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Abstract. Wireless Ad-hoc networks are expected to be made up of
energy aware entities (nodes) interested in their own perceived perfor-
mance. We consider a simple random access model for a wireless ad hoc
network to address problems of finding an optimal channel access rate
and providing incentive for cooperation to forward other nodes’ traffic.
By casting these problems as noncooperative games, we derive conditions
for the Nash equilibrium and provide distributed algorithms to learn the
Nash equilibrium.
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1 Introduction

Wireless ad hoc networks (also referred to as packet radio networks and multihop
radio networks) consist of mobile nodes communicating over a shared wireless
channel. Contrary to cellular networks, where the nodes are restricted to com-
municate with a set of carefully placed base stations, in wireless ad hoc networks
there are no base stations; any two nodes are allowed to communicate directly if
they are close enough. A wireless ad hoc network can be considered as a system of
various mobile wireless devices that is dynamically changing and self-organizing
in arbitrary networks. These wireless devices are usually constantly changing
their location because they are, for example, carried by people (for example,
PDAs). These devices need to form a dynamic network without a pre-existing
communication infrastructure. For such networks we address two problems men-
tioned in the subsections below.

1.1 Optimal Channel Access Rate

These networks are expected to use medium access protocols similar to the IEEE
802.11 protocol [12]. The 802.11 protocol is inherently a random access protocol
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since the protocol running in each wireless device keeps a backoff timer whose
mean value essentially denotes the node’s willingness to attempt a transmission,
thus also risking a collision. Clearly, the nodes can not have a very large mean
backoff timer value as this can add significantly to the delay in their packet
transmission and also the node may miss opportunities of transmission. On the
other hand, if all the nodes set their mean backoff timer value at a very small
value, there will be singnificant amount of collision, thus again having an adverse
effect on the nodes’ performance. It is thus clear that there is some optimal
attempt probability for the wireless devices at which the risk of collision could
be balanced by the benefit of successfull transmission (and hence less delay)
while making use of the most of the transmission opportunities available. Since,
in such networks the nodes are rational, i.e., a node wants to maximize its own
performance, a node needs to compute its own attempt probability such that it
gets best performance for what other nodes do.

Much of the work on wireless ad hoc networks (with some exceptions) has
been on the protocol design issues for medium access (the various variants of
the IEEE 802.11 protocol, for example [5]) or dynamic routing in such net-
works [13,19]. The authors of [8] also look at the problem of tuning of the IEEE
802.11 parameters but they assume that all the nodes are cooperative and do
not consider the rational behaviour of the nodes. Relatively little has been done
on the resolution of ‘optimal’ self-organization as an optimization problem which
amounts, roughly, to finding optimum parameters for the various protocols. As
an example of the latter, consider [14] where the problem of adapting trans-
mission attempt probabilities is viewed as a single optimization problem with
a stated performance metric to be minimized and the optimization task is ex-
ecuted by a stochastic gradient method implemented in a distributed fashion.
This approach, though suitable for sensor networks where each wireless device
(or sensor) cooperates to acheive a common goal, is not suitable for a wireless
ad hoc network with rational entities.

In Section 3 and 4, we view the problem as a noncooperative game with each
node trying to optimize its own objective. By assuming a particularly simple
performance metric for each node we get an explicit characterization of a Nash
equilibrium. This in turn can be adaptively learnt by an iterative scheme that
uses local information exchange. The required information for the algorithm
should be available from a standard topology learning procedure.

1.2 Incentive for Forwarding

In order to maintain connectivity in an Ad-hoc network, mobile terminals should
not only spend their resources (battery power) to send their own packets, but
also for forwarding packets of other mobiles. Since Ad-hoc networks do not have
a centralized base-station that coordinates between them, an important question
that has been addressed is to know whether we may indeed expect mobiles to
collaborate in such forwarding. If mobiles behave selfishly, they might not be
interested in spending their precious transmission power in forwarding of other
mobile’s traffic. A natural framework to study this problem is noncooperative
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game theory. As already observed in many papers that consider noncooperative
behavior in Ad-hoc networks, if we restrict to simplistic policies in which each
mobile determines a fixed probability of forwarding a packet, then this gives
rise to the most “aggressive” equilibrium in which no one forwards packets, see
e.g. [11, Corollary 1], [18], thus preventing the system to behave as a connected
network. The phenomenon of aggressive equilibrium that severely affects perfor-
mance has also been reported in other noncooperative problems in networking,
see e.g. [10] for a flow control context (in which the aggressive equilibrium cor-
responds to all users sending at their maximum rate).

To avoid very aggressive equilibria, in Section 5 we propose strategies based
on threats of punishments for misbehaving aggressive mobiles, which is in the
spirit of a well established design approach for promoting cooperation in Ad-hoc
networks, carried on in many previous works [11,24]. In all these references, the
well known “TIT-FOR-TAT” (TFT) strategy was proposed. This is a strategy
in which when a misbehaving node is detected then the reaction of other mobiles
is to stop completely forwarding packets during some time; it thus prescribes a
threat for very “aggressive” punishment, resulting in an enforcement of a fully
cooperative equilibrium in which all mobiles forward all packets they receive (see
e.g. [11, Corollary 2]). The authors of [22] also propose use of a variant of TFT
in a similar context.

2 A Model for Wireless Ad Hoc Networks

We consider a wireless adhoc network where all the terminals transmit on a
common carrier frequency so that a terminal can either receive or transmit at a
time. The transmission range of a terminal is denoted by R0. Henceforth we use
the terms terminal and node to mean the same entity.

We assume that the condition for node j to successfully decode the trans-
mission of its neighbouring node i is that none of the other neighbours of node
j transmit when i is transmitting.

A node is assumed to be in exactly one of the following modes at any time:

1. be transmitting to its neighbours, or,
2. sensing the channel for the transmission from its neighbour, or,
3. can be in the sleep mode, i.e., it is neither transmitting nor receiving and also

not wasting its battery power in sensing the channel. Note that in this mode
of operation a node may lose an opportunity of reception of a transmission
from one of its neighbours.

Time is assumed to be slotted and channel access is random, i.e., in each slot,
a node i either decides to transmit with probability αi, or enters sleep mode with
probability γi or decides to receive with probability (1−γi −αi). αi is called the
attempt probability of node i, αi + γi ≤ 1.

A node can be heard by only certain nodes called the neighbours. The neigh-
bours of a node i are the nodes within a distance R0 from node i. A node is
assumed to have some amount of data in its transmit queue at all times. For ease
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of presentation, we first assume that a transmission of a data packet from node i
is considered successful iff all the neighbours of node i can decode the transmis-
sion successfully. Later we remove this restriction and show how to accommodate
the possibility that a node i transmits to a specific neighbouring node j with
probability αi,j . In the latter case a transmission is declared successful if the node
that the transmission was destined for can decode the transmission successfully.

We assume that the topology of the network is fixed but the nodes need not
be aware of the complete topology. The network consists of N nodes. Denote
the set of nodes by N . For i, j ∈ N say i → j if node i can receive node j’s
transmission, i.e., node j is within a distance of R0 from node i. For ease of
presentation we assume in this section that i → j iff j → i, i.e., R0 is same for
all the nodes; we use the notation i ↔ j to mean either of these two. Associate
with each node i ∈ N , a neighbourhood set N (i) := {j ∈ N : i ↔ j}. Denote
the node incidence matrix thus obtained by Φ, i.e.,

Φ(i, j) = Φ(j, i) =
{

1 if i ↔ j or j ∈ N (i)
0 otherwise. (1)

We assume that Φ is an irreducible matrix, i.e., every node i ∈ N has a path to
any other node j ∈ N ; this amounts to assuming that the network is connected.

3 Finding Optimal Channel Access Rates

Assume for now that γi = 0 for all nodes i in the network, i.e., in any slot a
node is either transmitting a packet (which contains an update information) or
is listening to the channel. It is clear from the model described above that if
αi is very small for all the nodes, there will be significant delay in information
processing though the battery power consumption will be less. On the other hand
increasing αis to large values will result in increased collisions in the network
and will also waste the battery power in unsuccessful transmissions. Thus there
is a need to find the optimum value of these attempt probabilities.

This phenomenon is very similar to that of finding the arrival rates in a
slotted Aloha system for multiple access (see [4]). It is well known (see [4]) that
for such a system there exists an optimal attempt rate at which the system
throughput is maximized.

Our problem here is to find, for a given network, the values of αi (or, αi,j ,
as the case may be) which maximize a performance measure to be defined in
Section 3.1. The objective then is to come up with an algorithm using which
a node i computes the optimal attempt probability (αi or αi,j) for itself in a
distributed manner.

3.1 Optimization Problem

For simplicity of presentation, in this section we assume that a transmission from
a node is successful if all of its neighbours receive it correctly. In later sections
we show how to modify the problem formulation and solution of this section for
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the case where in any slot a node i transmits to a particular neighbouring node
j with probability αi,j .

Let αi, i ∈ N , be the probability that node i transmits in any slot. A
transmission from node i will be successful iff

1. None of the nodes belonging to the neighbourhood set of i transmit, and
2. For each k ∈ N (i) none of the nodes belonging to the neighbourhood set of

k (except node i) transmit.

The second condition above means that none of the second hop neighbours of
i transmit. By second hop neighbours we mean ∪j∈N (i)N (j)\(i∪N (i)) =: S(i),
i.e., the set of neighbours of neighbours of i excluding i and N (i). Let ζ be the
second hop node incidence matrix, i.e., ζ(i, j) = 1 = ζ(j, i) iff j ∈ S(i) and
ζ(i, j) = 0 otherwise.

Denote by Ps(i) the probability that a transmission from node i is successful.
It follows from the conditions mentioned above that

Ps(i) = Πj∈N (i)(1 − αj)Πk∈S(i)(1 − αk) (2)

Thus the probability that a node i made a successful transmission in any
slot is αiPs(i). We want to maximise this probability for all the nodes i while
simultaneously reducing the probability of collision among the transmissions
from node i (to minimize the battery power wasted in collisions) and also the
probability of missing out on a transmission opportunity. Thus the problem for
node i can be written as follows:

Minimize − AαiPs(i) + Bαi(1 − Ps(i)) + C(1 − αi)Ps(i) (3)
such that αi ≥ αmin > 0 (4)

and αi ≤ αmax < 1. (5)

Here:

– the first term in the cost (3) is the negative of the ‘reward’ for successful
transmission, the latter being A > 0 times the probability of a successful
transmission,

– the second is the penalty for an unsuccessful attempt, being B > 0 times
the probability of a collision,

– and the third is the penalty for lost opportunities, being C > 0 times the
probability of no transmission when one was possible.

The bounds on αi imposed by the equations (4) and (5) are to ensure the
connectivity of the network. This is because a node with attempt probability 0
or 1 will be effectively cutoff from the rest of the network and will also lead to
disconnectivity between other node pairs.

Since the nodes are each trying to optimize their own objectives without any
cooperation, this is a noncooperative game. The ‘action space’ for each node
is the interval [αmin, αmax] from which it chooses the transmission probability.
This is compact convex. Also, each node’s objective function (3) is separately
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convex continuous in each argument. Thus a standard argument based on the
Kakutani fixed point theorem ensures the existence of a Nash equilibrium, i.e.,
a choice α∗ = [α∗

1, · · · , α∗
N ] such that if all but the i−th node transmit with

probabilities α∗
j ’s, j �= i, then it is optimal for i−th node also to use α∗

i [23]. Our
aim will be to attain this Nash equilibrium. With this objective, we first seek
the necessary conditions for the Nash equilibrium.

Since for fixed values of αj , j �= i, this is a single agent optimization problem
faced by the i−th node, we consider the corresponding Kuhn-Tucker conditions.
Let θ = B

A+B+C and η = ln B
A+B+C . For any vector α of attempt probabilities,

let A∗(α) = {i : αmin < αi < αmax}. The (equivalent of) Kuhn-Tucker necessary
conditions [23] for a vector α to be a Nash equilibrium, i.e., a componentwise
local minimum of corresponding cost functions when the other components are
unperturbed, are

θ − Ps(i) = 0, ∀ i ∈ A∗(α) (6)
θ − Ps(i) ≥ 0, ∀ i : αi = αmin (7)
θ − Ps(i) ≤ 0, ∀ i : αi = αmax (8)

where θ−Ps(i) is in the direction of the gradient at point α for the cost function
of node i.

Let α∗ be the Nash equilibrium for the game problem and assume, for sim-
plicity, that A∗(α∗) = N . The case where A∗(α∗) �= N will be studied in a later
section. Let βj = ln(1 − αj). After taking logarithms, Kuhn-Tucker necessary
conditions of (6) can be rewritten as,

∑
j∈N (i)∪S(i)

βj = η, ∀i (9)

This set of equations can be written in matrix form as

η − (Φ + ζ)β = 0, (10)

where β and η are column vectors of same size with the jth entry being βj and
η respectively.

This suggests the iteration

β(n + 1) = β(n) + a(n)(η − (Φ + ζ)β(n)),

where {a(n)} are the usual stochastic approximation stepsize schedules, i.e.,
positive scalars satisfying

∑
n

a(n) = ∞,
∑

n

a(n)2 < ∞.

By the standard ‘o.d.e. approach’ to stochastic approximation, this tracks the
asymptotic behaviour of the o.d.e. [16]

ẋ(t) = η − (Φ + ζ)x(t).
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This is a linear o.d.e. which would indeed converge to the solution of (10) if it
were stable. Unfortunately, the stability cannot be a priori assumed. Thus we
consider the iteration

β(n + 1) = β(n) + a(n)(Φ + ζ)(η − (Φ + ζ)β(n)), (11)

corresponding to the o.d.e.

ẋ(t) = (Φ + ζ)(η − (Φ + ζ)x(t)). (12)

This will be stable if (Φ + ζ) is nonsingular, whence (Φ + ζ)2 will be positive
definite. The solution will correspond to the linear system

(Φ + ζ)η − (Φ + ζ)2β = 0, (13)

which then has the same solution as (10). Thus node i will be solving the ith

row of (13). This will need further modification when either the nonsingularity
of (Φ + ζ) does not hold or when one of the constraints on some αi is active
so that either (7) or (8) is operative. The basic iteration described above then
needs to be modified.
Remark: There is one further complication that needs to be underscored, viz.,
that our distributed implementation cannot ensure that all components are up-
dated equally often. Thus the theory of [6] suggests that the limiting o.d.e. will
be not (12), but

ẋ(t) = Λ(t)(Φ + ζ)(η − (Φ + ζ)x(t)), (14)

where Λ(t) is a diagonal matrix for each t with nonnegative entries {λi(t)} on
the diagonal. These reflect the differing comparative frequencies of updating
for different components. (See [6] for details.) We shall assume that the latter
are strictly positive, which means that the components get updated comparably
often, though not necessarily equally often. In our case, this change of o.d.e. does
not alter the conclusions. To see this, first note that (12) is of the form

ẋ(t) = −∇F (x(t)),

for F (x)
defn
= ||η − (Φ + ζ)x||2. Thus F (·) itself serves as a ‘Liapunov function’

for it, with
d

dt
F (x(t)) = −||∇F (x(t))||2 ≤ 0,

the equality holding only on the solution set of (13). When we replace (12) by
(14), one has instead

d

dt
F (x(t)) = −||

√
Λ(t))∇F (x(t))||2 ≤ 0,

leading to identical conclusions, whence the original convergence claims continue
to hold.



Some Game-Theoretic Problems in Wireless Ad-Hoc Networks 89

3.2 The Algorithm

The following algorithm implements the iterations suggested in Section 3.1.

Algorithm 1

1. Set the slot number n = 0.
2. Initialize α

(0)
i , 1 ≤ i ≤ N, to some small positive values. Also let N(i) = 0,

the last slot number when node i updated its attempt probability.
3. For 1 ≤ i ≤ N , node i does the following sequence of operations:

(a) It either decides to transmit with probability α
(n)
i , or decides to go into

sleep mode with probability γi, or, if not any of the above, senses the
channel for any transmission.

(b) If decided to transmit, a node does the following:
i. Sends the data packet (measurements) destined for all the neighbour-

ing nodes.
ii. It also transmits the information relevant for its nodes for updat-

ing their attempt probabilities based on (11). In particular, node i

transmits α
(n)
i , N(i), N (i) and all the information (attempt proba-

bilities and the last time the node updated its attempt probability) it
has about the nodes it can reach in three hops.

(c) If decided to sense the channel, a node does the following:
i. If node i receives a signal that can be decoded correctly, then it checks

if the received signal contains the update information. If yes, update
node i’s local information about its four hop neighbours based on the
information it extracted from the transmission received from its first
hop neighbour. Here node i updates its estimate of αj only if the
value of N(j) that it has now received is more than node i’s copy of
N(j).

ii. Update α
(n)
i based on the updated information.

iii. Set N(i) = n.
4. n = n + 1.
5. Go to step 3.

Remarks:

1. This algorithm is similar to the DSDV protocol [19] for route discovery in
the ad hoc 802.11 networks as each node keeps its own copy of the local
information of the connectivity between the neighbouring 4 hop nodes and
transmits a part of this information to the neighbouring nodes. This implies
that mobility or failure of the nodes can also be taken into account in this
algorithm as a node i can consider another node j (which is reachable in
at most 4 hops from node i) as failed or nonexistent if node i’s information
about node j says that N(j) has not been updated for a long time, say
M� 1

α̂j
�, where M is a large integer and α̂j is node i’s most recent information

about αj .
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2. The property of the nodes being dense is not required here and the exact
physical distance between two nodes is no longer relevant now as the required
information, i.e., (Φ + ζ)2 is already obtained.

3. A node keeps information only about its four hop neighbours. The amount of
storage required for this information grows with the density of the network
(which should be true for any such algorithm). Note that the storage required
for the required information does not change by increasing the span of the
network for a fixed node density (i.e., increasing the area of the network by
adding more nodes so as to keep the node density fixed). Compare this with
DSDV or the algorithm of [14] where a node keeps information about the
complete network.

3.3 Problem Formulation to Incorporate Sleep Mode

Algorithm 1 was for the case where, in any slot, a node either decides to transmit
or else decides to receive. To accommodate for the possibility that a node i can
decide to be in sleep mode with a fixed probability γi (known to node i), for this
case equation (2) for Ps(i) can be modified to

Ps(i) = Πj∈N (i)(1 − γj − αj)Πk∈S(i)(1 − γk − αk) (15)
Similarly, in the penalty term for missed opportunities in equation (3), (1−αi)

should be replaced by (1 − γi − αi). Algorithm 1 needs to be modified to take
care of this possibility. Now, a node i transmits γi along with its other update
information meant for its neighbours. The rest of the algorithm works similarly.

One can also consider {γi} as additional decision variables that can be tuned
to find the optimal trade-off between sleep and alert modes. To do this, one may
add to node i’s ‘cost’ (3) the additional terms D(1 − γi) + GγiPs(i), D, G > 0.
The first is the cost on battery power utilization (this could be fine tuned further
to allow for different costs for different kinds of usage), the second is the cost of
missed opportunities due to sleep mode. The algorithm can be easily modified
to incorporate optimization over {γi}.

3.4 Problem Formulation for Transmissions Destined for Fixed
Nodes

Algorithm 1 was for the case where a node’s transmission is meant for all of its
neighbouring nodes and a node i has only one attempt probability αi. Now we
show how to modify Algorithm 1 for the case where a node’s transmission is
destined for a particular node j ∈ N (i). In this case a node i, in any slot and
for each of its neighbour j ∈ N (i), decides to send a packet destined for node j
with probability αi,j independent of anything else. Note that it is possible that
node i decides to send data to two or more of its neighbours simultaneously in
which case the transmission is unsuccessful. We again assume here that γi = 0.
For this case (2) can be written as

Ps(i, j) = Πl∈N (i)\j(1 − αi,l)Πl∈N (j)(1 − αj,l)Πl∈∪k∈N(j)\iN (k)\i (16)
Πm∈N (j)\i(1 − αl,m).
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Thus a node computes αi,j using Algorithm 1 based on the information that
it receives from its neighbouring nodes. Note that now a node sends the αi,j ’s
of its 3 hop neighbours instead of just the αi’s.

Numerical results based on an implementation of the algorithm are presented
in [7].

4 Optimal Channel Access Rate with Reward on
Reception

In the previous section we assumed that a node is interested in its performance
as a traffic source. Typically a node in an ad hoc network is both sender as well
as receiver of packets and hence will be interested in a combined performance
measure that reflects its performance as a sender and as a receiver. These are
two conflicting requirements: a node, if it tries to be too aggressive in sending
packets, may lose opportunity to receive packets meant for itself and vice versa.

We now assume that nodes never go into sleep mode, i.e., they are either
transmitting or ready to receive. The channel access is again random, i.e., in each
slot, a node i decides to transmit (broadcast) with probability αi and decides to
receive with probability (1−αi). The quantity αi is called the attempt probability
of node i. What follows can be easily modified to account for a node i keeping
a attempt probability αi,j for its neighboring node j, or to some subset of its
neighbors (multicast).

Our problem now is to find, for a given network, the values of αi (or αi,j , as
the case may be) which maximizes node i’s performance.

Let Ps(i) be the conditional probability that a transmission attempt from
node i is successful (conditioned on the event that node i transmits), and Pr(j, i)
denote the probability that a transmission from node j is successfully received
by node i.

Here one can have various notions of node i’s transmission being successful.
We use the simple (though not restrictive) criteria: node i’s transmission is
successful if all of it’s neighboring nodes correctly receive the transmission.

Each node wants to maximise its own utility function which reflects the
performance obtained by the node under the sending probabilities selected by
the nodes in the network. A common ingredient of the utility function of node i
is a combination of the rates at which node i successfully transmits and receives
packets. Thus the problem for node i is to maximise

Ui(α) = AiαiPs(i) +
∑

j∈N (i)

Ai,jαjPr(j, i) − CiᾱiPs(i) (17)

such that αi ≥ 0 and ᾱi = 1 − αi ≥ 0. Here Ai, Ci and Ai,j are some non-
negative constants. The first and second terms here are “rewards” for success
owing to, respectively, transmission and reception. Ai,j will be zero for node
j whose transmission can not be directly received by node i. The third term
is included to act as a punishment for missed opportunities, thus aiming at
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maximising node i’s use of network. Note that the last term also is the probability
of the event where none of the neighboring nodes of node i are sending to node
i when node i is ready to receive, thus this term also represents the time wasted
by node i in trying to receive when there is nothing to receive.

Our definition of Ps(i) means that none of the first or second hop neighbors
of i transmit when node i does. Thus

Ps(i) = Πj∈N (i)(1 − αj)Πk∈S(i)(1 − αk). (18)

Similarly, it is seen that, for j ∈ N (i), Pr(j, i) is,

Pr(j, i) = Πk∈N (i)∪{i}\{j}(1 − αk). (19)

This is again viewed as a concave N -person game thus a Nash equilibrium
exists, i.e., a choice α∗ = [α∗

1, · · · , α∗
N ] such that if all but the i−th node transmit

with probabilities α∗
j ’s, j �= i, then it is optimal for i−th node also to use α∗

i

[20].
Again, since for fixed αj , j �= i, this is a single agent optimization problem

faced by the i−th node, we consider the corresponding Kuhn-Tucker condition.
For any vector α of attempt probabilities, let A∗(α) = {i : 0 < αi < 1}. The
(equivalent of) Kuhn-Tucker conditions for a vector α to be a Nash equilibrium,
i.e., a componentwise local maximum of corresponding utility functions when
the other components are unperturbed, are (with Ai,i := Ai + Ci)

Ai,iPs(i) −
∑

j∈N (i)

Ai,jαj
Pr(j, i)
1 − αi

= 0, ∀ i ∈ A∗(α) (20)

Ai,iPs(i) −
∑

j∈N (i)

Ai,jαj
Pr(j, i)
1 − αi

≥ 0, ∀ i : αi = 1 (21)

Ai,iPs(i) −
∑

j∈N (i)

Ai,jαj
Pr(j, i)
1 − αi

≤ 0, ∀ i : αi = 0. (22)

Let α∗ be a Nash equilibrium for the game problem and assume, for simplicity,
that A∗(α∗) = N . Let α be a column vector whose ith entry is αi. Also introduce
G(α) := ∂

∂αi
Ui(α) = Ai,iPs(i) −

∑
j∈N (i) Ai,jαj

Pr(j,i)
1−αi

.

4.1 Effect of Imposing Power Constraints

Till now we have not imposed any restriction on the possible values that αi’s
are allowed to take (except that αi ∈ [0, 1]). Since the nodes are battery power
constrained, one would like to see the effect of imposing a constraint on αi so
as to use the battery power efficiently. A natural candidate for such a constraint
for node i is Tiαi +Ri(1−αi)Pr(i) ≤ Pi, where Ti and Ri are the average power
required for transmission and reception of packets, Pi is the average battery
power of node i and Pr(i) is the probability that node i is trying to receive while
it is not transmitting. Pr(i) = 1 − Πj∈N (i)(1 − αj), i.e., that a node spends Ri
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amount of power whenever there is a transmission attempt from at least one
neighboring node. In practice, the case of interest would be Ti ≥ Pi ≥ Ri. (If
Pi ≥ max(Ti, Ri) then, effectively, the αi’s are not battery power constrained.)
Note now that the action space of the nodes are dependent on the actions of other
nodes. The existence of a Nash equilibrium would follow if the constraint set so
obtained is convex [20]. For a general network topology, it can be shown that the
constraint defining functions Pi − Tiαi − Ri(1 − αi)Pr(i) are quasi-concave [17]
so that the constraint set is convex. Further, the constraint set is easily seen to
be nonempty because the point αi = 0, ∀i is always feasible. Details of proof
showing quasi-concavity of the power constraint functions is omitted.

4.2 A Distributed Algorithm

To compute αi, the Kuhn-Tucker condition of Equation 20 suggests the following
(gradient ascent type) iteration

α(n + 1) = α(n) + a(n)G(α), (23)

where {a(n)} are the usual stochastic approximation stepsize schedules. By
the standard ‘o.d.e. approach’ to stochastic approximation [16], this tracks the
asymptotic behavior of the ordinary differential equation (o.d.e.)

ẋ(t) = G(x).

For a general network and coefficients Ai, Ai,j , Ci, the stability of the equilibrium
points of the o.d.e. cannot be a priori assumed (see also [20] for this issue).
However, for a special case where all the nodes are neighbors of each other, it
can be shown that the (slightly modified) o.d.e. is globally asymptotically stable
and hence the suggested iteration above is guaranteed to converge irrespective
of the coefficients.

4.3 The Case of All Nodes Neighbor of Each Other

Consider the special case where for any node i, N (i) = N , i.e., all the nodes are
neighbors of each other. This is a common scenario in wireless LANs spanning
a small area (office etc.). The standard Slotted ALOHA system is yet another
example of such scenario.

Recently, [1] has also considered a game theoretic approach to delay mini-
mization in Slotted Aloha systems with the retransmission probabilities as de-
cision variables. However, it does not consider the problem of nodes computing
the optimal retransmission probabilities. The problem there also assumes sym-
metry, i.e., (unlike our case) all nodes have equal weightage thus resulting in
equal optimal retransmission probabilities for each node.

For the present case where S(i) is empty, it is seen that Ps(i) = Πj �=i(1−αj),
and Pr(j, i) = Πk �=j(1 − αk) = Ps(j). Note that Pr(j, i) = Pr(j, k) for any
k, i �= j. The Kuhn-Tucker condition (Equation 20) can be written as∑

j �=i

Ai,j
αj

1 − αj
= Ai,i, ∀i.
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Let βj := αj

1−αj
, ζi,j = Ai,j , i �= j and ηi = Ai,i. The above condition in matrix

form is then,
ζβ = η. (24)

Remark: Equation 24 gives a complete characterization of the solution of opti-
mization problem under consideration as a solution to a set of linear equations.
This is a considerable simplification given the complex set of equations repre-
senting the optimization problem. Now we proceed to give a method to compute
this optimum in a distributed manner.

4.4 The Algorithm

To solve Equation 24, the iteration to be considered is

β(n + 1) = β(n) + a(n)(η − ζβ(n)),

corresponding to the o.d.e. ẋ(t) = (η − ζx(t)), whose stability, again, can not
be apriori assumed. We thus consider the modified o.d.e. having same critical
points

ẋ(t) = ζ(η − ζx(t)). (25)

This will be stable if the matrix ζ is invertible, whence ζ2 will be positive definite.
The solution will correspond to the linear system

ζη − ζ2β = 0, (26)

which then has the same solution as (24). Thus node i will be solving the ith

row of (26). The iteration at node i is thus

β(n + 1) = β(n) + a(n)ζ(η − ζβ(n)). (27)

The algorithm run by the nodes based on the above iteration is detailed as
follows.

1. Set the slot number n = 0. Initialize α
(0)
i , 1 ≤ i ≤ N, to some small positive

values. Also let N(i) = 0, the last slot number when node i updated its
attempt probability.

2. For 1 ≤ i ≤ N , node i does the following operations:

– It either decides to transmit with probability α
(n)
i , or decides to receive

with probability 1 − α
(n)
i .

– If decided to transmit, a node sends the data packet destined for all
the neighboring nodes. It also transmits the information relevant for
other nodes for updating their attempt probabilities based on (27). In
particular, node i transmits α

(n)
i , N(i), N (i).

– If decided to sense the channel, do the following:
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• If node i receives a signal that can be decoded correctly, then it checks
if the received signal contains the update information. If yes, update
node i’s local information about its neighbors based on information
extracted from the transmission received from its first hop neighbor.
Here node i updates its estimate of αj , j �= i, only if the value of
N(j) that it has now received is more than node i’s copy of N(j).

• Update α
(n)
i based on the updated information.

• Set N(i) = n.
3. n = n + 1, Go to step 2.

For numerical results based on an implementation of the algorithm, see [2].

5 Non-cooperative Forwarding in Ad Hoc Networks

As mentioned in the Introducion, in this work we consider a less aggressive
punishment policy as an incentive for cooperation in ad hoc networks. We simply
assume that if the fraction q′ of packets forwarded by a mobile is less than the
fraction q forwarded by other mobiles, then this will result in a decrease of the
forwarding probability of the other mobiles to the value q′. We shall show that
this will indeed lead to non-aggressive equilibria, yet not necessarily to complete
cooperation. The reasons for adopting this milder punishment strategy are the
following:

1. There has been criticism in the game-theoretical community on the use of
aggressive punishments. For example, threats for aggressive punishments
have been argued not to be credible threats when the punishing agent may
itself loose at the punishing phase. This motivated equilibria based on more
credible punishments known as subgame perfect equilibria [21].

2. An individual that adopts an “partially-cooperative” behavior (i.e. forwards
packets with probability 0 < q < 1) need not be considered as an “aggres-
sive” individual, and thus the punishment needs not be “aggressive” either;
it is fair to respond to such a partially-cooperative behavior with a partially-
cooperative reaction, which gives rise to our mild punishment scheme.

3. The TFT policy would lead to complete cooperation at equilibrium. How-
ever, our milder punishment seems to us more descriptive of actual behavior
in the society in which we do not obtain full cooperation at equilibrium (for
example in the behavior of drivers on the road, in the rate of criminality etc.)
It may indeed be expected that some degree of non-cooperative behavior by
a small number of persons could result in larger and larger portions of the
society to react by adopting such a behavior.

As already mentioned, incentive for cooperation in Ad-hoc networks have
been studied in several papers, see [11,18,22,24]. Almost all previous papers
however only considered utilities related to successful transmission of a mobile’s
packet to its neighbor. In practice, however, multihop routes may be required
for a packet to reach its destination, so the utility corresponding to successful
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transmission depends on the forwarding behavior of all mobiles along the path.
The goal of our paper is therefore to study the forwarding taking into account
the multihop topological characteristics of the path.

Most close to our work is the paper [11] which considers a model similar
to ours (introduced in Section 5.1 below). [11] provides sufficient condition on
the network topology under which each node employing the “aggressive” TFT
punishment strategy results in a Nash equilibrium. In the present section, we
show that a less aggressive punishment mechanism can also lead to a Nash
equilibrium which has a desirable feature that it is less resource consuming in
the sense that a node need not accept all the forwarding request.

5.1 The Model

Consider an Ad-hoc network described by a directed graph G = (N, V ). Along
with that network, we consider a set of source-destination pairs O and a given
routing between each source s and its corresponding destination d, of the form
π(s, d) = (s, n1, n2, . . . , nk, d), where k = k(s, d) is the number of intermediate
hops and nj = nj(s, d) is the jth intermediate node on path π(s, d). We assume
that mobile j forwards packets (independently from the source of the packet)
with a fixed probabilty γj . Let γ be the vector of forwarding probabilities of all
mobiles. We assume however that each source s forwards its own packets with
probability one. For a given path π(s, d), the probability that a transmitted
packet reaches its destination is thus:

p(s, d; γ) =
k(s,d)∏
j=1

γ(nj(s, d)).

If i belongs to a path π(s, d) we write i ∈ π(s, d). For a given path π(s, d)
of the form (s, n1, n2, . . . , nk, d) and a given mobile nj ∈ π(s, d), define the set
of intermediate nodes before nj to be the set S(s, d; nj) = (n1, ..., nj−1). The
probability that some node i ∈ π(s, d) receives a packet originating from s with
d as its destination is then given by

p(s, d; i, γ) =
∏

j∈S(s,d;i)

γ(j).

Note that p(s, d; d, γ) = p(s, d; γ), the probability that node d receives a packet
originating from source s and having d as its destination.

Define O(i) to be all the paths in which a mobile i is an intermediate node.
Let the rate at which source s creates packets for destination d be given by some
constant λsd. Then the rate at which packets arrive at node i in order to be
forwarded there is given by

ξi(γ) =
∑

π(s,d)∈O(i)

λsdp(s, d; i, γ).
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Let Ef be the total energy needed for forwarding a packet (which includes the
energy for its reception and its transmission). Then the utility of mobile i that
we consider is

Ui(γ) =
∑

n:(i,n)∈O

λinfi(p(i, n; γ))

+
∑

n:(n,i)∈O

λnigi(p(n, i; γ)) − aEf ξi(γ), (28)

where fi and gi are utility functions that depend on the success probabilities
associated with node i as a source and as a destination respectively and a is some
multiplicative constant. We assume that fi(·) and gi(·) are nondecreasing concave
in their arguments. The objective of mobile i is to choose γi that maximizes
Ui(γ). We remark here that similar utility function is also considered in [11] with
the difference that node’s utility does not include its reward as a destination,
i.e., they assume that gi(·) ≡ 0.
Definition: For any choices of strategy γ for all mobiles, define (γ′

i, γ
−i) to be

the strategy obtained when only player i deviates from γi to γ′
i and other mobiles

maintain their strategies fixed.
In a noncooperative framework, the solution concept of the optimization

problem faced by all players is the following:
Definition: A Nash equilibrium, is some strategy set γ∗ for all mobiles such that
for each mobile i,

Ui(γ∗) = max
γ′

i

Ui(γ′
i, (γ

∗)−i).

We call argmaxγ′
i
Ui(γ′

i, γ
−i) the set of optimal responses of player i against

other mobiles policy γ−i (it may be an empty set or have several elements).
In our setting, it is easy to see that for each mobile i and each fixed strategy

γ−i for other players, the best response of mobile i is γi = 0 (unless O(i) = ∅ in
which case, the best response is the whole interval [0, 1]). Thus the only possible
equilibrium is that of γi = 0 for all i. To overcome this problem, we consider the
following “punishing mechanism”. in order to incite mobiles to cooperate.
Definition: Consider a given set of policies γ = (γ, γ, γ, ...). If some mobile
deviates and uses some γ′ < γ, we define the punishing policy κ(γ′, γ) as the
policy in which all mobiles decrease their forwarding probability to γ′.

When this punishing mechanism is enforced, then the best strategy of a
mobile i when all other mobiles use strategy γ is γ′ that achieves

J(γ) := max
γ′≤γ

Ui(γ′) (29)

where γ′ = (γ′, γ′, γ′, ....).
Definition: If some γ∗ achieves the minimum in (29) we call the vector γ∗ =
(γ∗, γ∗, γ∗, ...) the equilibrium strategy (for the forwarding problem) under threats.
J(γ) is called the corresponding value.
Remark: Note that γ∗ = 0 is still a Nash equilibrium.
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5.2 Utilities for Symmetrical Topologies

By symmetrical topology we mean the case where fi, gi and ξi are independent
of i. This implies that for any source-destination pair (s, d), there are two nodes
s′ and d′ such that the source-destination pairs (s′, s) and (d, d′) are identical
to (s, d) in the sense that there view of the network is similar to that of (s, d).
This implies that, under the punishment mechanism where all nodes have same
forwarding probability, we have p(s, d; γ) = p(s′, s; γ). Thus we can replace the
rewards fi + gi by another function that we denote f(·).

Consider γ where all entries are the same and equal to γ, except for that of
mobile i. For a path π(s, d) containing n intermediate nodes, we have p(s, d; γ) =
γn. Also, if a mobile i is n + 1 hops away from a source, n = 1, 2, 3, ..., and is
on the path from this source to a destination (but is not itself the destination),
then p(s, d; i, γ) = γn. We call the source an “effective source” for forwarding to
mobile i since it potentially has packets to be forwarded by mobile i. Let h(n)
be the rate at which all effective sources located n + 1 hops away from mobile
i transmit packets that should use mobile i for forwarding (we assume that h
is the same for all nodes). Let λ(n) denote the rate at which a source s creates
packets to all destinations that are n + 1 hops away from it. Then we have

Ui(γ) =
∞∑

n=1

λ(n)f(γn) − aEf

∞∑
n=1

h(n)γn. (30)

The equilibrium strategy under threat is then the value of γ that maximizes the
r.h.s.
Remark: If we denote by Λ(z) =

∑∞
n=1 znλ(n) the generating function of λ(n)

and H(z) :=
∑∞

n=1 znh(n) the generating function of h. Then

max
γ

(
Λ(γ) − aEfH(γ)

)

is the value of the problem with threats in the case that f is the identity function.

5.3 Examples

In this section we present, by means of two examples, the effect of imposing the
proposed punishment mechanism.

5.4 An Asymmetric Network

Consider the network shown in Figure 1. For this case nodes 1 and 4 have no
traffic to forward. Note also that if we assume that g3(·) ≡ 0 in Equation 28
then node 3 has no incentive even to invoke the punishment mechanism for node
2. This will result in no cooperation in the network. Assume for the time being
that f2(x) = g3(x) = x, i.e., f2 and g3 are identity functions. In this case it is
seen that the utility functions for nodes 2 and 3 are, assuming λ13 = λ24 = 1,
U2(γ2, γ3) = γ3 − aEfγ2 and U3(γ2, γ3) = γ2 − aEfγ3. When we impose the
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punishment mechanism, it turns out that the equilibrium strategy for the two
nodes is to always cooperate, i.e., γ2 = γ3. This is to be compared with the TFT
strategy of [11] which would imply γ2 = γ3 = 0.

4321

Fig. 1. An asymmetric network

5.5 A Symmetric Network: Circular Network with Fixed Length of
Paths

We consider here equally spaced mobile nodes on a circle and assume that each
node i is a source of traffic to a node located L hops to the right, i.e. to the node
i + L.

Let the rate of traffic generated from a source be λ. For this case, h(n) =
λI{n≤L−1}. Also, λ(n) = λI{n=L}, for some λ. It follows from Equation 30 that
the utility function for mobile i is

Ui(γ) = λf(γL−1) − aEfλ

L−2∑
n=0

γn.

For f(·) an identity function, we see that Ui(γ) = λ
[
γL−1 − aEf (γL−2 + γL−3+

. . . + γ + 1)]. Note that if L = 2 and a = 1
Ef

, the utility function is independent
of γ hence in this case the equilibrium strategy is any value of forwarding prob-
ability. Also, if aEf ≥ 1, the equilibrium strategy is γ = 0. We will have more
to say on this in th next section where we study the structure of equilibrium
strategy for symmetric network.

5.6 Algorithm for Computing the Equilibrium Strategy in a
Distributed Manner

It is interesting to design distributed algorithms which can be used by the mobiles
to compute the equilibrium strategy and simultaneously enforce the proposed
punishment mechanism. The obvious desirable features of such an algorithm are
that it should be decentralised, distributed scalability and should be able to
adapt to changes in network.



100 E. Altman et al.

We propose such an algorithm in this section. We present it, for ease of
notation, for the case of symmetric network. Assume for the moment that f(·)
is the identity function. In this case each node has to solve the equation (recall
the notation of Section 5.2)

U ′(γ) = Λ′(γ) − KH ′(γ) = 0, (31)

where the primes denote the derivatives with respect to γ. In general this equa-
tion will be nontrivial to solve directly. For the case of more general network,
one needs to compute the derivative of the utility function of Equation 28, the
rest of procedure that follows is similar.

Note that in the above expression we first assume that the forwarding prob-
abilities of all the nodes in the network are same (say γ) and then compute the
derivative with respect to this common γ. This is because in the node must take
the effect of punishment mechanism into account while computing its own opti-
mal forwarding probability, i.e., a node should assume that all the other nodes
will use the same forwarding probability that it computes.

Thus, solving Equation 31 is reduced to a single variable optimization prob-
lem. Since the actual problem from which we get Equation 31 is a maximization
problem, a node does a gradient ascent to compute its optimal forwarding prob-
ability. Thus, in its nth computation, a node i uses the iteration

γ
(n+1)
i = γ

(n)
i + a(n)(Λ′(γ(n)

i ) − KH ′(γ(n)
i )), (32)

where a(n) is a sequence of learning parameters in stochastic approximation
algorithms.

The relation to stochastic approximation algorithm here is seen as follows:
the network topology can be randomly changing with time owing to node fail-
ures/mobility et cetera. Thus a node needs to appropriately modify the functions
Λ(·) and H(·) based on its most recent view of the network (this dependence of
Λ(·) and H(·) on n is suppressed in the above expression).

It is a matter of choice when a node should update its estimate of its forward-
ing probability, i.e., does the computations mentioned above. One possibility,
that we use, is to invoke the above iteration whenever the node receives a packet
that is meant for it.

Though the above is a simple stochastic approximation algorithm, it requires
a node to know the topology of the part of network around itself. This infor-
mation is actually trivially available to a node since it can extract the required
information from the packets requesting forwarding or using a neighbour discov-
ery mechanism. However, in case of any change in the network, there will typi-
cally be some delay till a node completely recognizes the change. This transient
error in a node’s knowledge about the network whenever the network changes is
ensured to die out ultimately owing to the assumption of finite second moment
for the learning parameters.

It is known by the o.d.e. approach to stochastic approximation algorithm
that the above algorithm will asymptotically track the o.d.e. [15]:

γ̇i(t) = Λ′(γi(t)) − KH ′(γi(t)), (33)
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and will converge to one of the stable critical points of o.d.e. of Equation 33.
It is easily seen that a local maximum of the utility function forms a stable
critical point of Equation 33 while any local minimum forms an unstable critical
point. Thus the above algorithm inherently makes the system converge to a local
maximum and avoids a local minimum.

However, it is possible that different nodes settle to different local maxima (we
have already seen that there can be multiple maxima). The imposed punishment
mechanism then ensures that all the nodes settle to the one which corresponds
to the lowest values of γ. This is a desirable feature of the algorithm that it
inherently avoids multiple simultaneous operating points. An implementation of
the punishment mechanism is described next.

5.7 Distributed Implementation of the Punishment Mechanism

An implementation of punishment mechanism proposed in Section 5.1 requires,
in general, a node to know about the misbehaving node in the network, if any.
Here we propose a simple implementation of the punishment mechanism which
requires only local information for its implementation.

Let N (i) be the set of neighbours of node i. Every node computes its for-
warding policy in a distrubuted manner using the above mentioned stochastic
approximation algorithm. However, as soon as a neighboring node is detected to
misbehave by a node, the node computes its forwarding policy as follows:

γ∗
i = min{γi, min

j∈N (i)
γ̂j} (34)

where γi and γ̂j represents, respectively, the forwarding policy adopted by node
i and the estimate of node j’s forwarding probability available to node i. γ∗

i

represents the new policy selected by node i. Note here that γi is still computed
using iteration of Equation 32. We are also assuming here that a node can
differentiate between a misbehaving neighbouring node and the failure/mobility
of a neighbouring node.

This punishment propagates in the network until all the nodes in the net-
work settle to the common forwarding probability (corresponding to that of the
misbehaving node). In particular, the effect of this punishment will be seen by
the misbehaving ndoe as a degradation in its own utility. Suppose now that the
misbehaving node, say ni, decides to change to a cooperative behavior: at that
point, it will detect and punish its neighbors because of the propagation of the
punishment that induced its neighbouring nodes to decrease their forwarding
policy. Thus, the intial punishment introduces a negative loop and the forward-
ing policy of every node of the network collapses to the forwarding policy selected
by the misbehaving node. Since now every node in the network has same value of
forwarding probability, none of the nodes will be able to increase its forwarding
probability even if none of the node is misbehaving now.

An example of this phenomenon can be seen from the network of Figure 1.
Assume that γ2 = γ3 = γ and now node 2 reduces γ2 to a smaller value γ′.
Owing to the punishment mechanism, node 3 will respond with γ3 = γ′. This
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will result in a reduced utility for node 2 which would then like to increase γ2.
But, since γ3 = γ′, the punishing mechanism would imply that γ2 = γ′ as well.
This lock-in problem is avoided by the solution proposed below.

We modify our algorithm to account for the above mentioned effect. Our so-
lution is based on timers of a fixed duration. When a node enters in the punishing
phase (starts punishing some of its neighbour) the local timer for that node is set
and the forwarding policy is selected as in equation 34. When the timer expires,
the punishing node evaluates its forwarding policy as if there were no misbe-
having nodes, then uses some of standard mechanism to detect any persistent
misbehavior (this also helps distinguishing between a misbehaving node and a
failed/moved node). In the case no misbehaviors are detected, depending on the
choice of the learning parameter of the stochastic apporximation algotithm, the
forwarding policy of the network eventually returns to the optimal value for the
network. If the neighboring node continues to misbehave, the timer is set again
and the punishment mechanism is re-iterated. We assume that the sequence of
learning parameters by a node is restarted each time the timer is set.
Remark: It is interesting to see that the proposed implementation of the pun-
ishing mechanism is actually having a storage complexity for a node that grows
only with the number of its neighbouring nodes (Equation 34). Computational
complexity is also not large as it depends only on the distance (hops) from a
node to its farthest destination (Equation 32).

See [3] for numerical results and discussions on the implementation of the
algorithm.

6 Conclusion

We have proposed and analysed a distributed scheme for adapting the random
access probabilities in a wireless ad hoc network and tested it on some simple
scenarios. The advantage of the scheme is its simplicity, made possible by a
simplified model and a judicious choice of the performance measures. This makes
it attractive from an implementation point of view.

We use the framework of non-cooperative game theory to provide incen-
tives for cooperation in the case of wireless Ad-hoc networks. The incentive
proposed in the paper is based on a simple punishment mechanism that can be
implemented in a completely distributed manner with very small computational
complexity. The advantage of the proposed strategy is that it results in a less
“aggressive” equilibrium in the sense that it does not result in a degenerate sce-
nario where a node either forwards all the requested traffic or does not forward
any of the request.
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