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Abstract— We consider the problem of distributing a content
of finite size to a group of users connected through an overlay
network that is built by a peer-to-peer application. The goal is
the fastest possible diffusion of the content until it reaches all the
peers. Applications like Bit-Torrent or SplitStream are examples
where the problem we study is of great interest.

In order to represent the content diffusion process, we model
the system as a stochastic graph process and define the con-
straints the graph evolution is subject to. The evolution of the
graph is a semi-Markov process where the sojourn times are the
rewards of interest for the computation of the time needed to
complete the file distribution. We discuss the general properties
of the constrained stochastic graphs and we show preliminary
results obtained with an ad-hoc Monte-Carlo technique.

I. INTRODUCTION

The peer-to-peer (P2P) networking paradigm received a lot
of attention in recent years. P2P systems construct an overlay
at the application layer and do not require any modification to
the existing Internet. Such an ease of deployment, which is in
contrast to other technologies such as IPv6 or IP-level multi-
cast that do require modifications inside the network, makes
P2P systems very attractive for supporting new communication
paradigms.

One of the most popular P2P application is file sharing, a
variation of which can also be used for file distribution. P2P
for file distribution has the appealing feature of self-scaling:
the more are the users downloading the content the larger the
overall amount of resources available for the entire system.

In this paper we consider the specific problem of how to
distribute a file to a community of users organized as an
overlay of peers: what is the most efficient architecture and
protocol that can be used to distribute this content to the
users? Applications include, for instance, distribution of virus
footprints or software updates. We focus the analysis to files
distributed to cooperative users willing to receive and forward
it to others.

We give a formal definition of the process underlying
the construction of a ‘distribution graph’ as a semi-Markov
process, describing how different choices impact the structure
of the stochastic process itself (and obviously the constructed
graph) as well as the rewards used to derive the performances.
Then, we analyze the properties of the semi-Markov processes.
Finally, we discuss some results. The representation of content
delivery overlay networks through stochastic graph processes

allows giving a high level description of different kind of
protocols and architectures and comparing them, abstracting
from the implementation details.

A. Related Work

Performance analysis in terms of the minimum time re-
quired to distribute a file using a P2P system has only in
recent years received some attention. Most of the analytical
work [1][2] focuses on a specific system and not on a generic
distribution architecture, and they assume strict hypotheses,
like the uniformity of access bandwidths. Only [3] tackles the
problem of bandwidths heterogeneity, which is also treated in
this paper.

To the best of our knowledge, very few models have
been proposed that allow comparative studies of different
distribution architectures. In [4], inspired by SplitStream [10]
(an overlay streaming protocol) the authors have defined and
analyzed linear chain and tree-based architectures assuming
ideal conditions, hence in a completely deterministic situation.
The work in [5] defines a model for chain-based and tree-based
architectures and analyzes the system using max-plus algebra
considering an infinite number of packets, calculating the long
term average throughput; our analysis instead considers a finite
file size and calculates the distribution of the download time
of all the peers.

Stochastic graph processes, the analytical tool we use in
this paper to model overlay content delivery networks, were
defined in [6] with the same notation we use here, although
they were known since the ’50s. A sub case, the random
graphs [7], were studied in detail obtaining their general
properties. The focus of the analysis in [7] is the topological
properties of random graphs, whereas our aim is to take
into account not only connections among nodes, but also
their weights given by the bandwidths of the involved nodes,
which give rise to the state reward structure that allows the
computation of completion times.

II. PROBLEM FORMULATION

The aim of the service is the delivery of a given finite size
content F to a set of users. The only requirement of the service
is content integrity and the main performance metric is the
download time T of the content, either for a given user i (Ti),



or for the whole community (Tt), or the mean T of all the
individual download times Ti.

We assume that each node knows a subset of the whole
community, i.e., a node has a finite number of neighbors.

The content F is divided in C pieces called chunks. A chunk
represents a basic unit of transmission that can be distributed
independently. During the distribution of F , a node that has
started to download F can in turn start to upload F after
entirely receiving the first chunk.

For each node i, we define bu
i and bd

i as the upload
and download bandwidth respectively, which can be either
symmetric, asymmetric or correlated, e.g., bu

i +bd
i constant, as

in a shared medium based access. The bandwidths are random
variables described by a probability density function (pdf) that
is known.

When a node starts uploading chunks of F , the effective
rate used to transfer the chunks to each child is computed
according to the max-min fairness criterion. The rate depends
on multiple factors, such as the number of children of the
uploading node, the rate the uploading node is receiving, etc.
While the bandwidths (upload and download) are a given, the
rates are computed during the distribution process.

We define the eligibility time tel
i of node i as the time at

which node i can start uploading chunks to other nodes, i.e.,
it has completely received the first chunk. If a node j is child
of node i and receives at a rate rij , its eligibility time is tel

j =

tel
i + tij , where tij

4
= F

C
1

rij
. As a last assumption we suppose

that node i chooses its children j uniformly at random among
all its neighbors, not taking into account upload and download
bandwidths.

A. Formalization and general definitions

The distribution of a content within a community of users
can be formalized as the propagation across a graph of nodes
and edges with some (stochastically defined) characteristics.
Nodes are the users and edges summarize all the characteristics
of the communication network between the users.

Let N be the set of nodes, i.e., the vertices of the graph,
and A the set of all the arcs that connect pairs of nodes,
A ⊆ N ×N . We only consider fully reachable networks with
bidirectional connections. Bi is the set of neighbors of user i,
i.e., all those nodes in N that are known and directly reachable
from node i.

The graph G(N ,A) represents the overlay network created,
for instance, by a P2P network. The overlay layer is the basis
used to form the distribution graph. We define the distribution
graph G∗(N , E) as a directed subgraph of G(N ,A), with E ⊆
A. G∗ is a directed graph, since, from the content distribution
point of view, the content propagates from the source to the
destinations. How to obtain G∗ from G is given by the rules
implemented in the specific content distribution protocol. In
general, we can assume that the distribution graph G∗ is built
step by step. The building process is a stochastic process and
it can be modeled as a Markov chain. Let N ∗

n be the set
of nodes that belong to the distribution graph at step n, and
N ∗

n its complement with respect to N . The distribution graph

G∗
n+1 at step n + 1 is obtained from G∗

n by adding a new
edge ∈ A from one node in N ∗

n to one in N ∗
n . The complete

distribution graph G∗(N , E) is obtained when N ∗
n = N , and

N ∗
n is the empty set. The dynamic behavior of the distribution

graph can be modeled as a stochastic graph process. We recall
here the general definition of stochastic graph processes [6],
while in Sect.III, we specialize them for the analysis of content
distribution.

Definition 2.1: A stochastic graph process (SGP) on a node
set N is a discrete time Markov chain (DTMC) whose states
are graphs on N .

Even if not stated in the definition, nodes can be connected
only through edges that belong to A. Adhering to the definition
given in [6], the focus is the building process and the SGP
evolution implies that the graph is built step by step by adding
one node and one edge at each step.

Notice that in content distribution, the distribution network
(or graph) is naturally built step by step, so using the graph
G∗(N , E) is very appropriate. The time between two steps
depends on the sojourn time of the state. If sojourn times are
exponentially distributed, then we obtain a continuous time
Markov chain (CTMC), but, in general, this assumption is not
true and in continuous time we have a semi-Markov chain.

Definition 2.2: A constrained stochastic graph process
(CSGP) on a graph G(N ,A) is a semi-Markov chain whose
states are subgraphs on G.

From the semi-Markov chain we can derive an embedded
DTMC by sampling the process exactly at transition instants.

Eligibility times tel
j influence the semi-Markov process in

two different ways. In the general case of randomly varying
tij , they define both the transition probabilities between states
and the state sojourn times. In the particular case of deter-
ministic tij (e.g., when the bandwidth is only determined by
access links), sojourn times are deterministic, and tel

j define
only the state transition probabilities.

The DTMC that describes a CSGP is a transient chain with
adsorbing states ∈ G∗(N , E) that are reached when N ∗

n = N .
The way we defined a CSGP implies that nodes are stable

and collaborative, and that the networking infrastructure is
reliable enough to allow edge stability. Clearly there is the
possibility of extending the analysis to cases where nodes (or
edges) can disappear during the distribution process, so that
G∗

n is derived from G∗
n−1 not only by adding an edge and a

node, but also by removing one node and all the edges relative
to it (that may include several generations of sons).

In the following, we specialize CSGP by adding constraints
that make them suitable for modeling our problem.

III. CONTENT-DELIVERY CSGP

Different distribution architectures can be defined as special
cases of stochastic graph processes with additional constraints.
Before introducing the ‘Content-Delivery constrained stochas-
tic graph processes,’ or CD-CSGP, we give some additional
definitions that will simplify the characterization of each CD-
CSGP.



A. Content-Delivery Related Definitions
Each node has a constraint on maximum and minimum

number of active uploads (the outdegree of the node): kmax
i

and kmin
i .

Definition 3.1 (saturated node): A node i ∈ N ∗
n is called

saturated if
• it has kmax

i outgoing edges that belong to G∗
n or

• fully uses bu
i to transmit chunks to neighboring nodes that

belong to G∗
n.

Definition 3.2 (interior subset): The subset of nodes ∈ N ∗
n

that at step n are saturated is called In, the interior node subset
at step n.

Definition 3.3 (leaf subset): The set of nodes ∈ N ∗
n that

are not interior nodes is called the leaf node subset Ln at step
n, with Ln = N ∗

n − In.
We consider a single node as a root of the stochastic graph.
We define a distance measure based on number of hops from
the root to any node i.

Definition 3.4 (step distance): The number of hops from
the root to a node i following the shortest path is called step
distance or step depth, d(i).
In a tree, maxi(d

(i)) is the tree depth.

B. Unbalanced and Uneven Trees

The general process that leads to tree-based distribution
structures must abide to the following rules.

CD-CSGP 1: A constrained stochastic graph process on
graph G(N ,A) is called tree-based if

1) G∗
0 is a node, called root, randomly chosen in N .

2) G∗
n is obtained from G∗

n−1 by
a) choosing the node i from N ∗

n−1 with the smallest
eligibility time: tel

i = minj(t
el
j); if more nodes have

the same eligibility time, the choice among these
nodes is made randomly;

b) adding edges from node i to nodes randomly
chosen from Bi

⋂
N ∗

n−1, until node i becomes
saturated.

Figure 1 shows an example with few states of the DTMC
generated by a CD-CSGP 1 process. In this case we have only
two possible bandwidths (slow nodes with black circles, fast
nodes with white ones, with slow bandwidth less than half
of the fast bandwidth) and kmax

i = 2 and kmin
i = 1. Starting

from a state where the server is uploading to a slow and
to a fast node, the fast node has the smallest eligibility time
and there are only three next possible states: (i) the fast node
selects a fast nodes among its neighbors, becoming saturated;
alternatively, the fast node chooses a slow node so it has to
select another node: (ii) the selected node is fast and we have
bandwidth saturation, or (iii) the chosen node is slow and we
have saturation because kmax is reached. Note that in case (i)
the node becomes saturated since the rate of the content it is
receiving is high. If, for instance, the rate were slow (consider
the fast node under the slow node in the shadowed state),
the number of children would be in any case 2, since the
bandwidth used to transmit to each child is at most equal to
the rate it is receiving.

Fig. 1. Sample of the embedded DTMC for a CD-CSGP 1 process; states
are graphs built on G, black and white circles represent slow and fast nodes
respectively, kmax

i
= 2 and kmin

i
= 1.

The resulting tree is, in general, a structure where the nodes
in the leaf set Ln do not all have the same step distance from
the root. The speed of growth of the different branches is
not the same. And the deeper branches are those that contain
faster nodes, i.e., nodes with smaller eligibility times tel. We
call such trees “uneven.”

The majority of the works on tree-based distribution archi-
tectures consider trees where leaves have the same distance
from the root. We call such trees “unbalanced.” The difference
between unbalanced and uneven trees is enormous: in an
unbalanced tree, a slow node will influence the reception
of all nodes in its subtree, in an uneven tree, a slow node
may not even have the possibility to have children. Since we
are interested in the download time, it is worth to look at
a weighted graph where the weight associated to a directed
edge is given by the difference between the download times
of the nodes connected by the edge. In unbalanced trees,
this representation shows the disparity in terms of download
time among leaf nodes that are at the same step distance. In
Fig. 2 the weight is represented as a difference in edge length.
Conversely, in uneven trees, leaf nodes are at different step
distances and the weighted graph gives a pictorial illustration
why the tree grows in this way: a new edge is added only after
a node becomes eligible and this forces a uniform growth of
the weighted graph.

Fig. 2. Difference between unbalanced and uneven trees, considering the
corresponding weighted graphs where edge length represents the download
time.



We define a special stochastic graph process for this type
of tree. To do so, we consider a subset of the leaf set Ln.

Definition 3.5: Let dMAX
n = max

j
(d(j)

n ) be the maximum step

distance of the nodes j ∈ Ln. The subset L̃n ⊆ Ln is defined
as follows: L̃n = { i ∈ Ln | d

(i)
n < dMAX

n }.
Now we can define the process that leads to unbalanced trees.

CD-CSGP 2: A constrained stochastic graph process on
graph G(N ,A) is called tree-based and unbalanced if

1) G∗
0 is a node, called root, randomly chosen in N .

2) G∗
n is obtained from G∗

n−1

a) choosing a node i from L̃n−1 if not empty (other-
wise from Ln−1) with the smallest eligibility time;
if more nodes have the same eligibility time, the
choice among these nodes is made randomly;

b) adding edges from node i to nodes randomly
chosen from Bi

⋂
N ∗

n−1, until the node becomes
saturated.

We will show in Sect. V the impact of unbalanced and
uneven tree on the performance.

C. General Mesh Architecture

Tree based architectures have known shortcomings. Each
node has only one ancestor and in case of a nodes failure, the
entire subtree will stop receiving data. Each node must divide
the upload bandwidth among its children, so children use only
a fraction of their download bandwidths for receiving chunks;
if we consider the case of asymmetric capacities, where the
upload bandwidth is smaller than the download bandwidth (as
in the case of ADSL), the percentage of unused download
bandwidth increases even further. Finally, leaf nodes receive
the entire file without uploading a single chunk, resulting in
unfairness and poor performance.

Mesh based architectures are meant to overcome these
problems. Nodes can upload to other nodes already reached
by the content. In this case we have to consider the ‘freshness’
of the information that a node is downloading from its fathers.

We assume that the server, that is the only node that has
the full content and can differentiate the parts to distribute,
gives the chunk in different orders to its children, but different
techniques such as network coding can be envisaged. We
define diffusion trees the trees generated by these children.
Nodes can receive the content from different fathers provided
that these fathers belong to different diffusion trees. In general,
if the server has ks children, each node can have up to
ks fathers, each of them having F/ks fresh content. For a
detailed description of stochastic graph processes for mesh
based networks refer to [11] for the lack of space.

IV. CD-CSGP SOLUTION

The CD-CSGP we have defined in Sect. III can describe
different behaviors of content distribution protocols and algo-
rithms. Consider for example the two well known application
layer multicast protocols, ALMI [9] and SplitStream [10],
which use different topologies for the distribution. The first
builds a tree structure to deliver the content, the second a

mesh structure. Through CD-CSGP we can compare these two
approaches, abstracting from any protocol detail.

A. Properties of CSGP and rewards

Let S be the state space of the DTMC embedded in the
CD-CSGP we consider; Sk ∈ S are the states of the DTMC,
i.e., the graphs G∗

n. We start considering trees: to compute the
mean download time T of F we assign to each absorbing state
Sk ∈ Sa (Sa is the set of absorbing states) a reward T k equal
to the mean download time of the nodes in the state,

T k =
1

|N ∗
n |

∑

i∈N

Ti ; Sk ∈ Sa

The mean download time T is the reward of a DTMC obtained
by adding a deterministic transition from all the absorbing
states to an initial state represented by the empty graph ∅.

T =

∑
k∈Sa

T kπk∑
k∈Sa

πk

.

where πks are the steady state probabilities of the support
DTMC defined in Sect. II-A.

Another performance measure easily defined as a reward is
the wasted upload bandwidth wu (in percentage). Let wu

i =

100(1− max(ru
i )

bu
i

) be the wasted upload bandwidth of node i,
where max(ru

i ) is the maximum upload rate ever reached by
the node in any visited state. Considering again the modified
DTMC and letting Sa be the set of absorbing states in the
unmodified DTMC we have

wu
k =

1

|N |

∑

i∈N

wu
i ; Sk ∈ Sa and wu =

∑
k∈Sa

wu
kπk∑

k∈Sa
πk

.

We developed a tool for the numerical solution of all the
CD-CSGP we defined in this work. The tool is based on
fast Monte Carlo techniques that allow the exploration of the
chain with great efficiency, computing in the meanwhile the
reliability of the produced results. It implements the algorithms
driving the stochastic process providing realizations of the
process. It has several configuration parameters and the outputs
are the rewards associated with the process. For a detailed
description of the tool we refer the interested reader to [12].
Here we only give some sample results showing the feasibility
and power of CD-CSGP formalization for content delivery
analysis.

V. NUMERICAL RESULTS

As numerical example we consider a probability density
function for the node bandwidth summarized in Table I.

TABLE I
BANDWIDTH DISTRIBUTION USED IN THE EXAMPLES

Bandwidth % nodes
56 kbit/s 13%

640 kbit/s 23%
1.2 Mbit/s 64%

When reporting results, we normalize the data such that
|F|

min(bi)
= 1 ‘round’, where |F| is the content size in bits and



min
i

(bi) is the minimum bandwidth of the input pdf in bits/s.
We use a number of chunks C equal to 100. All results have
confidence level 0.95 and confidence interval ±10%.

We focus on the comparison between unbalanced and un-
even trees; a detailed analysis of the influence of the different
constraints, such as kmax and kmin, can be found in [12].
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Figure 3 shows the results as a function of |N |. The poorer
results for unbalanced trees (CD-CSGP 2) are due to the
bounds on the d(i). Slow nodes, especially those close to the
root, impose their rate on the whole subtree. In the case of
uneven trees (CD-CSGP 1), slow nodes close to the root have
no time to start to upload, since the time it takes to become
eligible is much more than the time it takes the fast nodes to
reach, at different levels, all the other nodes. This increase of
performance for the uneven tree comes at a cost of a greater
step distance.
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As shown in Fig. 4, our tool provides the entire CDF
(or conversely the pdf) of the download time, a result that
is normally not available with analytical or semi-analytical
techniques. The CDF shows clearly the reason why uneven
trees are more efficient and does also show that with uneven
trees fast peers are far less influenced by slow ones also
increasing the perceptual fairness of users.

VI. CONCLUSIONS

In this paper we have discussed fundamental properties of
content distribution systems using a novel technique based on
Stochastic Graph Processes (SPG).

Describing a content distribution protocol as an SPG (with
additional evolution constraints that represent the protocol-
induced behavior) enables the use of powerful analysis tools
based on the Monte-Carlo solution of the system equations.
To the best of our knowledge, stochastic graph processes were
used only to study connectivity properties, but they were never
applied in performance analysis of networks, and this represent
an important contribution.

Distribution systems are based on trees and meshes. Trees
were studied intensively in the literature, however important
details such as bandwidth heterogeneity and varying node
outdegrees as well as different minimum and maximum out-
degrees have received very little attention, probably for the
difficulty in finding closed form results.

Our approach discloses the possibility of analyzing all the
details above and many others too, and can be extended to
streaming distribution and other related applications. Sample
results demonstrates the power of the analytic framework we
defined.
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