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ABSTRACT

We consider multiple users in an asynchronous DS-CDMA sys-
tem operating in a multipath environment. The received cy-
clostionary spread signal sampled at the chip rate is converted
to a stationary vector signal, leading to a linear multichannel
model. Linear receivers for multiple access interference (MAI)
suppression are studied with emphasis on computationally sim-
ple algorithms. The desired user channel estimate is obtained
by a newblind technique using the spreading sequence proper-
ties and second-order statistics. A blind MMSE-ZF receiver is
subsequently obtained. Equivalence to theanchoredMOE re-
ceiver is shown. Since the blind receiver relies on the inversion
of the signal covariance matrixRY Y , a consistent estimate of
which requires a large number of data points if a large number
of users are concurrently active, asemi-blindalternative for the
estimation of the interference canceling filter is presented. Iter-
ative improvements of this estimate based upon exploitation of
the finite-alphabet are investigated. Performances of different
interference cancellation schemes are compared in terms of the
output signal-to-interference-plus-noise ratio (SINR).

I. INTRODUCTION AND PREVIOUS WORK

Blind solutions for DS-CDMA systems have received consid-
erable attention since the pioneering work of [1], which is based
upon ananchoredminimum output energy (MOE) criterion. The
anchored receiver constrains the inner product of the receiver
signal with the spreading sequence to be fixed, thus restricting
the optimization problem to within the constrained space. The
desirable feature of such a scheme is that its informational com-
plexity is the same as that of a matched filter detector, i.e., only
the desired user signature waveform and timing information are
required for its operation. Besides, it is desirable in some appli-
cations, like at the mobile terminal, to employ an algorithm that
banks simply on single user information.

The problem addressed in [1] was that of DS-CDMA com-
munications over a channel without multipath. A constrained
optimization scheme was proposed in [2] for multipath channels
where the receiver’s output energy is minimized subject to ap-
propriate constraints. Connections with theCaponphilosophy
were drawn in that paper. The above mentioned receivers can
be shown to converge asymptotically (SNR! 1) to the zero-
forcing (ZF) or decorrrelating solution. It was shown in [3] that
in order to accommodate a number of users approaching code
space dimensions, longer receivers are required for the ZF so-
lution to be achievable. Moreover, we presented in [3] the op-
timal MMSE receiver for multipath channels and asynchronous
conditions, obtained by applying multichannel linear prediction
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to the received cyclostationary signal. Direct estimation of the
MMSE receiver was introduced in [4] following the observation
that the MMSE receiver lies in the signal subspace. MMSE re-
ceiver constrained to the signal subspace in the case of channels
longer than a symbol period was investigated in [5], where a
singular-value decomposition (SVD) was used to determine the
orthogonal subspaces. The channel estimate in this work was ob-
tained as a generalization to longer delay spreads of the subspace
technique originally proposed in [6]. Identifiability issuesunder
long delay spread conditions were however not elaborated upon.
Moreover, the above mentioned schemes have high complexity
since an estimate of subspaces is required.

Semi-blind approaches, on the other hand, have recently
kicked off with the intuitively attractive idea of employing as
mucha priori knowledge as is available. Forthcoming third gen-
eration mobile cellular systems like the European UMTS Wide-
band CDMA and TDMA/CDMA [7][8] standards both antici-
pate the use of a training sequence integrated within the signal
frame. It is worth mentioning that in the context of blind estima-
tion, CDMA systems possess the most desirable characterstics
of all existing multipleaccess systems with the necessary (ex-
tra) bandwidth and integrateda priori knowledge in terms of
spreading sequences. Any further information, like known train-
ing data, should provide further gains resulting in more efficient
interference suppression and reduced computational complexity.

Although scant, the CDMAliterature onsemi-blindhas had
the term employed with varying significations. Semi-blindness
to some comes from known spreading codes of intracell users,
with the inter-cell co-channel users contributing to the blind part.
In our problem, we shall consider knowledge of only the spread-
ing sequenceof the user of interest, with known training symbols
for this user (thus a semi-blind problem).

We propose, in this work, a new blind MMSE zero-forcing
receiver for DS-CDMA systems in multipath channels. This re-
ceiver expoits spreading sequence properties to estimate the de-
sired user channel at a low cost. This channel estimate compen-
sates somewhat for estimation errors inRY Y . Further improve-
ments are obtained by employing semi-blind and finite-alphabet
information. The delay spread is assumed to be possibly more
than a symbol period, and channel lengths of different users can
be unequal depending upon the type of service. Long delay
spreads can occur in UMTS TDMA/CDMA and in the case of
high-rate users in UMTS W-CDMA.

II. MULTIUSER DATA MODEL

Thep users are assumed to transmit linearly modulated sig-
nals over a linear multipath channel with additive Gaussian
noise. It is assumed that the receiver employs a single antenna to
receive the mixture of signals from all users, although the model
can easily be extended to the case of multiple antennas. Over-
sampling is inherent to CDMA systems due to the large (extra)
bandwidth and the need to resolve chip pulses. The received



continuous time signal can be written in baseband notation as

y(t) =

pX
j=1

X
k

aj(k)gj(t� kTs) + v(t), (1)

whereaj(k) are the transmitted symbols from the userj, Ts is
the common symbol period,gj(t) is the overall channel impulse
response for thejth user. Assuming thefaj(k)g andfv(t)g
to be jointly wide-sense stationary, the processfy(t)g is wide-
sense cyclostationary with periodTs. At the sampler output,
we obtain the wide-sense stationarym � 1 vector signaly(k)
at the symbol rate. The overall channel impulse response for
jth user’s signal,gj(t), is the convolution of the spreading code
andhj(t), itself the convolution of the chip pulse shape and the
actual channel (assumed to be FIR) representing the multipath
fading environment. This can be expressed as

gj(t) =
m�1X
s=0

cj(s)hj(t� sT ), (2)

whereT is the chip duration. We consider that the FIR channel
length for thejth user ismjT . Let kj 2 [0;m � 1] be the
chip-delay index for thejth user:hj(kjT ) is the first non-zero
chip-rate sample ofhj(t). The parameterNj is the duration of
gj(t) in symbol periods. It is a function ofmj andkj. We
consider user1 as the user of interest and assume thatk1 = 0
(synchronization to user 1). LetN =

Pp

j=1Nj. The vectorized
chip-rate samples lead to a discrete-timem� 1 vector signal at
the symbol rate that can be expressed as

y(k) =

pX
j=1

Nj�1X
i=0

gj(i)aj(k� i) + v(k)

=

pX
j=1

Gj;NjAj;Nj (k)+v(k)=GNAN (k)+v(k) (3)

where,

y(k)=

264 y1(k)
...

ym(k)

375 , gj(k)=

264 g1j(k)
...

gmj(k)

375 , v(k)=

264 v1(k)
...

vm(k)

375
Gj;Nj =

�
gj(Nj � 1): : :gj(0)

�
, GN =

�
G1;N1 : : :Gp;Np

�
Aj;Nj (k) =

�
aHj (k�Nj + 1) : : : aHj (k)

�H
AN (k) =

h
AH
1;N1

(k) : : :AH
p;Np (k)

iH
,

and the superscriptH denotes Hermitian transpose. The matrix
G1;N1 (for user 1) can be written in terms of the spreading code
and the channel vectorh1 asG1;N1 = [g1(N1 � 1) � � �g1(0)]
with g1(i) = C1(i)h1, and, the matricesC1(i) are shown
in figure 1, and the band consists of the column vector�
cH0 � � � c

H
m�1

�H
shifted and displaced successively to the right.

For the interfering users, we have a similar setup except that
owing to asynchrony, the band in fig. 1 is shifted down bykj po-
sitions and is no longer conincident with the top left edge of the
box. We denote byC1, the concatenation of the code matrices
given above for user 1:C1 = [CH

1 (0) � � �CH
1 (N1 � 1)]H .

It is clear that the signal model above addresses a multiuser
setup with a possiblity of joint interference cancellation for all
sources simultaneously [9] provided the timing information and
spreading codes of all of them are available. As we shall see
later, it is possible to decompose the problem into single user
ones thus making the implementation suitable for applications
such as at mobile terminals or as suboptimal processing stage at
the base station.
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Figure 1. The Code MatrixC1

III. BLIND MMSE ZERO FORCING RECEIVER

We stackM successivey(k) vectors in a super vector

Y M (k)=TM (GN )AN+p(M�1)(k)+V M (k), (4)

where, TM (GN ) =
�
TM;1(G1;N1 ) � � � TM;p(Gp;Np )

�
and TM(x) is a banded block Toeplitz matrix withM
block rows and

�
x 0n�(M�1)

�
as first block row

(n is the number or rows inx), and AN+p(M�1)(k)
is the concatenation of user data vectors ordered ash
AH
1;N1+M�1(k);A

H
2;N2+M�1(k) � � �A

H
p;Np+M�1(k)

iH
.

Consider the scenario depicted in fig. 2 for a single user. Due
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Figure 2. The ISI and MAI for Desired Symbol

to the limited delay spread, the effect of a particular symbol,
a1(k � d), propagates to the nextN1 � 1 symbol periods,
rendering the channel a moving average process of order
N1 � 1 [9]. For the other users, the matricesTM (GNj ), where
i = 2 � � � p, have a similar structure and can be viewed as being
superimposed over the channel matrixTM (GN1) in fig. 2.
Same applies for the data vectorsAj;Nj+M�1(k), 8j 6= i.
The overall effect of the ISI and the MUI is therefore that of
engendering the shaded triangles in the figure, which need to be
removed fromY N1 . To this end, let us introduce the following
orthogonal transformation:

T 1=
�
0 CH

1 0

�
; T 2 =

24 I 0 0

0 C?
1 0

0 0 I

35 ,
(5)

where,C?H
1 is the orthogonal complement ofC1, the tall code

matrix given in section II. (C?
1 C1 = 0). Then,CH

1 Y N1 =
T 1Y M and the middle (block) row of the matrixT 2 acts as
a blocking transformation for the signal of interest. Note that
PTH

1
+ PTH

2
= I, where,PX is the projection operator (pro-

jection on the column space ofX). This gives us a possiblity of
estimating thea1(k� d) contribution inY N1 blindly. We have,

Z(k) = [T 1 �QT 2]Y M (k), (6)



and the interference cancellation problem settles down to mini-
mization of the trace of the matrixRZZ for a matrixQ, which
results in

Q =
�
T 1R

d
T
H
2

��
T 2R

d
T
H
2

��1

, (7)

and where,Rd is the noiseless (denoised) data covariance ma-
trix, RY Y , with the subscript removed for convenience. The out-
putZ(k) can directly be processed by a multichannel matched
filter to get the symbol,̂a1(k� d), the data for the user1.

â1(k � d) = F
H
Y M (k) = h

H
1 (T 1 �QT 2)Y M (k)

(8)

An estimate of the channelG1(z) = C1(z )h1(z ) can be ob-

T 1

T 2

Y M (k)

hH1

Q

â1(k � d)
Z(k)

Figure 3. MMSE-ZF Receiver

tained as the by product of the interference cancellation scheme.
Notice that the interference canceler is analogous to a MMSE-
ZF in the form of a smoother or two-sided linear predictor for the
single user case [10] withT 1 = [0 I 0] andT 2 without the
middle (block) row, which when employed in a multiuser sce-
nario is no longer capable of MAI suppression coming from the
middle block ofY M (k) of fig. 2, unless a fair amount of data
smoothing is introduced [10].Z(k) corresponds to the vector
of predictionerrors, and the covariance matrix of the prediction
errors is given by

RZZ=T 1R
d
T
H
1 �T 1R

d
T
H
2

�
T 2R

d
T
H
2

��1

T 2R
d
T
H
1 ,

(9)

From the above structure of the two-sided (or ratherfull dimen-
sional) linear prediction problem, the key observation is that the
matrixRZZ is rank-1 in the noiseless case! Using this fact, one
can identify the composite channel as the maximum eigenvector
of the matrixRZZ, sinceZ(k) = C1h1~a1(k � d).

A. Relation with Unbiased MOE Approach

Suppose thatF is a linear receiver vector applied to the re-
ceived dataY M (k). F is unbiased ifFHeg1 = 1, where,eg1 = TH

1 h1. Then the following relation holds.

arg min
F :FH eg1=1

MSEunbiased = arg min
F :FHeg1=1

OE = argmax
F

SINR,
(10)

This simply implies that the minimum mean-squared error
(MMSE), and the minimum output energy (MOE)1, are inter-
changeable criteria under the unbiased constraint, and are equiv-
alent to the maximization of the output SINR.

The unbiased MOE criterion proposed in [2], which is a
generalization of the instantaneous channel case of [1], is in
principle a max/min problem solved in two steps with,

1also known as minimum variance distortionless response (MVDR),
a particular instance of the linearly constrained minimum-variance
(LCMV) criterion.

step:1 Unbiased MOE

min
F :FH eg1=1

F
H
RY Y F ) F =

1egH1 R�1
Y Y
eg1R�1

Y Y eg1,
(11)

with MOE(ĥ1) =
1

eg1R
�1
Y Y

eg1
, followed by,

step:2 Capon’s Method

max
^h1 :k

^h1k=1

MOE(ĥ1)) min
^h1:k

^h1k=1

ĥ
H

1

�
T 1R

�1
Y Y T

H
1

�
ĥ1,
(12)

from where,ĥ1 = Vmin(T 1R
�1
Y Y T

H
1 ). It can be shown that if

T 2 = T?1 , then

T 1R
�1
Y Y T

H
1 =

�
T 1T

H
1

�
R
�1
ZZ

�
T 1T

H
1

�
, (13)

where,RZZ is given by (9), andQ, given by (7), is optimized
to minimize the prediction error variance.Rd replacesRY Y in
the above developments. From this, we can obtainĥ1 asĥ1 =

Vmaxf
�
T 1T

H
1

��1
RZZ

�
T 1T

H
1

��1
g. In order to evaluate the

quality of the blind receiver obtained from the above criterion,
we consider the noiseless received signal (v(t) � 0). We have
the following two cases of interest.

1. Uncorrelated symbols

In the absence of noise, withi.i.d. symbols, the stochastic
estimation ofT 1Y from T 2Y is the stochastic estimation of
T 1TM (G1:p)A fromT 2TM (G1:p)A with RA = �2aI. Hence,
it is equivalent to the deterministic estimation ofT H

M (G1:p)T
H
1

from T H
M (G1:p)TH

2 : kT H
M (G1:p)TH

1 � T H
M (G1:p)TH

2 Q
Hk22.

Then, given the condition

spanfTH
1 g \ spanfTM (G1:p)g = spanfTM (G1:p)e

0

dg
) spanfTM (G1:p)g � spanfTH

2 g � spanfeg1g
* TM (G1:p)e

0

d = TM (G1)ed = eg1 = T 1h1, (14)

and where,e
0

d anded are vectors of appropriate dimensions with
all zeros and one1 selecting the desired column inTM (G1:p)
andTM (G1) respectively. We can write the channel convolution
matrixTM (G1:p) as

TM (G1:p) = eg1e0Hd + TM (G1:p)Pe0?
d

= [eg1 T
H
2 ]A,

(15)

for someA. Then we can write,

T H
M (G1:p)

�
TH

1 � T
H
2 Q

H
�
=

e
0

dh
H
1 T 1T

H
1 +AH

� eg1TH
1

0

�
�AH

�
0

T 2T
H
2

�
QH

= e
0

dh
H
1 T 1T

H
1 +AH

1 egH1 TH
1 �A

H
2

�
T 2T

H
2

�
QH .

(16)

Note thate
0H
d AH

i = 0; i 2 f1; 2g. This implies that the first
term on the R.H.S. of (16) is not predictable from the third.
Therefore, if the second term is perfectly predictable from the
third, then the two terms cancel each other out andRZZ turns
out to be rank-1, andĥ1 =

�
T 1T

H
1

��1
Vmax (RZZ).



2. Correlated symbols

In the case of correlated symbols, with a finite amount
of data, given the conditions in (14), it still holds that
spanfT H

M (G1:p)T
H
2 g = spanfP

e
0?

d

TM (G1:p)g. Now, we can

write the received vectorY M (k) as

Y M(k) = TM(G1:p)A = TM(G1:p)e
0

da1(k � d) + T M
�A.

(17)

Now, the estimation ofT 1Y in terms of T 2Y =
T 2TM (G1:p)A = T 2T M

�A is equivalent to estimation in terms
of �A.

]T 1Y jT 2Y
= T 1Y �[T 1Y

= T 1Y �
�
T 1R

d
Y Y T

H
2

� �
T 2R

d
Y Y T

H
2

��1

T 2Y

]T 1Y j �A = T 1TM (G1:p)e
0

d~a1(k � d)

= T 1T
H
1 h1~a1(k � d)j �A. (18)

This results in,�
T 1R

�d
Y Y T

H
1

��1

= �
2
~a1(k�d)j �A

h1h
H
1 , (19)

The rank-1 results in a normalized estimate of the channel. It
must however be noted that the estimation error variance of the
desired symbol is now smaller (�2~a1(k�d) < �2a).

B. Identifiability Conditions for Blind MMSE-ZF Receiver

Continuing with the noiseless case, or with the denoised ver-
sion ofRY Y , i.e.,Rd

Y Y = �2aTM(G1:p)T
H
M (G1:p),

min
F :FH eg1=1

F
H
R
d
Y Y F = �

2
a, i� F

HTM (G1:p) = e
0H
d ,

(20)

i.e., the zero-forcing condition must be satisfied. Hence, the
unbiased MOE criterion corresponds to ZF in the noiseless case.
This implies thatMOE(êg1) < �2a if êg1 6� eg1. We consider
that:

(i). FIR zero-forcing conditions are satisfied, and
(ii ). spanfTM (G1:p)g \ spanfTH

1 g = spanfTH
1 h1g.

The two step max/min problem boils down to

max
ĥ1:kĥ1k=1

ĥ
H

1

�
T 1T

H
1

��1

T 1TMP
?
TH
M
TH2
T H
M T

H
1

�
T 1T

H
1

��1

ĥ1,
(21)

where,P?
X = I �X(XHX)�1XH . Then identifiability im-

plies thatTMP?
TH
M
TH2
T H
M = TH

1 h1h
H
1 T 1 = eg1egH1 , or

P
?
TH
M
TH2
T H
M (G1:p) = P

e
0

d

T H
M (G1:p), (22)

Condition (i) above implies thate
0

d 2 spanfT H
M (G1:p)g. From

condition (ii), sinceTH
1 h1 = TM(G1:p)e

0

d, we have

spanfTM (G1:p)T
H
2 g = spanfP?

e
0

d

T H
M (G1:p)g

spanfT H
M (G1:p)g=spanfT H

M (G1:p)T
H
2 g�spanfe

0

dg (23)

from which,T H
M (G1:p) = PTH

M
TH2
T H
M (G1:p)+Pe0

d

T H
M (G1:p),

which is the same as (22).

1. A Note on Sufficiency of Conditions

We consider first the conditions (i). Furthermore, in the
following developments, we consider thatp < m, which is
easily achievable when multiple sensors (or oversampling)
is employed. The effective number of channels is given
by me� = rankfGNg, whereGN is given in (3). Let
G1(z ) =

PN1�1
k=0 g1(k)z

�k be the channel transfer function
for user1, with G(z ) = [G1(z ) � � �Gp(z )]. Then let us assume
the following:

(a). G(z ) is irreducible, i.e., rankfG(z )g = p;8z .
(b). G(z ) is column reduced:

rankf[g1(N1 � 1) � � �gp(Np � 1)]g = p.

Given that the above two conditions hold, the FIR lengthM re-
quired is given by,

M �M =

�
N � p

me� � p

�
. (24)

Note that condition (a) holds with probability1 due to the quasi-
orthogonality of spreading sequences. As for (b), it can be vio-
lated in certain limiting cases e.g., in the synchronous case where
gj(Nj � 1)’s contain very few non-zero elements. Under these
circumstances, instantaneous (static) mixture of the sources can
zero out some of thegj(Nj�1) (more specifically, at mostp�1
of them). ThenN gets reduced by at mostp� 1. However, even
then,M given by (24) remains sufficient.

The condition (ii ) can be restated as the following dimensional
requirement:

rankfTM (G1:p)g+ rankfTH
1 g 6 rowfTM (G1:p)g+ 1,

(25)

from where, under the irreducible channel and column reduced
conditions,

M �M =

�
N � p+m1 � 1

me� � p

�
, (26)

where,m1 is the channel length for user1 in chip periods. If
(26) holds, then condition (ii ) is fulfilled w.p. 1, regardless of
theNj ’s, i.e., thespanfTH

1 g does not intersect with all shifted
versions ofgj ’s, 8j > 1, which further means that no confusion
is possible between the channel of the user of interest and those
of other users, whether the mixing is static (same lengths) or
dynamic (different channel lengths), with lengths measured in
symbol periods.

2. Violation of condition (ii )

If the channel lengthm1 is over-estimated, such thatN1 gets
over-estimated, then condition (ii ) is violated w.p.1. In that case,
more than one shifted versions ofg1 will fit in the column space
of TH

1 . The estimated channel in that case can be expressed asbG1(z ) = G1(z )b(z ), where,b(z ) is a scalar polynomial of the
order equaling the amount by which the channel has been over-
estimated. A solution to this would be to try all orders forN1

and stop at the correct one.

C. Maximization of SINR

The signal part inY M (k) is Y s = eg1a1;k�d, whereas the
interference (MAI & ISI) plus noise isY in = T M

�A + V M ,



where,T M = TM(G1:p) except for the columneg1. Then, for
an arbitraryF , assuming uncorrelated symbols, we obtain,

SINR =
FHRsF

FHRinF
=

�2aF
Heg1egH1 F

FH
�
RY Y � �2aeg1egH1 �F ,

(27)

from where,

max
F

SINR$ min
F

SINR�1 $ min
F

FHRY Y F

�2ajF
Heg1j2

) min
F :FH eg1=1

F
H
RY Y F , (28)

which is the unbiased MOE cost function of (11).

IV. SEMI-BLIND RECEIVER

Fig. 4 shows the bit-error rate performance of the MMSE
(employingR�1

Y Y ) and the MMSE-ZF receiver of sectionIII. It
can be seen that the receivers are plagued by the finite-data ef-
fect. When training data side-information is available, this prob-
lem can be partially alleviated. To this end, we proceed with
the full-length linear prediction problem described in section III.
First, the channel vector,̂eg1 is determined as an initial estimate
from the blind problem, and the scale factor can be adjusted by
means of the training sequence. Secondly, semi-blind informa-
tion can be used to improve the estimate of the filterQ. To in-
corporate the training information, we formulate the following
weighted least-squares(WLS) cost function:

min
Q

8<:1

�2b

X
k 62T:S:

kZ(k)k22+
1

�2u

X
k2T:S:

kZ(k)�TH
1 ĥ1a1(k�d)k

2
2

9=; ,
(29)

where,a1(k � d) is constrained to lie within the training se-
quence. The weighting factors�2b and�2u can be determined
respectively as the ensemble averages ofkZ(k)k22 andkZ(k)�

TH
1 ĥ1a1(k � d)k22 for the blind and training sequence parts of

the given data sequence. The denoised signal covariance matrixbRd
= bRY Y � �min(bRY Y )I, where,�min is the minimum

eigenvalue of the estimated covariance matrix, and

bRY Y =
1

�2b

X
k 62T:S:

Y kY
H
k +

1

�2u

X
k2T:S:

Y kY
H
k .

(30)

T:S: in the above refers to the training sequence.
The algorithm is semiblind for the estimation of the interfer-

ence cancelerQ but involves a blind estimate of the channel.
An update of the channel vector, in iterative implementations,
is however also possible based upon the knowledge that in the
noiseless caseRZZ is rank one.

A. Exploitation of Finite Alphabet

An iterative implementation of the MMSE-ZF algorithm is
possible when decisions are re-used at each iteration to re-
estimate the filterQ. We propose to start from a semi-blind cost
fuction and make hard-decisions, thus exploiting the finite signal
constellation (BPSK in this case). Upon each iteration, more cor-
rect decisions are available resulting in improved performance.
We compare results with the limiting case where all symbols are
known at the receiver and their effect is removed from the esti-
mation ofQ. The hard-decision algorithm converges to this state
in a small number of iterations, as seen in fig. 6.

V. UPLINK CONSIDERATIONS

Consider the situation at the base station of a cell. If we sup-
pose that interfererers are limited to the intracell users, then,
given the information available at the base station of timing and
spreading sequencesof all users, we can build the better estimate
of the correlation matrix as

RY Y =

pX
j=1

T (Cj)T (ĥj)T (ĥ
H

j )T (CH
j ) + �

2
vI,

(31)

where, the channelŝhj ;8j of all users can be estimated by
the MMSE-ZF receiver algorithm. The code matrixCj and
its orthogonal complementC?

j are known (pre-calculated) at
the base-station. It is to be noted that the channel estimation
method of section III. has minimal complexity and a single ex-
treme eigenvector is to be determined per user.

A. Noise Variance Estimate

In (31), the noise variance�2v is still to be determined. We
propose to determine the noise variance as the minimization of
the following Frobenius norm:

min
�2v

kbRY Y �
uX
j=1

�
2
aT (Cj)T (ĥj)T (ĥ

H

j )T (CH
j ) + �

2
vIk

2
F .

(32)

This mimimization problem results in

�
2
v=avg

 
diagfjbRY Y �

uX
j=1

�
2
aT (Cj)T (̂hj)T (̂h

H

j )T (C
H
j )g

!
,

(33)

andavg stands for the averaging operation. It is to be noted that
minimum length, M, vectors need to be used to estimatebRY Y

(as long as a noise subspace exists), since then, a better time-
averaged version of the covariance matrix would be available.

VI. SIMULATIONS

We consider8 asynchronous users in the system with a
spreading factor ofm = 16. The channel for thejth user is mod-
eled as an FIR channel of lengthmj ranging from8 � 21 chip
periods for differentj. The channel delay spread is therefore
shorter than one symbol period for some users while longer for
others. Near-far conditions prevail in that the interfering users
are randomly (ranging from 8 to 10 dB.) stronger than the user
of interest. Fig. 4 shows the error-rate performance of the blind

MMSE-ZF receiver and the MMSE receiver (bR�1

Y Y ) . It can be
seen that the performance depends on the quality of the corre-
lation matrix estimate. Better results are therefore obtained if
more data is available. This figure highlights the major drawback
in the implementation of blind linear receivers obtained from
second order statistics and motivates the use of semi-blind tech-
niques. Under power controlled conditions, with good choice of
spreading sequences, a simple rake receiver may outperform the
linear receivers, unless a good estimate ofbRY Y is available. On
the other hand, as seen in fig. 5, the channel is estimated fairly
accurately (normalized mean squared error2 (NMSE) of the or-
der of -25 dB at 20 dB. SNR) with70 symbols from the rank-1
RZZ. Performance of the noise-subspace based algorithm [6] is
also shown for several input SNR’s.

2NMSE= E
kh1�ĥ1k

2

kh1k2
= 1

L

PL
i=1

kh1�ĥ
(i)
1 k2

kh1k2
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Figure 4. Error rate performance L=16, 8 users
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Figure 5. Channel estimation performance

In fig. 6, we show the performace of blind and semi-blind
MMSE-ZF receiver and compare it with that of the theoretical
MMSE (RY Y = �2aTM (G1:p)TM (G1:p) + �2vI). It comes as
no surprise that the optimal unbiased MMSE is not approached
by any of the other receivers due to finite data effect. A theo-
retical curve for the MMSE-ZF is also provided. It can be seen
that the semiblind MMSE-ZF does relatively well. Improved,
hard-decision (HD) based receiver converges in a small number
of iterations (one or two here) to the case where all symbols are
considered known (ASK). In these simulations we considerd 25
training symbols in a packet of 160 symbols. If the number of
training symbols is small, slow convergence takes place with a
larger number of iterations required.

VII. CONCLUSIONS

The blind MMSE-ZF receiver for DS-CDMA was presented.
Its equivalence to the unbiased MOE receiver was shown in
terms of optimization criteria. The blind algorithm, like the
MMSE linear receiver, requires a large amount of data for the es-
timation of the channel covariance matrix thus making it rather
unpractical for rapidly changing environments and large num-
bers of users(m ! p). Such algorithms can find their utility
in indoor wireless LANs where channel changes at a relatively
slow rate and a fair amount of data is available for the estima-
tion of the covariance matrix. A possible implementation can
be at the uplink, where, knowledge of spreading codes and tim-
ing of all users in the cell can be exploited to obtain a better
R̂Y Y . Identifiability conditions for long channels (longer than
a symbol period) were given and it was shown that the channel
is blindly identifiable w.p.1 (upto a scalar phase factor), unless
it is overestimated. The semi-blind algorithm was presented and
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Figure 6. Output SINR performance of different receivers

shown to offer promising gains. An iterative hard decision based
algorithm was also proposed which exploits the finite-alphabet
property of the signal-constellation to improve the receiver per-
formance.
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