being
secured using a signature based on the credential
transmitted for instance.

 3

Figure 1: Communicating discovery policies

3.2. Context-Awareness
The use of context represents a significant benefit

for enabling service discovery in the highly dynamic
environments addressed in ubiquitous computing.
Context or context information refers to any
information that can be used to characterize the state of
an entity (user, or software, or hardware component of
a computing system) [4]. The location of a service,
obtained for instance through a GPS or WiFi-based
location of the device on which a service is running,
network bandwidth, or the security protocols enabled
on some platform all may serve to characterize
dynamic services and networks. Service discovery may
obviously exploit context to achieve more precise
matching in such environments [5],[6]. More
importantly, such context information complements
and provides more flexibility to the discovery policy
specification. It in particular makes it possible to
express fine grained discovery policies more closely
following the constant changes of the environment and
services.

Approaches to the introduction of context-
awareness for service discovery so far only exploited
raw context directly acquired from sensors (e.g. GPS
location, remaining battery). While this may indeed
enhance service discovery with basic context-
awareness, the use of sensor context information is
however too restrictive for defining a discovery policy.
We instead introduce semantically-rich context
information, thereby supporting context reasoning: raw
contextual data that are gathered from sensors, like the
location, can therefore be further processed to derive
complex information, such as the proximity. De facto,
we already improve the flexibility of context-aware
discovery policies whose expressive power extends to
more complex contexts. Context reasoning also may
take place during the enforcement of discovery

policies, and makes it easier to combine context
information coming from different sources.

3.3. Secure Context Acquisition
The use of context information for enhancing

security mechanisms also make it necessary and even
critical to assure the security of the context acquired
[7]. While the proof of concept implementation
presented in the next section does not address these
issues, this section provides a non-exhaustive listing of
various approaches that may permit to secure context
acquisition.

3.3.1. Confidential Context Information
Considering user context information, one should

be able to protect his personal information such as his
health status or medical history (context information
privacy), which touches the privacy of a user.

Several approaches target this issue [8] [9] [10] of
user’s privacy protection. They all aims at providing
security control for controlling the disclosure of
context information by the user.

3.3.2. Context Information Integrity
Integrity protection aims at guarantee that the

context information acquired has not been corrupted by
an unauthorized third party while in transit. Hashing
and public key digital signature are two alternatives.
But the latter, relying on public key infrastructure, may
impose important constraints on highly decentralized
and pervasive low-cost sensor networks.
4. Implementation design
Our prototype implementation of the system described
above relies on three fundamental components that
enable a secure and context-aware service discovery: a
service discovery protocol that defines a standard for
the message format, the exchange techniques and the
registration management. A security policy module is
used to generate, to reason about, and to enforce the
policy used to secure the discovery process. A context-
aware module is used to reason about the contextual
information and data used during the discovery policy
enforcement.

4.1. Service Discovery Protocol
We selected to extend an existing service discovery

protocol called Web Services Dynamic Discovery
(WS-Discovery). This protocol defines a multicast
discovery scheme to locate services connected to a
network (mostly assumed to be a LAN or WLAN).
Each service provider announces itself (by sending a
“Hello” message) through the multicast group to
expose the services that can provide. Each user that is
looking for a service propagates its query (by sending a
“Probe” message) through the multicast and only the
concerned service must make a response (by sending a
“Probe Match” message). As we mentioned previously
the default matched attributes are the Type and the

 4

Scope of the service, obviously other attributes and
meta-data information can also be.

The WS-Discovery specification does not suggests
securing the discovery process but it recommends the
usage of a compact signature format to secure the
exchanged messages. In this case each entity has the
possibility to verify the signature of the message
sender. This signature protects against the message
modifications the replay, the spoofing.

Signature verification is obviously insufficient to
protect users (servers and clients) since a valid
signature only assess that the message content has not
been altered without presuming of the level of trust of
the issuer. Moreover, the content of the message is not
confidential and there is no guarantee against the
disclosure of private information. For example a
malicious server can publish fake services with a valid
signature or listen to request messages in order to
collect valuable information.

4.2. Context Reasoning Module
In order to ease the definition of discovery policies

exploiting context, context handling and reasoning
relies on the use of a context ontology. This section
describes this ontology and how it can be combined
with service discovery.

4.2.1. Context Information Representation
Ontologies aim at classifying, characterizing and at last
at establishing relationship between concept in a given
domain. Therefore, they provide a strong support for
reasoning about concept. Regarding context ontology,
we decide to use the Context OntoLogy (CoOL[11]). It
is expressed with the Web Ontology Language
(OWL[12]). For sake of efficiency, we use the OWL-
DL version of OWL.

4.2.2. Reasoning about Context Information
For reasoning about context information, we

distinguish two complementary approaches for
reasoning about context information: ontology and
inference rule based reasoning. As described in the
previous section, ontology supports relationship
definition between context information. Based on those
relationships, ontology eases reasoning about context.
In Figure 2, we express in OWL-DL the following
reasoning: “if patient pulse is below 10 and his body
temperature is below 10, then he is unconscious”. We
establish a relationship between patient’s pulse and
body temperature in order to infer on his health
condition.

Figure 2: OWL-based reasoning sample

Moreover, ontology enables us to express similarity
relationship between context. Thus, we can express a
similiraty between pulse and heart rate. If heart rate is
not available, then pulse can be used in order to reason
about patient’s health condition.

Nevertheless the expressiveness power of OWL can
be quickly restrictive as soon as we try to target more
complex reasoning about context. Due to the restriction
of OWL-DL, ontology based reasoning is limited to
binary relationship between two context notions. For
this reason, we can not quantify relationship in OWL-
DL. For example, proximity relationship can be
established in context ontology, but it can be quantify
with respect to the distance between the users.

For those reasons, we propose to use inference rule-
based reasoning engine such as Jess [13], in
combination to ontology-based reasoning. Once
ontology-based identified relationships between
context, inference rule tends to cope with ontology-
based reasoning by evaluating and quantifying those
relationships. In our use case, proximity between
doctor and patient has to be evaluated. In Figure 3, we
provide an example of inference rule about proximity
between a physician and a patient. This rule is defined
for Jess. We intentionally skip the acquisition of
physician and patient’s location in the rule definition.

Figure 3: Inference rule sample with Jess [13]

<xsd:simpleType name=below10>
<xsd:restriction base=xsd:positiveInteger>
<xsd:maxInclusive value=10>
</xsd:restriction>
</xsd:simpleType>
<owl:Class rdf:ID=isUnconscious>
 <owl:intersectionOf rdf:parseType=Collection>
 <owl:Class rdf:about=#User/>
 <owl:Restriction>
 <owl:onProperty rdf:resource=#Pulse>
 <owl:someValuesFrom rdf:resource=#below10>
 </owl:Restriction>
 </owl:intersectionOf>
 <owl:intersectionOf rdf:parseType=Collection>
 <owl:Class rdf:about=#User/>
 <owl:Restriction>
 <owl:onProperty rdf:resource=#BodyTemperature>
 <owl:someValuesFrom rdf:resource=#below10>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

;; ACQUIRE PHYSICIAN AND PATIENT LOCATION
;; TEST IF THEY ARE NO FAR THAN 2000 METERS
=>
(assert
 (triple
 (p "isCloseTo")
 (s ?PatientLocation)
 (o ?PhysicianLocation)))

 5

4.3. Security Policy Module
In [17], we propose a framework for exploiting

reasoning about context at access control policy
enforcement based on XACML. XACML request
consists of a triple {Subject, Resource, Action}. A
Subject tends to gain access to a Resource (e.g. file,
web service) in order to perform an Action (e.g.
read/write, invoke a method). The Subject is
characterized by a set of attributes (e.g role, location).
Based on this triple {Subject, Resource, Action}, a
rule-based access control policy is enforced. After
decision making, a XACML response is sent back to
the requestor (e.g. Permit, Deny, Intermediate or Not
Applicable).

Using the XACML policy language, we can easily
restrict the discovery to some authorized clients as
illustrated in Figure 4. In this example, we restrict
access to getPatientMedical action of any resource to a
user characterized with a physician role. (For sake of
clarity, we skip namespaces.)

Figure 4: XACML Policy Definition

We can extend this security policy definition with the
following condition.

Figure 5: CloseTo Conditon in XACML

Figure 5 describes how to infer the proximity between
patient and physician. If the distance between their two
personal devices is below 2000 meters, than we
consider them as close to each other.

4.4. Architecture
In this section we detail how our implementation is

working and how the different entities represented in
the Figure 6 can interact with each others. Step (1) is

initiated by the server in order to register its services
by sending a Hello message containing the description
of its capabilities, its profile (Also credentials) and
some specific contextual information. The step (2) is
the Client’s service lookup by sending a Probe
message containing the service request and a credential
(to be authenticated). The step (3) performed by the
registry consists in a request matching with the existing
service profiles. If needed the client (and services are
authenticated in (4), then a reasoning about the
eventual contextual information is performed in (5),
Policy enforcement is done in the step (6). If the
request is accepted, the registry returns a response to
the client by sending a ProbeMatch message (7).

Figure 6: Global Architecture Design

4.5. Performance and results
In order to evaluate the efficiency of our solution

we developed a Java prototype and we performed some
measurements about time execution and memory
consumption. For these experiments we used:

o OS: Fedora Core 5 with a Linux 2.6.x kernel
i686

o CPU: Mobile Intel Pentium 4 CPU 1.70 GH
o Physical Memory 512 MB

In this table we provide all the measurement values
related to each step described in section 4.4.

 Actions Time (ms) Size (byte)
(1) Sending Hello 31 3963
(2) Sending Probe 67 862
(3) Service matching 370 -
(4) Authentication 1572 -
(5) Context Reasoning 4005 76000
(6) Policy enforcement 862 -
(7) Sending ProbeMatch 15 1622

5. Related Work

To our knowledge, the notion of context-aware
security policy for the service discovery has not been
investigated in the literature, while context aware
service discovery or secure discovery is not new any
more. This section gives an overview of some
interesting work regarding these two topics.

<Apply FunctionId="CloseTo">
 <Apply FunctionId="findLocation">
 <SubjectAttributeDesignator
 DataType=GPSLocation AttributeId="SubjectLocation"/>
 </Apply>

<AttributeValue
 DataType="integer">2000 meters</AttributeValue>

 <Apply FunctionId="string-one-and-only">
 <SubjectAttributeDesignator
 DataType=string AttributeId="PatientID" />
 </Apply>
</Apply>

 <!-- Check if the subject is physician -->
 <Condition FunctionId="function:string-equal">
 <Apply FunctionId="function:string-one-and-only">
 <SubjectAttributeDesignator DataType="string"
AttributeId="SubjectRole" />
 </Apply>
 <AttributeValue
DataType="string">Physician</AttributeValue>
 </Condition>
 </Rule>
</Policy>

 6

One of the first approaches dealing with secure
service discovery was proposed by [14]. This
architecture relies on an additional component, called
Service Discovery Service (SDS), which plays the role
of a secure information repository (secure registry). It
provides authentication, access control, encryption,
signature verification, and privacy protection using a
PKI. Contrary to our solution, clients and services do
not have any possibility to define their own security
preferences regarding discovery.

In a precedent work [15] we proposed a specific
solution to secure peer-to-peer service discovery
mechanisms. This solution is based on the use of an
Identity Based Encryption scheme to protect the
requests and the announcement messages. This
solution needs not relying on a trusted third party in
order to perform a secure service matchmaking.

[16] addresses privacy protection aspects of the
discovery process. The authors propose the use of
Bloom filters to protect the client and server personal
information. Membership tests are performed between
the directory and the client using generated Bloom
filters in order to authenticate themselves. The
participating entities must agree beforehand on specific
hash functions in order to use these Bloom filters, yet
this issue is not resolved but through a static
agreement. The scope of the restrictions is very poor
compared to our policy solution that provides an
efficient semantic expressiveness used to define the
security preferences of each entity.
6. Conclusion

In this paper we propose a context aware policy
based solution to secure service discovery in Service
Oriented Architecture. First we established a threat
analysis related to discovery mechanisms by providing
a non exhaustive list of possible attacks that can be
built against the data and resources of service
discovery actors. We tend to cope with these identified
threats by defining a secure registry solution relying on
context-aware policy. We motivate the use of secure
and trusted context-information in order to adapt the
security policy enforcement with dynamic
environment.

Our approach solves user’s privacy and service
access control by introducing context-aware access
control for discovery service and efficiently supports
trust establishment between different actors of the
system. We are currently investigating about trust and
security management for context acquisition and
reasoning.

7. References
[1] OASIS, “UDDI”, http://www.uddi.org
[2] WS-Discovery Specifications
http://msdn.microsoft.com/ws/2005/04/ws-discovery/

[3] S. Trabelsi, J.C. Pazzaglia and Y. Roudier “Enabling
Secure Discovery in a Pervasive Environment” 3rd
International Conference on Security in Pervasive Computing
(SPC 2006) – York – UK – April 2006
[4] A. K. Dey, “Understanding and using context,” Personal
and Ubiquitous Computing Journal, vol. 5(1), pp. 4–7, 2001.
[5] R. Liscano and A. Ghavam, “Context Awareness and
Service Discovery for Spontaneous Networking”, School of
Information and Technology and Engineering (SITE),
University of Ottawa, 2003
[6] S.E. Czerwinski et al, “An Architecture for a Secure
Service Discovery Service” , In Proceedings of MobiCom
'99, Seattle, WA, August 1999
[7] Kay Römer, Oliver Kasten, Friedemann Mattern,
“Middleware Challenges for Wireless Sensor Networks”,
ACM Mobile Computing and Communication Review, Vol.
6, No. 4, pp. 59-61, October 2002
[8] J. I. Hong and J. A. Landay, “An architecture for privacy-
sensitive ubiquitous computing,” in MobiSYS ’04:
Proceedings of the 2nd international conference on Mobile
systems, applications, and services. ACM Press, 2004, pp.
177–189.
[9] N. Shankar and D. Bafanz, “Enabling secure ad-hoc
communication using context-aware security services,” in
UBICOMP 02: Workshop on Security in Ubiquitous
Computing, 2002.
[10] L. Bussard L., Roudier Y., “Untraceable secret
credentials: Trust establishment with privacy,” in
PERCOMMW’04. Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops,
2004.
[11] J. Van den Bergh and K. Coninx. “Towards integrated
design of context-sensitive interactive systems”, Mar. 2005.
[12] W3C OWL , “Web Ontology Language”.
http://www.w3.org/2004/OWL/.
[13] Jess, the Rule Engine for the JavaTM Platform,
http://herzberg.ca.sandia.gov/jess/.
[14] S.E. Czerwinski et al, “An Architecture for a Secure
Service Discovery Service” , In Proceedings of MobiCom
'99, Seattle, WA, August 1999
[15] S. Trabelsi, J.C Pazzaglia, Y. Roudier "Secure Web
service discovery: overcoming challenges of ubiquitous
computing" ECOWS 2006, 4th IEEE European Conference
on Web Services, Zurich - Switzerland, December, 2006
[16] F. Zhu, M. Mutka, L. Ni “Prudent exposure: A private
and user centric service discovery protocol” Proceedings of
the 2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom’04) Orlando,
USA, 2004
[17] L. Gomez, L. Moraru, D. Simplot-Ryl and K.
Wrona, and. Using Sensor and Location Information
for Context-Aware Access Control. In Proc.
International Conference on "Computer as a tool"
(EUROCON 2005).

