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Notations

We regroup here the principal notations used in the different chapters of the thesis. As far

as possible we tried to conserve the same notations from one chapter to another.
x Scalar variable

X Vector

{xn} Set of the variables xn

xT Transpose of vector x

z∗ Complex conjugate of variable z

| z | Magnitude of complex variable z

zH Hermitian, i.e., transpose conjugate, of complex vector z

A−1 Inverse of matrix A

I Identity matrix

0 All zero vector

1 All one vector

diag(x0, . . . , xN−1) Diagonal matrix with diagonal elements {xn}∏
n xn Product of the N elements {xn}∑
n xn Summation of the N elements {xn}

E{x} Expected value of random variable z
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var{x} Variance of random variable z

Pr{A} Probability of event A to occur

px Probability density function of random variable x

PrA | B Probability of event A conditioned on event B

∝ Proportional to

' Approximately equal to
⊗

Convolutional product
⊙

Compound function, f
⊙

g(x) = f(g(x))

argmin(f(x)) Value of x that minimizes the function f(x)

argmax(f(x)) Value of x that maximizes the function f(x)

δ(x) , δij Dirac and Kronecker delta functions

exp(x) Exponential function

Q(x) Complementary error function

J0(x) Zero-order Bessel function of the first kind rect

T (t) Rectangular function
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Acronyms

Here are the main acronyms used in this document. The meaning of an acronym is usually

indicated once, when it first occurs in the text. The english acronyms are also used for the

french summary.

AWGN Additive White Gaussian Noise

BAF Bayesian Adaptive Filtering

BQUE Best Quadratic Unbiased Estimator

CDF Cumulative Distribution Function

DB Doppler Bandwidth

DFT Discrete Fourier Transform

DS Direct-Spread

EM Expectation Maximization

EMSE Excess Mean Square Error

EKF Extended Kalman Filter

FIR Finite Impulse Response

FF Forgetting Factor

IIR Infinite Impulse Response

iff if and only if

i.i.d. independent and identically distributed

ISI Inter-Symbol Interference

LSTBC Linear Space-Time Block Code

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error
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MSE Mean Square Error

NLMS Normalized Least Mean Square

LMS Least Mean Square

OFDM Orthogonal Frequency Division Multiplexing

RLS Recursive least square

PDP Power Delay Profile

RPEM Recursive Prediction-Error Method

r.v. Random Variable

Rx Receiver

KF Kalman Filter

SAF Standard Adaptive Filtering

SBEM Subspace-Based Estimation Method

SOS Second-Order Statistics

SIMO Single-Input Multiple-Output

SIR Signal-to-Interference Ratio

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

S/P Serial-to-Parallel Conversion

s.t. such that

SS Step-size

STC Space-Time Code

VSS Variable Step-size

TV Time-Varying

WF Wiener Filter

w.r.t. with respect to

WSS Wide-sense Stationary
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Résumé

Le filtrage adaptatif est en principe destiné à poursuivre les systèmes mobiles. Cepen-

dant, la plupart des algorithmes de filtrage adaptatifs ont été conus pour converger à un

filtre inconnu fixe. Une fois réellement confrontés avec un environnement mobile, ils

possèdent juste un paramètre (stepsize, facteur d’oublie) pour ajuster leurs possibilités de

poursuite. Dans le cas stationnaire de la non stationnarité, les coefficients optimaux de

filtre évoluent comme un processus stationnaire. L’approche de filtrage adaptatif bayésien

exploite l’information a priori dans ce modèle stationnaire de variation de paramètre pour

optimiser l’exécution de filtrage adaptative. L’information préalable contient deux car-

actéristiques critiques de paramètre : la variance (l’amplitude) des divers coefficients de

filtre et leur spectre de variation (le power delay profile (PDP) et le spectre de Doppler

dans le cas du canal sans fil). Les outils pratiques pour mettre en application le filtrage

adaptatif Bayésien (BAF) sont les filtres de Wiener ou de Kalman. Ce dernier modélise

typiquement la variation des coefficients du filtre optimal comme des processus AR(1).

Les paramètres de ces processus AR(1) peuvent être commodément identifiés avec un

algorithme d’EM (Expectation Maximization) adaptatif. Pour limiter la complexité au

même ordre que la complexité de l’algorithme de RLS, un modèle d’état diagonal pour

Kalman peut être pris. Dans cette thèse on introduit ces techniques pour rendre le concept

existant du filtrage adaptatif Bayésien praticable. Aussi, nous analysons l’effet du PDP

et de la largeur de bande de Doppler en régime permanent des algorithmes Bayésiens et

nous comparons avec les algorithmes standards (LMS et RLS). Dans la deuxième partie

de cette thèse nous introduisons une approche à deux étapes; le but de cette approche est

de présenter des techniques de BAF qui ne sont pas immensément plus complexes que

l’algorithme LMS. L’approche à deux étages proposée se compose d’une première étape
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utilisant un filtre adaptatif classique à convergence rapide, suivi d’un filtre passe-bas et

de sous échantillonnage dans le temps des coefficients du filtre adaptatif. La deuxième

étape applique alors un Kalman, filtrant à cadence réduite sur un modèle d’état simplifié.

Finalement on aussi étudié l’optimisation de la fenêtre dans l’algorithme RLS, dans cette

partie, nous considérons la poursuite d’un filtre optimal modélisé par un processus station-

naire vectoriel. Nous interprétons l’algorithme du moindre carré récursif (Recursive Least

Squares (RLS)) comme le filtrage de la variation du filtre optimal et le bruit d’estimation

(induit par le bruit de mesure). L’opération de filtrage effectuée par l’algorithme RLS

dépend de la fenêtre utilisée dans le critère des moindres carrés. Pour pouvoir formuler

un algorithme moindre carré récursif, il faut que la fenêtre puisse être exprimée d’une

manière récursive. En pratique, seulement deux fenêtres ont été examiné (chartérisée

chacune par un unique paramètre): la fenêtre exponentielle (W-RLS) et la fenêtre rect-

angulaire (SWC-RLS). Cependant, la fenêtre rectangulaire peut être généralisée, à un

coût réduit, à une fenêtre généralisée (GSW-RLS) avec trois paramètres au lieu d’un seul,

incluant les deux précédentes fenêtres comme cas spéciaux. Puisque la complexité de la

fenêtre rectangulaire (SWC-RLS) est essentiellement le double de la fenêtre exponentielle

(W-RLS), il est généralement admit que cette augmentation de la complexité entrane une

amélioration de la poursuite. Nous prouvons que, avec un bruit d’estimation égal, les per-

formances de la fenêtre exponentielle W-RLS surpasse généralement les performances de

la fenêtre rectangulaire (SWC-RLS) dans le cas d’un problème de poursuite causal. Les

performances de la fenêtre généralisée GSW-RLS sont généralement meilleures. Pour

le problème de poursuite non-causal, le SWC-RLS est de loin le meilleur (la GSW-RLS

tends vers la SWC-RLS). En présence d’un a priori statistique sur le canal, les paramètres

des fenêtres sont estimés en minimisant l’erreur quadratique moyenne (MSE). Si on sup-

pose que le spectre de variation du canal est un spectre plat, passe-bas; le GSW-RLS

surpasse le W-RLS (qui surpasse son tour le SWC-RLS). Dans le cas générale, nous

dérivons les expressions des fenêtres optimales pour la poursuite causale et non-causale. Il

en ressort que la fenêtre exponentielle est optimale pour une poursuite causale d’un canal

AR(1) ; tandis que la fenêtre rectangulaire est optimale pour la poursuite non-causale d’un

processus de saut blanc.
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Introduction and Motivations

Adaptive filtering have been extensively studied for a large range of applications including

channel estimation, adaptive equalization, echocancelation, etc in a variety of stationary

environment. For the nonstationary environments, two different classes of input have been

studied for adaptive filtering algorithms. It has been shown that the Wiener solution has a

time-varying characteristic. In contrast to adaptive filter convergence, which is a transient

phenomenon, the tracking characteristics of the adaptive filter are known be to a steady

state property of the filter. Consequently, good convergence properties do not ensure good

tracking performance, and a compromise between the two properties are required for ap-

plications in a non-stationary environment. The standard adaptive filtering (SAF) such as

the least mean-square (LMS) algorithm , and the recursive least-squares (RLS) algorithm

are established as the principal algorithms to track for linear adaptive filtering. The con-

vergence behaviors of both of these algorithms can be found in the literature ([1]), ([22]),

([10]). The RLS algorithm has a faster rate of convergence than the LMS algorithm and

is not sensitive to variations in the eigenvalues of correlation matrix of the input signal.

However, when operating in a non-stationary environment, they pocess only one param-

eter to adjust the tracking. Most of the work on adapting tractive capability has focused

on adapting one tracking parameter. In RLS, it doe cost any computational complexity to

make the forgetting factor time-varying. Modifications to fast RLS algorithms to allow a

time-varying forgetting factor, as well as algorithms to adjust this forgetting factor on the

basis of correlation matching have been pursued in [82]. The equivalent development for

LMS algorithms concerns Variable StepSize (VSS) algorithms. Important developments

were presented in [37],[39], [65],[64],[66] [38],[42]. Most of the VSS algorithms use the

steepest-descent strategy and the instantaneous squared error cost function of the LMS
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algorithm to adjust the additional parameter, which is the step-size. A related but differ-

ent approach consists in running various adaptive filters with different time constants and

selecting or combining their outputs, similarly to what is done in model order selection,

see [71],[70], [68],[69].

A further refinement is to allow different tracking bandwidths for different filter com-

ponents as is done in [40] with a VSS per filter coefficient and in [81] where the tracking

capacity increases with frequency for the various frequency domain components of the

filter. The work in [40] essentially shows that a ”diagonal” state-space model may allow

a simplification of the Kalman Filter (KF) to a LMS algorithm with a VSS per tap, but no

attempt is made to automatically adjust the resulting stepsizes.

Besides the statistical modeling of the parameter variation, another important ingredient

in Bayesian adaptive filtering is the incorporation of prior knowledge on the coefficient

sizes.

The influence of the prior distribution on Bayesian estimation, depends on the confidence

on the observation, which in turn depends on the length of the observation, and on the

SNR. In general, as the number of the observation samples and the SNR increase, the

variance of the estimate, and the influence of the prior, decrease. In estimating a Gaussian

distributed parameter observed in AWGN, as the length of the observation N increases,

the importance of the prior decrease, and the MAP estimate tends to the ML estimate.

Indeed, when tracking time-varying filters, it becomes possible to learn the variances of

the filter coefficients. This aspect has been exploited for a while in a rudimentary, binary

form for sparse filters: filter coefficients are either adapted or deemed to small and kept

zero (for each filter coefficient, the stepsize is either 0 or a constant). More recently, a

smoother evolution of the stepsize has been introduced, leading to the Proportionate LMS

(PLMS) algorithm, motivated e.g. by acoustic echo cancellation in which the adaptive

filter has many coefficients, but their value tapers off, see [78],[79]. Similar prior infor-

mation is starting to be taken into account for (LMMSE) channel estimation in wireless

communications [84], where the evolution of the channel coefficient variances along the

impulse response is called the power delay profile.

The time variation of the optimal filter can be described by either expanding the fil-

ter coefficients into fixed time-varying (e.g. sinusoidal) basis functions (basis expansion
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models (BEMs)) [24], or by modeling [10], them as stationary processes. The latter

approach is perhaps better suited for minimum delay online processing. This case of con-

stant slow variation of the filter coefficients (”drifting” parameters) is to be contrasted with

another possible case of only occasional but significant variation (”jumping” parameters)

which shall not be considered here. A lot of work has been done on optimizing the sin-

gle parameter regulating the tracking speed of classical LMS or exponentially weighted

RLS algorithms [1],[6],. For LMS, such an adaptive optimization leads to the class of

Variable Step-Size (VSS) algorithms, see e.g.[40] and references therein. Adaptive filter-

ing algorithms with a single adaptation parameter do not take into account that different

portions of the filter may have different variation speeds and/or different magnitudes and

hence can be quite suboptimal. One noteworthy attempt to overcome this limitation is the

introduction of a coefficient-wise VSS, but the automatic adaptation of these VSSs is a

difficult task. In Bayesian Adaptive Filtering (BAF)[12], prior information on the filter

coefficient variances and variation spectra is exploited to optimize adaptive filter perfor-

mance. A straightforward way to implement BAF is to use the Kalman filter. However,

the complexity of the Kalman filter is much higher compared to that of the popular LMS

adaptive filtering algorithm. Furthermore, the Kalman filter needs to be augmented with

a state-space model identification technique.

In order to design a general Bayesian Adaptive Filtering (BAF) model, one can pro-

ceed in two basic approaches.

It has been known for a long time that for best tracking results adaptive filtering should

be formulated as a Kalman filtering problem, leading to Bayesian Adaptive Filtering

(BAF). BAF techniques with acceptable complexity can be obtained by focusing on a

diagonal AR(1) model for the time-varying optimal filter settings. The hyper-parameters

of the AR(1) model can be adapted by introducing EM techniques and one sample fixed-

lag smoothing at little extra cost. Standard AF techniques such as the LMS and RLS

algorithms are equipped with only one hyper-parameter (stepsize, forgetting factor) to

optimize their tracking behavior.
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Thesis outline and contributions

While adaptive filtering is in principle intended for tracking non-stationary systems, most

adaptive filtering algorithms have been designed for converging to a fixed unknown fil-

ter. When actually confronted with a non-stationary environment, they possess just only

one parameter (stepsize, forgetting factor) to adjust their tracking capability. Virtually the

only existing optimal approach is the Kalman filter, in which the time-varying optimal

filter is modeled as a vector AR(1) process. The Kalman filter is in practice never applied

as an adaptive filter because of its complexity and large number of unknown parameters in

its state-space (AR(1)) model. This motivated our work in this thesis to look for practical

techniques to take advantage of the Kalman optimality with reduced complexity to make

this approach applicable. Also to propose different methods for the estimation of the large

number of parameters.

To better understand the different parameters used in the first part of the thesis we conside

we begin in chapter 1 by a brief introductory presentation of state space model and general

principals of standard adaptive filtering. We then introduce critical parameters defining

the wireless channel medium (Power-Delay Profile, Doppler Bandwidth,...) followed by

an illustrative example.

Chapter 2 focuses on Kalman smoothers and Kalman filters which form an important

component of algorithms developed later in this thesis. While most of the results pre-

sented in this chapter are well-known to much of the adaptive filtering research, some

results, such as the recursion equation and the fixed interval Kalman smoother, are either

new or obscure in origin. Even in the case of the better-known material, its importance

to this thesis merits its restatement. Following an introductory section on notation, we

present a derivation of a recursive Kalman filter and include a practical strategy for en-

suring that the results of the filter are numerically stable. An identical approach is then

taken for the Kalman smoother. Our attention is then directed toward the stability of the

time-varying Kalman filter and smoother.

Chapter 3 is concerned primarily with the problem of selecting a model from a set of
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candidates. In the ensuing text we shall assume that the experiment design, data collec-

tion and model structure selection operations have already been performed. In addition,

we shall assume that the model structure is a parametric one (that is the model structure

is parameterized by a finite-dimensional vector of real numbers). The task of model se-

lection, therefore, is equivalent to that of selecting a suitable parameter vector from a set

of candidates. This practice is known as ” Parameter Estimation” .

In chapter 4, we introduce a means of maximum-likelihood estimation of parameters

that is applicable in many cases when direct access to the necessary to make the estimates

is impossible , or when some of the data are missing. Such inaccessible data are present,

for example, when an outcome is a result of an accumulation of simpler outcomes, or

when outcomes are clumped together (e.g., in a inning or histogram operation). There

may also be data dropouts or clustering such that the number of underlying data points in

unknown (censoring and/or truncation). The EM (expectation-maximization) algorithm

is ideally suited to problems of this sort, in that it produces maximum-likelihood (ML)

estimates of parameters when there is a many-to-one mapping from an underlying distri-

bution to the distribution governing the observation. The EM algorithm consist of two

primary steps: an expectation step, followed by maximization step. The expectation is

obtained with respect to the unknown underlying variables, using the current estimate of

the parameters and conditioned upon the observations. The maximization step then pro-

vides a new estimate of the parameters. These two step are iterated until convergence.

We tackle in chapter 5 the problem of filtering in non-stationary environments. We

first begin by an introductory state of the art review which includes the existent algorithms

on adaptive filtering (LMS and LRS). These algorithms experience performances limita-

tion in terms of tracking and convergence in non-stationary environments. This motivates

our work to propose more efficient techniques for such Bayesian techniques. Our pro-

posed methods take into consideration a priori information about the system variations

such as the PDP, Doppler bandwidth, ...etc. We thus propose two different approaches,

the first one is based on Wiener Filtering (WF) while the other one is based on Kalman

Filtering (KF). In this chapter we develop the first approach and the second one will be
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considered in the next chapter. The proposed algorithms can be applied in many situations

and as an example we consider in this chapter its application for system identifications in

particular mobile radio channel for the importance of this medium in wireless communi-

cations. We provide numerical results that show the proposed algorithm advantage com-

pared to existent algorithms in terms of Excess Mean Squared Error (EMSE) for different

PDPs and Doppler shifts.

In chapter 6, we continue our study of the Bayesian Adaptive Filtering (BAF) concept

that we introduced in the previous chapter. The proposed technique is based on mod-

eling the optimal adaptive filter coefficients as a stationary vector process, in particular

as a AR(1) model. Optimal adaptive filtering with such a state model becomes Kalman

filtering. The complexity of the resulting algorithm is O(N3) and in order to reduce this

complexity we propose a diagonal AR(1) based model, of complexity O(N2) which is

comparable to RLS complexity. For the AR(1) model parameters estimation, we pro-

pose an adaptive version of the EM algorithm with complexity limited to O(N) for the

EM part. The proposed parameters estimation method leads to linear prediction on re-

constructed optimal filter correlations, and hence a meaningful approximation/estimation

compromise. To further reduce the initial adaptive EM-Kalman algorithm complexity, we

develop a second approach based on component-wise EM-Kalman (This technique is of

complexity O(N) which is comparable to LMS complexity). To compare the proposed

algorithms performance, we derived the exact analytical expressions of Excess Mean

Square Error (EMSE) in the steady-state in the general case and we proposed a com-

parison for the application to radio mobile communications where the priori information

is the fading, PDP and the Doppler shift. The former proposed algorithm is outperformed

by the EM-Kalman based approach, in terms of tracking and convergence. To offer com-

parable performance with the AR(1) algorithm with same complexity of component-wise

EM, we propose in the following chapter a two-stage approach.

Up to this point, we propose different Bayesian techniques with different complexities.

Thus we proposed a EM-Kalman algorithm with complexity O(N2). To reduce the com-

plexity, we presented, the adaptive component-wise EM-Kalman algorithm with com-

plexity O(N) but which shows performance limitations in terms of tracking and conver-

gence compared the previous technique. This motivated our study for the development
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of another technique with the same performance as the EM-Kalman but with the same

complexity as the component-wise EM-Kalman in chapter 7. The proposed two-stage

approach consists of a first step employing a basic fast tracking adaptive filter, followed

by lowpass filtering and downsampling of the time-varying filter coefficients. The second

step then applies Kalman filtering at the reduced rate on a simplified state-space model,

with an additive white noise measurement equation. The parameters in the state equa-

tion can be conveniently identified with an adaptive EM algorithm. The first stage would

typically employ a (Normalized) LMS algorithm with a large stepsize. The main assump-

tion underlying the proposed two-stage approach is that even in fast tracking applications,

the bandwidth of the optimal filter variation is typically small compared to the signal

bandwidth, motivating the downsampling operation. The first stage attempts to provide a

bias-free filter estimate whereas the second stage optimizes the estimation variance.

In the second part of the thesis we consider the problem of window optimization is-

sues in recursive Least-Squares adaptive filtering and tracking. We consider tracking of an

optimal filter modeled as a stationary vector process. We interpret the Recursive Least-

Squares (RLS) adaptive filtering algorithm as a filtering operation on the optimal filter

process and the intantaneous gradient noise (induced by the measurement noise). The

filtering operation carried out by the RLS algorithm depends on the window used in the

least-squares criterion. To arrive at a recursive LS algorithm requires that the window im-

pulse response can be expressed recursively (output of an IIR filter). In practice, only two

popular window choices exist (with each one tuning parameter): the exponential weight-

ing (W-RLS) and the rectangular window (SWC-RLS). However, the rectangular window

can be generalized at a small cost for the resulting RLS algorithm to a window with three

parameters (GSW-RLS) instead of just one, encompassing both SWC- and W-RLS as spe-

cial cases. Since the complexity of SWC-RLS essentially doubles with respect to W-RLS,

it is generally believed that this increase in complexity allows for some improvement in

tracking performance. We show that, with equal estimation noise, W-RLS generally out-

performs SWC-RLS in causal tracking, with GSW-RLS still performing better, whereas

for non-causal tracking SWC-RLS is by far the best (with GSW-RLS not being able to im-

prove). When the window parameters are optimized for causal tracking MSE, GSW-RLS

outperforms W-RLS which outperforms SWC-RLS. We also derive the optimal window
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shapes for causal and non-causal tracking of arbitrary variation spectra. It turns outs that

W-RLS is optimal for causal tracking of AR(1) parameter variations whereas SWC-RLS

if optimal for non-causal tracking of integrated white jumping parameters, all optimal fil-

ter parameters having proportional variation spectra in both cases.

We should mention that the notation of the two parts are different.

We present our conclusions and perspectives in chapter 9.
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Chapter 1

Signals and Systems Preliminaries

The purpose of this chapter is to define a set of notation used in later chapters and to

present a theoretical background to some of the problems tackled in those chapters.

1.1 Linear State-Space Systems

State-space equations provide a compact, flexible and attractive method of modeling sys-

tem behavior. They represent, in a sense, a highly satisfactory modeling approach due to

the fact that they allow a complete description of the internal as well as external character-

istics of a given system. These positive attributes have encouraged, at least in the case of

Linear time varying (LTV) systems, the emergence of a rich theoretical underpinning for

further developments in this thesis. An n − th order, linear, time-varying, discrete-time

system may be described by the following stochastic state-space model.

Let consider the system driven by noise, with noisy observation

Hk = AHk−1 + Wk

yk = XH
k Hk−1 + vk (1.1)
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As indicated, the state-variable system is time-varying. The following assumption are

made about system:

• The sate noise process Wk is zero-mean, with covariance

E[WkW
H
k ] = Q (1.2)

the noise is uncorrelated among samples. For the Bayesian approach, we assume

that Wk is Gaussian.

• The observation noise vk is zero-mean, with covariance

E[vkv
H
k ] = σ2

v (1.3)

the noise is uncorrelated among samples. For the Bayesian approach, we assume

that vk is Gaussian.

• where Hk ∈ RN is the state vector.

• yk ∈ Rm is the output signal and , X ∈ RN the input.

Here we have used the convention that a subscript k denotes the value of a signal at the

k − th sampling instant.

For the system outlined above we can ensure that the state and output sequences al-

ways exist for bounded inputs (that is, the outputs and states converge) by requiring that

the system be strictly stable . This is described by Property (1).

Property 1 (Strict Stability). A discrete linear time-varying system

Hk = AHk−1 + Wk

(1.4)

is strictly stable if and only if the eigenvalues of A ∈ RN×N are in the open unit disc.

That is, | λi(A) | , ∀i = 1, 2, . . . , N .
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Controllability and observability are two system properties which will be important for

the development of the ensuing theory. These concepts are widely known and discus-

sions of them are commonly available in control literature. For further information see,

for example, Goodwin and Sin [43]. The following definitions address the properties of

systems modeled by the state-space equations (Strict Stability). A discrete linear time-

varying system

Hk = AHk−1 + Wk

yk = XH
k Hk−1 + vk (1.5)

1.2 Deterministic and Stochastic Signals

It is often convenient for analytical reasons to discuss the spectral properties of various

time-domain signals. However, not all signals may be said to possess a spectrum. In

this section we discuss two types of processes - stationary stochastic processes and a

generalization of them, known as quasi-stationary processes. The latter allows for the

possibility of deterministic components. Both of these types of processes have spectra.

First, though, we need to introduce the concept of expected values.

Definition 2 (Expected value). When it exists, the expectation (or expected value) of a

continuous random variable x, denoted E{x}, is defined by

E{x} =

∫ +∞

−∞
xp(x)dx, (1.6)

where p(x) is the probability density function of x. E{x} is said to exist if E{| x |} < 1.

Definition 3 (Conditional expected value). When it exists, the conditional expected

value of the random variable x given the random variable y is defined as E{x | y}

E{x | y} =

∫ +∞

−∞
xp(x | y)dx, (1.7)

where py(x) , p(x | y) is the conditional probability density function of x given y. The

latter is defined by

p(x | y) =
p(x, y)

p(y)
. (1.8)
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Remark 4 Often, in the interests of notational convenience we shall denote conditional

dependence by subscripting. For example, equation (1.9) may be written as

Ey{x} =

∫ +∞

−∞
xpy(x)dx, (1.9)

What follows is a brief treatment of stationary processes. There is a great deal of existing

theory for systems (particularly linear ones) of this type. For further information see, for

example, [146], or for a more introductory, Anderson and Moore [153] or Papoulis [152].

1.2.1 Stationary Stochastic Process

A random process {zk} is said to be strict-sense stationary (SSS) if its statistical proper-

ties, such as the joint distribution p(zk, zk+1, . . . , zk+n) for any n, are invariant to a shift

of the origin. It is wide-sense stationary (WSS) provided that

E[zk] = µ, ∀t

E[zk+τz
T
k ] = Rz(τ), ∀t ∀τ

where E{} is the expectation operator defined by Definition (2) It arises (see [152] that

a Gaussian (that is, Normally-distributed) WSS process is also SSS since the mean and

auto-correlation properties are sufficient to specify the distribution uniquely.

1.3 Standard Adaptive Filtering

1.3.1 Least Mean Square (LMS) Algorithm

The least mean square (LMS) is a search algorithm in which a simplification of the gradi-

ent vector computation is made possible by appropriately modifying the objective func-

tion [1],[3]. The LMS algorithm, as well as others related to it, is widely used in various

applications of adaptive filtering due to its computational simplicity [4]. The convergence
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characteristics of the LMS are examined in order to establish a range for the convergence

factor that will guarantee stability. The convergence speed of the LMS is shown to be

dependent of the eigenvalue spread of the input-signal correlation matrix [1],[3]. The

LMS algorithm is by far the most widely used algorithm in adaptive filtering for several

reasons. The main features that attracted the use the LMS algorithm are low computa-

tional complexity, proof of convergence in stationary environment, unbiased convergence

in the mean to the Wiener solution, and stable behavior when implemented with finite-

precession arithmetic.

The optimal solution for the parameters of the adaptive filter leads to the minimum mean-

square error (MMSE) in estimating the reference signal yk in Eq.(1.5). The optimal

Wiener solution [1] is given by

H = R−1p (1.10)

where R = E[XkX
H
k ] and p = E[dkXk], assuming that yk and Xk are jointly wide-sense

stationary.

If good estimates of matrix R denotes by R̂k, and of vector p, denoted by p̂k, are available,

a steepset-descent-based algorithm can be used to search the Wiener solution equation

(1.10) as fellows:

Ĥk = Ĥk−1 − µĝk,Ĥ

= Ĥk−1 + 2µ(p̂k − R̂kĤk−1) (1.11)

for k = 0, 1, . . . , where ĝk,Ĥ represents an estimate of the gradient vector of the objective

function with respect to the filter coefficients.

One possible solution is to estimate the gradient vector by employing instantaneous esti-

mates for R and p as fellows:

R̂k = XkX
H
k

p̂k = ykXk (1.12)

The resulting gradient estimate is given by

ĝk,Ĥ = −2ykXk + 2XkX
H
k Ĥk−1

= 2Xk(−yk + XH
k Ĥk−1)

= −2ekXk (1.13)
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Note that if the objective function is replaced by the instantaneous square error e2
k,

instead of the MSE, the gradient estimate above represents the true gradient vector since

∂e2
k

∂Ĥ
=

[
2ek

∂ek

∂H0

2ek
∂ek

∂H1

. . . 2ek
∂ek

∂HN

]T

= −2ekXk

= ĝk,Ĥ (1.14)

The resulting gradient-based algorithm is known, because it minimizes the mean of the

squared error, as the least-mean-square (LMS) algorithm, whose updating equation is

Ĥk = Ĥk−1 + 2µekXk (1.15)

where the convergence factor µ should be chosen in range to guarantee convergence.

1.3.2 Recursive Least-Square (RLS) Algorithm

Least-squares algorithms aim at the minimization of the sum of the squares of the differ-

ence between the desired signal and the model filter output [1],[3]. When new samples

of the incoming signals are received at every iteration, the solution for the least-squares

problem can be computed in recursive form resulting in the recursive least-squares (RLS)

algorithms.

The RLS algorithms are known to pursue fast convergence even when the eigenvalue

spread of the input signal correlation matrix is large. These algorithms have excellent

performance when working in time-varying environments. All these advantages come

with the cost of an increased computational complexity and stability problems, which are

not as critical in LMS algorithms.

The objective her is to choose the coefficients of the adaptive filter such that the output

yk, will match the desired signal as closely as possible in the least-squares sens. The min-

imization process requires the information of the input signal available so far. Also, the

objective function we seek to minimize is deterministic.

The generic FIR adaptive filter realized in the direct form is shown in Fig.1.1.

The input signal information vector at a given instant k is given by

Xk = [xk xk−1 . . . xk−N ]T
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wher N is the order of the filter. The coefficients ĥjk, for j = 0, 1, . . . , N , are adapted

aiming at the minimization of a given objective function. In the case of least-squares

algorithms, the objective function is deterministic and is given by

εk =
k∑

i=1

λk−ie2
i

=
k∑

i=1

λk−i[yi −XH
i Ĥk−1]

2 (1.16)

where ei is the output error at instant i − th and Ĥk−1 is the adaptive filter coefficient

vector. The parameter λ is an exponential weighting factor that should be chosen in the

range 0 ≤ λ < 1. This parameter is also called forgetting factor since the information of

the distant past has an increasingly negligible effect on the coefficient updating.

As can be noted, each error consists of the difference between the desired signal and the

filter output, using the most recent coefficients Ĥk−1. By differentiating εk with respect

to Ĥk−1, it follows that

∂εk

∂Ĥk−1

= −2
k∑

i=1

λk−i[yi −XH
i Ĥk−1] (1.17)

By equating the result to zero, it is possible to find the optimal vector Ĥk−1 that minimizes

the least-squares error, through the following relation:

−
k∑

i=1

λk−iXiX
H
i Ĥk−1 +

k∑

i=1

λk−iXiyi =




0

0
...

0




The resulting expression for the optimal coefficient Ĥk is given by

Ĥk =
[ k∑

i=1

λk−iXiX
H
i

]−1
k∑

i=1

λk−iXiyi

= R1
D(k)PD(k) (1.18)

where R1
D(k) and PD(k) are called the deterministic correlation matrix of the input signal

and deterministic cross-correlation vector between the input and desired signals, respec-

tively.
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Xk

+ +dk ek
+

-

Ĥ1,k

Ĥ0,k

ĤN,k

z−1

z−1

z−1
yk

Figure 1.1: Adaptive FIR filter

In equation (1.18) it was assumed that RD(k) is nonsingular. However if RD(k) is sin-

gular a generalized inverse [1] should be used instead in order to obtain a solution for Ĥk

that minimizes εk. Since we are assuming that in most practical applications the input

signal has persistence of excitation, the cases requiring generalized inverse are not dis-

cussed here. It should be mentioned that if the input signal is considered to be zero for

k < 0 then RD(k) will always be singular for k < N , i.e., during the initialization period.

During this period, the optimal value of the coefficients can be calculated for example by

the back substitution algorithm [book].

The straightforward computation of the inverse of RD(k) results in an algorithm with

computational complexity O(N3). In the conventional RLS algorithm the computation of

the inverse matrix is avoided through the use of the matrix inversion lemma [1]. Using

the matrix inverse lemma, the inverse of the deterministic correlation matrix can then be

calculated in the following from

Sk = R−1
D (k) =

1

λ

[
Sk−1 − Sk−1XkX

H
k Sk−1

λ + XH
k Sk−1Xk

]
(1.19)
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The complete conventional RLS algorithm is described below.

Conventional RLS algorithm

- Initialization

SD(−1) = δI

where δ can be the inverse of the input-siganl power estimate

SD(−1) = X−1 = [0 0 . . . 0]T

Do for k ≥ 0:

Sk = R−1
D (k) = 1

λ

[
Sk−1 − Sk−1XkXH

k Sk−1

λ+XH
k Sk−1Xk

]

PD(k) = λPD(k − 1) + ykXk

Ĥk = SkPD(k)

If necessary compute:

dk = ĤH
k Xk

ek = yk − dk

1.4 Application

The type of application is defined by the choice of the signal acquired from the environ-

ment to be the input and desired-output signals. The number of different applications in

which adaptive techniques are being successfully used has increased enormously during

the last decade. Some examples are echo cancellation, equalization of dispersive channel,

signal enhancement, noise cancelling and system identification. The study of different ap-

plications is not the main scope of the thesis. However, some applications are considered,

like system identification, in particular Mobile Radio Channel (MRC).

1.5 Example: Multi-path Channel Model

The physical basis of multi-path propagation is given by the reception of multiple copies

of the transmitted signal, each having traveled along a different propagation path. In a

typical environment, each propagation path has a different length and, thus, the signal

copy having traveled along this path arrives at the receiver with a different delay. Signal
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copies traveling along short paths will arrive earlier, while other copies traveling along

longer paths will arrive later. The channel is said to have a memory since it stores the

signal copies for a certain time period, i.e., the duration of the propagation. Beside the

different delays, the signal copies are attenuated differently, since along their different

propagation paths they traverse different obstacles of different shapes and sizes. More-

over, the signal copies arrive at the receiver from different directions and with different

phases. The superposition of all these differently delayed, attenuated, and phase-shifted

signal copies at the receiver results in an interference pattern, which alternately behaves

constructively and destructively. If nothing moves within the propagation environment,

the received signal will remain constant, and therefore the channel is said to be time in-

variant. In contrast, if any kind of change is encountered in the propagation environment,

all or some paths will change in time and, thus, the interference pattern will change in

time. As a consequence the channel becomes time variant. The multi-path channel model

is a mathematical model that is meant to account for all the effects of multi-path propaga-

tion. Let us first consider the transmission of a bandpass signal s(t) at carrier frequency fc

in the case of a time invariant channel. By associating to each path p a different length lp

and a different attenuation Ap, the received bandpass signal r(t) being the superposition

of all copies can be written as

r(t) =
∑

p

Aps(t− lp
c

) (1.20)

Considering the complex envelope representations, se(t) and re(t) of the bandpass signals

s(t) and r(t) respectively, the input-output relationship given in Eq. (8.4) becomes

re(t) =
∑

p

Ape
−jφpse(t− τp) (1.21)

where φp = 2πfclp
c

and τp = lp
c

denote respectively the phase shift of the carrier frequency

and the delay caused by the different length of path p, and c is the speed of light.

Thus, in a static environment, a multi-path propagation leads to the interference of

multiple copies with different attenuations {Ap}, different phase shifts {φp}, and different
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delays {τp}. The time invariant channel model can then be modeled as a linear time

invariant causal filter with baseband impulse response

he(t) =
∑

p

Ape
−jφpδ(τ − τp) (1.22)

where δ(.) denotes Dirac’s delta function. Now let us consider the effect of motion in

the channel. Let αp denote the angle of arrival of path p with respect to the direction of

motion of the receiver, as shown in Figure ??

Propagation

Transmitter

of arrival

Receiver Direction
of motion

paths Angle

α

Figure 1.2: Design of signal arrival in a multi-path environment.

The path length is now variant and relates to mobile speed ν as [2]

lp(t) = lp(0)− νcos(αp)t (1.23)

From (3.5), we obtain a different function for the complex envelope of the received

signal, which now depends on time t, as given below

re(t) =
∑

p

Ape
−jφpej2π ν

c
cos(αp)tSe(t− τp +

ν

c
cos(αp)t) (1.24)

Equation (3.6) can be simplified by making the three following operations. First, we

regroup into the complex Ap the attenuation αp and the term φp. Secondly the extra delay



36 1. SIGNALS AND SYSTEMS PRELIMINARIES

caused by lp(t) compared to the delay τp caused by the path length lp(0). At last, we

introduce the Doppler frequency fd = fcν
c

and the Doppler shift νp = cos(αp)fd. With,

this we obtain the simplified form

re(t) =
∑

p

Ape
j2πνptSe(τ − τp) (1.25)

Thus, from (4.16), we can observe that motion introduces a frequency offset {νp} of

the carrier in addition to the signal changes that are already present in static conditions.

As for the time invariant channel, the time variant channel is modeled by a linear time

variant causal filter with impulse response

he(t, τ) =
∑

p

Ape
j2πνptδ(τ − τp) (1.26)

The received signal can therefore be expressed as the convolution of the transmitted signal

with the impulse response he(t, τ) with respect to the time delay τ :

re(t) =

∫ ∞

0

he(t, τ)se(t− τ)dτ (1.27)

Equivalently to the time domain response he(t, τ), the channel can also be character-

ized in the frequency domain by the time variant transfer function H(t, f), which is the

Fourier transform of he(t, τ) with respect to τ . It is obtained from

H(t, f) =
∑

p

Ape
j2π(νpt−fτp (1.28)

In the frequency domain, the spectra of transmitted and received signals are related by

simple multiplication with the transfer function H(t, f):

R(t, f) = H(t, f)S(f) (1.29)
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Thus, the transfer function H(t, f) determines the attenuation experienced at time t

by the spectrum component S(f) at frequency f .

For a large number of paths in the propagation environment and in the absence of a LOS

component, the central limit theorem applies to the time variant transfer function H(t, f)

and justifies its Gaussian distribution in both time and frequency. By using polar coordi-

nates, the amplitude ρ of H(t, f) thus follows a Rayleigh distribution while its phase θ

follows a uniform distribution in [0, 2π[ [2]. In the presence of a LOS component, how-

ever, a Rice distribution is more generally assumed for the amplitude ρ of H(t, f). On the

other hand, for a small number of paths, the assumption of Gaussian random process as a

result of the central limit theorem is The Mobile Radio Channel no more appropriate. In

this case,ρ is generally assumed to follow a Nakagami distribution either in the presence

or absence of a LOS component [2].

The Rayleigh distribution shows up in most non-LOS scenarios, which are encountered

mostly in indoor and macro-cellular urban environments. In these scenarios, the per-

formance of communication systems are worse than in scenarios where Rice distribution

applies. This is because Rice fading is less destructive than Rayleigh fading. In this thesis,

Rayleigh fading is assumed since our focus is on macro-cellular urban environments.

Characterization in Time and Frequency As shown in (3.11), the Doppler shifts

{νp} and time delays {τp} are responsible of the time and frequency variations of the

attenuation experienced by the received signal. Although Doppler shifts are frequency

offsets of the carrier frequency that may induce Inter-Carrier Interference (ICI) in multi-

carrier systems, their overall impact on the received signal is interpreted as a time selective

behavior. For the time delays it is the opposite. While the delays are time offsets of

the transmitted signal that may induce Inter-Symbol Interference (ISI), their impact on

the received signal is interpreted as a frequency selective behavior. Two quantities are

commonly used in practice to describe the impact of time delays and Doppler shifts on

the received signal. They are the delay spread ∆τ and Doppler spread ∆ν. The delay

spread relates to the frequency selectivity of the channel, whereas the Doppler spread

relates to the time selectivity of the channel.
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Delay Spread and Frequency Selectivity The delay spread describes the time spread

of the signal caused by multi-path propagation with several paths of different lengths and,

thus, of different delays. Since the delays {τp} are different for different paths, the transfer

function H(t, f) will then vary with respect to frequency f and the spectrum S(f) will

undergo different attenuations for different frequency components. This phenomenon is

referred to as frequency selectivity.

The severity of the frequency selectivity is measured by the product of the delay spread

∆τ with the bandwidth W of the signal. So, if the delay spread is small compared to the

inverse of W , that is the symbol time Ts, which corresponds to values of W∆τ smaller

than 1, the transfer function H(t, f) is nearly constant within the bandwidth W and all

frequency components of the spectrum S(f) will then have almost the same attenuation.

In this case the channel is said to be flat or frequency non selective. On the other hand,

if the delay spread is significant compared to symbol time, which corresponds to values

of W∆τ greater than 1, the transfer function varies within the bandwidth W and the

frequency components of the signal will be differently attenuated. Here, the channel is

said to be frequency selective and the receiver suffers in the time domain from ISI. A

detailed picture of the frequency selectivity of the multi-path channel is given by the

spaced frequency correlation function of H(t, f). This function gives us the correlation

between the transfer function at different frequencies and it is given by [2]

ΦH(∆f) =
1

2
E[H(t, f)H∗(t, f −∆f)] (1.30)

Substituting of (3.11) in (3.13 yields

ΦH(∆f) =
1

2
E[

∑
p

∑
q

ApA
∗
qe

j2π(νp−νq)te−j2πf(τp−τq)te−j2π∆fτq ] (1.31)

If scatterers at different delays {τp} are uncorrelated, the autocorrelation function de-

pends only on the frequency spacing ∆f . This assumption is called the Uncorrelated

Scattering (US) assumption of multi-path channels. It can be written as
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1

2
E[ApA

∗
qe

j2π(νp−νq)t] = σ2
pδpq (1.32)

The variance σ2
p is the average power of the p − th signal copy. From (3.15), the

spaced frequency correlation function in (3.14) turns into

ΦH(∆f) =
∑

p

σ2
pe
−j2π∆fτp (1.33)

In the time delay domain, the inverse Fourier transform of ΦH(∆f) is called the Power

Delay Profile (PDP of the channel and gives the average power of the multi-path compo-

nents as a function of time delays. It is given by [2]

P (τ) =

∫ +∞

−∞
ΦH(∆f)ej2π∆fτd∆f =

∑
p

σ2
pδ(τp − τq) (1.34)

The maximum delay τmax or the standard deviation στ of the power delay profile are

often used to measure the delay spread ∆τ [2, 32]. The standard deviation στ is obtained

as The Mobile Radio Channel

στ =
1

ΦH(0)

∫ +∞

0

(τ − τm)2P (τ)dτ (1.35)

where τm denotes the mean of the power delay profile.

Doppler Spread The Doppler spread is the dual of the delay spread. It describes the

shift in frequency of the signal spectrum caused by the motion of the objects within the

propagation environment. The different Doppler shifts νp of the different paths make

the transfer function H(t, f) vary in (3.11). The attenuation experienced by the signal
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spectrum S(f) at frequency f is therefore time variant and this phenomenon is referred to

as time selectivity. The severity of the time selectivity is measured by the product of the

Doppler frequency fd with the time span the receiver needs to process the incoming signal.

If coherent detection is assumed, where each data symbol is processed independently, the

processing time is the symbol length Ts. So, if the Doppler frequency fd is much lower

than the processing rate 1
Ts

, the transfer function H(t, f) stays almost constant within the

symbol time Ts, and the channel is said to be slow. In contrast, if the Doppler frequency

is larger than the processing rate, then the transfer function varies within the processing

time, and the channel is called to be fast . By analogy to the spaced frequency correlation

function ΦH(∆f for frequency selectivity, the spaced time correlation function ΓH(∆t)

reflects the time selectivity. It measures the correlation between H(t, f) at different time

instants and is defined as [2]

ΓH(∆t) =
1

2
E[H(t, f)H∗(t−∆t, f)] (1.36)

The fact that the autocorrelation function ΓH(∆t) only depends on time difference t

results from the assumption that the transfer function H(t, f) is a Wide Sense Stationary

(WSS) process. Under this assumption, the scatterers at different Doppler shifts {νp} are

uncorrelated.

From the time autocorrelation function ΓH(∆t) , the so-called Doppler power spectrum

is derived by Fourier transform, which yields

SH(ν) =

∫ +∞

−∞
ΓH(∆t)e−j2πν∆td∆t (1.37)

As for the coherence bandwidth, a measure called the coherence time is determined

here from the time autocorrelation function in order to indicate the time span during which

the transfer function H(t, f) roughly stays constant. Again the definition of the coherence

time is somewhat subjective and depends on the form of the Doppler power spectrum.
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1.6 Concluding Remarks

In this chapter, we reviewed some important concepts from signals and systems theory.

We also reviewed standard adaptive filtering techniques: LMS and RLS. We then in-

troduced the different parameters for Bayesian adaptive filtering which are used in the

remining of the thesis where we give the definition of each parameter followed by an il-

lustrative example.

Since this thesis is particularly concerned with, although not limited to, parameter es-

timation of linear systems in state-space form the properties of such systems formed a

particular focus of this chapter.
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Chapter 2

Optimal State Estimation

Kalman smoothers and Kalman filters form an important component of algorithms devel-

oped later in this thesis. While most of the results presented in this chapter are well-known

to much of the adaptive filtering research, some results, such as the recursion equation

and the fixed interval Kalman smoother (Lemma 7), are either new or obscure in origin.

Even in the case of the better-known material, its importance to this thesis merits its re-

statement. Following an introductory section on notation, we present a derivation of a

recursive Kalman filter and include a practical strategy for ensuring that the results of the

filter are numerically stable. An identical approach is then taken for the Kalman smoother.

Our attention is then directed toward the stability of the time-varying Kalman filter and

smoother. Recognizing that time-varying systems form the primary focus of this thesis,

we first specialize to that case before launching a discussion on this topic. This approach

has the advantage of allowing the presentation to be far more straightforward and stream-

lined. The simplicity of the smoother presented in Section 8 allows some well-known

results demonstrating the stability of the filter to be extended, in a series of new results,

to the case of the smoother.
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2.1 Kalman Filter

The Kalman filter [148] solves the problem of finding filtered or predicted estimates of the

state of time-varying linear state space systems, described by equations 6.1, from input-

output data. The filter is distinguished by the fact that, for this class of systems, it is the

overall minimum mean-square error estimator [149]. Since the model structure postulated

in equations 6.1 involves Normally distributed random variables the state estimation prob-

lem is solved by computing the expected value of the state sequence conditional upon the

available data (see Theorem 1 of [148]). Significantly, the Markovian nature of the un-

derlying system allows this task to be achieved using a simple set of recursive equations.

Derivations of the Kalman filter are widely available in the literature [150, 151, 152, 153]

but many of these consider only simple time-series models. The results in this thesis re-

quire a derivation involving exogenous inputs. Such derivations are more involved than

for the pure time-series case and appear surprisingly infrequently in the control litera-

ture. The proof of Lemma 7 (Kalman Filter), which is based upon the approach taken

by Kalman [149], is included here for reasons of completeness. We begin by introducing

a lemma about orthogonal projection, which can be found, for example, in Doob [154].

The proof presented here is based on [151].

Lemma 5 (Orthogonal Projection Lemma). Let X be a normal space, x ∈ X , and let

Y be a subspace of X . Then x̂ ∈ Y satisfies

m ∈α∈Y ‖x− α‖2 = ‖x− x̂‖2,

if, and only if,

< x− x̂, α >= 0,

for all α ∈ Y ,

Proof 6 The ”if” part: Suppose that < x− x̂, Y >= 0. Take any α ∈ Y , α 6= 0. Then

< x− x̂ + α, x− x̂ + α > = < x− x̂, x− x̂ > +2 < x− x̂, α > + < α, α >

= < x− x̂, x− x̂ > + < α, α >

> < x− x̂, x− x̂ > .
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Now for the only if part: Suppose that there exists an α such that

< x− x̂, α >= β 6= 0

Then, for any scalar λ,

< x− x̂ + λα, x− x̂ + λα >= ‖x− x̂‖2 + 2λβ + λ2‖α‖2.

Then, for λ = − β
‖α‖2 ,

‖x− x̂ + λα‖2 = ‖x− x̂‖2 − 2β2

‖α‖2
+

β2

‖α‖2
< ‖x− x̂‖2.

2.2 State-space signal model

The Kalman filter is an application of the general results of sequential estimation.

Let us consider the system defined below

Hk = AHk−1 + Wk

yk = XH
k Hk−1 + vk (2.1)

The Kalman filtering problem can be stated as follows: given a sequence of measure-

ments y0, y1, y2, . . . , determine a sequence of estimates of the state of the system Hk in a

computationally feasible, recursive manner.

2.3 Kalman filter: The Bayes approach

In this section we derive the Kalman filter from the Bayesian point of view. For the

Bayesian approach, we assume that the noise processes are Gaussian distributed. Then

the Bayes estimate of Hk amounts to finding the conditioned mean of Hk, given the ob-

servations.

The key equation in the Bayes derivation is the time update step,
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f(Hk | Yk) =

∫
f(Hk | Hk−1)f(Hk−1 | Yk)dHk−1 (2.2)

from which the estimate is propagated using the state update equation into the future; and

f(Hk | Yk+1)︸ ︷︷ ︸
posterior

=
f(yk+1 | Hk)

f(yk+1 | Yk)
f(Hk | Yk)︸ ︷︷ ︸

prior

(2.3)

Yk = [yk, . . . , yk−M ]

which is the measurement update step.

We will begin by finding explicit formulas for the time-update in (2.2).

1. The density f(Hk−1 | Yk) corresponds to the estimate of Hk−1, given the measure-

ments up to time k. Under the assumption and using the notation just introduced,

the random variable Hk−1 conditioned upon Yk is Gaussian,

Hk−1 | Yk ∼ N(Ĥk−1|k−1, Pk−1|k−1) (2.4)

2. The density f(Hk | Hk−1) is obtained by noting from (6.1) that, conditioned upon

Hk−1, Hk is distributed as

Hk | Hk−1 ∼ N(AHk−1, Q) (2.5)

Inserting (2.4) and (2.5) into (2.2) and performing the integration (which involves

expanding and completing the square ), we find that Hk | Yk is Gaussian, with mean

Ĥk|k−1 = AĤk−1|k−1 (2.6)

and the error covariance is given by

Pk|k−1 = APk−1|k−1A
H + Q (2.7)

Equation (2.6) provides a means to propagate the estimate ahead in time, in the ab-

sence of measurements, and (2.7) shows that, without measurements, the estimate co-

variance grows in time.
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Let us now examine the update step in (2.4). This is a Bayes update of a Gaussian random

variable. The mean of Hk | Yk is obtained using a Bayesian technique, in which the mean

of prior is updated:

Ĥk|K = E[Hk | Yk] = Ĥk|k−1 + Rhy,Yk
R−1

yy,Yk

×(yk − E[yk | Yk]). (2.8)

We now examine each component of this mean value:

1. Let Rhy,Yk
denote the correlation, conditioned upon Yk:

Rhy,Yk
= E[(Hk − E[Hk])(yk − E[yk])

H | Yk]. (2.9)

Then we have

Rhy,Yk
= E[(Hk − Ĥk|k−1])(X

H
k (Hk − Ĥk|k−1) + vk)

H | Yk]

= Pk|k−1Xk (2.10)

2. Let Ryy,Yk
denote the covariance of yk, conditioned upon Yk:

Ryy,Yk
= E[(yk − E[yk])(yk − E[yk])

H | Yk]

= E[(XH
k (Hk − Ĥk|k−1) + vk)

×(XH
k (Hk − Ĥk|k−1) + vk)

H | Yk]

= XH
k Pk|k−1Xk + σ2

v (2.11)

3. The mean E[yk | Yk] is equal to XH
k Ĥk|k−1.

Putting the three expression together, we obtain the following update step:

Ĥk|k = Ĥk|k−1 + Pk|k−1Xk(X
H
k Pk|k−1Xk + σ2

v)
−1(yk −XH

k Ĥk|k−1) (2.12)

It will be convenient to let
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Kf
k = Pk|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1 (2.13)

so that the mean update can be written as

Ĥk|k = Ĥk|k−1 + Kf
k (yk −XH

k Ĥk|k−1). (2.14)

The quantity Kf
k is called the Kalman gain.

Let us now consider the covariance of Hk | Yk, which is the variance of the estimator

error H̃k|k = Hk − Ĥk|k. In that case we found that the conditional density X | Y had

covariance

COV (X | Y ) = Rxx −RxyR
−1
yy Ryx.

To apply this formula, we identify the random variable X with Ĥk|Yk
, and the observation

Y with the observation yk. The covariance Rxx is thus analogous to Pk|k−1. The matrix

Rxy is analogous to Rxy,Y and Ryy is analogous to Ryy,Y . Therefore we have

Pk|k = Pk|k−1 − Pk|k−1Xk(X
H
k Pk|k−1Xk + σ2

v)
−1XH

k Pk|k−1

= (I −Kf
k XH

k )Pk|k−1. (2.15)

Lemma 7 Kalman Filter. The minimum variance (Kalman) filter for the system (6.1) is

given by the following recursion.

Ĥk|k−1 = AĤk−1|k−1,

Pk|k−1 = APk−1|k−1A
H + Q,

Kf
k = Pk|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1,

Ĥk|k = Ĥk|k−1 + Kf
k (yk −XH

k Ĥk|k−1),

Pk|k = (I −Kf
k XH

k )Pk|k−1. (2.16)
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2.4 Fixed-Point Kalman Smoothing

A fixed-point Kalman smoother [45] is one which calculates a sequence of estimates of

the state at some predetermined sampling instant, k . The key idea is that the estimate of

the state vector, Ĥk|m, is recursively refined as the amount of data increases (that is, as

m increases). This is in contrast to the necessarily one fixed-interval Kalman smoother

which operates upon a block (or fixed-interval) of data, Ym, and where a single state

estimate, {Hk|m}m
k=1, is calculated for each value of k = 1, 2, . . . , m. Significantly, each

fixed-point Kalman smoother may be implemented via a Kalman filter.

Lemma 8 Fixed-Point Kalman Smoothing The fixed-point smoothed estimate of Hk

given m data points, Ĥk|m, and its associated error covariance matrix Pk|m, for the model

structure (6.1) may be calculated by applying the Kalman filter recursions

Pk|k = Pk|k−1 − Pk|k−1Xk(X
H
k Pk|k−1Xk + σ2

v)
−1XH

k Pk|k−1

= (I −Kf
k XH

k )Pk|k−1. (2.17)

The minimum variance (Kalman) filter for the system (6.1) is given by the following

recursion.

Ĥk+1|k = AĤk|k−1 + AKf
k (yk −XH

k Ĥk|k−1),

Ĥk|k = Ĥk|k−1 + K
′
k(yk −XH

k Ĥk|k−1),

Kf
k = Pk|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1,

K
′
k = P

′
k|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1,

Pk+1|k = APk|k−1A
H + Q− APk|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1XkPk|k−1A

H ,

P
′
k+1|k = P

′
k|k−1A

H − P
′
k|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1XkPk|k−1A

H ,

Pk|k = Pk|k−1 − P
′
k|k−1Xk(X

H
k Pk|k−1Xk + σ2

v)
−1XkP

′
k|k−1. (2.18)

Proof. See [45]
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2.5 Discussion

The main objective of this chapter was to present a theoretical background to the problem

of optimal state estimation so as to lay a foundation for developments in later chapters. For

the model structures considered in this thesis, the problem of state estimation is solved,

under differing assumptions upon the availability of data, by the Kalman smoother or

the Kalman filter. The main difference is that the Kalman filter uses data only up to the

present, whereas the Kalman smoother uses both past and future data in its calculations

and therefore is of considerable interest in ofline settings. Interestingly, it turns out that a

set of Kalman smoothed state estimates may be calculated by using a sequence of Kalman

filters. Numerically robust versions of both the filter and smoother were derived. An ad-

vantage of this smoothing scheme is that the covariance matrices are calculated in such a

manner as to ensure that they are positive semi-definite. Furthermore, it is more straight-

forward and simple than pre-existing alternatives (see, for example, the treatment of RTS

Kalman smoothers in Kailath et al.[43] ).
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Chapter 3

Overview of Parameter Estimation

3.1 Introduction

The science of System Identification can be broadly defined as the theory and practice

of deriving models from experimental data. While the statistical fundamentals of this

field have in many cases been in existence for almost a century it is really only since

the 1960s that work in this area has been undertaken intensively. Since that time the

concerted effort of many researchers has done a great deal to unify what initially seemed

to be a collection of disparate ad-hoc approaches. Arguably, this process of theoretical

consolidation allowed the subject to experience an apotheosis as a mature research area

with the publication of a number of substantial texts on the topic (for example, [46] and

[48]) and together with a sophisticated and usable software package [47]. The problem

of system identification can be divided into a number of subproblems. These are stated

below:

• Experiment design,

• Data collection,

• Selection of model structure,

• Selection of model,
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• Model validation.

This thesis is concerned primarily with the problem of selecting a model from a set of

candidates. In the ensuing text we shall assume that the experiment design, data collection

and model structure selection operations have already been performed. In addition, we

shall assume that the model structure is a parametric one (that is the model structure is

parameterised by a finite-dimensional vector of real numbers, generally denoted θ ). The

task of model selection, therefore, is equivalent to that of selecting a suitable parameter

vector from a set of candidates. This practice is known as ” Parameter Estimation” .

We are interested in estimating the parameters of a system and have been given a set of

data,

Z , (Hk, Yk) (3.1)

consisting of a sequence of discretely sampled measurements of its inputs and outputs.

A parameter estimation method is a mapping from the data Z to an element of a set of

candidate parameter vectors, denoted Θ. That is,

Z → θ̂(Z) ∈ Θ. (3.2)

The symbol θ̂(Z)

in equation (8.4) is the estimate based upon the pairs of input-output data Z. Fur-

thermore, when considering iterative estimators we shall denote the estimate at the k− th

iteration, based upon the data set Z as θ̂k(Z) or, using a more relaxed notation, θ̂k, where

dependence upon ZN is tacitly assumed. What is not immediately apparent in this formu-

lation is that an important element of many parameter estimation schemes is a criterion

(or cost) function, VN(θ). The purpose of such a function (which, strictly speaking, is

also a function of the data, Z) is to define the exact manner in which the mapping (8.4)

occurs. The basic idea is to choose as the estimate an element of Θ that makes VN(θ)

small. That is, the parameter estimate is typically computed according to the relationship

θ̂ = arg min
θ∈Θ

VN(θ) (3.3)
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Clearly, the criterion function can be a major influence upon the properties of a pa-

rameter estimator. In the remainder of this chapter we present a number of common

approaches to parameter estimation in a statistical framework and discuss their proper-

ties and common elements. Specifically, we shall discuss the Maximum Likelihood and

Prediction-Error parameter estimation methods [46]. We shall also consider a Subspace-

based parameter estimation algorithm. The purpose of this material is to provide a back-

ground to this topic and some context into which the algorithms developed in later chap-

ters can be fitted. In keeping with most related work [46, 49] we shall focus particularly

upon the asymptotic properties of the consistency and relative efficiency of these estima-

tion schemes. We begin though, by discussing these properties.

3.2 Maximum Likelihood Methods

The Maximum Likelihood (ML) approach to parameter estimation is very well-established,

rooted in seminal work of Fisher [51] in the early twentieth century. Since that time the

method has been investigated under a wide variety of modeling assumptions [150, 52]

and its properties are very well understood. According to this approach one embraces a

probabilistic framework in order to treat the sequence of observations as a realization of a

stochastic process. On the basis of this data, one attempts to estimate a parameter vector

so that the likelihood of having seen such a realization is maximized - hence the name.

Suppose that the joint (conditional) probability density function of a set of observations,

Z, is known to be pθ(Z), where θ ∈ Θ parameterizes the probability density function

and that is the set of allowable parameter vectors. Now, if one observes the realization

Z = Z∗then a ML estimator for those parameters is

θ̂(Z∗) = arg max
θ

pθ(Z) |Z=Z∗ (3.4)

Once a series of measurements, Z, has been taken - that is Z fixed to be some Z∗, the

function

pθ(Z) |Z=Z∗ , (3.5)

becomes a deterministic function of θ. The resulting maximization operation contains
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no stochastic components. Instead of performing the maximization operation in equation

(6.17) it is more common to recognize that, since the logarithm function is monotoni-

cally increasing and the mathematical operation of maximizing a function is the same as

minimizing its negative, it is entirely equivalent to select the estimate as the element that

minimizes the negative logarithm of pθ(Z). That is, we can determine an estimate by

solving

θ̂ = arg min
θ

(−L(θ)) (3.6)

where the L(θ) is the log-likelihood function defined as

L(θ) → logpθ(Z) |Z=Z∗ , (3.7)

instead of (6.17). Comparing the basic approach of equation (6.2) to that of equation

(3.6) reveals that, in this formulation, the maximum likelihood criterion function is actu-

ally the negative log-likelihood function. That is,

V (θ) → −L(θ). (3.8)

The approach of minimizing the negative log-likelihood function is particularly popular

when the underlying probability density functions are exponential. For example, when

pθ(Z) is a Gaussian probability density function [151] and the data are independent, the

resulting negative log-likelihood function appears in an attractive form largely consisting

of a sum of quadratic terms. One of the most valuable aspects of the ML method is that it

provides a general framework for solving a wide range of parameter estimation problems

provided that the distribution of the data is known. For example, in the early stages of

the identification experiment design phase the ML method provides a clear rationale for

selecting one particular criterion function over another.

3.2.1 Properties

In this section we discuss briefly some well-known and attractive properties of the max-

imum likelihood method. First, we present a theorem that outlines the startling fact that
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the best (in the sense of meeting the Cramer-Rao bound) unbiased estimators are always

Maximum Likelihood estimators.

Property 9 Whenever there exists an unbiased estimator which achieves the Cramer-

Rao lower bound then it is also the maximum likelihood estimator. Proof. See [55].

Second, ML estimates are strongly consistent in simple i.i.d situations and achieve the

Cramer-Rao bound:

Property 10 Let θ̂(Z) designate a maximum likelihood estimator of θ∗ based upon m

i.i.d. random variables, Z, then

θ̂(Z) → θ∗ (3.9)
√

m(θ̂(Z)− θ∗) → N(0, Γ−1) (3.10)

where Γ is the average value of Fisher s information matrix per sample. Proof. See [56]

and [57].

These properties, easily established in the i.i.d. case, have been extended to many more

general cases [58, 49]. While the unbiased maximum likelihood estimators have good

asymptotic properties (as assessed by the covariance of the resulting estimates), it should

be realized that there are other ways of measuring the performance of estimators. Ljung

[46] notes that the small sample behaviour of maximum likelihood estimators has some-

times been criticized for being poor. In addition, for many problems it is the exception

rather than the rule that an unbiased ML estimator can be found [55].

3.2.2 Implementation

The difficulty associated with implementing the ML method lies in performing the arg minθ

operation of equation (3.6). Since the likelihood function is generally a non-convex func-

tion of its parameters,θ , the search for the minimizer must be undertaken iteratively. One
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commonly-adopted strategy is to use an iterative gradient-based search scheme such as

the well-known Newton method or perhaps one of its derivatives [59, 48]. For example, a

(damped) Newton method solution of a Maximum Likelihood problem employs iterations

of the form

θ̂k+1 = θ̂k − µk[H(θ̂k)]
−1J(θ̂k) (3.11)

in order to update the current estimate θ̂k to a better estimate θ̂k+1 (that is, one associated

with a higher likelihood). Here µk is a user-chosen step length, H(θ̂k) is the Hessian of

L(θ) at θ̂k, defined as

H(θk) =
∂2

∂θ∂θT
L(θ) |θ=θ̂ (3.12)

and J(θ̂k) the gradient of L(θ) at θ̂k

J(θ̂k) =
∂

∂θ
L(θ) |θ=θ̂ (3.13)

Gradient-based approaches, as exemplified by equation (3.12), implicitly exploit the

continuity of the likelihood function, L(θ), in order to calculate the required first and sec-

ond (partial) derivatives. An advantage of using this family of optimisation algorithms

is that, under appropriate regularity conditions, the rate of convergence can be quite fast.

For example, Newton’s method can converge quadratically [59]. On the other hand, the

necessary gradient calculations (3.12), (3.13) mandate the use of a specific model param-

eterisation and, for multivariable systems, this is a notoriously difficult problem [60, 43].

On the other hand, overparameterised model structures, that is those with nonminimal

parameterisations, necessarily lead to singular Hessian matrices (defined by equation

(3.12)) and to complications when evaluating the parameter update equation (3.11). The

question of choosing a parameterisation for the model defined in (3.1) chapter 3, so that

the resulting search is well-conditioned is still an open research topic [44, 45], and is a

prime motivator for further developments in this thesis. For the special case of ML prob-

lems an exciting alternative to the gradient-based methods is provided by the Expectation

Maximisation (EM) algorithm [101]. This approach, which arose in the mathematical

statistics literature, is one that has received relatively little attention in the control com-

munity. This algorithm is comprehensively detailed in the next chapter.
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3.3 Prediction Error Methods

The idea of comparing a model s predicted output to a measured output is a long-standing

one in system identification [87, 88] and the term Prediction-Error Methods (PEM) was

developed to unify a number of seemingly disparate approaches in a manner closely re-

lated to the ML method [76]. As their name suggests, the prediction-error methods pro-

vide a set of estimators that evaluate candidate models by how well they predict the system

output. That is, their criterion function, V (θ), is a function of prediction errors.

According to this estimation framework one interprets a model class as a mapping from

the space of allowable parameters, Θ , and the measured data, Z, to a causal prediction of

the output. The one-step ahead model-based prediction of the system output, ŷk(θ), can

then be written as a function of past values of {yk}, past and current values of Hk, and the

parameter vector θ as

ŷk(θ) = g(θ, Yk−1, Hk) (3.14)

Of course, the exact nature of the function g(.) is determined by the model structure

being used. A crucial element of the prediction error approach is that the criterion func-

tion, V (θ)), is chosen to depend upon the prediction errors - that is, the difference between

the system output {yk}and the model-based prediction, ŷk(θ) given by equation (3.14).

One common prediction error criterion function is the following simple weighted quadratic

one

V (θ) =
1

m

m∑

k=1

εT
k (θ) ∧−1 εk(θ) (3.15)

where

εk(θ) = yk − ŷk(θ) (3.16)

and is a symmetric positive definite matrix that serves to weight the various components

of εk according to their relative importance in the criterion function. Of course, the es-

timate V (θ) is still formed via equation (6.17). Since this cost function is not only a
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weighted least-squares one and but also happens to be the same as that employed by the

ML method, we may conclude that under certain circumstances the three estimation tech-

niques coincide.

One reason for the popularity of the simple criterion function embodied by (3.15) is that

the problem of finding solutions to least-squares problems is very well studied [59]. In-

deed, in some circumstances, it is possible to minimise equation (3.15) in closed-form.

In a more general prediction error setting though, one may define a (possibly) time-

varying, weighted norm-like function, l(k, εk), and then choose θ̂(Z) as the global min-

imiser of the cost function

V (θ) =
1

m

m∑

k=1

l(k, εk). (3.17)

3.3.1 Properties

There is an enormous amount of literature pertaining directly or indirectly to the prop-

erties of the prediction error methods [61, 49]. Much of this interest is due to the fact

that under common assumptions prediction error techniques are equivalent to least-square

methods [62, 153] or to the Maximum Likelihood approaches [105, 106]. It turns out that,

under mild conditions upon the system, the set of models, the criterion function and input

signal, the prediction error methods satisfy the following asymptotic properties due to

[49] and [46].

Property 11 (Strong Consistency). Let Θ be a set of parameters and θ̂(Z) and V (θ)

be defined by equations (6.17) and (3.17), respectively. Then, under the appropriate

regularity conditions,

θ̂(Z) →a.s θ∗ asm → ∞, (3.18)

(3.19)

where

θ∗ = arg min
θ∈Θ

li−m→∞E{Vm(θ)}. (3.20)
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Note that if the model structure is sufficiently flexible then multiple solutions of equa-

tion (3.20) may exist and then property above must be amended to state that the estimate,

θ̂(Z), converges to a set of cost function minimisers.

Property 12 (Asymptotic Normality). Let θ̂(Z) and θ∗ be defined by equations (6.17)

and (3.20), respectively. Then, under the appropriate regularity conditions, there exists

a sequence of positive semi-definite matrices {Pm} such that
√

mP
−1
2

m (θ̂(Z)− θ∗) → N(0, I) asm → ∞. (3.21)

(3.22)

Clearly, an estimate will not exhibit asymptotic normality unless θ∗ is the unique solution

of equation (3.20). For further information on the asymptotic properties of the PEMs we

point the interested reader to [46] or, for a treatment of greater depth and generality, [49]

and [46].

3.3.2 Implementation

Properties (11) and (12) were both derived under the assumption that equation (6.17)

is globally solvable. However, for many scenarios, the cost function V (θ) is non-convex

in θ and therefore a closed-form solution of equation (6.17) is not available. Again, gra-

dient based search algorithms are a popular choice for solving the resulting optimisation

problem Eq. (6.17)) and therefore the implementational advantages and disadvantages of

the prediction-error methods bear a striking similarity to those of the ML approach. Of

course, for the PEM case the Hessian matrix and gradient vector appearing in equation

( (3.11) are defined to be

H(θk) =
∂2

∂θ∂θT
V (θ) |θ=θ̂ (3.23)
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and

J(θ̂k) =
∂

∂θ
V (θ) |θ=θ̂ . (3.24)

3.4 Subspace-based Parameter Estimation Methods

The study of State Space Subspace-based System Identification (4SID) methods [63, 91,

92] has been of enormous recent interest. Belying the recent nature of this activity, the

ideas involved actually go back many years, at least to Akaike[87] whose approach tar-

geted the types of stochastic estimation problems considered in this thesis. There are too

many varieties of 4SID algorithms to detail all of them here but the basic unifying theme

of the time-domain versions is the extraction of estimates of system state-space matrices

directly from data by first dividing that data into past and future data and then project-

ing the future data onto the space spanned by the past data. The technique of projecting

onto subspaces in some ways tends to tie the resulting algorithms more closely to linear

system theory than the other methods described in this chapter. That is not to say that

subspace algorithms have not been applied successfully to problems of non-standard lin-

ear or nonlinear system identification. There have been notable examples of their use on

errors-in-variables [110], bilinear [107, 108] and linear parameter-varying [109] systems.

However many of these extended subspace algorithms are probably not applicable to large

nonlinear systems with the current level of computing technology, since the resulting data

matrices tend to grow at an exponential rate with increasing model order. The benefits

of using these methods, particularly in the linear case, are considerable - parameter esti-

mates may be extracted non-iteratively directly into state-space form, thus making them

ideal for multivariable identification. Furthermore, without the need for gradient-based

search there is no necessity for explicitly parameterising the state-space matrices - the

resulting estimates are fully parameterised. Other advantages of these approaches lies in

their numerical simplicity and the reliability of their implementation. The key operation

required is one of projection which may be performed with Singular Value Decomposi-

tion or even QR factorisation. Unfortunately, the SVD operation in particular makes these

algorithms non-linear in the data and this renders difficult any analysis of the statistical

performance of the approach. In spite of the limitations imposed by their nonlinear nature,
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great strides have been made in the analysis of various subspace algorithms. Analytical

studies of the consistency and relative efficiency [114], and asymptotic normality [113] of

subspace estimates been conducted. Moreover, simulation studies in, for example [111]

and [114], tend to suggest that the relative efficiency of subspace algorithms is close to

that of maximum likelihood algorithms. At present, there is only one known case in which

subspace algorithms achieve the Cramer-Rao bound, and that is when a CCA algorithm is

used and the input is white [112]. Despite all of this, some work remains to be done in this

area so that the depth and richness of theory enjoyed by users of maximum likelihood and

prediction-error methods is also enjoyed by users of subspace-based parameter estimation

methods.

3.5 Conclusions

In this chapter we presented a number of popular parameter estimation schemes and de-

scribed some of their properties.

The prediction error and maximum likelihood methods are both well-studied approaches

to estimation and benefit from a correspondingly deep set of supporting theory. Difficul-

ties with these algorithms can arise upon their implementation with common gradient-

based techniques requiring an explicit model parameterisation. A key observation here

was that the process of extending such optimisation algorithms from the Single-Input,

Single-Output (SISO) case to that of multivariable systems is not at all straightforward.

Indeed, this process can be quite difficult.

A popular and numerically robust alternative to these algorithms is provided by the subspace-

based estimation methods. These cope admirably with multivariable parameter estimation

as they naturally employ compact and attractive state-space model structures. On the

other hand, the theory so-far developed for these algorithms lags that of the PE and ML

techniques. In the remainder of this thesis we test the potential of the EM algorithm for

solving parameter estimation problems. We begin, in the next chapter, with a thorough

description of the EM algorithm.
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Chapter 4

EM Algorithm

In this chapter, we introduce a means of maximum-likelihood estimation of parameters

that is applicable in many cases when direct access to the necessary to make the estimates

is impossible , or when some of the data is missing. Such inaccessible data are present,

for example, when an outcome is a result of an accumulation of simpler outcomes, or

when outcomes are clumped together (e.g., in a binning or histogram operation). There

may also be data dropouts or clustering such that the number of underlying data points is

unknown (censoring and/or truncation). The EM (expectation-maximization) algorithm

is ideally suited to problems of this sort, in that it produces maximum-likelihood (ML)

estimates of parameters when there is a many-to-one mapping from an underlying distri-

bution to the distribution governing the observation. The EM algorithm consist of two

primary steps: an expectation step, followed by maximization step. The expectation is

obtained with respect to the unknown underlying variables, using the current estimate of

the parameters and conditioned upon the observations. The maximization step then pro-

vides a new estimate of the parameters. These two step are iterated until convergence.

The concept is illustrated in Fig. (5.1).

The EM algorithm was discorved and employed independently by several different re-

search; see ([101]) brought their ideas together, proved convergence, and coined the term

”EM algorithm.” Since this seminal work, hundreds of papers employing the EM algo-

rithm in many areas have been published. A typical application area of the EM algorithm

is genetics, where the observed data is a function of the underlying, unobserved gene
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patten; see, for example [115]. Another area is estimating parameters of mixture distribu-

tions, as in [116]. The EM algorithm has also been widely used in econometric, clinical,

and sociological studies that have unknown factors affecting the outcomes [117]. Some

applications to the theory of statistical methods are found in [118].

In the area of signal processing applications, the largest area of interest in the EM algo-

rithm is maximum-likelihood tomographic reconstruction (see, for example, [119]). An-

other commonly cited applications is the training of hidden Markov models, especially

for speech recognition, as in [120].

:E-step
Estimate unobserved

Choose an initial

Set k = 0

M-step:
Compute maximum likelihood

k = k + 1

parameter θ[0]

estimate of parameter θ[k+1]

using estimated data

data using θ[k]

Converged?

Figure 4.1: An overview of the EM algorithm. After initialization, the E-step and the

M-step are alternated until the parameter estimate has converged (no more change in the

estimate)

Other signal processing and engineering applications began appearing in the mid
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1980s. These include: parameter estimation ([121, 122]), ARMA modeling [123], image

modeling, reconstruction, and processing [124, 125], simultaneous detection and estima-

tion [126, 127], pattern recognition and network training [128], direction finding [129],

noise suppression [130], signal enhancement [131], spectroscopy, signal and sequence

detection [132], time-delay estimation [133],and specialized development of the EM al-

gorithm itself [134]. The EM algorithm also related to algorithms used in information

theory to compute channel capacity and rate-distortion functions [135, 136], since the ex-

pectation step in the algorithm produces a result similar to entropy. The EM algorithm is

philosophically similar to ML detection in the presence of unknown enraged with respect

to the unknown quantity (i.e. the expected value likelihood function is computed) before

detection, which is a maximization step (see, for example, [2], chapter 5).

The algorithm is presented in this thesis to estimate the model parameters in the time

varying systems.

4.1 General Statement of the EM algorithm

Let Y denote the sample space of the observations, and y ∈m R denote an observation

from Y . Let Z denote the underlying space and let z ∈ Rn be outcomes from Z, with

m < n. The data z is referred to as the complete data. the complete data z are note

observed directly, but only by means of y, where y = y(z), and y(z) is a many-to-one

mapping. An observation y determines a subset of Z, which is denoted as Z(y). Fig. (5.1)

illustrates the mapping.

The pdf of the complete data is fZ(z | θ), where θ ∈ Θ is the set of parameters of the

density. The pdf f is assumed to be continuous in θ and appropriately differentiable. The

ML estimate of θ is assumed to lie within the region Θ. The pdf of the incomplete data is

g(y | θ) =

∫

X(y)

f(z | θ)dx. (4.1)

Let

ly(θ) = g(y | θ) (4.2)
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denote the likelihood function, and let

Ly(θ) = log g(y | θ) (4.3)

denote the log-likelihood function.

z
Y

Z(y)

Z

y = y(z)

Figure 4.2: Illustration of many-to-one mapping from Z and Y . The point y is the image

of z, and the set Z(y) is the inverse map of y

The basic idea behind the EM algorithm is that we would like to find Θ to maximize

logf(z | θ), but we do not have data z to compute the log-likelihood. So, instead, we

maximize the expectation of logf(z | θ) given the data y and our current estimate of θ.

This can be accomplished in two steps. Let θ[k] be our estimate of the parameters at the

k − th iteration.

E-step.

Q(θ | θ[k]) = E[logf(z | θ) | y, θ[k]]. (4.4)

It is important to distinguish between the first and second arguments of the Q func-

tions. The second argument is a conditioning argument to the expectation and is regraded

as fixed and known at every E − step. The first argument conditions the likelihood of the

complete data.
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M-step. Let θ[k+1] be that value of θ that maximize

θ[k+1] = arg max
θ

Q(θ | θ[k]). (4.5)

It is important to note that the maximization is with respect to the first argument of the Q

function, the conditioner of the complete data likelihood.

The EM algorithm consists of choosing an initial θ[k], then performing the E − step and

the E− step successively until convergence. Convergence may be determined by observ-

ing when the parameters stop changing: for example, when ‖θ[k+1] − θ[k] < ε‖ for some

ε and some appropriate distance measure ‖.‖.

Example The general form of the EM algorithm as stated in (4.4) and (4.5)may be

specialized and simplified somewhat by restrictions to distributions in the exponential

family. These are pdfs of the form

f(z | θ) = a(z)c(θ) exp[π(θ)T t(z)], (4.6)

where θ is a vector of parameters for family, and where

t(z) = [t1(z), . . . , tq(z)]T (4.7)

is the vector of sufficient statistics for θ. For exponential families, the E − step can be

written as

Q(θ | θ[k]) = E[loga(z) | y, θ[k]] + π(θ)T E[t(z) | y, θ[k]] + logc(θ) (4.8)

Let t[k+1] = E[t(z) | y, θ[k]]. Because a conditional expectation is an estimator, t[k+1] is an

estimate of the sufficient statistic. In light of the fact that the M−step will be maximizing

E[loga(z) | y, θ[k]] + π(θ)T t[k+1] + logc(θ) (4.9)

with respect to θ and that E[loga(z) | y, θ[k]] does not depend upon θ, it is sufficient to

write the flowing.
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E-step. Compute

t[k+1] = E[t(z) | y, θ[k]]. (4.10)

M-step. Compute

θ[k+1] = arg max
θ

π(θ)T t[k+1] + logc(θ). (4.11)

The EM algorithm has the advantage of being simple, at least in principle; actually com-

puting the expectations and performing the maximization may be computationally taxing.

Unlike other optimization techniques, it does not require the computation of gradients or

Hessians, nor is it necessary to worry about setting set-size parameters, such as gradient

descent algorithms.

4.1.1 Convergence of the EM Algorithm

For every iterative algorithm, the question of convergence must be addressed. Does the

algorithm come finally to a solution, or does it iterate, ever learning but never coming to

a knowledge of the truth? For the EM algorithm, convergence may be stated simply: at

every iteration of the algorithm, a value of the parameter is computed so that the likeli-

hood function of y does not decrease. That is, at every iteration, the estimated parameter

provides an increase in the likelihood function (but will not decrease).

We present a proof of this general concept as follows. Let

k(z | y, θ) =
f(z | θ)
g(y | θ) . (4.12)

and note that k(z | y, θ) may be interpreted as a conditional density. Then the log-

likelihood function Ly(θ) = logg(y | θ) may be written

Ly(θ) = logg(z | θ)− logk(z | y, θ). (4.13)

Define

H(θ
′ | θ) = E[logk(z | y, θ

′
) | y, θ].
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Let M: θ[k] → θ[k+1] represent the mapping defined by the EM algorithm in (4.4) and

(4.5), so that θ[k+1] = M(θ[k]).

Theorem 13 Ly(θ
[k+1]) ≥ Ly(θ), with equality if and only if

Q(M(θ) | θ) = Q(θ | θ)
k(z | y, M(θ)) = k(z | y, θ).

That is, the likelihood function increases at each iteration of the EM algorithm, until the

conditions for equality are satisfied and a fixed point of the iteration is reached. If θ∗ is an

ML parameter estimate, so that Ly(θ)
∗ ≥ Ly(θ) for all θ ∈ Θ, then LyM((θ)∗) = Ly(θ

∗).

In order words, ML estimates are fixed points of the EM algorithm. Since the likelihood

function is bounded (for distributions of practical interest), the sequence of parameter es-

timates θ[0], θ[1], . . . , θ[k] yields a bounded nondecreasing sequence Ly(θ
[0]) ≤ Ly(θ

[1]) ≤
. . . Ly(θ

[k]), which must converge as k →∞.

Proof 14

LyM(θ)− Ly(θ) = Q(M(θ) | θ)−Q(θ | θ) + H(θ | θ)−H(M(θ) | θ). (4.14)

By the definition of the M − step, it must be the case that

Q(M(θ) | θ) ≥ Q(θ | θ).

for every θ ∈ Θ. For any pair (θ
′
, θ) ∈ Θ×Θ, it is the case that

H(θ
′ | θ) ≤ H(θ | θ).

This can be proven with Jensen’s inequality, which states: If f(z) is a concave function,

then E[f(z)] ≤ f(E[x]), with equality if and only if z is constant (nonrandom). This
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inequality may be employed as follows.

H(θ
′ | θ)−H(θ | θ) = E[log

k(z | y, θ
′
)

k(z | y, θ)
| y, θ]

≤ logE[
k(z | y, θ

′
)

k(z | y, θ)
| y, θ] (4.15)

= log

∫

Z

k(z | y, θ
′
)

k(z | y, θ)
k(z | y, θ)dz (4.16)

= log

∫

Z

k(z | y, θ
′
)dz

= 0. (4.17)

Equation (4.16) follows from Jensen’s inequality, with f(z) = log(z), which is concave;

and (4.17) is true since k(z | y, θ) is a conditional density.

Examination of (4.14) in light of the M−step and the conditions for equality in Jensen’s

inequality reveals that equality in the theorem can only hold for the stated conditions.

The theorem falls short of proving that the fixed point of the EM algorithm are fact ML

estimates. The latter is true, under rather general conditions, but the proof is somewhat

involved and is not presented here (see [99]).

Lemma 15 Suppose that θ̂k is an instance of an EM algorithm such that

1. θ̂ converge to θ∗

2. ∂
∂θ

Q(θ, θ̂k) = 0

3. ∂2

∂θ∂θT Q(θ, θ̂k) is negative definite with eigenvalues

bounded away from zero.

Then

∂

∂θ
L(θ) = 0, (4.18)

∂2

∂θ∂θT
Q(θ, θ̂k) is negative definite
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and

∂

∂θ
M(θ) = [

∂2

∂θ∂θT
Q(θ, θ∗)]−1 ∂2

∂θ∂θT
V (θ, θ∗) (4.19)

Proof. See the appendix.

In order to see the utility of this lemma, note that if we linearise the EM algorithm about

the point to which it is converging by finding its first-order Taylor expansion, then

we obtain

θ̂k+1 = M(θ̂k)

≈ θ∗ +
∂

∂θ
M(θ)|θ=θ∗(θ̂k − θ∗)

and then

θ̃k+1 ≈ (
∂

∂θ
M(θ)|θ=θ∗)

N−1θ̃k (4.20)

Equation (4.20) formulates the EM algorithm as an autonomous linear time-invariant

system. Under such conditions it is well known that θk will converge to an optimal value

at an exponential rate determined by the largest eigenvalue of ∂
∂θ

M(θ).

In the next section we shall discuss in greater depth the rate of convergence of the EM al-

gorithm in light of equation (4.21), and in particular how it can be affected by the choice

of missing data.

4.1.2 The Role of Missing Data

The EM algorithm allows the user to choose what constitutes the missing data. One pur-

pose of this data is to make the optimisation problem (4.11) easy to solve but one should

recognise that this choice also has an important effect upon the speed of convergence of
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the algorithm. Note that equation (4.19) may be re-expressed as

∂

∂θ
M(θ) = [

∂2

∂θ∂θT
Q(θ, θ∗)]−1 ∂2

∂θ∂θT
V (θ, θ∗)

= [
∂2

∂θ∂θT
Q(θ, θ∗)]−1

×[
∂2

∂θ∂θT
Q(θ, θ∗)− ∂2

∂θ∂θT
L(θ)]

= I − [
∂2

∂θ∂θT
Q(θ, θ∗)]−1 ∂2

∂θ∂θT
L(θ)]

= I − Γ−1
augΓobs (4.21)

by using equation (6.5)

Γaug =
∂2

∂θ∂θT
Eθ̂{log fZ(z, θ)}|θ=θ∗ (4.22)

is the expected information matrix of the complete data set and

Γobs =
∂2

∂θ∂θT
Eθ̂{log fY (Y, θ)}|θ=θ∗ (4.23)

is the observed information matrix.

Note that the rate of convergence of the EM algorithm as shown by equation (4.20)is

dictated by the largest eigenvalue of ∂
∂θ

M(θ). If this eigenvalue has a magnitude close to

unity, then the algorithm will be slow to converge. Conversely, fast convergence corre-

spond to this eigenvalue being close to zero. Under this scenario, it follows from equation

(4.21) that it is desirable to choose the missing data and filter coefficient sequence, so that

the smallest eigenvalue of Γ−1
augΓobs is as large as possible. Clearly, Γobs is independent

of the missing data so therefore the key to ensuring fast convergence is to find a filter

coefficient sequence so that Γaug is small.

4.2 Discussion

The EM algorithm provides a simple, iterative method for solving maximum likelihood

problems. At each iteration one updates the current estimate of the true likelihood max-

imiser, θ̂k, to a better estimate, θ̂k+1. Provided that Q(θ̂k+1, θ̂k) > (θ̂k, θ̂k) then the al-

gorithm guarantees that the likelihood associated with the new estimate will be strictly
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greater than that of the old one. Thus, iterating the algorithm produces a sequence of esti-

mates {θ̂k} associated with a monotonically increasing sequence of likelihoods {L(θ̂k)}.

The key idea behind the approach is to simplify each iteration by introducing an extra

degree of freedom. The EM algorithm allows the user to select a set of unobserved, yet

desirable, missing data which, in addition to the actual observations, constitute the so-

called complete data set. Normally the user would choose the missing data so that max-

imising the likelihood function associated with the complete data set is easy. Often this

problem is then solvable in closed-form. At each iteration, one calculates the maximiser

of the projection of this complete data likelihood onto the space of actual observations in

directions informed by the estimate from the previous iteration.

It turns out that the role of the missing data is more crucial to the success of the algorithm

than at first glance. Indeed, as revealed in Section (4.1.2), when the algorithm converges

to some particular estimate then the missing data plays an important role in determining

the speed of convergence of the algorithm to that estimate. Furthermore, the rate of con-

vergence is a function of the eigenvalues of the expected augmented information matrix.

Finally, note that if the problem of maximising the log-likelihood function for the ob-

served data is difficult and that of maximising Q(θ, θ̂k) simple, then via the fundamental

equation (4.13), it follows that maximising log k(z | y, θ) must also be difficult. The

beauty of the approach is that the EM algorithm never requires the explicit computation

of log k(z | y, θ).

Appendix A

The Proof of Lemma 15

Proof. From (4.13) we have

∂L(θ)

∂θ
|θ=θ̂k+1

=
∂Q(θ, θ̂k)

∂θ
|θ=θ̂k+1

−∂ν(θ, θ̂k)

∂θ
|θ=θ̂k+1

. (4.24)
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where ν(θ, θ̂k) = log k(z | y, θ).

The first term on the right-hand side of (4.24) is zero by assumption (3), while the

second term is zero in the limit as k →∞, and hence (4.18).

Similarly, ∂2

∂θ∂θT Q(θ, θ∗) |θ=θ∗is negative definite, since it is the limit of the sequence

∂2

∂θ∂θT
Q(θ, θ̂k) |θ=θ̂k+1

,

each of whose terms has all eigenvalues bounded away from zero.

Finally, we turn to the problem of establishing (4.19). Expanding ∂2

∂θ∂θT Q(θ, θ1) |θ=θ1 in

a Taylor series about the point (θ∗, θ∗) yields

∂Q(θ, θ1)

∂θ
|θ=θ2 =

∂Q(θ, θ∗)
∂θ

|θ=θ∗ +
[∂2Q(θ, θ∗)

∂θ∂θT
|θ=θ∗

]
(θ2 − θ∗)

+
[∂2Q(θ, γ)

∂θ∂γT
|θ=θ∗,γ=θ∗

]
(θ1 − θ∗) + . . . (4.25)

Substituting θ1 = θ̂k and θ2 = θ̂k+1 into equation (4.25) we obtain

0 =
[∂2Q(θ, θ∗)

∂θ∂θT
|θ=θ∗

]
(θ̂k+1 − θ∗) +

[∂2Q(θ, γ)

∂θ∂γT
|θ=θ∗,γ=θ∗

]
(θ̂k − θ∗) + . . .

Since θ̂k+1 = M(θ̂k) and θ∗ = M(θ∗) we obtain in the limit

0 =
[∂2Q(θ, θ∗)

∂θ∂θT
|θ=θ∗

][∂ M(θ)

∂θ
|θ=θ∗

]
+

∂2Q(θ, γ)

∂θ∂γT
|θ=θ∗,γ=θ∗ ,

or
∂ M(θ)

∂θ
|θ=θ∗= −[∂2Q(θ, θ∗)

∂θ∂θT
|θ=θ∗

]−1[∂2Q(θ, γ)

∂θ∂γT
|θ=θ∗,γ=θ∗

]
. (4.26)

Now, employing (4.13) yields

∂ M(θ)

∂θ
|θ=θ∗= −[∂2Q(θ, θ∗)

∂θ∂θT
|θ=θ∗

]−1[∂2ν(θ, γ)

∂θ∂γT
|θ=θ∗,γ=θ∗

]
, (4.27)

Finally

∂ M(θ)

∂θ
|θ=θ∗=

[∂2Q(θ, θ∗)
∂θ∂θT

|θ=θ∗
]−1[∂2ν(θ, θ∗)

∂θ∂θT
|θ=θ∗

]
, (4.28)

Appendix B
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Taylor’s Theorem, Residual Errors and the Logarithm

This section looks at results related to the well-known Taylor s Theorem. First, we shall

state this theorem.

Lemma 16 Taylor’s Theorem If a function f has n continuous derivatives on the interval

[a, b] and its (n + 1) − st derivative exists on the interval (a, b), then for x0 ∈ [a, b] and

x ∈ [a, b],

f(x) = f(x0) + (x− x0)f
1(x0) +

(x− x0)

2
f (2)(x0) + . . .

(x− x0)

n!
f (n)(x0)

+
1

n!

∫ x

x0

(x− ε)nf (n+1)(ε)dε. (4.29)

Now, a function f , satisfying the conditions of Taylor’s Theorem, may be written as

f(x) = Tn(x) + Rn(x),

where Tn(x) is the Taylor series and Rn(x) the remainder term. These are implicitly

defined by equation (4.33).

Unfortunately, the expression the residual error,

Rn(x) =
1

n!

∫ x

x0

(x− ε)nfn+1(ε)dε,

is not terribly convenient since it contains an integration operator. It is possible to derive

a more useful expression with which to quantify the residual error.

The derivation of this expression begins with the introduction of an auxiliary function

F (t), which is defined as follows

F (t) = f(x)− f(t)− f 1(t)(x− t)− f (2)(t)

2!
(x− t)2 − . . .

−f (n)(t)

n!
(x− t)n −K(x− t)n+1. (4.30)

Here the constant K is chosen so that F (x0) = 0.

Now, since F (x) = 0, by Rolle’s Theorem there must be a point λ ∈ (x0, x) such that

F 1(λ) = 0. (4.31)
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Since F 1(λ) is given by

F 1(t) = −f 1(t) +
[
f (1)(t)− f (2)(t)(x− t)

]
+

[
f (2)(t)(x− t)− 1

2!
f (3)(t)(x− t)2

]

+
[ 1

2!
f (3)(t)(x− t)2 − 1

3!
f (4)(t)(x− t)3

]
+ . . .

+
[ 1

n− 1!
f (n)(t)(x− t)n−1 − 1

n!
f (n+1)(t)(x− t)n

]
+ (n + 1)K(x− t)n

= (n + 1)K(x− t)n − 1

n!
f (n+1)(x− t)n, (4.32)

equation (4.31) implies that

(n + 1)K(x− λ)n − fn+1(λ)

n!
(x− λ)n = 0,

and thus

K =
fn+1(λ)

n + 1!
.

Finally, substituting this value for K into (4.30) and setting t = x0 in (4.30) provides

0 = f(x)− f(x0) + (x− x0)f
1(x0)

(x− x0)

2
f (2)(x0)− . . .

−(x− x0)

n!
f (n)(x0)− (x− x0)

(n + 1)!
f (n+1)(λ), (4.33)

which is Taylor’s formula (4.33).

The result of this derivation is now presented as a corollary.

Corollary 17 If a function f has n continuous derivatives on the interval [a, b] and its

(n + 1)st derivative exists on the interval (a, b), then for x0 ∈ [a, b] and x ∈ [a, b],

f(x) = f(x0) + (x− x0)f
1(x0)

(x− x0)

2
f (2)(x0) + · · · − (x− x0)

n!
f (n)(x0)

+
(x− x0

(n + 1)!
f (n+1)(λ), (4.34)

for some λ ∈ [x0, x].
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Chapter 5

Bayesian Adaptive Filtering

After reviewing the generalities in the previous chapters about sate estimation and its

parameters estimation, we tackle in this chapter the problem of adaptive filtering in non-

stationary environments. We first begin by an introductory state of the art review which in-

cludes the existing algorithms on adaptive filtering (LMS and LRS). These algorithms ex-

perience performances limitation in terms of tracking and convergence in non-stationary

environments. This motivates our work to propose more efficient technics for such Bayesian

technics. Our proposed methods take into consideration a priori information about the sys-

tem variations such as the PDP, Doppler bandwidth, ...etc. We thus propose two different

approaches, the first one is based on Wiener Filtering (WF) while the other one is based

on Kalman Filtering (KF). In this chapter we develop the first approach and the second

one will be considered in the next chapter. The proposed algorithms can be applied in

many situations and as an example we consider in this chapter its application for system

identifications in particular mobile radio channel for the importance of this medium in

wireless communications. We provide numerical results that show the proposed algo-

rithm advantage compared to existing algorithms in terms of Excess Mean Squared Error

(EMSE) for different PDPs and Doppler shifts.
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5.1 State of Art

Since the introduction of the LMS algorithm by Widrow and Hopf in the 1960’s, most of

the further work in adaptive filtering has focused on improving the initial convergence.

The Recursive Least-Squares (RLS) algorithm was also developed in the 1960’s and pro-

vided an alternative algorithm for adaptive system identification. The RLS algorithm is

recursive and not iterative as the LMS algorithm, solving a LS cost function exactly at

each update. As a result it converges very fast since it provides an unbiased solution once

the LS problem gets overdetermined. This deterministic aspect adds up to the observation

that the RLS convergence is insensitive to the input signal correlation structure (approxi-

mately, since there is some dependence on the initialization). The RLS algorithm, though

providing computational savings w.r.t. the plain solving of LS problems at each sampling

period, is quite a bit more expensive than the LMS algorithm. This motivated on the one

hand the development of fast RLS algorithms, and on the other hand the development of

an intermediate category of algorithms, all less sensitive than LMS to the input correlation

structure, including frequency or other transform domain LMS algorithms, prewhitened

LMS versions, Fast Newton Transversal Filters and (Fast) Affine Projection Algorithms.

At the outset, all these algorithms were developed to converge to an unknown opti-

mal filter. When this optimal filter is actual time-varying, these algorithms need to be

made adaptive. The RLS algorithms are made adaptive by the introduction of a weight-

ing function/window. The weighted LS cost function can be viewed as the output of a

filter with the instantaneous squared filtering error sequence as input. The filter should

be such that its input-output relationship is simple and recursive. The LS cost function

uses a discrete-time integrator as filter, which can be easily modified into a first-order

recursive filter for the exponentially weighted RLS algorithm. The sliding window RLS

algorithm uses a moving average filter that can also be expressed recursively. All other

adaptive filtering algorithms are made adaptive by the introduction of a scalar stepsize.

In fact, the time-varying stepsize sequence of stochastic gradient algorithms [10] is made

time-invariant/constant to avoid convergence and permit tracking of time-varying optimal

filter settings. The tracking characteristics of the LMS and RLS algorithms got analyzed

only in the 1970’s and 1980’s, 10 to 20 years after the introduction of the algorithms,
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in [22] for LMS and [21] for RLS. A further inspection of these tracking characteristics

revealed the surprising result that in certain cases the LMS algorithm may provide better

tracking than the RLS algorithm (each with optimized stepsize or forgetting factor), see

[23] for deterministic and e.g. [10] for random parameter variations. With hindsight, this

is not at all surprising since LMS and RLS are just two suboptimal approaches to track-

ing time-varying parameters. Whereas initial convergence is about the fast reduction of

the mean parameter error vector, tracking is about the optimal compromise between MSE

due to estimation noise and tracking/lag noise. Some general references on the tracking

behavior of adaptive filtering algorithms are [1, 4, 3], [6, 16, 19] and [17, 18, 14].

The RLS algorithm got introduced after the Kalman filter (KF) was invented, though

the RLS algorithm is a special case of the KF for the following state-space model [13]

Hk = Hk−1 (5.1)

xk = Y T
k Hk + vk . (5.2)

The KF formulation requires immediately a parametric form of the optimal filter, usually

a FIR filter is assumed with impulse response of N coefficients contained in the vector

Hk. The measurement equation (5.2) expresses that the desired-response signal xk is

the sum of the output
∑N−1

i=0 Hk,iyk−i of the optimal FIR filter Hk with input yk plus an

independent measurement noise vk. In KF terminology, xk would be the measurement

and Hk the state.

Wiener filtering (WF’ing) is about estimating one random signal from another, let’s

say estimating the signal xk on the basis of the signal yk. In the system identification set-

up of adaptive filtering, which is reflected in (5.1)-(5.2), the relation between these two

signals is that xk is assumed to be output of an unknown system/plant with yk as input

plus independent measurement noise vk. In this case, the optimal Wiener (LMMSE) filter

is clearly RxY R−1
Y Y = HT , which is FIR if the system to be identified is FIR. The WF

is based on the joint statistical description of the random signals xk and yk. and is a

deterministic quantity. The WF solution is not influenced by the color of the noise vk.

KF’ing is in principle a special case of the signal-in-noise case of WF’ing. In the

signal-in-noise case, the measurement signal is the sum of the signal to be estimated plus

noise. For the KF, the signal to be estimated satisfies furthermore a state-space model.
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The adaptive filtering/RLS application of KF’ing though deviates significantly from this

spirit. In RLS, the quantity (state) estimated is the set of WF coefficients Hk instead of

its output, the filter input yk is considered deterministic (the estimation is given yk) and

hence the filter estimate would be random if yk would be considered random. Indeed, the

Kalman Filter provides an estimate Ĥk of the WF Hk. Since this KF application is now

an instance of parameter estimation, the parameter estimation quality depends on e.g. the

color of the noise vk.

The KF’ing framework can be straightforwardly extended to incorporate time-varying

optimal parameters. The simplest way is probably through the following stationary AR(1)

model state equation for the optimal filter variation [13]

Hk = A Hk−1 + Wk (5.3)

replacing (5.1), where E WkW
H
i = Q δik, E Wkv

H
i = 0 (noises assumed circular in

complex case). This formulation lead to the widely accepted point of view that the KF

would be the optimal adaptive filter. This is indeed true for the system identification con-

figuration with (5.3)-(5.2) as assumed correct model and A, Q and r in E vkv
H
i = r δik

assumed known. We may note that in this model, WF’ing provides the time-varying opti-

mal filter HT
k = RxkYk

R−1
YkYk

and the Kalman Filter estimates it in a Bayesian (LMMSE)

sense.

The problem with the KF viewpoint is that the model parameters, if at all the model

is correct, are unknown and need to be estimated also from the same data. Those pa-

rameters can be inferred from the joint signal statistics, just like the Wiener Filter itself.

However, in the KF, the input signal yk is considered deterministic which makes the state

space model (5.3)-(5.2) linear but time-varying. These complications lead to approximate

approaches such as exponentially weighted RLS, which can be shown [7] to correspond

to the KF for certain artificial choices of A and Q in (5.3). The main issue in most appli-

cations is the so-called generalization property of statistical learning: what counts is the

adaptive filter performance not for the given input signal realization, but when applied to

other signal data, hence for the given signal statistics. The generalization capacity may be

hampered by sticking too closely to one model’s details when the model is approximate.

Another issue is that the Kalman Filter approach for tracking time-varying optimal filters

only applies in the system identification configuration in which the filter’s non-stationarity



5.1. STATE OF ART 81

arises in the cross-correlations between input and desired-response signals, regardless of

the statistics ((non)stationarity) of the input. Communications applications of the system

identification configuration are channel estimation and echo cancelation. In all other con-

figurations of adaptive filtering: prediction, deconvolution/equalization and interference

cancelation, the statistics of the optimal filter may be strongly intertwined with the statis-

tics of the input signal. In linear prediction for instance, the desired-response and input

signals are the same. One rarely sees the linear prediction problem addressed as a ML

estimation of or Kalman Filtering on the parameters of an AR model, because any AR

model order is likely to lead to an approximation error. Adaptive prediction is in fact

a joint operation of approximation (e.g. through model order selection) and estimation.

In equalization, even if the channel variation could be modeled as an AR(1) model as

in (5.3), the optimal equalizer setting is a nonlinear function of the channel. Given all

these considerations, the best practical approach is probably to specify a motivated solu-

tion structure of acceptable complexity and optimize the parameters within that structure

(as is done in linear prediction) (approximation/estimation compromise). The problem

considered here has of course been addressed previously and we now discuss some of this

existing work.

5.1.1 Tracking Bandwidth Adjustment

Most of the work on adapting tracking capability has focused on adapting one tracking

parameter. In RLS, it doesn’t cost any computational complexity to make the forgetting

factor (FF) time-varying. Modifications to fast RLS algorithms to allow a time-varying

FF, as well as algorithms to adjust this FF on the basis of correlation matching have

been pursued in [82]. The equivalent development for LMS algorithms concerns Variable

StepSize (VSS) algorithms. Important developments were presented in [37], [39], [65],

[64], [66] [38] and [42]. Most of the VSS algorithms use the steepest-descent strategy

and the instantaneous squared error cost function of the LMS algorithm to adjust the

additional parameter, which is the stepsize. A related but different approach consists in

running various adaptive filters with different time constants and selecting or combining

their outputs, similarly to what is done in model order selection, see [71], [70], [68] and

[69].
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A further refinement is to allow different tracking bandwidths for different filter com-

ponents as is done in [40] with a VSS per filter coefficient and in [81] where the tracking

capacity increases with frequency for the various frequency domain components of the

filter. The work in [40] essentially shows that a ”diagonal” state-space model (5.3) may

allow a simplification of the KF to a LMS algorithm with a VSS per tap, but no attempt

is made to automatically adjust the resulting stepsizes.

5.1.2 Power Delay Profile

Besides the statistical modeling of the parameter variation, another important ingredient

in Bayesian adaptive filtering is the incorporation of prior knowledge on the coefficient

sizes. Indeed, when tracking time-varying filters, it becomes possible to learn the vari-

ances of the filter coefficients. This aspect has been exploited for a while in a rudimentary,

binary form for sparse filters: filter coefficients are either adapted or deemed to small and

kept zero (for each filter coefficient, the stepsize is either 0 or a constant). More recently,

a smoother evolution of the stepsize has been introduced, leading to the Proportionate

LMS (PLMS) algorithm, motivated e.g. by acoustic echo cancelation in which the adap-

tive filter has many coefficients, but their value tapers off, see [78],[79]. Similar prior

information is starting to be taken into account for (LMMSE) channel estimation in wire-

less communications [84], where the evolution of the channel coefficient variances along

the impulse response is called the power delay profile, important developments were pre-

sented in [27, 32, 27].

5.1.3 Full Bayesian Approach

In a full Bayesian approach, the whole matricial spectrum SH(z) = SHH(z) of Hk counts:

not only the parameter variation speed/bandwidth but the whole spectral shape counts, not

only the spectral shape but also the power delay profile counts, and in principle also the

cross spectra between coefficients need to be accounted for.

The KF [13] allows to do all this in the system identification set-up, but ignores the es-
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timation of SH(z). In [77], a point of view close to the one of this is developed. However,

they require the knowledge of the (multivariate IIR) matricial spectrum of the (standard)

adaptive filter gradient (this could be estimated from the observations of the gradient) and

knowledge of the (multivariate IIR) matricial spectrum of the stationary filter parameter

vector. This last requirement is quite unrealistic. Furthermore, the design steps suggested

may be quite sensitive to estimation errors to some quantities that get estimated.

5.2 System Identification

Consider now the prototype adaptive filtering set-up, which is the system identification

set-up, in which the desired response signal yk is modeled as the output of the optimal

filter, which can be time-varying, plus independent (white) noise. The adaptive system

identification Fig. 6.1 is designed for determining a (typically linear FIR) model of the

transfer function for an unknown, time-varying digital or analog system.

+
+

-

ek+

Ĥk

ykXk

vk

Hk−1

Figure 5.1: System identification block diagram

For the performance analysis, we will assume that the adaptive filter structure is that

of an N-point FIR filter, and the input signal Xk is obtained as a vector formed by the
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most recent N samples of the input sequence xk, i.e.,

Xk = [xk, xk−1, . . . , xk−N+1]
T . (5.4)

Let Hk denote the optimal coefficient vector (in the minimum mean-squared estimation

error sense (MMSE)) for estimating the desired response signal yk using Xk. We will

assume that H(k) is time varying, and that the time variations are caused by a random

disturbance of the optimal coefficient process.

In order to make the analysis tractable, we will make use of the following assumptions

and approximations:

• Xk, yk are jointly Gaussian and zero-mean random processes. Xk is a stationary

process. Moreover, {Xk, yk} is uncorrelated with {Xn, yk} if n 6= k. This is

the commonly employed independence assumption and is seldom true in practice.

However, analysis reliable design rules in the past.

• The autocorrelation matrix RXX of the input vector Xk is a diagonal matrix and is

given by:

RXX = σ2
xI. (5.5)

While this is a fairly restrictive assumption,it considerably simplifies the analysis.

Furthermore, the white data model is valid representation in many practical systems

such as digital data transmission systems and analog systems that are sampled at

Nyquist rate and adapted using discrete-time algorithms.

5.3 Modeling of Standard Adaptive Filtering Behavior

The adaptive filter is Ĥk and the a prior error ek = yk−XH
k Ĥk−1. Consider the (complex)

LMS algorithm first

H lms
k = H lms

k−1 + µXH
k ek

= (I − µXH
k Xk)H

lms
k−1 + µXH

k vk + µXH
k Xk

= (I − µXH
k Xk)H

lms
k−1 + µXH

k vk + µRHkµ(R−XH
k Xk)(H

lms
k−1 −Hk)(5.6)



5.4. BAYESIAN ADAPTIVE FILTERING (BAF) 85

Then, assuming the adaptation speed is not too fast, we get approximately

H lms
k = [I − (I − µR)q−1]−1µR(Hk + R−1XH

k vk) (5.7)

whereas the RLS filter update is of the form

Hrls
k = Hrls

k−1 + R̂−1XH
k ek

=
1− λ

1− λq−1
(Hk + R−1XH

k vk) (5.8)

In general

Ĥk = Flms,rls(q)(Hk + R−1XH
k vk)

= F (q)Gk (5.9)

Gradient Gk = R−1XH
k yk in fact! then we can estimate SGG assume RLS or LMS with

white, where q−1Hk = Hk−1. Using averaging analysis at low adaptation speed, these

results for the sysid-up hold approximately also for the other adaptive filtering appli-

cations. Note that (Hk + R−1XH
k vk) is closely related to Gk = R−1XH

k yk, which is

a mixed quantity in that it is averaged in the input covariance but instantaneous in the

input-desired-response correlation.

5.4 Bayesian Adaptive Filtering (BAF)

In this chapter we focus on stationary time-varying parameters, we neglect transient phe-

nomena, and we consider the stationary steady-state regime. Hence we formulate the

parameter tracking problem as a Wiener filtering problem.

5.4.1 Wiener solution

We shall introduce, mostly for the purpose of analysis, a somewhat idealized Bayesian

solution which is based on the assumption that R can be estimated well. This solution
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will be based on LMMSE estimation (WF’ing) of Hk from the gradient:

Gk = R−1XH
k yk = Hk + R−1XH

k vk︸ ︷︷ ︸
G̃k

+(R−1XHX − I) Hk (5.10)

where for slow parameter variations, the last term can be neglected since it is the

product of low-pass noise Hk with high-pass noise R−1XH
k Xk − I . The optimal BAF

would be to apply the kF to (11), Gk = Hk+G̃, which can be considered as a measurement

equation for the state Hk. In steady-state, the Kf converge to the WF

Hk = F (q)Gk (5.11)

where in the non-causal case

F (q) = I − SG̃G̃(q)S−1
GG(q) (5.12)

Neglecting the last term in (5.10) and assuming that vk is white noise (hence G̃k), we

have SG̃G̃(q) = σ2
vR

−1. Hence the non-causal WF is fairly straightforward to find since

SGG can be estimated simply from the observations of Gk, though σ2
v is somewhat trickier

to derive from the observed MSE.

For the causal case, consider Nk = P (q)Gk where P (q) is the ( length) (monic) multi-

variate prediction error filter for the vector signal Gk and Nk is resulting white prediction

error with covariance matrix RNN . then the causal WF is

F (q) = I − SG̃G̃(q)R−1
NNP (q) (5.13)

5.5 Application: Mobile Radio Channel

In mobile radio communication, the transmission between a transmitter (Tx) and a mobile

receiver (Rx) takes place via many paths. A direct wave reaches the receiver if a line-of-

sight (LOS) path exists. Other waves are scattered, reflected, or diffracted at natural or

man-made obstacles. Hence, these waves are characterized by attenuation, time delay,
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and angle of- arrival.

The multipath propagation influences the resulting signal in several ways such as time

dispersion, fading, and Doppler shift. In this section, these effects are explained, and the

channel model for the simulation is introduced.

Time Dispersion The signature displaying the received signal energy versus time delay

is called the PDP. The PDP describes the time dispersion due to multipath propagation.

Shape and length of the PDP are affected by the nature of the environment, particularly

by the size and density of buildings or other obstacles.

In general, it can be assumed that short propagation paths occur more often than longer

propagation paths, yielding a higher contribution to the entire received signal energy.

According to measurements , this effect can be described by an approximately negative

exponential variation of the received signal. Very often, the influence of a certain obsta-

cle can be discerned directly in the PDP shape. Irregularities of the PDP described by

peaks or echo groups occur [36]. The different terrain types are usually separated into the

groups urban, suburban, and rural, corresponding to their building density [30]. These

qualitative descriptions are not precise and are open to different interpretation. Due to the

strong variation of realistic channels, a clear-cut separation with respect to the geographic

situations is impossible [35]. Therefore, this chapter focuses on the influence of the de-

tails of a more general PDP and Doppler shift instead of investigating the representatives

of a special area.

Fading All incoming waves combine vectorially at the receiving antenna. At a moving

receiver, the phases and amplitudes of the different multipath signals will change rapidly

due to local scatterers. The resulting spatial field pattern varies from point to point. The

probability density function (pdf) of the signal envelope variation can be approximated

by a Rayleigh distribution, if all contributing signals have about the same magnitude and

an equally distributed random phase.

When moving into shadows of buildings for example, the total path loss changes due
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to large local shadowing effects like buildings or trees. As these effects occur slowly,

compared to the fast fading described above, these fluctuations of the mean level of the

received signals are called slow fading. Measurements show that this slow fading can be

approximated by a log-normal distribution. In general, the parameters of the log-normal

pdf depend on the environment type. Hence, the standard deviation varies in the range of

2− 6dB [31].

Doppler shift Whenever relative motion exists between Tx and Rx , an apparent shift

in the frequency of the received signal occurs due to Doppler shift. The Doppler shift

is different for every incoming wave as it is related to the velocity component of the

vehicle in the incoming direction. This yields a complete Doppler spectrum. Otherwise,

assumptions about the angle-of-arrival or corresponding reference Doppler spectra should

have been made. Consequently, the results gained in this chapter are valid for the static

channel.

Channel Model We consider the uniform dynamics plus power delay profile like struc-

tured model for the optimal Doppler spectrum: SHH(ej2πf ) = Shh(e
j2πf ) D where

Shh(e
j2πf ) is scalar, f represent the Doppler shift and the matrix D is arbitrary if it were

diagonal (decorrelation filter coefficients) the diagonal would represent the power delay

profile(PDP) of the optimal filter

To simplify, we suppose, also, that the scalar spectrum Shh is a flat low-pass spectrum;

i.e.

Shihi

0 1
2

f
fi

2-1
2 -fi

2

Di

fi

Figure 5.2: Doppler spectrum representation
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5.6 Performance Analysis

In this section we will comparing the performance between the SAF and BAF in terms of

the resulting EMSE.

The EMSE is defined by

EMSE = E
[
e2

k

]−MMSE

= E
[
XH

k H̃∗
kH̃T

k Xk

]
(5.14)

where

H̃k = Hk −Hk

= (I − F (e−j2πf )) Hk − R−1 F (e−j2πf )X∗
kvk

= (I − F (e−j2πf )) Hk − F (e−j2πf )G̃k

If we make the assumption that the system variation is a zero-mean, wide-sense stationary

process with a cross-spectral density matrix SHH(e−2jπf ), and if we suppose that these

variations are independent from the input signal, the Excess MSE can be expressed in the

following form:

EMSE = tr{E(H̃kH̃
H
k R)}

= tr{R
∫ 1

2

− 1
2

S eH eHH (ej2πf )df} (5.15)

and becomes:

EMSE = trR{
∫ 1

2

− 1
2

F (ej2πf )RG̃G̃ FH(ej2πf )df}

+trR{
∫ 1

2

− 1
2

(I − F (ej2πf )) × SHH (e−j2πf )(I − FHej2πf )}df

Remark that the EMSE can be broken up into two terms:



90 5. BAYESIAN ADAPTIVE FILTERING

• Enoise = trR{∫
1
2

− 1
2

F (ej2πf )RG̃G̃ FH(ej2πf )df} characterizing the noise contribu-

tion; and can be interpreted as the estimation accuracy under stationary conditions

• Elag = trR{∫
1
2

− 1
2

(I − F (ej2πf )) SHH(ej2πf ))(I − FH(ej2πf ))}df representing the

estimation error resulting from the system variations (Lag noise)

in the RLS case

F (z) =
1− λ

1− λz−1
I, (5.16)

in the LMS case

F (z) =
µσ2

x

1− (1− µσ2
x)z

−1
I, (5.17)

in the non-causal case

F (z) = I − SG̃G̃(z)S−1
GG(z) (5.18)

in the causal case

F (z) = I − SG̃G̃(z)R−1
NNP (z) (5.19)

We deduce, thus, the EMSE expressions for the different are given by (5.20) for different

windows:

EMSERLS = Nσ2
v

1− λ

1 + λ
+ 2σ2

xtr(D)
(
λfi − λ

π

1− λ

1 + λ
arctan(

1 + λ

1− λ
tan(πfo))

)
(5.20)

EMSELMS = Nσ2
v

µσ2
x

2− µσ2
x

+ 2σ2
x(1− µσ2

x)tr(D)
(
fi − µσ2

x

π(2− µσ2
x)

(arctan
µσ2

x

2− µσ2
x

tan(πfi))
)

(5.21)

EMSEncc =
N∑

i=1

1

j2π

∮
dz

z
(

1

σ2
v

+
1

σ2
x

DiShh(z))−1 = σ2
v2fi

N∑
i=1

1

1 + σ2
v

σ2
x
Dii

1
2fi

(5.22)
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EMSEcc = σ2
v2fi

N∑
i=1

[1− (1 +
σ2

xDi

σ2
vfi

)−fi ] (5.23)

Proof. see the appendix.

5.7 Numerical Results

In this section the behavior of BAF and standard adaptive filters is compared for non-

stationary environments in a system identification setup. We consider the particular sce-

nario of Wireless Radio Channel. In all simulations presented here, the desired signal

yk is corrupted by zero mean, (iid) Gaussian noise of σ2
v variance.

We compare the minimum EMSE achieved by each variable (with optimized parameters

λ ; µ) and by a BAF.

Fig. (5.3) plots the minimum EMSE curves as a function of the power delay profile Di,

for a fixed small Doppler bandwidth (fi = 0.001). We see that the Baysian Adaptive

Filtering (BAF) given with a causal and non-causal Wiener filter performs better and the

optimal RLS and LMS have bad performance for a small Doppler bandwidth.

Fig. (5.4) plots the EMSE as a function of the power delay profile Di, for a fixed Doppler

bandwidth (fi = 0.1). We can notice that for optimal step-size in the LMS and optimal

λ = 0.97 in the RLS, the two algorithms show good performances. However, for a large

step size, the LMS algorithm does not track well, while the BAF outperforms the SAF for

different Doppler shifts.

Fig. (5.5) plots the EMSE as a function of the power delay profile Di and Doppler band-

width fi. This curve shows that the BAF performs even better than SAF.
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Figure 5.3: Comparative tracking performance results between BAF and Standard AF

using EMSE for different value of power delay profile at Doppler bandwidth (fi = f0 =

0.001)
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Figure 5.4: Comparative tracking performance results between BAF and Standard AF

using EMSE for different value of power delay profile at Doppler bandwidth (fi = f0 =

0.1)
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Figure 5.5: Comparative tracking performance results between BAF and Standard AF

using EMSE for different value of power delay profile and a different value Doppler

bandwidth (fi)

5.8 Concluding remarks

In this chapter we proposed a bayesian method based on WF tacking into account priori

information in order to improve the tracking and convergence performance. We also con-

sider the application of our proposed method in the case of mobile radio communications

where the priori information consist on PDP and Doppler shift. The numerical results

show the impact of the priori information on the performance of the propped technique.

In the following, we summarize the main characteristics of our technique

• For a small Doppler Bandwidth (DB) the optimal RLS and LMS track poorly for

different values of PDP.

• For a large Doppler Bandwidth, the LMS with a small step-size and RLS with

optimal λ track well but do not outperforme the BAF. Also for a large step-size the

LMS does not track properly.

• For the different aprior information (DB and PDP), the standard adaptive filtering
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(LMS and RLS) are not bad, but the BAF still show the best performance.

In the following chapter we propose and other Bayesian technique based on KF.

APPENDIX

EMSE for a causal WF

The z-transform of the causal WF window is given by:

F (q) = I − SG̃G̃(q)R−1
NNP (q) (5.24)

where Nk = P (q)Gk and P (q) is the (∞ length) (monic) multivariate prediction error

filter for the vector signal Gk and Nk is resulting white prediction error with covariance

matrix RNN

I − F (q) = σ2
vR

−1R−1
NNP (q) , I − Fo(q) = σ2

vR
−1R−1

NN (5.25)

then

SHH = σ4
vR

−1R−1
NN

∫
PSGGPHR−1

NNR−1df

+σ2
vR

−1 − 2σ4
vR

−1R−1
NNR−1 (5.26)

EMSE = tr(RSHH)

= σ2
vN − σ4

vtr{R−1
NNR−1} (5.27)
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ri,NN = exp[

∫
ln(shihi

(f) +
σ2

v

σ2
y

)]

= exp[fi ln(
Di

fi

+
σ2

v

σ2
y

) + (1− fi) ln
σ2

v

σ2
y

]

=
σ2

v

σ2
y

(
1 +

Diσ
2
y

fiσ2
v

)fi (5.28)

finally

EMSE = σ2
vN − σ4

vtr{R−1
NNR−1}

= σ2
vN − σ4

v

N∑
i=1

(
1 +

Diσ
2
y

fiσ2
v

)−fi

= σ2
v

N∑
i=1

(
1− (

1 +
Diσ

2
y

fiσ2
v

)−fi
)

(5.29)

EMSE for a non-causal WF

The z-transform of the causal WF window is given by:

F (q) = I − SG̃G̃(q)SGG = σ2
vR

−1(SHH + σ2
vR

−1) (5.30)

(I − F )SHH(I − F )H + FSG̃G̃FH = σ4
vR−1

(
SHH + σ2

vR−1
)−1

SHH

(
SHH + σ2

vR−1
)−1

R−1

+SHH

(
SHH + σ2

vR−1
)−1

σ2
vR−1

(
SHH + σ2

vR−1
)−1

SH
HH

then

tr{R(
(I − F )SHH(I − F )H + FSG̃G̃FH

)} = σ4
vtr{R−1

(
SHH + σ2

vR−1
)−1

SHH

(
SHH + σ2

vR−1
)−1}

+σ2
vtr{SHH

(
SHH + σ2

vR−1
)−1(

SHH + σ2
vR−1

)−1
SH

HH}
= σ2

vtr{(SHH + σ2
vR−1

)−1
SHH}

finally
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EMSEncc =
N∑

i=1

1

j2π

∮
dz

z
(

1

σ2
v

+
1

σ2
x

DiShh(z))−1 = σ2
v2fi

N∑
i=1

1

1 + σ2
v

σ2
x
Dii

1
2fi

(5.31)

EMSE for RLS

The z-transform of the exponential window RLS is given by:

FE(z) =
1− λ

1− λz−1
(5.32)

In order to perform the analytical expression of the Excess MSE in the case of a exponen-

tial window, we start calculating the quantity
∫ fi

0

∣∣1− FE(e2jπf )
∣∣2 df .

∣∣1− FE(e2jπf )
∣∣2 =

2λ2 (1− cos (2πf))

1− 2λ cos (2πf) + λ2

The previous expression can be expanded as

∣∣1− FE(e2jπf )
∣∣2 =

2λ2 − 2λ

1− 2λ cos (2πf) + λ2
+

2λ (1− λ cos (2πf))

1− 2λ cos (2πf) + λ2
(5.33)

On the other hand, we have:
∫

1− a2

1− 2a cos(x) + a2
dx = 2arctan

(
1 + a

1− a
tan

(x

2

))

∫
(1− a cos x)

1− 2a cos x + a2
dx =

x

2
+ arctan

(
1 + a

1− a
tan

(x

2

))

Using the integration change of variables x = 2πf , we have
∫ fi

0

∣∣1− FE(e2jπf )
∣∣2 df = λfi − λ

π

1− λ

1 + λ
arctan

(
1 + λ

1− λ
tan (πfi)

)

Using an exponential windowing for RLS, The Excess MSE is given by:

EMSE = Nσ2
n

1− λ

1 + λ
+ 2σ2

x

∑
i=1

NDi

(
λfi − λ

π

1− λ

1 + λ
arctan

(
1 + λ

1− λ
tan (πfi)

))
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Chapter 6

Bayesian Adaptive Filtering :

EM-Kalman Algorithm

In this chapter we continue our study of the Bayesian Adaptive Filtering (BAF) concept

that we introduced in the previous chapter. The proposed technique is based on mod-

eling the optimal adaptive filter coefficients as a stationary vector process, in particular

as a AR(1) model. Optimal adaptive filtering with such a state model becomes Kalman

filtering. The complexity of the resulting algorithm is O(N3) and in order to reduce this

complexity we propose a diagonal AR(1) based approach of complexity O(N2) which

is comparable to RLS complexity. For the AR(1) model parameters estimation, we pro-

pose an adaptive version of the EM algorithm with complexity limited to O(N). The

proposed parameters estimation method leads to linear prediction on reconstructed op-

timal filter correlations, and hence a meaningful approximation/estimation compromise.

To further reduce the initial adaptive EM-Kalman algorithm complexity, we develop a

second approach based on component-wise EM-Kalman (This technique is of complexity

O(N) which is comparable to LMS complexity). To compare the proposed algorithms

performance, we derived the analytical expressions of EMSE in the steady-state in the

general case and we proposed a comparison for the application to radio mobile com-

munications where the priori information is the fading, PDP and the Doppler shift. The

former proposed algorithm is outperformed by the adaptive EM-Kalman based algorithm,

in terms of tracking and convergence. To offer comparable performance with the adaptive
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EM-Kalman algorithm with same complexity of component-wise EM, we propose in the

following chapter a two-stage technique.

6.1 Parameter Estimation via the EM algorithm

Consider now the prototype adaptive filtering set-up, which is the system identification

set-up, in which the desired response signal yk is modeled as the output of the optimal

filter, which can be time-varying, plus independent (white) noise. The adaptive system

identification Fig. 6.1 is designed for determining a (typically linear FIR) model of the

transfer function for an unknown, time-varying digital or analog system. Let consider

+
+

-

ek+

Ĥk

ykXk

vk

Hk−1

Figure 6.1: System identification block diagram

the system defined bellow

Hk = AHk−1 + Wk

yk = XH
k Hk−1 + vk (6.1)

In this section we develop the EM algorithm for estimating the parameters of (6.1).

Perhaps the most important step in applying the EM algorithm presented in the previous

chapter, to a particular problem is choosing the missing data. The missing data should

be chosen so that the maximization of U(θ, θk) for any value of θ = (A,Q) is easy to

perform, and that the expectation step is possible .
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Fortunately, in this case, the choice of missing data is not too difficult.

Let us imagine for a moment that, in addition to the system inputs and outputs, Hk and Yk

respectively, the state Hk was available thus, ML estimation of A reduces to its application

to (6.1). The covariance elements, Q, of Wk could then be calculated from the residuals.

Moreover, the conditional expectation of state sequence is calculated using a (slightly

augmented) Kalman Smoother. All of this suggests that the state sequence is a desirable

conditionat for the missing data. We therefore designate Y as the incomplete data so that

the complete data set is Z = (Hk, Yk).

In order to develop a procedure for estimating the parameters in the state-space model

defined by (6.1), we note first that the joint log-likelihood of the complet data Z can be

written in the form

First, by repeated application of Bays Rule

fZ(z, θ) = f(H|Y = y).fY (y; θ) (6.2)

where fZ(z, θ) is the probability density associated with Z and fZ|Y =y(z, θ).fY (y; θ) is

the conditional probability density of Z given Y = y. Taking the logarithm on both sides

of (6.2),

log fY (y, θ) = log fZ(z, θ)− log f(H|Y = y) (6.3)

Note that the logarithm function is monotonic in its semi-positive argument and any prob-

ability density function (p.d.f.) is semi-positive, it follows that the maximising argument

of any p.d.f. will be the same as for the logarithm of that function.

Of course equation (6.3) requires knowledge of the complete data set and therefore can-

not be calculated. Suppose that, instead of calculating equations (6.3), we calculate an

approximation of (6.3) derived as an expectation over the space of HN , and conditioned

upon the actual observations, as well as some estimate of the vector θ say θ̂ then we obtain

Eθ̂{logfY (y, θ) | Y } = Eθ̂{log fZ(z, θ) | Y } − Eθ̂{log f(H|Y = y) | Y } (6.4)

or alternatively,

L(θ) = U(θ, θ̂k)− V (θ, θ̂k)
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where the following definitions have been used.

L(θ) = log fY (y, θ)

U(θ, θ̂k) = Eθ̂{log fZ(z, θ) | Y }
V (θ, θ̂k) = Eθ̂{log f(H|Y = y) | Y }

We can interpret the function U(θ, θ̂k) as the projection of the likelihood function that

we want to solve onto the space spanned by Z and in directions informed by θ̂. In other

words, it is our estimate of the log-likelihood function associated with the complet data.

With this definition we can writ

L = log fθ(Hk, YM , θ|YM)

= −M log detQ−M log detR +
M∑

k=1

tr(Hk − AHk−1)Q
−1(Hk − AHk−1)

H

+
M∑

k=1

tr(yk −XH
k Hk−1)R

−1(yk −XH
k Hk−1)

H (6.5)

The log-likelihood given above depends on the unobserved data Hk. We consider

applying the EM algorithm conditionally with respect to the observed ensemble Y . That

is, the estimated parameters at the (k + 1) − th iteration are the values A and Q that

maximize

U(θ, θ̂k) = Eθ̂k
{log fθ(Hk, YM , θ|YM)} (6.6)

where Eθ̂k
denotes the conditional expectation relative to a density containing the k − th

iteration values.

In order to calculate the conditional expectation defined in (??), it is convenient to define

the conditional mean

Ĥk = Eθ̂k
{H0

k |YM}
Pk = E[H̃kH̃

H
k |YM}

Pk−1 = E[H̃k−1H̃
H
k−1|YM}
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we suppose the following definitions

Πk|k =
M∑

k=1

(Eθ̂k
{Hk−1(Hk−1)

H |YM}+ Pk−1)

Πk−1|k =
M∑

k=1

(Eθ̂k
{HkH

H
k |YM}+ Pk)

Πk,k−1|k =
M∑

k=1

(Eθ̂k
{HkH

H
k−1|YM}+ Pk,k−1) (6.7)

The Kalman filter terms Ĥk, Pk and Pk,k−1 are computed under the parameter values

Ak and Qk using the recursions in (6.7). Maximizing (6.6) w.r.t. A and Q, we obtain

Maximum with respect to a: Differentiating the expected log-likelihood with respect to

A yields:

∂E[l(θ)]

∂A
= Q−1−1

2
(−2Πk,k−1 + 2AΠk−1) (6.8)

Equating this result to zero yields the value of A that maximizes the approximate log-

likelihood:

Ak+1 = Πk,k−1|k(Πk−1|k)
−1 (6.9)

Maximum with respect to R: Differentiating the expected log-likelihood with re-

spect to R−1 gives:

∂E[l(θ)]

∂R−1
= −

M∑

k=1

1

2
(yk − ŷk)(yk − ŷk)

∗ +
M

2
R (6.10)

Hence, by equating the above result to zero, the maximum of the approximate log-

likelihood with respect to R is given by:

R =
1

M

M∑

k=1

(yk − ŷk)(yk − ŷk)
∗

(6.11)

Maximum with respect to Q: Maximum with respect to q Following the same steps, the

derivative of the expected log-likelihood with respect to Q−1 is given by:

∂E[l(θ)]

∂R−1
= −1

2
(Πk − 2AΠ∗

k,k−1 + AΠk−1A
∗) +

M

2
Q
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Hence, equating to zero and using the result that

Ak+1 = Πk,k−1|k(Πk−1|k)−1, the maximum of the approximate log-likelihood with re-

spect to q is given by:

Qk+1 =
1

M
(Πk|k −Πk,k−1|k(Πk−1|k)

−1ΠH
k,k−1|k) (6.12)

6.2 Adaptive EM-Kalman Algorithm

In our study, the tasks of smoothing in a missing data context, introduced in the previous

chapter, are interpreted as basically the problem of estimating the BAF Hk in the state-

space model (6.1). The conditional means provide a minimum MSE solution based on

the observed data. The parameters Q and A are estimated using the EM algorithm. The

estimation of the optimal filter variation is carried out by KF’ing and one step smoothing

and we introduce an EM approach to iteratively update the parameter model.

The resulting algorithm is shown in Table 6.2 of Adaptive EM-Kalman filter. The com-

plexity of Kalman filter is limited to O(N2) order and the Adaptive Kalman filter has

the same order of complexity. To reduce the complexity of our algorithm we propose a

Component-Wise Adaptive Kalman filter, which is based on the estimation of each pa-

rameter one by one.

6.3 MAP-ML Estimation

The value of Hk that maximizes the posterior density (that is, the mode of the posterior

density) is called the maximum a posterior probability estimate of Hk.

If the posterior density of Hk given A, Q and Y is unimodal and symmetric, then it is easy

to see that the MAP estimate and the mean squared estimate coincide, since the posterior

density attains its maximum value at its expected value.
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Adaptive EM-Kalman Algorithm

Computation Cost (×)

Initialization

Ĥ0|0 = 0̂ , P0|0 = 100I ,

A0 = αI , Q0 = (1− α)I 2N

Π0|0 = 0 , Π1,0|0 = 0, Π1|0 = 0

γ(0) = 0

Kalman filtering and one step smoothing

Ĥk|k−1 = ÂkĤk−1|k−1 N2

ŷk|k−1 = xH
k Ĥk|k−1 N2

Kk = Pk|k−1xk N2

Mk = (xH
k Kk + σ2

v)−1 N

Kf
k = KkMk 1

Ck−1 = Pk−1|k−1AH
k P−1

k|k−1 2N2

Ĥk−1|k = Ĥk|k−1 + Kf
k(yk − ŷk|k−1) 1

Pk|k−1 = AkPk−1|k−1AH
k + Qk N(N−1

2 )

Ĥk|k = Ĥk|k−1 + A−1
k (Kk −Qkxk)Mk(yk − ŷk|k−1) N + 1

Pk|k = Pk|k−1 −Kf
kK

H
k 1

Pk−1|k = Pk−1|k−1 + Ck−1(Pk|k −Pk|k−1) N2

Model Parameters Adaptation

Πk|k = λΠk|k−1 + diag(Ĥk|kĤH
k|k + Pk|k) N

Πk−1|k = λΠk−1|k−1 + diag(Ĥk−1|kĤH
k−1|k + Pk−1|k) N

Dk = Pk|kCH
k−1 = AkPk−1|k−1 −Kf

k(A−1
k (Kk −Qkxk))H 2N

Πk,k−1|k = λΠk,k−1|k−1 + diag(Ĥk|kĤH
k−1|k + Dk) N

Qk+1 = 1
γk

(Πk|k −Πk,k−1|k(Πk−1|k)−1(Πk,k−1|k)H) 2N

γk = γk−1 + 1

Ak+1 = Πk,k−1|k(Πk−1|k)−1 N

cost/update 7.5N2 + 11.5N + 3

Figure 6.2: Adaptive EM-Kalman Algorithm
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Let the sequence filter Hk be considered as a random variable distributed according to the

posterior density fHk
(hk). The posterior distribution for H, is given by

fHk,Y |A,Q(hk, y | A,Q) (6.13)

then ĤkMAP is obtained by maximizing the logarithm of the posterior density with respect

to Hk. Initially, A0 and Q0 are set to a certain initial value. After the first iteration, Ak+1

and Qk+1 are obtained by ML, given Ĥk,MAP .

6.4 Component-wise Adaptive Kalman Algorithm

Our goal is to design an optimal algorithm with reduced complexity in a realistic envi-

ronment, considering the filter coefficients to estimate as random variables. In a previous

section, a Bayesian Adaptive Filtering (BAF) approach has been proposed, showing a

complexity of order O(N2). To reduce the complexity of the algorithm presented in

Table of Adaptive EM-Kalman filter, we propose a Component-Wise Adaptive Kalman

algorithm to update the filter coefficients, which decreases computational complexity in 1

order of magnitude while preserving convergence. Experimental results will be shown for

the proposed algorithm, comparing to KF filtering and Adaptive Kalman algorithms.The

filter parameters are iteratively computed through M iterations. The system (6.1 becomes

for n = 1 . . . N , where N is the length of the filter

hk,n = anhk−1,n + wk,n (6.14)

yk = hk−1,nxk,n +
N∑

j 6=n

hk−1,nxk,n + vk (6.15)

and

hk = ĥk + h̃k

we can write

yk −
N∑

j 6=n

ĥk−1,nxk,n = hk−1,nxk,n +
N∑

j 6=n

h̃k−1,nxk,n + vk
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In each iteration yk and vk are updated as follows

y′k = yk −
N∑

j 6=n

ĥk−1,nxk,n

and

v′k =
N∑

j 6=n

h̃k−1,nxk,n + vk

Component Wise EM-Kalman algorithm

- Begin with an arbitrary set

- For i=1:N -Compute: hi,k = aihi,k−1 + wi,k

yk = x∗i,khi,k−1 +
∑i−1

j=1 x∗i,khi,k−1 + vk

= x∗i,khi,k−1 +
∑i−1

j=1 x∗i,k(ĥi,k−1 − h̃i,k−1) + vk

=⇒
yk −

∑i−1
j=1 x∗i,k(ĥi,k−1) = x∗i,khi,k−1 −

∑i−1
j=1 x∗i,kh̃i,k−1 + vk

y
′
k = x∗i,khi,k−1 + v

′
k- EM-Kalman

-Complexilty O(N) order

The missing data should be chosen so that the task of maximizing U(θ, θk
n), for n =

1 . . . N , θl
n = (an, qn) is easy and so that it is possible to perform the expectation step.

Fortunately, in this case, the choice of missing data is not too difficult. Let us imagine

for a moment that, in addition to the system inputs and outputs, xk,n and Yk respectively,

the state hn was available then ML estimation of an reduces to applying to (6.15). The

covariance elements, qn, of wk could then be calculated from the residuals. Moreover, the

conditional expectation of state sequence may be calculated using a (slightly augmented)

Kalman Smoother. All of this suggests that the state sequence is a desirable conditionat

for the missing data. We therefore designate Y as the incomplete data so that the complete

data set is Z = (hn, Y ).
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For the n− th iteration the log-likelihood function can be written as

L = −2 log fθ(hn, YM , θ|Y )

= N log detqn

+
M∑

k=1

q−2
n (hk,n − anhk−1,n)(hk,n − anhk−1,n)H

+
M∑

k=1

σ−2
v (yk − xH

k,nhk−1,n)(yk − xH
k hk−1,n)H (6.16)

where L is to be maximized with respect to parameters an and qn . Since the log-likelihood

given above depends on the unobserved data hk,n, we consider applying the EM algorithm

conditionally with respect to the observed Y . That is, the estimated parameters at the

(k + 1)− th iterate as the values an and qn which maximize

U(θ, θ̂k) = Eθ̂k
{log fθ(hn, YM , θ|Y )} (6.17)

where Eθ̂k
denotes the conditional expectaion relative to a density containing the k th it-

erate values.

In order to calculate the conditional expectation defined in (6.5), it is convenient to define

the conditional mean

ĥk,n = Eθ̂k
{hk,n|Y }

and Pk,n = E{h̃k,nh̃H
k,n}

we suppose the following definitions

πk,n|k =
M∑

k=1

Eθ̂k
{hk−1,nhH

k−1,n|Y }+ Pk−1,n

πk−1,n|k =
M∑

k=1

Eθ̂k
{hk,nhoH

k,n|Y }+ Pk,n

πk,k−1,n|k =
M∑

k=1

Eθ̂k
{hk,nhH

k−1,n|Y }+ Pk,k−1 (6.18)

The Kalman filter terms ĥk,n, Pk,n and Pk,k−1 are computed under the parameter values

an,k and qn,k using the recursions in (6.16).Furthermore, it is easy to see that the choices
qk+1,n+1 =

1

γk

(πk|k − πk,k−1|k(πk−1|k)
−1(πk,k−1|k)

H)

ak+1,n+1 = πk,k−1|k(πk−1|k)
−1
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maximize the last two lines in the Expectation-likelihood function (6.5). In our study, the
tasks of smoothing in a missing data context are interpreted as basically the problem of
estimating the BAF hk,n in the state-space model (6.15). The conditional means provide
a minimum MSE solution based on the observed data. The parameters qn and an are
estimated by ML using the component-wise EM algorithm. We simplify the estimation
problem by considering an and qn diagonal matrices. The filter parameters are iteratively
computed through M iterations. The estimation of the optimal filter variation is carried
out by KF’ing and one step smoothing and we introduce an EM approach for iteratively
update the parameter model.
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The algorithm is resulting in Table of component-wise Adaptive EM-Kalman.

Adaptive Component-Wise EM-Kalman Algorithm

Computation Cost (×)

Initialization

ĥ0|0 = 0 , P0|0 = 100 ,

a0 = α , q0 = (1− α)

π0|0 = 0 , π1,0|0 = 0, π1|0 = 0

γ0 = 0

Kalman filtering and one step smoothing

for n = 1 . . . N

ĥk,n|k−1 = an,kĥk−1,n|k−1 1

ŷk,n|k−1 = xH
n,kĥk,n|k−1 1

Kn,k = Pk,n|k−1xk 1

Mk,n = (xH
k,nKn,k + σ2

v)−1 1

Kf
n,k = Kn,kMn,k 1

Cn,k−1 = Pn,k−1|k−1a
H
n,kP−1

n,k|k−1 2

ĥn,k−1|k = ĥn,k|k−1 + Kf
n,k(yk − ŷk,n|k−1) 1

Pk,n|k−1 = an,kPk−1,n|k−1a
H
n,k + qn,k 1

ĥk,n|k = ĥk,n|k−1 + an,k(Kk − qn,kxk)Mk(yk − ŷk,n|k−1) 2

Pk,n|k = Pk,n|k−1 −Kf
n,kKH

n,k 1

Pk−1,n|k = Pk−1,n|k−1 + Cn,k−1(Pn,k|k − Pn,k|k−1) 1

Model Parameters Adaptation

πn,k|k = λπk,n|k−1 + diag(ĥn,k|kĥH
n,k|k + Pn,k|k) 1

Πn,k−1|k = λπn,k−1|k−1 + diag(ĥn,k−1|kĥH
n,k−1|k + Pn,k−1|k) 1

Dn,k = Pn,k|kCH
n,k−1 = an,kPn,k−1|k−1 −Kf

n,k(a−1
n,k(Kn,k − qn,kxn,k))H 2

πn,k,k−1|k = λπn,k,k−1|k−1 + diag(ĥn,k|kĤH
n,k−1|k + Dn,k) 1

qn,k+1 = 1
γk

(πn,k,|k − πn,k,k−1|k(πn,k−1|k)−1(πn,k,k−1|k)H) 2

γk = γk−1 + 1

an,k+1 = πn,k,k−1|k(πn,k−1|k)−1 1

cost/update 21N
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6.5 Simplified Component-Wise adaptive Kalman algo-

rithm

We consider A to be an identity matrix. Hence the complexity of the adaptive part is

comparable to the one exhibited by tap Variable Step-Size (TVSS) LMS [21], [17, 18, 14],

like 4N . In practice A tends to the identity matrix when MSE converges to MMSE.

The process is low-pass which is equivalent to a random walk.

6.6 Performance Analysis

In this section we will compare the performance of the BAF and SAF in terms of the

resulting EMSE.

6.6.1 Steady-State Excess Mean-Square Error (EMSE)

The state estimate update is given by Kalman as :

Ĥk|k = AĤk−1|k−1 + Kk(yk −XkAĤk−1|k−1)

= AĤk−1|k−1 + KkX
H(Hk−1 − AĤk−1|k−1)

+Kkeopt

= AĤk−1|k−1

+
Pk|kXkX

H
k

σ2
v

(Hk−1 − AĤk−1|k−1)

+Kkeopt (6.19)

Where Kk =
Pk|kXk

σ2
v

and eopt represents the minimum(in a mean square sense) error at time k. In studying

tracking behavior, we may exclude the influence of the estimation noise, since the de-

viation of E[Hk|k] from Hk determines the response of the BAF algorithm to the non-
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stationarity of the environment. Taking expected values on both sides of (7.20), we get

E[Ĥk|k] = AE[Ĥk−1|k−1]

+
Pk|kE[XkX

H
k ]

σ2
v

)(Hk−1 − AE[Ĥk−1|k−1])

= AE[Ĥk−1|k−1]

+
Pk|kR

σ2
v

(Hk−1 − AE[Ĥk−1|k−1]) (6.20)

the lag-error is given by

H̃k = E[Ĥk|k]−Hk

H̃k = AE[Ĥk−1|k−1]−
Pk|kRA

σ2
v

(H̃k−1)

+
Pk|kR

σ2
v

(Hk−1 − AHk−1)−Hk + AHk−1

= AE[Ĥk−1|k−1]−
Pk|kRA

σ2
v

(H̃k−1)

+(
Pk|kR

σ2
v

(I − A) + A)Hk−1 −Hk

≈ (I − Pk|kR
σ2

v

)AH̃k−1 + AHk−1 −Hk (6.21)

The input is considered to be white (R = σ2
xI), note that, each element of the lag-error

vector is determined by the following relation:

h̃i(k) = (1− pi,k|kσ2
x

σ2
v

)Aih̃i,k−1 + Aihi,k−1 − hi,k. (6.22)

where h̃i(k) is the ith element of H̃k. By properly interpreting the equation above, we can

say that the lag is generated by applying the transformed instantaneous optimal coefficient

to a first-order discrete-time filter denoted lag filter

H̃i(z) =
Aiz

−1 − 1

1− (1− σ2
xpi,k|k

σ2
v

)Aiz−1
Hi(z) (6.23)

Using the inverse z-transform, the variance of the elements of the vector H̃(k) can

then be calculated by

E[h̃i(k)h̃H
i (k)] =

1

2πj

∮
H̃i(z)H̃i(z

−1)Qiz
−1dz
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The BAF excess mean square error due to lag is then given by Eq. (7.25)

EMSE =
N∑

i=1

EMSEi (6.24)

where

EMSEi = σ2
xpi = σ2

x

−( Qi

SNRi
+ Qi) + Qi

√
(1 + 1

SNRi
)2 + 4 σ2

x

σ2
v
| Ai |2

2 | Ai |2 (6.25)

where SNRi = σ2
xQi

σ2
v(1−|Ai|2)

, the time constant is given by τ = 1
1−|Ai| and Qi = Q1β

i

(where βi is the PDP).

6.6.2 Simplified Expression for Bayesian Adaptive Filtering

In simplified scenarios (e.g. high SNR, slow variation) we can write

pi =
1− | Ai |2
1 + SNRi

=
4πβi

1 + SNRi

where 1− | Ai |2= 4πβi

The misadjustement of BAF is given by

M =
EMSE

MMSE

= 2π
σ2

x

σ2
v

N∑
i=1

βi

1 + SNRi

If all βi are the same, then
∑N

i=1
1

1+SNRi
is the inverse of the harmonic mean of 1+SNRi

and 1

(
PN

i=1
1

1+SNRi
)
≤ ∑N

i=1(1 + SNRi) (the arithmetic mean) And βi can be lows if Ai is

complex Ai =| Ai | ej2πfi , where fi is Doppler shift and | Ai |= 1 − 2πβi (if | Ai | is

sufficiently close to one) Then in this case the EMSE of Kalman, depend only on the PDP

βi, while the EMSE in the SAF case depend on the PDP and fi.

and the SAF excess mean square error due to lag is then given by Eq. (6.39).
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6.7 RLS and LMS EMSE’s style BAF

6.7.1 Tracking Behavior

The problem we examine here involves adaptive filtering of an unknown time-varying

system using an LMS and RLS transversal filters. Also, it is of interest to learn how the

tracking error in Ĥk affects the output MSE ([21]). Here, the effect of the measurement

noise are not considered, since only the nonstationary effects are considered. Also, both

effects on the MSE can be added since, in general, they are independent.

For an RLS transversal filter, the adaptation equation yields

Ĥk = Ĥk−1 + KKek,

= Ĥk−1 + R̂−1
k XkX

H
k

(
Hk−1 − Ĥk−1

)
+ Kkvk (6.26)

where we have defined

yk = XH
k Hk−1 + vk (6.27)

where vk represents the minimum (in a mean square sense) error. In studying behavior,

we may exclude the influence of the estimation noise, since the deviation of EĤk from

Hk determines the response of the adaptive algorithm to the non-stationarity of the en-

vironment. Tracking expected values on both sides of (6.26) and assuming that R̂k is

independent of Xk and vk, and assuming the fact that Xk and vk are orthogonal, we get

E[Ĥ]k = E[Ĥk−1] + E[R̂−1
k XkX

H
k ]

(
Hk−1 − E[Ĥk−1]

)
. (6.28)

In ([21]) show that if the variations of the environment are slow with respect to the

memory of the adaptive algorithm then, independently of the adaptive system structure,

we approximately have

E[R̂−1
k XkX

H
k ] = (1− λ)I (6.29)

Substituting (6.28) into (6.29), we finally get

E[Ĥ]k = E[Ĥk−1] + (1− λ)
(
Hk−1 − E[Ĥk−1]

)
. (6.30)
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Now defining the lag-error vector in the coefficients as

H̃k = E[Ĥ]k −Hk (6.31)

From equation (6.30) it can be concluded

H̃k = λH̃k−1 −Hk + Hk−1. (6.32)

From (6.32) is equivalent to say that the lag is generated by applying the optimal instan-

taneous value Hk through a first order discrete-time filter as follows:

H̃i(z) =
z−1 − 1

1− λz−1
Hi(z) (6.33)

The discrete-time filter transient response converges with a time constant given by

τ =
1

1− λ
(6.34)

The time constant is of course the same for each individual coefficient. Note that the

tracking ability of the coefficients in the RLS algorithm is independent of the input-signal

correlation-matrix eigenvalues.

In the BAF the optimal coefficients values are an AR(1)

Hk = AHk−1 + Wk (6.35)

Where, E[WkW
H
k ] = Q. A and Q are diagonal.

The excess mean square error du to lag is then given by

EMSE = E[H̃H
k RH̃k]

= E[tr(RH̃H
k H̃k)]

= tr(RE[H̃H
k H̃k]) (6.36)

For the unknown coefficient vector with the model above, the lag-error vector can be

generated by applying the elements of the noise process Wk to discrete-time filter with

transfer function

F (z) =
(z−1 − 1)

(1− λz−1)(1− Aiz−1)
(6.37)

Where Ai represent the ith diagonal element of A.
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This transfer function consists of a cascade of the lag filter with the all pole filter rep-

resenting the AR(1). The solution for the variance of the lag terms H̃i,k can be computed

through the inverse z-transform as follows:

E[H̃H
i,kH̃i,k] =

1

2πj

∮
F (z)F (z−1)Qiz

−1dz (6.38)

The integral above can be solved using the residue theorem. Assuming the input signal

to be white R = σ2
x, then the EMSE du to lag is given by

EMSERLS = σ2
x

N∑
i=1

Qi

Ai(1 + λ2)− λ(1 + A2
i )

(1− λ

1 + λ
− 1− Ai

1 + Ai

)
(6.39)

(6.40)

With the same analysis we obtain the EMSE for LMS as follows

EMSELMS =
1

4µ

N∑
i=1

AiQi

1− σ2
xA

2
i

)

(6.41)

This result is obtained assuming relatively slow variation:

P ≈ E[P ] and E[P−1] ≈ (E[P ])−1

The Fig. (6.3) shows, for a slow variation the approximative EMSE is the same one that

real EMSE given by recursive Riccati equations.
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Figure 6.3: Comparative tracking performance results between misadjustement given

by exact and approximate EMSEs for slow (Ai = 0.99 τ = 5N ) and Medium

(Ai = 0.90 τ = 0.5N ) variations at SNR = 15 dB and β = 0.9

6.8 Application: Mobile Radio Channel

In this section we use the same application as in the last chapter, with a different structure

of the channel model.

The model in this chapter will take into consideration all parameters characterizing the

channel without any exception. The matrix A represent the attenuation plus the angle of

arrival A =| A | e−jφ and Q is the matrix representing the PDP.

6.9 Numerical Results

Here, we consider a non-stationary environment and we compare the behavior of BAF

(given by an Adaptive EM-Kalman algorithm) and standard adaptive filters. In all sim-

ulations presented here, the desired signal yk is corrupted by zero mean, (iid) Gaussian

noise of variance σ2
v .

The proposed algorithms are implemented with the model parameters | Ai |= 1 − α/N ,



116 6. BAYESIAN ADAPTIVE FILTERING : EM-KALMAN ALGORITHM

with α = 0.4 ,φ is considered random, Qi = Q1βi is chosen such as QN

Q1
¿ 1 and the

length of the filter is N = 20.

Fig. 6.4 and Fig. 6.5 plot the total Excess Mean Square Error (EMSE) as a function

of the PDP for a BAF and an optimal SAF for respectively medium and slow channel

variations. We can notice that in both senarios, the BAF performs better than SAF. In the

case of fast variations, optimal RLS and LMS shows very bad performance compared to

slow variations.

In Fig. 6.6, we plot the BAF and SAF misadjustements vs. the SNR. Once again the BAF

show better performance than the SAF.

As Fig 6.7 shows, the proposed Adaptive EM-Kalman algorithm converges to the optimal

estimator. The convergence speed of the proposed algorithm is approximately the same as

the of the conventional deterministic Kalman filtering (known parameters). Fig. 6.8 shows

that the proposed Component-Wise adaptive Kalman algorithm converges in the steady-

state to Kalman with known parameters. The convergence speed however is slower than

in the cases of conventional adaptive EM-Kalman and Kalman algorithms. In the steady-

state the two proposed algorithms outperform the existing stadard adaptive filtering ap-

proaches. Hence, the complexity of Component-Wise adaptive Kalman filter is linear in

N , the adaptive filter order.

The good performances shown by the Component-Wise EM-Kalman motivates the study

of next chapter where we invitigate algorithm with improved tracking and convergence

propreties.
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(Ai = 0.90 τ = 0.5N )
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Figure 6.8: Comparison between the proposed CW-EM Adaptive Kalman algorithm and

Kalman filter typical algorithms at SNR=15 dB, β = 0.9 and τ = 5N

6.10 Conluding Remarks

In this chapter we studied the Bayesian Adaptive Filtering (BAF). We thus proposed

different algorithms with incrementaly reduced complexity and with performances ap-

proaching thus of Kalman filter. We modeled the optimal adaptive filter coefficients vari-

ation as a stationary vector process, in particular as a AR(1) model. The filter parameters

are adapted using the EM technique introduced in chapter 4 which has a complexity of

the order of O(N). We also derived analytical expressions for the EMSE for the different

proposed algorithms. An evaluation in the radio mobile channel showed the good perfor-

mances of our proposed techniques.

In the next chapter, we continue our study of BAF to propose improved algorithms with

better tracking and convergence properties with reduced complexity.

Appendix

By using the convergence properties of the EM based algorithm developped in the chapter

4, the study the convergence of the EM technique used in the proposed CW EM-Kalman
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algorithm.

The system 6.15 becomes for n = 1 . . . N , where N is the length of the filter

hk,n = anhk−1,n + wk,n (6.42)

yk = hk−1,nxk,n +
N∑

j 6=n

hk−1,nxk,n + vk (6.43)

we can write

yk −
N∑

j 6=n

ĥk−1,nxk,n = hk−1,nxk,n +
N∑

j 6=n

h̃k−1,nxk,n + vk

In each iteration yk and vk are updated as follows

y′k = yk −
N∑

j 6=n

ĥk−1,nxk,n

and

v′k =
N∑

j 6=n

h̃k−1,nxk,n + vk

where wk and v′k are sequences of scalar-valued i.i.d. random variables distributed as

E[wkw
T
k ] = q and E[v′kv

′T
k ] = r.

for convenience, the parameters of this system shall be collected into the optimal vector

θo = [ao qo]T

In order to avoid problems with the information matrices becoming unbounded as we

allow the number of data to tend to infinity, we shall, entirely equivalently, employ the

average value of this information matrix per sample is defined as

¯Γaug = lim
N→∞

1

N
Γaug

= lim
N→∞

−1

N
[

∂2

∂θ∂θT
U(θ, θo)]|θ=θo

=

(
1

1−(ao)2
0

0 qo

r(1−(ao)2)

)
(6.44)

Discusion

The global rate of convergence of the EM algorithm is determined by the eigenvalue of

Γaug small eigenvalues imply fast convergence. Since the eigenvalues of a diagonal matrix
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are its diagonal elements it’s quite clear, from equation (6.44), how the rate convergence

of the algorithm is affected by the system parameters, as the number of data tends to

infinity.

The first diagonal element of the matrix in equation (6.44) will be small if ao << 1, that

is, if the underlying system has fast dynamics.
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Chapter 7

A Two Stage Approach to BAF

In the previous chapters, we proposed different Bayesian techniques with different com-

plexities. Thus we proposed a EM-Kalman algorithm with complexity O(N2). To re-

duce the complexity, we presented the adaptive component-wise EM-Kalman technique

with complexity O(N) but which shows performance limitation in termes of tracking and

convergence compared the previous technique. This motivated our study for the devel-

oppement of another approach with the same performance as the adaptive EM-Kalman

but with the same complexity as the component-wise EM-Kalman.

The proposed two-stage algorithm consists of a first step employing a basic fast tracking

adaptive filter, followed by lowpass filtering and downsampling of the time-varying fil-

ter coefficients. The second step then applies Kalman filtering at the reduced rate on a

simplified state-space model, with an additive white noise measurement equation. The

parameters in the state equation can be conveniently identified with an adaptive EM al-

gorithm. The first stage would typically employ a (Normalized) LMS algorithm with a

large stepsize. The main assumption underlying the proposed two-stage approach is that

even in fast tracking applications, the bandwidth of the optimal filter variation is typically

small compared to the signal bandwidth, motivating the downsampling operation. The

first stage attempts to provide a bias-free filter estimate whereas the second stage opti-

mizes the estimation variance. The performance of the proposed scheme is evaluated by

simulations.
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7.1 Introduction

Adaptive filtering is essentially intended for tracking time-varying optimal filters. The

time variation of the optimal filter can be described by either expanding the filter coeffi-

cients into fixed time-varying (e.g. sinusoidal) basis functions (basis expansion models

(BEMs)) [24] or by modeling them as stationary processes. The latter approach is perhaps

better suited for minimum delay online processing. This case of constant slow variation

of the filter coefficients (”drifting” parameters) is to be contrasted with another possible

case of only occasional but significant variation (”jumping” parameters) which shall not

be considered here. A lot of work has been done on optimizing the single parameter reg-

ulating the tracking speed of classical LMS or exponentially weighted RLS algorithms

[1],[6]. For LMS, such an adaptive optimization leads to the class of Variable Step-Size

(VSS) algorithms, see e.g. [65] and references therein. Adaptive filtering algorithms with

a single adaptation parameter do not take into account that different portions of the fil-

ter may have different variation speeds and/or different magnitudes and hence are quite

suboptimal. One noteworthy attempt to overcome this limitation is the introduction of a

coefficient-wise VSS, as in [40], but the automatic adaptation of these VSSs is a difficult

task.

In Bayesian Adaptive Filtering (BAF), prior information on the filter coefficient vari-

ances and variation spectra is exploited to optimize adaptive filter performance. A straight-

forward way to implement BAF is to use the Kalman filter, see e.g. [94],[13]. However,

the complexity of the Kalman filter is enormous compared to that of the popular LMS

adaptive filtering algorithm. Furthermore, the Kalman filter needs to be augmented with

a state-space model identification technique.

Consider now the prototype adaptive filtering set-up, which is the system identification

set-up, in which the desired-response signal dk is modeled as the output of the optimal

filter, which can be time-varying, plus independent (white) noise:

dk = XH
k Hk + vk (7.1)

where XH
k = [xk xk−1 · · ·xk−N+1] is the input signal vector and all terms are complex-

valued. The input vector Xk is known up to time k and is assumed stationary with zero
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mean and nonsingular covariance matrix R = E[XkX
H
k ] Our aim is to estimate the time-

varying parameter column vector Hk. Some general references on the tracking behavior

of adaptive filtering algorithms are [1], [6],[18],. In this work we consider Bayesian Adap-

tive filtering based on a two-stage approach. A first stage with a fast standard adaptive

filter, e.g. NLMS with stepsize equal to one. After some possible downsampling then, we

consider an optimal filter in the second stage to extract Hk from the NLMS estimates, see

figure (7.1).

AF (e.g. NLMS)
State Standard

Stage 2

Stage 1

EM-Kalman

D

ˆ̂
Hk

Ĥk

Component-wise

Figure 7.1: Two-stage adaptive filtering.

7.2 Stage 1: NLMS Algorithm

The simplest choice for a fast converging adaptive filtering (AFing) algorithm is a LMS

algorithm with large stepsize, preferably the NLMS algorithm with normalized stepsize

equal to one, or a smaller value of that order of magnitude. The NLMS algorithm updates

the adaptive filter coefficients according to

ek = dk −XH
k Ĥk−1 (7.2)

Ĥk = Ĥk−1 +
µ

‖Xk‖2
Xk e∗k (7.3)
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For colored input and a FIR filter of length N , NLMS converges in general with N dif-

ferent modes that are of the form [10]

1

1−
√

1− µ(2−µ) λi

tr R
q−1

(7.4)

where µ is the NLMS stepsize, we have assumed N À 1, the λi are the eigenvalues

of the input signal covariance matrix R = RXX , and q−1 is the one sample delay op-

erator: q−1 xk = xk−1. We shall call the variation bandwidth of the optimal filter the

Doppler bandwidth, which is the customary terminology when the adaptive filter repre-

sents a wireless channel response. We are going to assume that the Doppler bandwidth

is much smaller than the signal bandwidth. For simplicity, let us assume that the input

signal is not too colored so that the Doppler bandwidth can be smaller than the bandwidth

fi = µ(2−µ)
2π

λi

tr R
of each of the eigne modes. In this case, the NLMS adaptive filtering

algorithm will pass the optimal filter coefficients undistortedly (zero bias). It will only

introduce an estimation noise. In steady-state, this estimation noise leads to an estimation

error H̃k = Hk− Ĥk with covariance matrix R eH eH =
µ

2− µ

σ2
v

tr R
IN . So the errors on the

various filter components are uncorrelated and of identical variance. The errors are not

temporally white however, due to the coloring introduced by the filtering of the modes in

(7.4). However, due to the previous assumptions, the estimation noise can be considered

white over the Doppler bandwidth of the optimal filter.

A better alternative to the NLMS algorithm in the first stage would be an adaptive

filter that is less sensitive to the input signal color. If we want no such sensitivity then a

Recursive Least-Squares (RLS) algorithm should be used. To minimize the distortion (so-

called ”lag noise”) on the optimal filter the best RLS choice would be one with a sliding

rectangular window, in which a delay gets introduced equal to half the window length

(non-causal adaptive filtering) [147]. RLS algorithms are more complex that (N)LMS,

but fast versions exist. There is also a whole range of adaptive filtering algorithms in

between LMS and RLS in terms of complexity and performance, such Affine Projection

Algorithms, Fast Newton Transversal Filters, frequency domain adaptive filters, LMS

with prewhitening etc.
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7.3 Subsampling Glue

As mentioned earlier, if the Doppler bandwidth is significantly less than the signal band-

width (sampling rate), then it would be overkill to put in place an optimal tracking algo-

rithm working at the sampling rate. In that case, the output of the first stage (the vector se-

quence Ĥk) can be lowpass filtered and commensurate downsampled without introducing

distortion (lag noise) as long as the lowpass filter does not distort the Doppler spectrum.

The main goal of this operation is to reduce complexity. Indeed further processing in the

second stage can now be performed at a reduced rate. And fixed lowpass filtering does

not have to be a complex operation (if a simple filter is used, for instance first order IIR

(exponential averaging)). Another reason is that, whereas it would constitute quite an ap-

proximation to model H̃k as temporally white, after lowpass filtering and downsampling

(with a factor D), such an approximation becomes more accurate. The lowpass filtering

operation reduces the estimation noise roughly with a factor D. In what follows, we shall

continue to use the same notation for the subsampled rate and continue to denote the low-

pass filtered and subsampled NLMS output as Ĥk. This provides the measurement data

for stage two.

7.4 Stage 2: ”Diagonal” EM-Kalman Filtering

Consider the state-space model

Hk+1 = AHk + Wk (7.5)

Ĥk = Hk + H̃k (7.6)

The measurement and process noise terms are assumed to be zero mean Gaussian with co-

variances RH̃ and Q respectively.The matrix A contains information about how the states

evolve. It is particularly useful in tracking applications. The matrix A should be viewed

as a mechanism to achieve directed trajectories in state space. In other words, A allows

for more general jumps than the simple random walk that would result by excluding A

from the model. Despite the fact that the data is processed in batches, the model of equa-

tion (7.6) allows the weights to be time varying. It is, therefore, possible to deal with
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non-stationary data sets. In the event of the data being stationary, we should expect the

process noise term to vanish. Consequently, if we know that the data is stationary, the

estimate of the process noise can be used to determine how well the model explains the

data.

The objective is to estimate the model states (weights)Hk and the set of parameters

φ = {A,Q, R} given the measurements Ĥ1:N . Then we use a Kalman smoother to esti-

mate Hk and EM algorithm to estimate the set of parameters. Since the Kalman model is

diagonal, we propose a Component-Wise Adaptive Kalman algorithm to update the filter

coefficients, which decreases computational complexity. Then the model (7.6) becomes:

hi+1 = a hi + wi (7.7)

ĥi = hi + h̃i (7.8)

7.4.1 Kalman smoother

Smoothing often entails forward and backward filtering over a segment of data so as to

obtain improved averaged estimates. Various techniques have been proposed to accom-

plish this goal . This study uses the well-known Rauch-Tung-Striebel smoother . The

forward filtering stage involves computing the estimates ĥk and Pk , over a segment of I

samples, with the following KF recursions:

ˆ̂
hi+1|i = a

ˆ̂
hi (7.9)

pi+1|i = aa∗pi + q (7.10)

kf
i+1 = pi+1|i(r + pi+1|i)

−1 (7.11)
ˆ̂
hi+1 =

ˆ̂
hi+1|i + kf

i+1(ĥi+1 − ˆ̂
hi+1|i) (7.12)

where kf denotes the Kalman gain . Subsequently, the Rauch- Tung-Striebel smoother

makes use of the following backward recursions:

Ji−1 =
pi−1a

∗

pi|i−1

(7.13)

ˆ̂
hi−1|n =

ˆ̂
hi−1Ji−1(

ˆ̂
hi|n − a

ˆ̂
hi−1) (7.14)

pi−1|n = pi−1 + Ji−1(pi|n − pi|i−1)J
∗
i−1 (7.15)

pi,i−1|n = piJ
∗
i−1 + Ji(pi+i|n − api)J

∗
i−1 (7.16)
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where the parameters, covariance and cross-covariance are defined as follows:

ˆ̂
hi+1|n = E[hi+1 | ĥ1:n]

pi|n = E[(hi − ˆ̂
hi)(hi − ˆ̂

hi)
∗ | ĥ1:n]

pi,i−1|n = E[(hi − ˆ̂
hi)(hi−1 − ˆ̂

hi−1)
∗ | ĥ1:n]

(7.17)

7.4.2 Model parameters adaptation

The state model parameters can be adapted using the EM algorithm introduced in chapter

4, according to

ψi|i = λψi,n|i−1 + (
ˆ̂
hi|i

ˆ̂
h∗i|i + pi|i)

ψi−1|i = λψi−1|i−1 + (
ˆ̂
hi−1|i

ˆ̂
h∗i−1|i + pi−1|i)

di = pi|iC
∗
i−1

= aipi−1|i−1 − kf
i (a−1

i (1− qixi))
∗

(7.18)

ψi,i−1|i = λψi,i−1|i−1 + (
ˆ̂
hi|i

ˆ̂
h∗i−1|i + di)

qi+1 =
1

γi

(ψi,|i −
ψi,i−1|i
(ψi−1|i)

(ψi,i−1|i)
∗

ai+1 = ψi,i−1|i(ψi−1|i)
−1 (7.19)

7.4.3 Steady-State Excess Mean-Square Error (EMSE)

The state estimate update is given by Kalman as :

ˆ̂
Hk|k = A

ˆ̂
Hk−1|k−1 + Kk(Ĥk − A

ˆ̂
Hk−1|k−1)

= A
ˆ̂
Hk−1|k−1 + Kk(Hk−1 − A

ˆ̂
Hk−1|k−1) + Kkeopt

= A
ˆ̂
Hk−1|k−1 +

Pk|k
σ2

v

(Hk−1 − A
ˆ̂
Hk−1|k−1)

+Kkeopt (7.20)
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Where Kk = Pk|kR
−1

H̃kH̃k

and eopt represents the minimum(in a mean square sense) error at time k. In studying

tracking behavior, we may exclude the influence of the estimation noise, since the de-

viation of E[Hk|k] from Hk determines the response of the BAF algorithm to the non-

stationarity of the environment. Taking expected values on both sides of (7.20), we get

E[
ˆ̂
Hk|k] = AE[

ˆ̂
Hk−1|k−1]

+Pk|kR
−1

H̃kH̃k
(Hk−1 − AE[

ˆ̂
Hk−1|k−1])

= AE[
ˆ̂
Hk−1|k−1]

+Pk|kR
−1

H̃kH̃k
(Hk−1 − AE[

ˆ̂
Hk−1|k−1]) (7.21)

the lag-error is given by

L̃k = E[
ˆ̂
Hk|k]−Hk

L̃k = AE[
ˆ̂
Hk−1|k−1]− Pk|kAR−1

H̃kH̃k
(H̃k−1)

+Pk|kR
−1

H̃kH̃k
(Hk−1 − AHk−1)−Hk + AHk−1

= AE[
ˆ̂
Hk−1|k−1]− Pk|kAR−1

H̃kH̃k
(H̃k−1)

+(
Pk|kR

σ2
v

(I − A) + A)Hk−1 −Hk

≈ (I − Pk|kR
−1

H̃kH̃k
)AH̃k−1 + AHk−1 −Hk (7.22)

The input is considered to be white (R = σ2
xI), note that, each element of the lag-error

vector is determined by the following relation:

l̃i(k) = (1− pi,k|kNσ2
x

Dσ2
v

)Ail̃i,k−1 + Aihi,k−1 − hi,k. (7.23)

where l̃i(k) is the ith element of L̃k. By properly interpreting the equation above, we can

say that the lag is generated by applying the transformed instantaneous optimal coefficient

to a first-order discrete-time filter denoted lag filter

L̃i(z) =
Aiz

−1 − 1

1− (1− Nσ2
xpi,k|k
Dσ2

v
)Aiz−1

Hi(z) (7.24)

Using the inverse z-transform, the variance of the elements of the vector L̃(k) can

then be calculated by

E[l̃i(k)l̃Hi (k)] =
1

2πj

∮
L̃i(z)L̃i(z

−1)qiz
−1dz
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The BAF excess mean square error due to lag is then given by Eq. (7.25)

EMSE =
N∑

i=1

EMSEi (7.25)

where

EMSEi = σ2
xpi = σ2

x

−( Dqi

NSNRi
+ qi) + qi

√
(1 + D

NSNRi
)2 + 4 Nσ2

x

Dσ2
v
| ai |2

2 | ai |2 (7.26)

7.5 Conclusion

The choosen application is again the mobile radio channel as in the previous chapter.

The behavior of two-stage adaptive, NLMS and Kalman algorithms are compared on the

basis of simulation results, as shown in Fig. 7.2. As this figure shows, the proposed two-

stage adaptive algorithm converges to Kalman filter (known parameters). It offers better

performance than NLMS algorithm in steady-state.
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Figure 7.2: Comparison between the proposed two-stage adaptive filter, NLMS and the

Kalman filter with known optimal parameters.
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Figure 7.3: Zoom on the steady-state behavior.

The algorithm is presented in the following Table of component-wise Adaptive EM-
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Kalman.

Two Stage Algorithm
Computation Cost (×)

Initialization
ˆ̂
h0|0 = 0 , P0|0 = 100 ,

a0 = α , q0 = (1− α)

π0|0 = 0 , π1,0|0 = 0, π1|0 = 0

γ0 = 0

NLMS

ek = dk −XH
k Ĥk−1,

Ĥk = Ĥk−1 + µ
‖Xk‖2 Xk e∗k,

CW Kalman filtering and one step smoothing

for n = 1 . . . N

ˆ̂
hk,n|k−1 = an,k

ˆ̂
hk−1,n|k−1 1

ŷk,n|k−1 =
ˆ̂
hk,n|k−1 0

Kn,k = Pk,n|k−1 0

Mk,n = (Kn,k +
Nσ2

x
Dσ2

v
)−1 1

Kf
n,k = Kn,kMn,k 1

Cn,k−1 = Pn,k−1|k−1a∗n,kP−1
n,k|k−1

2

ˆ̂
hn,k−1|k =

ˆ̂
hn,k|k−1 + Kf

n,k(ĥk − ŷk,n|k−1) 1

Pk,n|k−1 =| an,k |2 Pk−1,n|k−1 + qn,k 1

ˆ̂
hk,n|k =

ˆ̂
hk,n|k−1 + an,k(Kk − qn,k)Mk(ĥk − ŷk,n|k−1) 2

Pk,n|k = Pk,n|k−1 −Kf
n,kK∗

n,k 1

Pk−1,n|k = Pk−1,n|k−1 + Cn,k−1(Pn,k|k − Pn,k|k−1) 1

Model Parameters Adaptation

πn,k|k = λπk,n|k−1 +
ˆ̂
hn,k|k

ˆ̂
h∗

n,k|k + Pn,k|k 1

Πn,k−1|k = λπn,k−1|k−1 +
ˆ̂
hn,k−1|k

ˆ̂
hH

n,k−1|k + Pn,k−1|k 1

Dn,k = Pn,k|kC∗n,k−1 = an,kPn,k−1|k−1 −Kf
n,k(a−1

n,k(Kn,k − qn,kxn,k))∗ 2

πn,k,k−1|k = λπn,k,k−1|k−1 + diag(
ˆ̂
hn,k|k

ˆ̂
h∗

n,k−1|k + Dn,k) 1

qn,k+1 = 1
γk

(πn,k,|k − πn,k,k−1|k(πn,k−1|k)−1(πn,k,k−1|k)∗) 2

γk = γk−1 + 1

an,k+1 = πn,k,k−1|k(πn,k−1|k)−1 1

cost/update 19N

APPENDIX

The fact that the trace and expectation operators are linear, the expectation of the

log-likelihood becomes:
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E[l(φ))] = −1

2

M∑
i=1

tr(q−1[
ˆ̂
hi|M

ˆ̂
hH

i|M + pi|M

−2a(
ˆ̂
hi|M

ˆ̂
hH

i−1|M + pi,i−1|M)H

+a(
ˆ̂
hi−1|M

ˆ̂
hH

i−1|M + pi−1|M)aH ])

−
M∑
i=1

1

2
tr(r−1[ĥiĥ

H
i

−ˆ̂
hi|M ĥH

i − ĥi
ˆ̂
hH

i|M
ˆ̂
hi|M

ˆ̂
hH

i|M + pi|M ])− M

2
|q| − M

2
|r|

So far, it has been shown that given a set of parameters φ = {a, q, r} and a mea-

surements ĥ , it is possible to compute the expected values of the states with an Kalman

smoother. This section presents an EM algorithm to learn the parameters φ.

The EM algorithm is an iterative method for finding a mode of the likelihood function

p(ĥ|φ). It proceeds as follows: (E-step 1) estimate the states h given a set of parame-

ters φ, (M-step 1) estimate the parameters given the new states, (E-step 2) re-estimate the

states with the new parameters, and so forth. The most remarkable attribute of the EM

algorithm is that it ensures an increase in the likelihood function at each iteration. It is

hard to maximize p(ĥ|φ) , EM will allow us to accomplish this by working with p(ĥ,h|φ).

To gain more insight into the EM method, let us express the likelihood function as follows:

p(ĥ | φ) = p(ĥ | φ)
p(h | ĥ, φ)

p(h | ĥ, φ)
(7.27)

=
p(h, ĥ | φ)

p(h | ĥ, φ)
(7.28)

(7.29)

Taking the logarithns of both sides yields the following identity:

ln(p(ĥ | φ)) = ln(p(h, ĥ | φ))

− ln(p(h | ĥ, φ)).

Let us treat h as a randon variable with distribution p(h | ĥ, φold), where φold, is the

current guess. If we then take expectations on both sides of the previous identity, while
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renenbering that the left hand side does not depend on h, we get:

E[ln(p(ĥ | φ))] = E[ln(p(h, ĥ | φ))]

−E[ln(p(h | ĥ, φ))]

we need to develop an expression for the likelihood of the conpleted data. The likelihood

of the data given the states, the initial conditions and the evolution of the states nay be

approxinated by Gaussian distributions.

p(hi | hi−1, φ) =
1

(2π)
n
2 |q| 12

exp q−1(
1

2
(hi − ahi−1)

×(hi − ahi−1)
∗)

p(ĥi | hi, φ) =
1

(2π)
n
2 |r| 12

exp(
1

2
(ĥi − ˆ̂

hi)

×r−1(ĥi − ˆ̂
hi)

∗) (7.30)

Under the nodel assunptions of uncorrelated noise sources and narkov state evolution, the

likelihood of the conplete data is given by:

p(h1:n, ĥ1:n | φ) =
n∏

i=1

p(hi | hi−1, φ)

×
n∏

i=1

p(ĥi | hi, φ)

Hence, the log-likelihood of the complete data is given by the following expression:

E[ln(p(h1:n, ĥ1:n | φ))] = l(φ)

l(φ) = −
n∑

k=1

q−1 1

2
(hi − ahi−1)(hi − ahi−1)

∗

−
n∑

k=1

r−1 1

2
(ĥi − ˆ̂

hi)(ĥi − ˆ̂
hi)

∗

−n

2
|q| − n

2
|r| (7.31)

As discussed in the previous section, all we need to do now is to compute the expectation

of ln(p(h1:n, ĥ1:n | φ)) and then differentiate the result with respect to the parameters φ so

as to maximize it. The EM algorithm for nonlinear state space models will thus involve

computing the expected values of the states and covariances with the Kalman smoother

and then maximizing the parameters φ with the formulae obtained by differentiating the

expected log-likelihood.
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7.5.1 Computing the expectation of the log-likelihood

The derivation requires the following sufficient statistics:

E[hi | ĥ1:n] =
ˆ̂
hi|n (7.32)

E[hihi | ĥ1:n] = pi|n +
ˆ̂
hi|n

ˆ̂
h∗i|n (7.33)

E[hihi−1 | ĥ1:n] = pi,i−1|n +
ˆ̂
hi|n

ˆ̂
h∗i−1|n (7.34)

Now, taking the expectation of the log-likelihood for the complete data, by averaging over

h1:n under the distribution p(h1:n |, ĥ1:n, φold) , one gets the following expression:

l(φ) = − 1

2q

n∑
i=1

E[h∗i hi − h∗i ahi−1

−(a∗hi−1)
∗hi

+(a∗ahi−1)
∗hi−1]

−
n∑

i=1

1

2r
E[ĥ∗i r

−1ĥi − ĥ∗i
ˆ̂
hi|i−1

−ˆ̂
h∗i|i−1ĥi +

ˆ̂
h∗i|i−1

ˆ̂
hi|i−1]

−n

2
|q| − n

2
|r|

Completing squares and using the following abbreviations:

πi|n =
n∑

i=1

ˆ̂
hi|n

ˆ̂
h∗i|n + pi|n (7.35)

πi−1|n =
n∑

i=1

ˆ̂
hi−1|n

ˆ̂
h∗i−1|n + pi−1|n (7.36)

πi,i−1|n =
n∑

i=1

ˆ̂
hi|n

ˆ̂
h∗i−1|n + pi,i−1|n (7.37)
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7.5.2 Differentiating the expected log-likelihood

Maximum with respect to a: Differentiating the expected log-likelihood with respect to

a yields:

∂E[l(φ)]

∂a
=
−1

2q
(−2Πi,i−1|n + 2aΠi−1|n) (7.38)

Equating this result to zero yields the value of A that maximizes the approximate log-

likelihood:

a = Πi,i−1|n(Πi−1|i)
−1 (7.39)

Maximum with respect to r = rH̃ : Differentiating the expected log-likelihood with

respect to r−1 gives:

∂E[l(φ)]

∂r−1
= −

n∑
i=1

1

2
((ĥi − ˆ̂

hi|n)(ĥi − ˆ̂
hi|n)∗

+pi|n) +
n

2
r (7.40)

Hence, by equating the above result to zero, the maximum of the approximate log-

likelihood with respect to r is given by:

r =
n∑

i=1

1

n
((ĥi − ˆ̂

hi|n)(ĥi − ˆ̂
hi|n)∗ + pi|n)

(7.41)

Maximum with respect to q: Maximum with respect to q Following the same steps,

the derivative of the expected log-likelihood with respect to q−1 is given by:

∂E[l(φ)]

∂r−1
= −1

2
(πi|n − 2aπ∗i,i−1|n + aπi−1|na∗)

+
n

2
q

Hence, equating to zero and using the result that

a =
πk,k−1|n
(Πk−1|n)

, the maximum of the approximate log-likelihood with respect to q is given

by:
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q =
1

n
(πi|n − πi,i−1|nπi−1|nπ∗i,i−1|n) (7.42)
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Chapter 8

Window Optimization Issues in

Recursive Least-Squares Adaptive

Filtering And Tracking

8.1 Introduction

In this chapter we consider tracking of an optimal filter modeled as a stationary vector pro-

cess. We interpret the Recursive Least-Squares (RLS) adaptive filtering algorithm as a fil-

tering operation on the optimal filter process and the intantaneous gradient noise (induced

by the measurement noise). The filtering operation carried out by the RLS algorithm

depends on the window used in the least-squares criterion. To arrive at a recursive LS al-

gorithm requires that the window impulse response can be expressed recursively (output

of an IIR filter). In practice, only two popular window choices exist (with each one tun-

ing parameter): the exponential weighting (W-RLS) and the rectangular window (SWC-

RLS). However, the rectangular window can be generalized at a small cost for the result-

ing RLS algorithm to a window with three parameters (GSW-RLS) instead of just one,

encompassing both SWC- and W-RLS as special cases. Since the complexity of SWC-

RLS essentially doubles with respect to W-RLS, it is generally believed that this increase

in complexity allows for some improvement in tracking performance. We show that, with
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equal estimation noise, W-RLS generally outperforms SWC-RLS in causal tracking, with

GSW-RLS still performing better, whereas for non-causal tracking SWC-RLS is by far

the best (with GSW-RLS not being able to improve). When the window parameters are

optimized for causal tracking MSE, GSW-RLS outperforms W-RLS which outperforms

SWC-RLS. We also derive the optimal window shapes for causal and non-causal track-

ing of arbitrary variation spectra. It turns outs that W-RLS is optimal for causal tracking

of AR(1) parameter variations whereas SWC-RLS if optimal for non-causal tracking of

integrated white jumping parameters, all optimal filter parameters having proportional

variation spectra in both cases.

The RLS algorithm is one of the basic tools for adaptive filtering. The convergence

behavior of the RLS algorithm is now well understood. Typically, the RLS algorithm has

a fast convergence rate, and is not sensitive to the eigenvalue spread of the correlation

matrix of the input signal. However, when operating in a non-stationary environment,

the adaptive filter has the additional task of tracking the variation in environmental con-

ditions. In this context, it has been established that adaptive algorithms that exhibit good

convergence properties in stationary environments do not necessarily provide good track-

ing performance in a non-stationary environment; because the convergence behavior of an

adaptive filter is a transient phenomenon, whereas the tracking behavior is a steady-state

property [137, 138].

One fundamental non-stationary scenario involves a time-varying system in which

the cross-correlation between the input signal and the desired response is time-varying.

This case occurs in the system identification setup. To take into account system variation,

two main variants of RLS algorithms exist. The first introduces a forgetting factor, and

leads to the exponentially Weighted RLS (W-RLS) approach. The second uses a Sliding

rectangular Window (SWC-RLS approach). In [139, 140], a generalized sliding window

RLS (GSW-RLS) algorithm was introduced, that generalizes the W-RLS and SWC-RLS

algorithms. The GSW-RLS uses a generalized window (see Fig. 8.1), which consists of

an exponential window with a discontinuity at delay L. It can be seen that the exponential

and rectangular windows are particular cases of the generalized window, for α = 0 and

(α, λ) = (1, 1) resp.
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Figure 8.1: The generalized sliding window

In [139, 140], a tracking improvement for GSW-RLS was observed for different sys-

tem variation models (AR(1), MA, and Random walk). On the one hand the initial portion

of the window permits to emphasize the very recent past which allows very fast tracking.

On the other hand, the GSW-RLS algorithm solves nevertheless an overdetermined sys-

tem of equations and hence enjoys the fast convergence properties of RLS algorithms.

Another effect of the exponential tail of the GSW is regularization. In fact, the rect-

angular window sample covariance matrix appearing in SWC-RLS can be particularly

ill-conditioned compared to a sample covariance matrix based on an exponential window

with compatible time constant. Finally, the GSW-RLS algorithm turns out to have the

same structure and comparable computational complexity as the SWC-RLS algorithm.

This chapter is organized as follows. In section 8.2, a tracking analysis in the fre-

quency domain is presented. Uninformed and Informed Bayesian approaches are investi-

gated respectively in sections 8.3, and 8.4. Finally a discussion and concluding remarks

are provided in section 8.5.
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8.2 Tracking Characteristics of RLS Algorithms

We consider the classic adaptive system identification problem (see Fig. ??). The adaptive

system identification is designed for determining a (typically linear FIR) model of the

transfer function for an unknown, time-varying digital or analog system.

+
+

nk

dk

-

ekyk

xk

+Ho
k

Ĥk

Figure 8.2: System identification block diagram

The adaptive system identification problem can be described by:




dk = HoT
k Yk + nk

xk = HT
k Yk

(8.1)

where

- nk is an iid Gaussian noise sequence (nk ∼ N (0, σ2
n)) where

σ2
n is the Minimum Mean Squared Error (MMSE)

- Ho
k denotes the optimal Wiener Filter

- Hk represents the adaptive Filter

- ek is the a posteriori error given by:

ek = dk − xk = H̃T
k Yk + nk (8.2)

where H̃k = Ho
k −Hk denotes the filter deviation.

In weighted RLS, the set of the N adaptive filter coefficients Hk = [H1,k · · ·HN,k]
T
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gets adapted so as to minimize recursively the Weighted Least Squares criterion

Jk = F (q) e2
k =

∑
i

fi e
2
k−i (8.3)

where F (z) =
∑

i fi z
−i is the transfer function of the weighting window fi characteriz-

ing the RLS algorithm, and q−1 e2
k = e2

k−1. There are a number of references dealing with

the performance of RLS algorithms in non-stationary environments [143, 142, 141, 140].

The basic idea is to focus on the model quality in terms of the output Excess MSE

(EMSE). We consider stationary optimal filter variation models, hence the RLS algo-

rithm will reach a stationary regime to which we limit attention. The EMSE is defined

as:

EMSE = E
{
e2

k

}− σ2
n = E

{
Y T

k H̃kH̃
T
k Yk

}
(8.4)

(in principle the a priori error signal should be considered for the EMSE, we shall stick to

the a posteriori error signal to avoid the appearance of a delay in the notation). So, if we

assume that the system variation is a zero-mean, wide-sense stationary process Ho
k with a

power spectral density matrix

SHH

(
ej2πf

)
, and if we invoke the independence assumption, in which Yk and H̃k are

assumed to be independent (this works better for the a priori error), the EMSE can be

expressed in the following form:

EMSE = tr
{
E

[
H̃∗

kH̃T
k

]
R
}

= tr

{
R

∫ 1
2

− 1
2

S eH eH(ej2πf )df

}
.

By setting the gradient of Jk in (8.3) w.r.t. Hk to zero, we have
(
F (q) YkY

T
k

)
Hk = F (q) Ykdk

= F (q) YkY
T
k Ho

k + F (q) Yknk .

Let’s denote by F̃ (q) =
F (q)

F (1)
the (dc transfer) normalized weighting window. As this

window is generally low-pass, F̃ (q) acts as an averaging operator, and we have

F̃ (q) YkY
T
k ≈ R .

On the other hand, as the optimal system variation is independent of the input signal (in

the system id setup), we approximate:

F̃ (q)YkY
T
k Ho

k ≈
(
F̃ (q)YkY

T
k

) (
F̃ (q)Ho

k

)

≈ R F̃ (q)Ho
k .
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Hence the filter deviation can be expressed as:

H̃k = Ho
k −Hk =

(
1− F̃ (q)

)
Ho

k − R−1 F̃ (q)Yknk

and the EMSE becomes:

EMSE = Nσ2
n

∫ 1
2

− 1
2

∣∣∣F̃ (e2jπf )
∣∣∣
2

df (8.5)

+

∫ 1
2

− 1
2

∣∣∣1−F̃ (ej2πf )
∣∣∣
2

tr
{
R SHH(ej2πf )

}
df

Remark that the EMSE can be broken up into two terms:

• Eest = Nσ2
n

∫ 1
2

− 1
2

∣∣∣F̃ (e2jπf )
∣∣∣
2

df corresponding to the estimation noise contribution;

it can be interpreted as the estimation accuracy in time-invariant conditions,

• Elag =

∫ 1
2

− 1
2

∣∣∣1− F̃ (e2jπf )
∣∣∣
2

tr
{
R SHH(ej2πf )

}
df representing the estimation er-

ror resulting from low-pass filtering the system variations (lag noise, since in the

causal window case this means lagging behind).

The estimation and lag noise terms can also be interpreted as the variance and the bias of

the conditional estimation problem, for a given value of the optimal filter sequence. In

fact,

H̃k =
(
1− F̃ (q)

)
Ho

k︸ ︷︷ ︸
b

− R−1 F̃ (q)Yknk

where b = E|HoH̃k is the estimation bias. We get

R eH eH = E|Ho

(
H̃kH̃

T
k

)
= b bT︸︷︷︸

bias
+ σ2

n

(∑
i

f̃ 2
i

)
R−1

︸ ︷︷ ︸
variance

. (8.6)

Then we see that:

• Eest = Nσ2
n

(∑
i

f̃ 2
i

)
is the variance component,

• Elag = tr
{
R EHo

[
bbT

]}
is the bias component.
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8.3 Uninformed Approach for RLS Tracking Analysis

In an uninformed approach we assume that little or no information about the system vari-

ations is available for the design of the RLS algorithm.

8.3.1 Uninformed Tracking Analysis of Causal RLS Algorithms

From (8.5), we can see that the following window characteristics characterize estimation

and lag noises resp.:

• l∞ =
(∑

i f̃
2
i

)
=

∥∥∥F̃
∥∥∥

2

2
characterizing Eest,

• EF (f) =
∣∣∣1− F̃

(
ej2πf

)∣∣∣, called parameter tracking characteristic, characterizing

the lag noise.

To compare the tracking ability of RLS with different weighting windows, we shall choose

the windows parameters such that the different algorithms behave identically under time-

invariant conditions. In fact, comparing adaptive filters characterized by different values

of l∞ barely makes any sense (in the uninformed case) and it resembles ”comparing run-

ners that specialize in different distances” [144]. By normalizing the performance under

time-invariant conditions, the tracking characteristic EF (w) depends only on the window

shape.

Since the complexity of RLS with a rectangular window essentially doubles with re-

spect to an exponential window, it is generally believed that this increase in complexity al-

lows for some improvement in tracking performance. In contrast to this intuition, Fig. 8.3

shows that the plot of the normalized tracking characteristic of W-RLS lies below that

corresponding to SWC-RLS. Thus, the tracking capability of W-RLS approach is better.

This effect can be attributed to a higher degree of concentration of the exponential win-

dow around i = 0, which results in a smaller estimation delay, hence smaller bias error

[144].
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As we have mentioned in the Introduction, the SW-RLS approach can be generalized

at a small cost for the resulting RLS algorithm to a window with three parameters (instead

of just one). Compared to the Sliding and the Exponential widows, the Generalized Slid-

ing Window introduces two extra degrees of freedom. The shape of the widow depends

on the choice of these degrees of freedom. Thus, they can be optimized to minimize the

average parameter tracking characteristic. In other words, the window parameters are

chosen so as to





min
λ,α,L

∫ f0

0

∣∣∣1− F̃
(
ej2πf

)∣∣∣
2

df

subject to
∑

k

f̃ 2
k = l∞

(8.7)

where f0 is the assumed bandwidth of the system variations. In Fig. 8.3, we add the

tracking characteristic of the GSW-RLS estimator, as a function of f = fo. As expected,

the optimized GSW-RLS outperforms the SWC-RLS and W-RLS approaches.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3
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parameter tracking characteristic
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GSW−RLS

Figure 8.3: Parameter tracking characteristic for W, SWC, GSW-RLS.
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8.3.2 Uninformed Tracking Analysis for Non-Causal RLS Algorithms

Bias in the RLS algorithm is caused by two kinds of distortion: amplitude and phase

distortions. Phase distortion can be considerably attenuated by introducing a suitable

estimation delay (using non-causal filtering). With no information about the system char-

acteristics, a suitable estimation delay can be determined as [144]:

τe =
∑

k

kf̃k , (8.8)

the mean of the f̃k considered as a distribution. As before, under identical estimation

noise, comparing the tracking capability of the non-causal RLS algorithms can be investi-

gated by comparing what is called in [144] the parameter matching characteristic defined

as:

ẼF (w) =
∣∣∣e−j2πfτe − F̃

(
ej2πf

)∣∣∣ =
∣∣∣1− ej2πfτeF̃

(
ej2πf

)∣∣∣ .

Fig. 8.4 shows plots of normalized matching characteristics of SWC-RLS, W-RLS, and

GSW-RLS (with optimized window parameters) algorithms. The curves show that in the

non-causal adaptation case, the optimal shape for the generalized window becomes the

rectangular one (and in particular, rectangular windowing outperforms exponential win-

dowing). The better parameter matching properties of the SWC-RLS approach can be

explained by the linearity of the associated phase characteristic (due to the window sym-

metry). The delay τe becomes the center of the window and after delay compensation,

there is zero phase distortion left.

8.4 Informed Approach for RLS Tracking Optimization

Now we suppose the statistics of the system variation to be available. In this case, we can
achieve an optimal tradeoff between the estimation and lag noises. The optimal tradeoff
can be found by minimizing the EMSE:

min
F

 
Nσ2

n

Z 1
2

− 1
2

df
˛̨
˛F (ej2πf )

˛̨
˛
2
+

Z 1
2

− 1
2

df
˛̨
˛1−F (ej2πf )

˛̨
˛
2

tr {RSHH(f)}
!

subject to F (1) = 1 (8.9)



150
8. WINDOW OPTIMIZATION ISSUES IN RECURSIVE LEAST-SQUARES ADAPTIVE

FILTERING AND TRACKING

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0

0.005

0.01

0.015
parameter matching characteristic

freq

E
F

SWC−RLS
W−RLS
GSW−RLS

Figure 8.4: Parameter matching characteristic.

8.4.1 Optimized Causal Parametric Windows, Separable Variation

Spectrum Case

In a first instance, we propose to investigate a simple (but interesting) variation model.

We assume that the impulse response coefficients have proportional Doppler spectrum;

i.e.

SHH

(
ej2πf

)
= D Shh

(
ej2πf

)
. (8.10)

To simplify, we suppose also that the scalar spectrum Shh is a flat low-pass spectrum; i.e.

Shh

(
ej2πf

)
=

{
1 |f | < f0

0 elsewhere

The matrix D is arbitrary but if it were diagonal (decorrelated filter coefficients) the di-

agonal would represent the power delay profile of the optimal filter (in wireless channel

terminology). With the separable model, the Excess MSE (for the causal adaptation case)

can be expressed as:

Nσ2
n

∫ 1
2

− 1
2

df
∣∣F (ej2πf )

∣∣2 + tr {R D}
∫ 1

2

− 1
2

df
∣∣1−F (ej2πf )

∣∣2 .
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The EMSE expressions for the different RLS variants become, as a function of the win-

dows parameters:

EMSESWCRLS =
Nσ2

n

L

+ 2 tr {R D}
(

L− 1

L
f0 − 1

πL2

L−1∑

k=1

sin (2πf0k)

)

EMSEWRLS = Nσ2
n

1− λ

1 + λ

+ 2 tr {R D}
(

λf − λ

π

1− λ

1 + λ
arctan

(
1 + λ

1− λ
tan (πf)

))

EMSEGSWRLS = Nσ2
n

1− λ

1 + λ

1 + α(α− 2)L2L

(1− αλL)2

+ 2 tr {R D}
(

f0γ0 +
∞∑

k=1

γk

πk
sin (2kπf0)

)

where γk gets computed recursively as:





γk+1 = λγk − ακ2λ2L−1−k , k < L,

γk+1 = λγk , k ≥ L.

To investigate the tracking ability of the different RLS algorithms, we compare the min-

imum EMSE achieved by each variant(with optimized parameters). On figures (8.5) and

(8.6), we gives for different values of f0, the Excess MSE for the exponential and the

rectangular widows as a function of respectively λ and L.

We notice that for the rectangular window the EMSE curve may have local minima.

Therefore, we must be careful in the choice of the minimization algorithm. However, with

exponential window this problem does not arise. That is why we have used the golden

section algorithm to minimize the Excess MSE in the case of the exponential window ;

and a multilevel quasi-exhaustive search algorithm in the case of the rectangular window.

Fig. 8.7 plots the curves of minimized EMSE (as a function of the bandwidth f0).

This analysis shows that, for a flat low-pass spectrum, the exponential window performs

better than the rectangular window, but also that the optimal generalized window performs

even better.
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Figure 8.5: EMSE of the WRLS for diffrent values of f0

8.4.2 Optimized Windows

Consider minimizing the Excess MSE with respect to the window coefficients. This prob-

lem can be interpreted in terms of Wiener filtering for a signal in noise problem, see

Fig. 8.8, where the desired and noise signal spectra are respectively Svv

(
ej2πf

)
= σ2

v =

Nσ2
n, and Sdd

(
ej2πf

)
= tr

{
R SHH

(
ej2πf

)}
.

The causal Wiener solution for such problem is

FWiener

(
ej2πf

)
=

Sdd

(
ej2πf

)

Sdd (ej2πf ) + σ2
v

. (8.11)

The DC component of this Wiener solution is

FWiener (1) =
Sdd (1)

Sdd (1) + σ2
v

. (8.12)

Now, since Sdd is quite lowpass , we have Sdd(1) >> σ2
v . Thus, for an acceptable SNR,

FWiener(1) ≈ 1. Then,

Fopt

(
ej2πf

) ≈ FWiener

(
ej2πf

)
=

Sdd

(
ej2πf

)

Sdd (ej2πf ) + σ2
v

. (8.13)

The associated Excess MSE is given by:

EMSEmin = σ2
v

∫
Fopt

(
ej2πf

)
df = σ2

v f opt
0 . (8.14)
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If we impose a causality constraint, the Wiener solution becomes:

F c
Wiener

(
ej2πf

)
= 1− σ2

v

σ2 A (ej2πf )
(8.15)

where A (z) denotes the optimal prediction error filter for the signal x = d+v, and σ2 the

associate prediction error variance. Using the same arguments as before, one can show

that, for an acceptable SNR, F c
Wiener (1) ≈ 1; and then F c

opt

(
ej2πf

) ≈ F c
Wiener

(
ej2πf

)
.

The associated Excess MSE is given by:

EMSEc
min = σ2

v

∫
F c

opt

(
ej2πf

)
df = σ2

v f c,opt
0 . (8.16)

8.4.3 Optimality Considerations for Classical Windows

The question we investigate in this section is ”For which optimal filter variation model is

the exponential or the rectangular window optimal?”. To answer this question, we use the

reverse engineering technique. We assume a separable optimal filter variation spectrum

with uncorrelated optimal filter coefficients.

Equating the causal Wiener solution and the exponential window transfer function
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leads to a variation spectrum of the form:

Shh(z) ∝ 1

(1− αz−1) (1− αz)
. (8.17)

Thus, for AR(1) ”drifting” parameters, the exponential window optimizes the tracking

performance (over the set of all causal windows).

Similarly, by equating the non-causal Wiener filter with the centered rectangular win-

dow, one can show that SWC-RLS is optimal for a variation spectrum of the form:

Shh(z) ∝ FR(z)

1− FR(z)
(8.18)
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where FR(z) =
1

L

z
L
2 − z−

L
2

z
1
2 − z−

1
2

denotes the centered sliding window transfer function.

Shh(z) in (8.18) can be interpreted to be the spectrum of a process g with spectrum

Sgg(z) = FR(z)), low-pass filtered by H(z) =
(

1
1−FR(z)

)1/2

(spectral factor). The in-

put g can be interpreted as a white jumping process (with memory L/2), or as white noise

viewed on the scale L/2: g stays constant for L/2 samples, then jumps to an uncorre-

lated value, stays constant again for L/2 samples and so on. On the other hand, around

frequency zero

1

1− FR (e2jπf )
≈ 3

π2(L2 − 1)

1

f 2
. (8.19)

Then, the low-pass filter H(z) can be interpreted as an integrator.

8.5 Concluding Remarks

In this chapter, we have considered tracking of a time-varying system modeled as a sta-

tionary vector process. In the Uninformed approach, we have investigated the tracking

capability, by comparing the tracking and matching characteristics of the different RLS

windows (under identical estimation noise). In the Informed approach, we have inter-

preted the RLS algorithm as a filtering operation on the optimal filter process and the

instantaneous gradient noise. We have shown the optimality of the exponential window

for AR(1) ”drifting” parameters, and of the sliding window for integrated white ”jump-

ing” parameters. An open question remains: how to estimate and optimize simultaneously

the adaptive filter and window parameters? Alternatively, one may opt for a two-step ap-

proach:

• Step 1: non-causal SWC-RLS (with short window), providing noisy but undistorted

filter estimates.

• Step 2: Wiener (Kalman) filtering to provide the optimal estimation noise/low-pass

distortion compromise, e.g. as in [145].

Such an approach allows for less constrained optimal filtering, that can be optimized, and

tailored to individual (and possibly correlated) filter coefficients, whereas RLS has only

one global window.



156
8. WINDOW OPTIMIZATION ISSUES IN RECURSIVE LEAST-SQUARES ADAPTIVE

FILTERING AND TRACKING

APPENDIX

8.6 EMSE for a Causal Rectangular Window, Separable

Variation Spectrum Case

The z-transform of the rectangular window is given by:

FR(z) =
1

L

1− z−L

1− z−1
(8.20)

In order to perform the analytical expression of the Excess MSE in the case of a rectan-

gular window, we start calculating the quantity
∫ f0

0

∣∣1− FR(e2jπf )
∣∣2 df .

∣∣1− FR(e2jπf )
∣∣2 =

∣∣∣∣
L− Le−2jπf − 1 + e−2jπfL

L (1− e−2jπf )

∣∣∣∣
2

=

∣∣(L− 1)− Le−2jπf + e−2jπfL
∣∣2

4L2 sin2 (πf)

The expansion of the numerator gives:
∣∣(L− 1)− Le−2jπf + e−2jπfL

∣∣2 = 4L(L− 1) sin2 (πf)

+4L sin2 (πf(L− 1))− 4(L− 1) sin2 (πfL)

Finally, we have:

∣∣1− FR(e2jπf )
∣∣2 =

L− 1

L
+

1

L

sin2 (πf(L− 1))

sin2 (πf)

− L− 1

L2

sin2 (πfL)

sin2 (πf)

We can see, from the previous expression, that
∫ f0

0

∣∣1− FR(e2jπf )
∣∣2 df can be deduced

from the function

g(f0) =

∫ f0

0

sin2 (πfL)

sin2 (πf)
df

The Fejer kernel can be written as

sin (πfL)

sin (πf)
= ejπf(L−1)

(
L−1∑

k=0

e−2jπfk

)
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Then,

sin2 (πfL)

sin2 (πf)
= L + 2

L−1∑

k=1

(L− k) cos (2πfk)

Finally,

∫ f0

−f0

∣∣1− FR(e2jπf )
∣∣2 df = 2

L− 1

L
f0 − 2

πL2

L−1∑

k=1

sin (2πf0k)

∗ CONCLUSION

Using a rectangular windowing, The Excess MSE is given by:

EMSE =
Nσ2

n

L
(8.21)

+2tr(RD)

(
L− 1

L
f0 − 1

πL2

L−1∑

k=1

sin (2πf0k)

)

8.7 EMSE for a Causal Exponential Window, Separable

Variation Spectrum Case

The z-transform of the exponential window is given by:

FE(z) =
1− λ

1− λz−1
(8.22)

In order to perform the analytical expression of the Excess MSE in the case of a exponen-

tial window, we start calculating the quantity
∫ f0

0

∣∣1− FE(e2jπf )
∣∣2 df .

∣∣1− FE(e2jπf )
∣∣2 =

2λ2 (1− cos (2πf))

1− 2λ cos (2πf) + λ2

The previous expression can be expanded as

∣∣1− FE(e2jπf )
∣∣2 =

2λ2 − 2λ

1− 2λ cos (2πf) + λ2

+
2λ (1− λ cos (2πf))

1− 2λ cos (2πf) + λ2
(8.23)
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On the other hand, we have:
∫

1− a2

1− 2a cos(x) + a2
dx = 2arctan

(
1 + a

1− a
tan

(x

2

))

∫
(1− a cos x)

1− 2a cos x + a2
dx =

x

2
+ arctan

(
1 + a

1− a
tan

(x

2

))

Using the integration change of variables x = 2πf , we have
∫ f0

0

∣∣1− FE(e2jπf )
∣∣2 df = λf0

−λ

π

1− λ

1 + λ
arctan

(
1 + λ

1− λ
tan (πf0)

)

∗ CONCLUSION

Using an exponential windowing, The Excess MSE is given by:

EMSE = Nσ2
n

1− λ

1 + λ
(8.24)

+2tr(RD)

(
λf0 − λ

π

1− λ

1 + λ
arctan

(
1 + λ

1− λ
tan (πf0)

))

8.8 EMSE for a Causal Generalized Sliding Window, Sep-

arable Variation Spectrum Case

The z-transform of the generalized sliding window is given by:

FG(z) = κ
1− αλLz−L

1− λz−1
=

1− λ

1− αλ

1− αλLz−L

1− λz−1
(8.25)

In order to perform the analytical expression of the Excess MSE in the case of a general-

ized sliding window, we start calculating the quantity
∫ f0

0

∣∣1− FG(e2jπf )
∣∣2 df .

By expanding
∣∣1− FG(e2jπf )

∣∣2, we have:

∣∣1− FG(e2jπf )
∣∣2 = A (α, λ, L)

1

1 + 2λ cos (2πf) + λ2

+ B (α, λ, L)
cos (2πf)

1 + 2λ cos (2πf) + λ2

+ C (α, λ, L)
cos (2πfL)

1 + 2λ cos (2πf) + λ2

+ D (α, λ, L)
cos (2πf(L + 1))

1 + 2λ cos (2πf) + λ2
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where

−A (α, λ, L) =

(
λ− αλL

)2
+ λ2

(
1− αλL

)2

(1− αλL)2

+
α2λ2L(1− λ)2

(1− αλL)2

- B (α, λ, L) =
2λ

(
λ− αλL

)

(1− αλL)

- C (α, λ, L) =
λL(1− λ)

(
λ− αλL

)

(1− αλL)2

- D (α, λ, L) =
αλL+1(1− λ)

(1− αλL)

Thus, to evaluate
∫ f0

0

∣∣1− FG(e2jπf )
∣∣2 df , it is sufficient to have the expression of

∫ f0

0

cos (2πfk)

1 + 2λ cos (2πf) + λ2
df k ≥ 0, 0 < λ < 1

Other approach to evaluate, approximately, the previous expression is to expend it on a

Fourier series.

Let us define the sequence {w̃k}k as:
{

w̃0 = 1− w0

w̃k = −wk

(8.26)

Using the previous notations, we write

1− FG

(
e2jπf

)
=

∞∑

k=0

w̃ke
−2jkπf (8.27)

Then,

∣∣1− FG

(
e2jπf

)∣∣2 = γ0 + 2
∞∑

k=0

γk cos (2kπf)

where γk =
∞∑

p=0

w̃pw̃p+k. Note that γ can be calculated recursively using:

{
γk+1 = λγk − ακ2λ2L−1−k k < L

γk+1 = λγk k ≥ L
(8.28)
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Let us define the function series

fk(x) : x 7−→ γk cos (2kπf)

we verify that:

|fk(x)| ≤ Cst λk

Thus, we show that
∞∑

k=0

fk is normally, then uniformly, convergent. What’s imply that

∫ f0

0

fkdx is a summable sequence, and we have

∫ f0

0

∞∑

k=0

fk =
∞∑

k=0

∫ f0

0

fk

Thus,
∫ f0

0

∣∣1− FG

(
e2jπf

)∣∣2 df = f0γ0 +
∞∑

k=1

γk

πk
sin (2kπf0) (8.29)

∗ CONCLUSION

Using a generalized slinding windowing, The Excess MSE is given by:

EMSE = Nσ2
n

1− λ

1 + λ

1 + α(α− 2)λ2L

(1− αλL)2 (8.30)

+ 2tr(RD)

(
f0γ0 +

∞∑

k=1

γk

πk
sin (2kπf0)

)

We have shown that the EMSE can be written as an infinite sum of a summable se-

quence. Then, we can derive an EMSE approximation by truncating the summation in

a given order. As γk decreases exponentially, we can verify that the estimation error

decreases, also, exponentially as:
∣∣∣ÊMSEK − EMSE

∣∣∣ ≤ Cst λK (8.31)

where ÊMSEK denotes the K-order approximation of the EMSE.
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Chapter 9

Conclusions and Perspectives

In the first part of this thesis we have tackled the problem of Bayesian Adaptive Filtering

on non-stationary environment. Thus in chapter 5, we first outlined the existing adap-

tive filtering technics and highlighted their limitations. We then provided a first BAF

technique based on the LMMSE solution (Wiener Filtering). We tested our proposed ap-

proach on mobile radio channel and the comparison results with standard adaptive filtrers

showed the good offered performances.

The work in chapter 6 was motivated by the well to provide applicable algorithms with

performance approaching those of the optimal case. In fact, the only existing optimal ap-

proach is the Kalman filter, in which the time-varying optimal filter is modeled as a vector

AR(1) process. The Kalman filter is in practice never applied as an adaptive filter because

of its complexity and large number of unknown parameters in its state-space (AR(1))

model. In this chapter we look for practical techniques to take advantage of the Kalman

optimality with reduced complexity to make this approach applicable. We thus propose

and algorithm based on modeling the optimal adaptive filter coefficients as a stationary

vector process, in particular as a AR(1) model which results on a Kalman filter where the

model parameters are adapted using EM. This algorithm has complexity O(N3) which

we reduce to O(N2) (complexity of RLS) by proposing a diagonal AR(1) based model.

To further reduce the complexity, we provide a second technique called component-wise

EM-Kalman (complexity O(N) comparable to LMS). We also give the exact analytical

expressions of EMSE in the steady-state in the general case of all proposed algorithms.
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The techniques are compared for a radio mobile communication scenario.

In chapter 7, we develop an other technique in order to obtain the performance as the

EM-Kalman with complexity O(N).

The second part of the thesis focuses on the study of windoinw optimization of RLS algo-

rithm. Thus in chapter 8, we consider the tracking of a time-varying system modeled as

a stationary vector process. In the case where no information on the channel statistics is

available, we investigated the tracking capability, by comparing the tracking and match-

ing characteristics of the different RLS windows (under identical estimation noise). In the

case where such an information is available, we interpreted the RLS algorithm as a filter-

ing operation on the optimal filter process and the instantaneous gradient noise. We was

interested on finding the model for which the exponential and the rectangular windows are

optimal. We thus showed the optimality of the exponential window for AR(1) ”drifting”

parameters, and of the sliding window for integrated white ”jumping” parameters.

Areas for further research

If complexity is not an issue but only performance counts: KF: need to develop AR(∞)

state equation and colored measurement noise and average resulting Pk|k w.r.t. input

signal.

How about staying close to the Kalman Filter, given input signal. Does this make

sense for the non-sytem identification applications? But nonetheless, suppose don’t care

about complexity and just want the best solution.

Issue of smoothing versus filtering and prediction, influence of estimation delay on

perf. Solution for arbitrary (positive: prediction, or negative: smoothing) delay based on

the prediction error filter for the adaptive filter estimates. Prediction approaches don’t

require additive noise variance.

Issue of state transition matrix: diagonal of phases in complex case or block diagonal

of 2x2 rotations in real case (frequency shifted/non-centered Doppler spectra)?
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Kalman filter type solution for BEM subsampled model? Multi-rate KF.

how to estimate and optimize simultaneously the adaptive filter and window parame-

ters? Alternatively, one may opt for a two-step approach:

• Step 1: non-causal SWC-RLS (with short window), providing noisy but undistorted

filter estimates.

• Step 2: Wiener (Kalman) filtering to provide the optimal estimation noise/low-pass

distortion compromise, e.g. as in [145].

Such an approach allows for less constrained optimal filtering, that can be optimized, and

tailored to individual (and possibly correlated) filter coefficients, whereas RLS has only

one global window.
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[75] L. Lindbom and A. Ahlèn and M. Sternad and M. Falkenstrom, “Tracking of

Time-Varying Mobile Radio Channels Part II: A Case Study,” IEEE Trans. on Com-

munication, Jan. 2002.
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