
Towards Transactional Pervasive Workflows

Frederic Montagut
SAP Labs France, Institut Eurecom

805, Avenue du Docteur Maurice Donat
Font de l’Orme, 06250 Mougins, France

frederic.montagut@sap.com

Refik Molva
Institut Eurecom

2229 Route des Cretes
06904 Sophia-Antipolis, France

refik.molva@eurecom.fr

Abstract

Workflow technologies are becoming pervasive in that
they enable the execution of business processes in dis-
tributed and ubiquitous computing environments. The exe-
cution of pervasive workflows raises transactional require-
ments due to their dynamicity and the need for relaxed
atomicity. In this paper, we propose an adaptive transac-
tional protocol for the pervasive workflow model developed
in a previous work. The execution of this protocol takes
place in two phases. First devices are assigned to tasks us-
ing an algorithm whereby workflow partners are selected
based on functional and transactional requirements. The
workflow execution further proceeds through a hierarchi-
cal coordination protocol managed by the workflow initia-
tor and controlled based on a decision table computed as
an outcome of the device assignment procedure. The result-
ing workflow execution is compliant with the defined consis-
tency requirements and the coordination decisions depend
on the transactional characteristics of the devices assigned
to each task.

1. Introduction

Workflow technologies are becoming pervasive in that
they enable the execution of business processes in dis-
tributed and ubiquitous environments [20], [2], [5]. The
adequate execution support for pervasive workflows has to
cope with the lack of dedicated infrastructure for manage-
ment and control tasks. To that effect a first step has been
achieved by the design of a fully decentralized workflow
architecture built on top of the “Enterprise Services Archi-
tecture” paradigm [18]. Featuring a dynamic assignment of
tasks to workflow partners, this architecture allows users to
initiate workflows in any environments where surrounding
users’ resources can be advertised by various means includ-
ing a discovery service. Yet, this architecture does not give
any guarantee on the consistency of data modified during

the process execution. Considering the lack of reliability
of the devices present in distributed environments, data and
transaction consistency is a main issue. Transactional re-
quirements raised by pervasive workflows are twofold: on
the one hand, the workflow execution is dynamic in that the
workflow partners offering different characteristics can be
assigned to tasks at runtime and atomicity of the workflow
execution can be relaxed as intermediate results produced
by the workflow may be kept despite the failure of one part-
ner. Existing transactional protocols [8, 10] are not adapted
to solve this paradigm as they do not offer enough flexibility
to cope for instance with the runtime assignment of compu-
tational tasks.

In this paper, we propose an adaptive transactional pro-
tocol for the pervasive workflow model developed in [18].
The execution of this protocol takes place in two phases.
First, devices are assigned to tasks using an algorithm
whereby workflow partners are selected based on func-
tional and transactional requirements. These transactional
requirements are defined at the workflow design stage us-
ing the Acceptable Termination States model (ATS). The
workflow execution further proceeds through a hierarchi-
cal coordination protocol managed by the workflow initia-
tor and controlled using a decision table computed as an
outcome of the device assignment procedure. The resulting
workflow execution is compliant with the defined consis-
tency requirements and the coordination decisions depend
on the characteristics of the devices assigned to each task.

The paper is organized as follows. Section 2 introduces
preliminary definitions and the methodology followed by
our approach. We present an example of pervasive work-
flow in section 3 for the purpose of illustrating our results
throughout the paper. Section 4 is a detailed description of
the transactional model used to represent the characteristics
offered by devices. Section 5 describes how an ATS is de-
rived from the properties of the termination states. Section
6 and section 7 present the transaction-aware device assign-
ment procedure and the associated coordination protocol re-
spectively. Section 8 discusses related work and section 9

1

TS(C1) v1 v2 m1 v3 v4
ts1 completed completed completed completed completed
ts2 completed completed completed completed failed
ts3 completed completed completed compensated failed
ts4 completed compensated completed completed failed
ts5 completed compensated completed compensated failed
ts6 compensated completed completed completed failed
ts7 compensated completed completed compensated failed
ts8 compensated compensated completed completed failed
ts9 compensated compensated completed compensated failed
ts10 completed completed completed failed aborted
ts11 completed compensated completed failed aborted
ts12 completed canceled completed failed aborted
ts13 compensated completed completed failed aborted
ts14 compensated compensated completed failed aborted
ts15 compensated canceled completed failed aborted
ts16 completed completed hfailed aborted aborted
ts17 completed compensated hfailed aborted aborted
ts18 completed canceled hfailed aborted aborted
ts19 compensated completed hfailed aborted aborted
ts20 compensated compensated hfailed aborted aborted
ts21 compensated canceled hfailed aborted aborted
ts22 completed failed completed aborted aborted
ts23 completed failed canceled aborted aborted
ts24 compensated failed completed aborted aborted
ts25 compensated failed canceled aborted aborted
ts26 completed failed completed completed aborted
ts27 completed failed completed compensated aborted
ts28 completed failed completed canceled aborted
ts29 compensated failed completed completed aborted
ts30 compensated failed completed compensated aborted
ts31 compensated failed completed canceled aborted
ts32 failed aborted aborted aborted aborted

1
W

AND-
Split

AND-
Join

1
C

2
t

2
v

5
t

3
t

4
t

1
t

1
v

1
m

3
v

4
v

Figure 1. Deal at a fair

presents concluding remarks.

2. Definitions and goals statement

Defining a transactional protocol for pervasive work-
flows raises challenges that are mainly due to the flexibility
of their execution and their lack of dedicated infrastructure.
After a reminder of the features offered by the pervasive
workflow architecture, we give a definition of the transac-
tional properties that must be fulfilled throughout the exe-
cution of pervasive workflows.

2.1. Pervasive workflows

In this section, we present the model of pervasive work-
flow that was designed in [18]. The pervasive workflow
concept introduces a workflow management system sup-
porting the execution of business processes in environments
wherein devices or services can expose their resources to
their surrounding environment. This workflow management
system features a distributed architecture characterized by
two objectives:
• fully decentralized architecture: the management of

the workflow execution is carried out by a set of de-

��
��
��
��

���
���
���

AND
-Split

AND
-Join

v

d
1

v

d
2

m

d1

m

d
2

m

d
3

m

d
4

v

d3

m

d 2,1

m

d
4,3

Figure 2. Protocol actors

vices in order to cope with the lack of dedicated in-
frastructure in the pervasive setting

• dynamic assignment of devices to workflow tasks: the
devices in charge of executing the workflow can be dis-
covered at runtime

Having designed an abstract representation of the workflow
whereby devices or persons are not yet assigned to tasks,
the workflow initiator launches the execution. He executes
a first set of tasks before discovering in its surrounding en-
vironment a device able to perform the next set of workflow
tasks. Once the discovery phase is complete, workflow data
are transferred from the device that performed the discov-
ery to the discovered one and the workflow execution con-
tinues with a new discovery procedure. To relax the avail-
ability constraints of pervasive environments, the execution
is stateless so that after the completion of a set of tasks each
device sends all workflow data to the next device involved
in the workflow execution and thus does not have to remain
online till the end of the workflow execution. In addition to
workflow data, the data flow among devices includes the ab-
stract representation of the workflow which consists of the
execution plan and the functional requirements associated
to each workflow step. We note W the abstract represen-
tation of a pervasive workflow and W = (ta)a∈[1,q] where
ta denotes a vertex which is a set of workflow tasks that
are contiguously performed by a device. The instance of W
wherein q devices (da)a∈[1,q] have been assigned to the sets
(ta)a∈[1,q] is denoted Wd = (da)a∈[1,q].

2.2. Assuring consistency of pervasive workflows

The first step towards assuring the consistency of work-
flows is to be able to express transactional properties as part
of the workflow model. We therefore want to offer the pos-
sibility to coordinate some tasks of a pervasive workflow
to reach consistent termination states of execution when re-
quired. Our approach consists of partitioning the specifi-
cation of a pervasive workflow into subsets or zones and
identifying some zones called critical zones wherein trans-
actional requirements defined by designers have to be ful-
filled.

Definition 2-1. We define a critical zone C of a work-
flow W as a subset of W composed of contiguous ver-
tices which require transactional consistency. We distin-

2

guish within C:
• (mk)k∈[1,i] the i vertices whose tasks only modify mo-

bile data

• (vk)k∈[1,j] the j vertices whose tasks modify data
other than mobile ones, v1 being the first vertex of C

The device assigned to the vertex vk (resp. mk) is noted
dv

k (resp. dm
k) and the instance of C is noted Cd.

We adopt a simple coordination protocol in which the
coordination is managed in a centralized manner by dv

1 as-
signed to v1. The role of the coordinator consists in making
decisions based on the transactional requirements defined
for the critical zone and the overall state of workflow exe-
cution so that the critical zone participants can reach con-
sistent states of termination. The coordination is assured
in a hierarchical way and the devices (dv

k)k∈[1,j] which are
subcoordinators report directly to dv

1 whereas the devices
dm

k report to the device dv
x most recently executed 1. For

the sake of simplicity, we consider that the set of devices
{dm

l , dm
l+1, ...d

m
p } reporting to the device dv

x form a same
abstract device noted dm

l,p assigned to the abstract vertex
ml,p. C therefore denotes a set of n vertices (abstract or
not) C = (ca)a∈[1,n]. In figure 2 the general features of the
pervasive workflow coordination protocol are depicted.

Within the pervasive workflow model, the workflow ex-
ecution is performed by devices which are assigned to ver-
tices at runtime. Considering the diversity of devices en-
countered in the pervasive setting, we assume that these de-
vices might offer in addition to different functional capabil-
ities, a variety of transactional properties. For instance, a
device can have the capability to compensate the effects of
a given operation or to re-execute the operation after failure
whereas some other device does not have any of these ca-
pabilities. It thus becomes necessary to select the devices
executing a critical zone of a pervasive workflow not only
based on functional requirements but also on transactional
ones. The device assignment procedure through which de-
vices are assigned to vertices using a match-making proce-
dure based on functional requirements has to be augmented
to integrate transactional ones. The purpose of the device
assignment procedure is to create an instance of C consis-
tent with the transactional requirements imposed by design-
ers. It is thus required to discover first all the devices that
will be executing a given critical zone before its execution is
started in order to verify the existence of a set of devices that
can be assigned to C. Once the instance of C has been cre-
ated, the execution can start supported by the coordination
protocol. The execution of the coordination protocol there-
fore consists of two phases: the first phase that includes the
discovery and assignment of devices to vertices and the sec-
ond one with the actual execution.

1device of type dv
k that is located on the same branch of the workflow

as these dm
k devices and that has most recently completed its execution.

2.3. Methodology

As described in section 2.2, a coordination protocol for
pervasive workflows has to meet two basic requirements.
First, devices have to be assigned based on a transaction-
aware process. Second, a runtime mechanism should pro-
cess and assure the coordination of the execution in the face
of failure scenarios. In order to achieve the first, we cap-
italize on the work presented in [19] whose results are re-
minded later on in this paper. In our approach, the devices
part of a critical zone instance Cd are selected according
to their transactional properties (TP) by means of a match-
making procedure. We therefore need first to remind the
semantic associated to the TP defined for the devices. The
match-making procedure is indeed based on this semantic.
This semantic is also used in order to define a tool allowing
workflow designers to specify their transactional require-
ments (TR) for a given critical zone. Based on these TR, we
are then able to assign devices to workflow vertices. Once
Cd is formed, we can proceed towards the second goal by
designing the actual coordination protocol.

3. Motivating example

In this section we describe a motivating example that
will be used throughout the paper to illustrate the de-
sign methodology. We consider a workflow executed dur-
ing a computer fair where clients, retailers and hardware
providers can exchange electronically orders and invoices.
The workflow W1 specifying this example is depicted in fig-
ure 1. Alice who would like to buy a new computer makes a
call for offer (vertex t1) to three available retailers (vertices
t2, t3, t4). After having received some offers, she decides
to go for the cheapest one and therefore contacts the corre-
sponding retailer Bob (vertex t5). Bob initiates the critical
zone C1 by sending an invoice to Alice and contacting his
hardware provider Jack (vertex v1 initiating the critical zone
C1). Alice pays using Bob’s trusted payment platform (ver-
tex v2). In the meantime Jack receives the order from Bob
and sends him an invoice (vertex d1) which he pays (vertex
v3) using Jack’s trusted payment platform. Afterwards, Bob
starts to build the computer and ships it to Alice (vertex v4).

Of course in this example, we need transactional proper-
ties as for instance Bob would like to have the opportunity
to cancel his payment to Jack if Alice’s payment is not done.
Likewise, Alice would like to be refunded if Bob does not
manage to assemble and ship the computer. These differ-
ent scenarios refer to characteristics offered by the devices
or services assigned to the workflow tasks. For example,
the payment platform should be able to compensate Alice’s
payment and Jack’s payment platform should offer the pos-
sibility to cancel an order. Yet, it is no longer necessary for
Jack to provide the cancellation option if the payment plat-
form claims that it is reliable and not prone to transaction

3

errors. In this example we do not focus on the trust rela-
tionship between the different entities and therefore assume
the trustworthiness of each of them yet we are rather in-
terested in the transactional characteristics offered by each
participant.

4. Transactional model

In this section, we remind and extend the semantic spec-
ifying the TP offered by devices described in [19] before
specifying the consistency evaluation tool associated to this
semantic. This semantic model is based on the “transac-
tional Web service description” defined in [6].

4.1. Transactional Properties of Devices

In [6] a model specifying semantically the TP of Web
services is presented. This model is based on the classifi-
cation of computational tasks made in [17, 22] which con-
siders three different types of TP. A task and by extension a
device executing this task can be:

• Compensatable: the data modified by the task can be
rolled back

• Retriable: the task is sure to complete successfully af-
ter a finite number of tries

• Pivot: the task is neither compensatable nor retriable

In the definition of a critical zone, we distinguish two
sets of devices: (dm

k)k∈[1,i] which only modify mobile or
volatile data and (dv

k)k∈[1,j] which only modify data other
than mobile ones, e.g. remote database, production of an
item, etc. Based on this distinction, the above mentioned
transactional model has to be extended. This model de-
scribes the modification of permanent data and is thus only
appropriated for database systems whereas the pervasive
setting introduces in addition transactional properties rep-
resenting devices’ characteristics such as battery level, fia-
bility, connectivity, etc. A new transactional property rep-
resenting the reliability of a device is therefore introduced.

• A device is reliable (resp. unreliable) if it is highly un-
likely (resp. likely) that the device will fail due to hard-
ware failures (battery level, communication medium
access, ...)

To properly detail this model, we can map the TP with
the state of data modified by the devices during the execu-
tion of computational tasks. This mapping is depicted in
figure 3. Basically, data can be in three different states: ini-
tial (0), unknown (x), completed (1). In the state (0), it
means either that the vertex execution has not yet started
initial, the execution has been aborted before starting,
or the data modified have been compensated after com-
pletion. In state (1) it means that the vertex has been
properly completed. In state (x) it means either that

0

1

x

Initial

Active

Completed

Com pensatedAborted

Failed CanceledHfailed

Figure 3. State model

the execution is active, the execution has been stopped,
canceled before completion, the execution has failed or
an hardware failure, Hfailed happened. These TP al-
low to define eight types of devices: (Reliable,Retriable)
(rl,rt), (Reliable,Compensatable) (rl,c), (Reliable,Retriable
and Compensatable) (rl,rtc), (Reliable,Pivot) (rl,p) and
the four others Unreliable (url). We must distinguish
within this model the inherent termination states: failed,
completed and Hfailure which result from the normal
course of the execution and the ones received during a co-
ordination protocol instance: compensated, aborted and
canceled which force a vertex to either stop or rollback.
The TP of the devices are only differentiated by the states
failed, compensated and Hfailed which indeed respec-
tively specify the retriability, compesatability and reliability
aspects.

Definition 4-1. We have for a given device d:
• failed is not a termination state of d ⇔ d is retriable

• compensated is a termination state of d ⇔ d is com-
pensatable

• Hfailed is not a termination state of d ⇔ d is reliable

From the state transition diagram, we can also derive
some simple rules. The states failed, completed, Hfailed
and canceled can only be reached if the device is in the state
active. The state compensated can only be reached if the
device is in the state completed. The state aborted can only
be reached if the device is in the state initial.

Regarding the distinction made on the nature of vertices
within a critical zone, we specify some requirements for the
devices selected for a critical zone execution. On the one
hand, as the devices (dv

k)k∈[1,j] modify sensitive and per-
manent data, we consider that they are required to be reli-
able. There are therefore four types of dv

k devices: (rl,rt),
(rl,c), (rl,rtc) and (rl,p). On the other hand, as the devices
of type dm

k only modify mobile and volatile data, we con-
sider first that they are retriable besides compensatability is
not required for volatile data. Second, we assume that these
tasks can be executed by unreliable devices and there are as
a result only two types of dm

k devices: (rl,rt) and (url,rt).
If one of the dm

k devices part of the abstraction dm
l,p is unreli-

able then dm
l,p is unreliable, otherwise dm

l,p is reliable. Figure
4 depicts the transition diagram for the six types of transac-
tional devices that can be encountered.

4

Initial

Active

Completed

CompensatedAborted

Failed Canceled

Initial

Active

Completed

Aborted

Failed Canceled

Initial

Active

Completed

CompensatedAborted

Failed Canceled

Initial

Active

Completed

Aborted

Failed Canceled

Reliable , Retriable/Compensatable Reliable , Retriable Reliable , Compensatable Reliable , Pivot

Initial

Active

Completed

Aborted

Failed Canceled

Reliable , Retriable

Initial

Active

Completed

Aborted

Failed Canceled

Unreliable , Retriable

Hfailed

Figure 4. State diagrams of devices dv
k and dm

k

4.2. Termination states

The crucial point of the transactional model specifying
the TP of devices is the analysis of their possible termina-
tion states. The ultimate goal is indeed to be able to de-
fine consistent termination states for a critical zone i.e. de-
termining for each device executing a critical zone vertex
which termination states it is allowed to reach.

Definition 4-2. We define the operator termination state
ts(x) which specifies the possible termination states of the
element x. This element x can be:
• a device d and ts(d) ∈ {aborted, canceled, failed,

Hfailed, completed, compensated}
• a vertex c and ts(c) ∈ {aborted, canceled, failed,

Hfailed, completed, compensated}
• a critical zone composed of n vertices C = (ca)a∈[1,n]

and ts(C) = (ts(c1), ts(c2), ..., ts(cn))
• an instance Cd of C composed of n devices Cd =

(da)a∈[1,n] and ts(Cd) = (ts(d1), ts(d2), ..., ts(dn))
The operator TS(x) represents the finite set of all

possible termination states of the element x, TS(x) =
(tsk(x))k∈[1,j]. We have especially, TS(Cd) ⊆ TS(C)
since the set TS(Cd) represents the actual termination
states that can be reached by Cd according to the TP of the
devices assigned to C. We also define for x critical zone or
critical zone instance and a ∈ [1, n]:
• ts(x, ca): the value of ts(ca) in ts(x)
• tscomp(x): the termination state of x such that ∀ a ∈

[1, n] ts(x, ca) = completed.
For the remaining of the paper, C = (ca)a∈[1,n] denotes a
critical zone of n vertices and Cd = (da)a∈[1,n] an instance
of C.

4.3. Transactional consistency tool

We use the Acceptable Termination States (ATS) [21]
model as the consistency evaluation tool for the critical
zone. ATS defines the termination states a critical zone is
allowed to reach so that its execution is judged consistent.

Definition 4-3. ATS(C) is the subset of TS(C) whose
elements are considered consistent by workflow designers.
A consistent termination state of C is called an accept-
able termination state atsk(C) and we note ATS(C) =
(atsk(C))k∈[1,i] the set of Acceptable Termination States
of C i.e. the TR of C.

ATS(C) and TS(C) can be represented by a table
which defines for each termination state the tuple of termi-
nation states reached by each vertex as depicted in figures 1
and 5. As mentioned in the definition, the specification of
the set ATS(C) is done at the workflow designing phase.
ATS(C) is mainly used as a decision table for a coordina-
tion protocol so that Cd can reach an acceptable termination
state knowing the termination state of at least one vertex.
The coordination decision, i.e. the termination state that
has to be reached, made given a state of the critical zone
execution has to be unique, this is the main characteristic of
a coordination protocol. In order to cope with this require-
ment, ATS(C) which is used as input for the coordination
decision-making process has thus to verify some properties.

5. Forming ATS(C)

In this section the definitions and theorems introduced
and proved in [19] are reminded and adapted to specify
ATS(C) in the case of pervasive workflows. The approach
followed is based on the fact that ATS(C) ⊆ TS(C) thus
ATS(C) inherits the characteristics of TS(C). We make
the assumption that only one device can fail at a time. As
explained above the unicity of the coordination decision
during the execution of a coordination protocol is a major
requirement. We try here to identify the elements of TS(C)
that correspond to different coordination decisions given the
same state of a workflow execution. There are two situa-
tions whereby a protocol coordination has different possi-
bilities of coordination given the state of a workflow vertex.
Let a, b ∈ [1, n] and assume that the vertex cb has failed:

• the vertex ca is in the state completed and either it
remains in this state or it is compensated

5

• the vertex ca is in the state active and either it is
canceled or the coordinator let it reach the state
completed

From these two statements, we define the incompatibility
from a coordination perspective and the flexibility.

Definition 5-1. Let k, l ∈ [1, j]. tsk(C) and tsl(C)
are said incompatible from a coordination perspective
⇔ ∃ a,b ∈ [1, n] such that tsk(C, ca) = completed,
tsk(C, cb) = tsl(C, cb) ∈ {failed, Hfailed} and
tsl(C, ca) = compensated. Otherwise, tsl(C) and tsk(C)
are said compatible from a coordination perspective.

The value in {compensated, completed} reached by
a vertex ca in a termination state tsk(C) whereby
tsk(C, cb) ∈ {failed, Hfailed} is called recovery strategy
of ca against cb in tsk(C). By extension, we can consider
the recovery strategy of a set of vertices against a given ver-
tex.

Definition 5-2. Let a, b ∈ [1, n]. A vertex ca is flex-
ible against cb ⇔ ∃ k ∈ [1, j] such that tsk(C, cb) ∈
{failed, Hfailed} and tsk(C, ca) = canceled. Such a
termination state is said to be flexible to ca against cb. The
set of termination states of C flexible to ca against cb is de-
noted FTS(ca, cb).

From these definitions, we now study the termination
states of C according to the compatibility and flexibility cri-
terias in order to identify the termination states that follow
a common strategy of coordination.

Definition 5-3. Let a ∈ [1, n]. A termination state
of C tsk(C) is called generator of ca ⇔ tsk(C, ca) ∈
{failed, Hfailed} and ∀ b ∈ [1, n] such that cb is
executed before or in parallel of ca, tsk(C, cb) ∈
{completed, compensated}. The set of termination states
of C compatible with tsk(C) generator of ca is denoted
CTS(tsk(C), ca).
The set CTS(tsk(C), ca) specifies all the termination states
of C that follow the same recovery strategy as tsk(C)
against ca.

Definition 5-4. Let tsk(C) ∈ TS(C) be a generator of
ca. Coordinating an instance Cd of C in case of the failure
of ca consists in choosing the recovery strategy of each ver-
tex of C against ca and the za < n vertices (cai)i∈[1,za]

flexible to ca whose execution is not canceled when ca

fails. We call coordination strategy of Cd against ca the set
CS(Cd, tsk(C), (cai)i∈[1,za], ca) = CTS(tsk(C), ca) −⋃za

i=1 FTS(cai , ca). If the device da assigned to ca is re-
triable then CS(Cd, tsk(C), (cai)i∈[1,za], ca) = ∅

Cd is said to be coordinated according to
CS(Cd, tsk(C), (cai)i∈[1,za], ca) if in case of the
failure of ca, Cd reaches a termination state in
CS(Cd, tsk(C), (cai)i∈[1,za], ca). Of course, it assumes
that the TP of Cd are sufficient to reach tsk(C).

Given a vertex ca the idea is to classify the elements of
TS(C) using the sets of termination states compatible with

v1 d11 yes no yes
v2 d21 no yes yes

d22 yes no yes
m1 d31 yes no no
v3 d41 no yes yes
v4 d51 yes no yes

d52 yes yes yes

Available
Devices

Retriable Compensatable Reliable

v1 v2 m1 v3 v4
ats1 ts1 completed completed completed completed completed
ats2 ts4 completed compensated completed completed failed
ats3 ts11 completed compensated completed failed aborted
ats4 ts12 completed canceled completed failed aborted
ats5 ts17 completed compensated hfailed aborted aborted
ats6 ts18 completed canceled hfailed aborted aborted
ats7 ts22 completed failed completed aborted aborted
ats8 ts23 completed failed canceled aborted aborted
ats9 ts27 completed failed completed compensated aborted
ats10 ts28 completed failed completed canceled aborted
ats11 ts32 failed aborted aborted aborted aborted

ATS(C1)

Figure 5. ATS(C1) and available devices

the generators of ca. Using this approach, we can identify
the different recovery strategies and the coordination strate-
gies associated with the failure of ca as we decide which
vertices can be canceled. Defining ATS(C) is therefore
deciding at design time the termination states of C that are
consistent. ATS(C) is to be inputted to a coordination pro-
tocol in order to provide it with a set of rules which leads to
a unique coordination decision in any cases. According to
the definitions and properties we introduce above, we can
now explicit some rules on ATS(C) so that the unicity re-
quirement of coordination decisions is respected.

Definition 5-5. Let a, k ∈ [1, n] × [1, j] such that
tsk(C, ca) ∈ {failed, Hfailed} and tsk(C) ∈ ATS(C).
ATS(C) is valid ⇔ ∃ ! l ∈ [1, j] such that tsl(C) gener-
ator of ca compatible with tsk(C) and CTS(tsl(C), ca) −⋃za

i=1 FTS(cai, ca) ⊂ ATS(C) for a set of vertices
(cai)i∈[1,za] flexible to ca.

A valid ATS(C) therefore contains for all tsk(C) in
which a vertex fails a unique coordination strategy associ-
ated to this failure and the termination states contained in
this coordination strategy are compatible with tsk(C). In
figure 5, an example of possible ATS is presented for the
critical zone C1. It just consists in selecting the termination
states of the table TS(C1) that we consider consistent and
respect the validity rule for the created ATS(C1). For ex-
ample here the payment of Alice has to be compensated if
Bob fails to deliver the computer as specified in ats2 = ts4.

6. Assigning devices using ATS

In this section, we remind the main steps of the de-
vice assignment procedure whose underpinning theorems
are proved in [19]. The transaction-aware device assign-
ment procedure aims at assigning n devices to the n ver-
tices ca in order to create an instance of C acceptable with
respect to a valid ATS(C). We first define a validity crite-
ria for the instance Cd of C with respect to ATS(C), the
device assignment algorithm is then detailed. Finally, we
specify the coordination strategy associated to the instance

6

created from our assignment scheme.

6.1. Acceptability of Cd with respect to ATS(C)

Definition 6-1. Cd is an acceptable instance of C with
respect to ATS(C) ⇔ TS(Cd) ⊆ ATS(C).

Now we express the condition TS(Cd) ⊆ ATS(C) in
terms of coordination strategies. The termination state gen-
erator of ca present in ATS(C) is noted tska(C). The set
of vertices whose execution is not canceled when ca fails
is noted (cai)i∈[1,za]. We get the theorem 6-2 [19].

Theorem 6-2. TS(Cd) ⊆ ATS(C) ⇔ ∀ a ∈ [1, n]
CS(Cd, tska(C), (cai)i∈[1,za], ca) ⊂ ATS(C).

It should be noted that if failed �∈ ATS(C, ca)
where ATS(C, ca) represents the acceptable ter-
mination states of the vertex ca in ATS(C) then
CS(Cd, tska(C), (cai)i∈[1,za], ca) = ∅.

6.2. Transaction-aware assignment procedure

The device assignment algorithm uses ATS(C) as a set
of requirements during the device assignment procedure
and thus identifies those devices whose TP match the TR
associated with vertices defined in ATS(C). The assign-
ment procedure is an iterative process, devices are assigned
to vertices sequentially. At each step i, the assignment pro-
cedure therefore generates a partial instance of C noted Ci

d.
TS(Ci

d) refers to the termination states of C that can be
reached based on the TP of the i devices that are already as-
signed. Intuitively the acceptable termination states refer to
the degree of flexibility offered when choosing the devices
with respect to the different coordination strategies comply-
ing with ATS(C). This degree of flexibility is influenced
by two parameters:
• The list of acceptable termination states for each work-

flow vertex. This list can be determined based on
ATS(C). Using this list, the requirements on the TP
of a candidate device can be derived since this device
can only reach the states defined in ATS(C) for the
considered vertex.

• The assignment process is iterative and therefore, as
new devices are assigned to vertices, both TS(Ci

s) and
the TP required for the assignment of further devices
are updated.

We therefore need to define first the TR for the assign-
ment of a device after i steps in the assignment procedure.

6.2.1. Extraction of TR. From the two requirements above,
we define for a vertex ca :
• ATS(C, ca): Set of acceptable termination states of ca

which is derived from ATS(C)
• DIS(ca, Ci

d): Set of TR that the device assigned to ca

must meet based on previous assignments. This set is
determined based on the following reasoning:

(DIS1): the device must be compensatable ⇔
compensated ∈ DIS(ca, Ci

d)

(DIS2): the device must be retriable ⇔ failed �∈
DIS(ca, Ci

d)

(DIS3): the device must be reliable ⇔ Hfailed �∈
DIS(ca, Ci

d)
Using these two sets, we are able to compute

MinTP (da, ca, Ci
d) = ATS(C, ca)

⋂
DIS(ca, Ci

d) which
defines the minimal TP a device da has at least to comply
with in order to be assigned to the vertex ca at the i + 1
assignment step. We simply check the retriability and com-
pensatability properties for the set MinTP (da, ca, Ci

d):
• failed �∈ MinTP (da, ca, Ci

d) ⇔ da has to verify the
retriability property

• Hfailed �∈ MinTP (da, ca, Ci
d) ⇔ da has to verify

the reliability property

• compensated ∈ MinTP (da, ca, Ci
d) ⇔ da has to ver-

ify the compensatability property
The set ATS(C, ca) is easily derived from ATS(C). We

need now to compute DIS(ca, Ci
d). We assume that we are

at the i+1 step of an assignment procedure, i.e. the current
partial instance of C is Ci

d. Computing DIS(ca, Ci
d) means

determining if (DIS1), (DIS2) and (DIS3) are true. From
these two statements we can derive three properties:

1. (DIS1) implies that state compensated can definitely
be reached by ca

2. (DIS2) implies that ca can not fail

3. (DIS2) implies that ca can not be canceled

4. (DIS3) implies that ca can not Hfail
The third property is derived from the fact that if a ver-

tex can not be canceled when the failure of a vertex has oc-
curred, then it has to finish its execution and reach at least
the state completed. In this case, if a device can not be
canceled then it can not fail, which is the third property. To
verify whether 1., 2., 3. and 4. are true, we introduce the
following theorems [19].

Theorem 6-3. Let a ∈ [1, n]. The state compensated
can definitely be reached by ca ⇔ ∃ b ∈ [1, n] − {a} ver-
ifying (6-3b): db not retriable (resp. reliable) is assigned
to cb and ∃ tsk(C) ∈ ATS(C) generator of cb such that
tsk(C, ca) = compensated.

Theorem 6-4. Let a ∈ [1, n]. ca can not fail (resp.
Hfail) ⇔ ∃ b ∈ [1, n] − {a} verifying (6-4b): (db not com-
pensatable is assigned to cb and ∃ tsk(C) ∈ ATS(C) gen-
erator of ca such that tsk(C, cb) = compensated) or (cb

is flexible to ca and db not retriable is assigned to cb and
∀ tsk(C) ∈ ATS(C) such that tsk(C, ca) = failed (resp.
tsk(C, ca) = Hfailed), tsk(C, tb) �= canceled).

Theorem 6-5. Let a, b ∈ [1, n] such that ca is flexible to
cb. ca is not canceled when cb fails (resp. Hfail) ⇔ (6-5b):
db not retriable (resp. not reliable) is assigned to cb and

7

∀ tsk(C) ∈ ATS(C) such that tsk(C, cb) = failed (resp.
tsk(C, cb) = Hfailed), tsk(C, ca) �= canceled.

In order to compute DIS(ca, Ci
d), we have to compare

ca with each of the i vertices cb ∈ C − {ca} to which a
device db has been already assigned. Two cases have to be
considered: either we assign a device to a vertex vk or to
an abstract vertex ml,p. This is an iterative procedure. At
the initialization phase in the first case we have: since no
vertex has been yet compared to ca = vk, da can be (p):
DIS(ca, Ci

d) = {failed}.

1. if cb verifies (6-3b) ⇒ compensated ∈ DIS(ca, Ci
d)

2. if cb verifies (6-4b) ⇒ failed �∈ DIS(ca, Ci
d)

3. if cb is flexible to ca and verifies (6-5b) ⇒ failed �∈
DIS(ca, Ci

d)
In this case, the verification stops if failed �∈

DIS(ca, Ci
d) and compensated ∈ DIS(ca, Ci

d). For the
vertices of type vk, we indeed only need to check the retri-
ability and compensatability properties.

In the second case, we have at the initialization phase:
since no vertex has been yet compared to ca = ml,p, da can
be (url): DIS(ca, Ci

d) = {Hfailed}.

4. if cb verifies (6-4b) ⇒ Hfailed �∈ DIS(ca, Ci
d)

In that case, the verification stops if Hfailed �∈
DIS(ca, Ci

d). For the vertices of type ml,p we only need
to check the reliability property.

Finally, when MinTP (da, ca, Ci
d) is computed, we are

able to select the appropriate device to be assigned to a
given vertex according to TR.

6.2.2. Device assignment process. Devices are assigned to
each vertex based on an iterative process. Depending on
the TR and the TP of the devices available for each vertex,
different scenarios can occur:

(i) devices (rc) are available in the case of a vertex vk or
devices (rl) are available in the case of a vertex ml,p

(i.e. all the devices of the abstraction are (rl)). It is not
necessary to compute TR as such devices match all TR.

(ii) only devices (p) are available in the case of a vertex
vk or only devices (url) are available in the case of a
vertex ml,p (i.e. one of the device of the abstraction is
(url)). We need to compute the TR associated to the
vertex and either pivot (resp. unreliable) is sufficient
or there is no solution.

(iii) devices (r) and (c) but no (rc) are available for a vertex
vk. We need to compute the TR associated to the vertex
and we have three cases. First, (rc) is required and
therefore there is no solution. Second, (r) (resp. (c))
is required and we assign a device (r) (resp. (c)) to the
vertex. Third, there is no requirement.

The assignment procedure is performed by the coordinator
c1. Devices have to be assigned to all vertices prior to the
beginning of the critical zone execution. The first vertex is

assigned to the critical zone initiator and of course it has
to match the TR of the first vertex. The idea is then to as-
sign first devices to the vertices verifying (i) and (ii) since
there is no flexibility in the choice of the device. Vertices
verifying (iii) are finally analyzed. Based on the TR raised
by the remaining vertices, we first assign devices to vertices
with a non-empty TR. We then handle the assignment for
vertices with an empty TR. Note that the TR of all the ver-
tices to which devices are not yet assigned are also affected
(updated) as a result of the current device assignment. If no
vertex has TR then we assign the devices (r) to assure the
completion of the remaining vertices’ execution.

6.3. Actual termination states of Cd

Once all the devices have been assigned to vertices we
can coordinate their execution so that they respect the de-
fined TR. In order to do so, we need to know the actual ter-
mination states subset of ATS(C) that can be reached by the
defined instance of C. Having computed TS(Cd), we can
deduce the coordination rules associated to the execution of
Cd. This subset is determined using the following theorem
that is proved in [19].

Theorem 6-6. Let Cd be an acceptable instance of
C with respect to ATS(C). We note (cai)i∈[1,nr] the
set of vertices to which neither a retriable nor a reliable
device has been assigned. tskai

(C) is the generator of
cai present in ATS(C) and (caij

)j∈[1,zai
] denotes the

set of vertices which are not canceled when cai fails.
TS(Cd)={tscomp(Cd)}

⋃⋃nr

i=1(CTS(tskai
(C), cai) −

⋃zai

j=1 FTS(caij
,cai

)).

6.4. Example

We consider the critical zone C1 of figure 1. Design-
ers have defined ATS(C1) of figure 5 as the TR. The
set of available devices for each vertex of C1 is speci-
fied in the figure 5. The goal is to assign devices to ver-
tices so that the instance of C1 is valid with respect to
ATS(C1) and we apply the presented assignment proce-
dure. The critical zone initiator assigned to v1 uses a de-
vice (r) matching the TR. We now start to assign the de-
vices (rc) and (rl) for which it is not necessary to com-
pute any TR. d52 which is the only available device (rc)
is therefore assigned to v4. We then try to assign the de-
vices (p) and (url), and we verify whether d31 can be
assigned to m1. We compute MinTP (da, m1, C

2
1d) =

ATS(C1, m1)
⋂

DIS(m1, C
2
1d). ATS(C1, m1) =

{completed, Hfailed} and DIS(m1, C
2
1d) = {Hfailed}

as d52 and d11 are the only device already assigned and
the theorems 6-3, 6-4 and 6-5 are not verified. Thus
MinTP (ca, m1, C

2
1d) = {Hfailed} and d31 can be as-

signed to m1 as it matches the TR. Now we compute the TR

8

TS (C 1d) d11 d21 d31 d41 d51

ts1 com ple ted com pleted com ple ted c om pleted com pleted
ts11 com ple ted com p ens ated com ple ted fa iled aborted
ts12 com ple ted canceled com ple ted fa iled aborted
ts17 com ple ted com p ens ated hfa iled abo rted aborted
ts18 com ple ted canceled hfa iled abo rted aborted
ts22 com ple ted fa iled com ple ted abo rted aborted
ts23 com ple ted fa iled canceled abo rted aborted
ts27 com ple ted fa iled com ple ted com pensa ted aborted
ts28 com ple ted fa iled com ple ted canceled aborted

Figure 6. TS(C1d)

v

d
1

v

k
d

m

k
d

Receives Sends Receives Sends Receives Sends

Completed Compensate Compensate Abort Leave Aborted

Failed Cancel Cancel Aborted Cancel Canceled

Aborted Abort Abort Canceled Ack Alive

Canceled Leave Leave Cancel Abort Ack

Compensated Ping Aborted Leave Ping Completed

Ack Alive Ping

Hfailed Ack Ack

Alive Ping Hfailed

Canceled Alive

Completed Compensated

Canceled Failed

completed

Figure 7. Notification messages

of v2 and we get MinTP (da, v2, C
3
1d) = {compensated}

as theorem 6-3 is verified with the devices d31. The de-
vice d21 can thus be assigned to v2 as it matches the
TR of the task. We get for v3 MinTP (da, v3, C

4
1d) =

{compensated}. The device d41 which is (c) verifies the
TR is assigned to v3. Using the created instance of C1 we
get the set TS(C1d) of figure 6.

7. Coordination Protocol Specification

Having introduced the method through which an in-
stance of C is obtained by assigning devices to workflow
vertices according to the TR of C, we turn to the actual coor-
dination of devices during the execution of the critical zone.
The protocol that is in charge of the coordination is speci-
fied in terms of the different actors, notification messages
and coordination cases. We finally motivate the chosen so-
lution by comparing it with existing coordination protocols.

7.1. Protocol actors

As mentioned in section 2.2 and figure 2 we distinguish
three main entities within the coordination protocol execu-
tion:

• Device dv
1 = c1: this device is the critical zone initia-

tor and is in charge of performing the device assign-
ment procedure and coordinating the execution of C.
The coordination decisions are made using the table
TS(Cd) specifying the subset of ATS(C) Cd is actu-
ally able to reach.

v

d
1 k

d

OfferToParticipate(a ,WId)

Ack(WId)

Registered(,WId)
v

x
d

Figure 8. Device registration

• Devices dv
k: these devices modify sensitive data and

play the role of subcoordinators. They report their state
of execution and the state of execution of the devices
dm

k to dv
1 .

• Devices dm
k : these devices modify volatile data and

report to the device dv
x most recently executed.

Actors exchange messages for the purpose of decision
making and forwarding as listed in figure 7. These mes-
sages are mostly derived from the state diagram of the trans-
actional model and the respective role of the devices in the
protocol. The flow of notification messages within the pro-
tocol execution and the mechanisms involved in the pro-
cessing of these notification messages are stated in the next
section.

7.2. Coordination scenarios

In this section, we detail the different phases and coor-
dination scenarios that can be encountered during the exe-
cution of the protocol. First, we explain how devices are
registered with the coordination protocol during the device
assignment phase. Then, we analyse the message flow be-
tween the different actors of the protocol in three different
scenarios: normal course of execution, failure of a device
dv

k and failure of a device dm
k .

7.2.1. Device registration. The first phase of the coordina-
tion protocol consists of the discovery and registration of
the devices that will be involved in the critical zone exe-
cution. The discovery process through which devices that
can be assigned to critical zone vertices are identified is
performed by the device c1 = dv

1 . The TR extraction pro-
cedure, specified in section 6.2.1 provides the coordinator
with a list of suitable devices that match the computed TR.
It is then necessary to contact the devices of this list in order
to receive from of one of them the commitment to execute
the requested vertex. Based on the registration handshake
depicted in figure 8, the coordinator dv

1 contacts a device
asking it whether it agrees to commit to execute the op-
eration a of the workflow whose identifier is WId. Once
the newly assigned device’s coordinator is known, dv

1 sends
the information. In the case of devices dv

k this information
is known from the beginning since dv

1 is their coordinator
whereas for the devices dm

k , the information is known when
dv

x the device dv
k most recently executed has been assigned

to a vertex.

9

v

d
1

v

d
2

m

d
1

m

d
2

v

d
3

Activate(W,2,W id) Activate(W,5,Wid)

Completed(4,W id,D)

Completed(5,Wid)

Ack(W Id)

Completed(2,W id)

Leave(W id)

Figure 9. Normal execution

v

d
1

v

d
2

m

d
1

m

d
2

v

d
3

Ack

Failed(2 ,Wid)

Activate(W ,2,Wid) Abort(3,Wid)
Abort(5,Wid)

Aborted(3,Wid)

Aborted(4,W id)Timeout

Figure 10. Failure of a device dv
k

7.2.2. Normal course of execution. Once all involved de-
vices are known, the critical zone execution can start as
part of the coordination protocol. Devices are sequentially
activated based on the workflow specification. A sample
for normal execution of C is depicted in figure 9. The
Activate(W, k, WId, D) message is a workflow message
defined in [18], it especially contains the workflow specifi-
cation W , the requested vertex k to be executed, the work-
flow data D modified during the execution and the work-
flow identifier WId. Within the critical zone execution lo-
cal acknowledgments Ack(WId) are used. Each device dm

k

reports its status to the device dv
x most recently executed

and once its execution is complete it can leave the critical
zone execution. The Completed(k, WId, D) message sent
by a device dm

k includes a backup copy of the volatile data
modified by the device that can be reused later on for the
recovery procedure in case of failure of a device dm

k (Sec-
tion 7.2.4). Once in the state completed, devices of type dm

k

can leave the coordination as they won’t be asked to com-
pensate their execution. Depending on the TR defined for
C, devices dv

k may leave the critical zone before the end of
the critical zone execution. A device dv

k is indeed able to
leave the coordination if it reaches the state completed re-
gardless of possible failures in the sequel of the critical zone
execution. The condition allowing a device dv

k to leave the
coordination is therefore stated as follows.

Theorem 7-1. A device dv
k assigned to a vertex cl can

leave the execution of a critical zone C ⇔ the device dv
k is

in the state completed and ∀ i ∈ [1, n] such that a device di

not retriable (resp. not reliable) is assigned to the vertex ci,
di is in the state initial and tsk(C, cl) = completed where
tsk(C) is the termination state generator of ci in TS(Cd).

Timeout

v

d
1

v

d
2

m

d
1

m

d
2

v

d
3

Compensate(W,2,Wid)

Abort(5,Wid)

HFailed(4,Wid)

Activate(W,2,Wid) Activate(W ,4,W id)

Figure 11. Failure of a device dm
k

7.2.3. Failure of a device dv
k . This scenario is only possible

with devices (p). We can encounter two situations: either
the failure is total and the device is not able to communi-
cate any longer or the device is still alive and can forward
a failure message to dv

1 . Figure 10 depicts the two cases
whereby the total failure is detected using a simple timeout
in Ping/Alive message exchanges. Once the failure has been
detected, the coordinator forwards the coordination deci-
sion to all involved devices. It should be noted here that
devices (r) can also reach the state failed but the retriabil-
ity property implies that they have at their disposal recov-
ery solutions ensuring that the contact is never permanently
lost. Thus, the failure of devices (r) is transparent to the rest
of the coordination and does not have to be handled.

7.2.4. Failure of a device dm
k . The failure of a device dm

k is
detected by its subcoordinator with a timeout. As specified
in the transactional model, we indeed consider that devices
of type dm

k can only fail because of hardware problems and
failure of such devices therefore implies a loss of contact
with their coordinator. The failure of a device dm

k is re-
ported by its subcoordinator to the device dv

1 . The failure
detection and forwarding of the Hfailed message are de-
picted in figure 11.

7.3. Coordination decisions and recovery

Having detailed various coordination scenarios that can
occur during the execution of a critical zone, we analyse the
possible recovery strategies, in particular the replacement
of failed devices dv

k and dm
k and how coordination decisions

are made upon detection of a failure.

7.3.1. Replacement of failed devices dv
k. During the course

of the execution new devices can be discovered and as-
signed to vertices in order to replace failed ones. In fact
two situations can happen: either the failure of a device oc-
curs while executing its assigned vertex or the coordinator
loses contact (timeout detection) prior to the activation of
the device. The first situation is specified in the previous
section and no backup solution is possible as the data mod-
ified by the failed device are in an unknown state. In the
second situation, it is possible on the contrary to assign a
new device matching the TR to the vertex which has not yet

10

started with the execution. Once the loss of contact with a
device dv

k is detected, no coordination decision is yet sent to
devices and the execution continues. If no device is found
to be assigned to the vertex when its execution should be ac-
tivated, the protocol coordinator considers the device it has
lost contact with as failed.

7.3.2. Replacement of failed devices dm
k . In case of fail-

ure of a device dm
k , be it before or after its activation, a

recovery procedure can be executed prior to informing the
coordinator of the hardware failure. It is indeed possible to
assign to the vertex a new device so that the execution can
go on. This is possible as on the one hand the devices dm

k

only modify volatile data and on the other hand, we have
a backup copy of the data modified by the devices that are
part of the abstract vertex dm

l,p. Once the failure is detected,
the subcoordinator of the failed device tries to assign a new
device to the failed vertex. In this case, only volatile data
are being modified, TR is not a concern and the assignment
procedure can be repeated till a device manages to execute
the requested vertex.

7.3.3. Reaching consistent termination states. Once all
possible recovery mechanisms have been attempted, a
coordination decision is made by the coordination dv

1 .
The table TS(Cd) is the input to the coordination deci-
sions that are made throughout the execution of a criti-
cal zone. Once the failure of a vertex ca has been de-
tected, the protocol coordinator reads in TS(Cd) the set
CS(Cd, tsk(C), (cai)i∈[1,za], ca) listing the possible termi-
nation states reachable by Cd whereby ca is failed. There
is a unique element of this set that is reachable by Cd with
respect to its current state of execution and dv

1 sends the ap-
propriate messages so that the overall critical zone can reach
this consistent termination state.

7.4. Discussion

The coordination protocol integrates the semantic de-
scription of involved devices and relies on an adaptive deci-
sion table which is computed during the assignment proce-
dure. The coordination protocol is flexible as it completely
depends on the designers’ choice for the specification of
Acceptable Termination States. This solution therefore of-
fers a full support of relaxed atomicity constraints for work-
flow based applications and is also self-adaptable to the de-
vices characteristics which is not the case with recent efforts
[12],[13].

The organization of the coordination is based on a sim-
ple hierarchical approach as in BTP [3]. In that respect, the
central point of the coordination is the device dv

1 on which
relies the whole coordination. This is the main weakness of
the protocol, as a failure of this device would cause the com-
plete failure of the workflow execution. The role of critical

zone initiator of the coordination is therefore reserved to de-
vices that are both reliable and retriable. Nonetheless, this
centralized and hierarchical approach facilitates the man-
agement of the coordination process.

In addition to usual coordination phases such as coordi-
nation registration, device completion and failure our pro-
tocol, offers the possibility to replace participants at run-
time depending on their role within the coordination and
the volatility degree of data they have to modify during the
workflow execution. This makes the protocol flexible and
adapted to the pervasive paradigm whereas such recovery
procedure is not specified in other transactional protocols.

In the protocol description, we do not specify the data re-
covery strategy especially for the compensated states. Dif-
ferent approaches can be integrated with our work to sup-
port either forward error recovery or backward error recov-
ery [15]. The choice of the recovery strategy basically de-
pends on the application and its fault-handling protocol. For
instance, a simple backward error recovery strategy is suf-
ficient for workflows used for payment in the example of
the paper whereas a forward recovery strategy might be re-
quired for a hotel booking system. Existing mechanisms in
this area can therefore be used to augment our transactional
protocol to specify complex fault-handling and compensa-
tion scenarios [1], [23].

8. Related work

Transactional consistency of distributed systems such as
workflows and database systems has been an active research
topic over the last 15 years [9] yet it is still an open issue in
the area of distributed processes within the enterprise ser-
vices architecture paradigm (ESA) [7, 11, 16]. In this paper
we specified a transactional protocol for the pervasive work-
flow architecture presented in [18] and our solution uses and
extends the results presented and proved in [19].

The execution of distributed processes wherein business
partners are not assigned at design time introduces new re-
quirements for transactional systems such as dynamicity,
semantic description and relaxed atomicity. Existing trans-
actional models for advanced applications and workflows
[8] do not offer the flexibility to integrate these require-
ments [4]. In comparison, our solution allows the speci-
fication of TR supporting relaxed atomicity for an abstract
workflow specification and the selection of semantically de-
scribed devices or services fulfilling the defined TR. In addi-
tion, we provide the means to compute a coordination pro-
tocol adapted to the workflow instance resulting from our
device assignment procedure.

In [6], the first approach specifying relaxed atomicity re-
quirements for Web services based workflow applications
using the ATS tool and a transactional semantic is presented.
Despite a solid contribution, this work provides only means
to verify the consistency of composite services but no means

11

to integrate TR at the composition phase. This work there-
fore appears to be limited when it comes to the possible in-
tegration into dynamic and distributed business processes.
In this approach, TR do not play any role in the component
devices selection process which may result in several at-
tempts to determine a valid workflow instance. As opposed
to this work, our solution provides a systematic procedure
enabling the creation of valid workflow instances by means
of a transaction-aware device assignment procedure.

The transactional protocol proposed in this paper offers
adapted means to respond to the constraints introduced by
environments where heterogeneous devices share resources
in a collaborative manner. Using relaxed atomicity features,
the protocol indeed offers the flexibility for devices to re-
lease their resources as soon as their participation to the
workflow is no longer required. Moreover using a flexible
semantic, devices are able to advertise their capabilities so
that they can assume a role suited to any workflows in which
their resources can be used. Current efforts in the area of the
transactional coordination of business processes [12, 13] do
not offer such flexibility. On the one hand, they suffer from
the lack of tools for the specification of transactional re-
quirements and their integration into business partners’ se-
lection process. On the other hand, no recovery procedure
is specified as part of the protocol for the replacement of
devices in case of failure.

9. Conclusion

We presented an adaptive transactional protocol for the
pervasive workflow model developed in [18]. Our solution
enables first the selection of the devices part of the work-
flow execution based on transactional requirements defined
at the workflow design phase. Using transactional proper-
ties offered by selected devices and the defined transactional
requirements, a decision table is computed as a basis for the
coordination of the execution. The coordination protocol
itself offers a framework that supports relaxed atomicity re-
quirements and takes into account the respective role and
characteristics of each device involved in the workflow ex-
ecution. We believe that our approach can be used to aug-
ment recent specifications [14] in increasing their flexibility
to incorporate devices’ transactional properties in the defi-
nition of adaptive coordination rules. Yet, aspects such as
the trust that one can place in the transactional properties
claimed by devices or services are still open issues.

References

[1] Business process execution language for web sevices,
http://www.ibm.com/developerworks/library/ws-bpel/.

[2] Web services tool kit for mobile devices,
http://www.alphaworks.ibm.com/tech/wstkmd 2002.

[3] M. Abbott and al. Business transaction protocol, 2005.

[4] G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Gnthr,
and C. Mohan. Advanced transaction models in workflow
contexts. In Proc. 12th International Conference on Data
Engineering, New Orleans, February 1996.

[5] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghu-
nath. Web services on mobile devices - implementation and
experience. In Fifth IEEE Workshop on Mobile Computing
Systems and Applications, 2003.

[6] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure
atomicity of composite web services. In Proc. of the 14th
international conference on World Wide Web, 2005.

[7] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weer-
awarana. The next step in web services. Commun. ACM,
46(10), 2003.

[8] A. K. Elmagarmid. Database Transaction Models for Ad-
vanced Applications. Morgan Kaufmann, 1992.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[10] P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Com-
pensation is not enough. In Proc. of the 7th Interna-
tional Enterprise Distributed Object Computing Conference
(EDOC’03), 2003.

[11] M. Gudgin. Secure, reliable, transacted; innovation in web
services architecture. In Proc. of the ACM International
Conference on Management of Data, Paris, France, 2004.

[12] D. Langworthy and al. Ws-atomictransaction, 2005.
[13] D. Langworthy and al. Ws-businessactivity, 2005.
[14] D. Langworthy and al. Ws-coordination, 2005.
[15] P. A. Lee and T. Anderson. Fault Tolerance: Principles and

Practice. Morgan Kaufmann, 1990.
[16] M. Little. Transactions and web services. Commun. ACM,

46(10):49–54, 2003.
[17] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A

transaction model for multidatabase systems. In Proc. of the
12th IEEE International Conference on Distributed Com-
puting Systems (ICDCS92), 1992.

[18] F. Montagut and R. Molva. Enabling pervasive execution
of workflows. In Proceedings of the 1st IEEE International
Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing, CollaborateCom, 2005.

[19] F. Montagut and R. Molva. Augmenting Web services com-
position with transactional requirements. In ICWS 2006,
IEEE International Conference on Web Services, September
18-22, 2006, Chicago, USA, Sep 2006.

[20] A. Ranganathan and S. McFaddin. Using workflows to co-
ordinate web services in pervasive computing environments.
In Proceedings of the IEEE International Conference on
Web Services 2004, pages 288–295, July 2004.

[21] M. Rusinkiewicz and A. Sheth. Specification and execution
of transactional workflows. In Modern database systems:
the object model, interoperability, and beyond, 1995.

[22] H. Schuldt, G. Alonso, and H. Schek. Concurrency control
and recovery in transactional process management. In Proc.
of the Conference on Principles of Database Systems, 1999.

[23] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy.
Coordinated forward error recovery for composite web ser-
vices, 2003.

12

