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Abstract— Even though group rekeying is one of the most
visited areas in network security, solutions still are severely
lacking with respect to reliability and real customer expectations.
In this paper, we first classify secure multicast applications with
regards to these expectations and suggest a new approach that
defines different recipient categories based on their “loyalty”
and that treats each category differently by offering better
service to more loyal recipients. We propose to restructure the
Logical Key Hierarchy (LKH) scheme by separately regroup-
ing members based on their membership duration aiming at
preserving members with long duration membership from the
impact of rekeying operations caused by arrivals or departures
of short-lived members. We then describe an extensive method
for computing system parameters like rekeying intervals based
on the customer satisfaction criteria.

I. INTRODUCTION

In secure multi-party communications, several solutions
have been proposed and even adopted in order to deal with
group rekeying. Yet, existing solutions still are severely lack-
ing with respect to reliability and real-life customers expecta-
tions. Indeed, since in these solutions each rekeying operation
requires the update of the keying material of all members
alike, frequent rekeying caused by volatile members would
strongly affect long-lived members. In this paper, we take a
simple definition of loyalty and based on this definition, we
classify members with regards to their membership duration.
Our solution aims at preserving loyal members with long-
duration membership from the impact of rekeying operations
caused by less loyal members.

Recently, some studies [1], [2], [3] have focused on the
shortcomings of the most efficient rekeying protocol, that
is the Logical Key Hierarchy (LKH) [4] with respect to
reliability and different solutions using Forward Error Cor-
rection (FEC) [5] or retransmission techniques (ARQ) have
been proposed aiming at reducing the probability of losses
in a rekeying. However, in all proposed solutions, the LKH
scheme still suffers from the “one affects all” scalability
failure [6] which occurs when the arrival or departure of any
single member causes the update of at least one key with all
members. Consequently, members who do not leave the group
during an entire session, can be strongly affected by frequent
membership changes. From a commercial point of view, it is
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unfair for a member who is supposed to stay until the end of
the session to be equally treated with short-lived members.

In this paper, we investigate how to assure higher reliability
for members staying in the group during almost the whole
session. To achieve this aim, we propose a restructuring of the
key tree and split the group into 2 different sets with regards
to members’ membership duration. The reliability assurance
for members of each different set will increase proportionally
with the membership duration of the corresponding members.

We first overview existing multicast applications in order to
classify them with respect to security and customer expecta-
tions. We then briefly describe the LKH scheme and review
its failures in terms of scalability and reliability. Finally, we
introduce our rekeying protocol based on a new partitioning
scheme and give some results on optimized system parameters
aiming at offering the required reliable delivery to members
with long duration membership.

II. CLASSIFICATION OF SECURE MULTICAST

APPLICATIONS

In [7], whereby a taxonomy of multicast applications is
presented, the authors define five categories for one-to-many
multicast applications which we target with our protocol:

• Scheduled Audio/Video distributions: lectures, meetings,
. . . ;

• push-media: news headlines, weather updates, . . . ;
• file distribution and caching: web site content, executable

binaries, . . . ;
• announcements: network time, multicast session sched-

ules, . . . ;
• monitoring: sensor equipments, manufacturing, . . .

This taxonomy is very general in nature and does not
highlight the differences between applications with respect
to security. We thus propose a more specific classification of
multicast applications based on their security requirements and
pricing models. We first briefly overview these characteristics
and then describe our classification.

A. Security Requirements and Pricing Models

The first and mostly common requirement needed in multi-
cast security is confidentiality which offers, via cryptographic
encryption algorithms, a restricted access to multicast content
for only members of a defined multicast group. In the case
of dynamic multicast groups where entities are supposed to



join/leave the group frequently we come up with two security
requirements that are not found in traditional secure unicast
communications: backward and forward secrecy.

Backward secrecy defines the requirement that an added
member should not be able to access the multicast content
transmitted before its addition to the multicast group. Symmet-
rically, forward secrecy defines the requirement that a member
leaving the group should not be able to further access multicast
content.

Multicast applications may or may not require backward
and/or forward secrecy. This requirement will depend on
the pricing model of the application. Indeed, in some actual
broadcast applications, like current digital TV platforms, cus-
tomers first subscribe to the service and then pay a fixed fee
periodically. In this case, the service provider does not know
any customer’s behavior and let the clients pay for the whole
application. On the other hand, some other applications are
not subscription based and offer to clients the possibility to
pay only the service they really had access to. This kind of
pricing model better fits customers’ needs.

B. The Proposed Classification

By combining the security requirements and the pricing
models, we end up with 3 classes of secure multicast applica-
tions:

• Subscription based applications whereby clients pay a
fixed fee for the entire session no matter its membership
duration or arrival time. In this type of application, the
service provider needs to ensure neither forward nor
backward secrecy and rekeying only occurs when there
is a need for updating keys to prevent cryptanalysis.

• Applications where the pricing mechanism is based on
members’ arrival time where clients pay at their arrival
for the remaining time until the end of the session. Here,
the service provider does not need to ensure forward
secrecy, since clients pay for the remaining whole session.
However, it needs to provide backward secrecy since the
client did not pay for the time before its arrival.

• Applications where the pricing mechanism is based on
members’ membership duration where clients only pay
for the service they really had access to. In this kind of
applications, the service provider needs to ensure both
backward and forward secrecy.

C. Our Problem Statement

In the remaining of the paper, we only deal with applications
whereby the service provider must ensure backward and
forward secrecy (ie. applications of the third type). Conse-
quently, the degree of “loyalty” of any member depends on
its membership duration. The service provider should offer a
better reliability assurance for long-lived members.

In order to provide backward and forward secrecy, Wong et
al. [4] and Wallner et al. [8] independently proposed the LKH
scheme. Since LKH is proved to be communication optimal in
[9], our solution is based on this scheme. Thus, we first give
a brief description of LKH and review its failures in terms
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Fig. 1. An Example of the LKH scheme

of scalability and reliability, and then introduce our protocol
dealing with members’ membership duration.

III. LOGICAL KEY HIERARCHY: LKH

A. Protocol Description

In this scheme, the key server constructs and maintains an
almost balanced tree with N leaves where N is the group
size. A random key is attributed to each node where each
leaf node corresponds to a unique member of the group. The
key corresponding to the root node is the data encryption key.
Each member Ri receives the set of keys corresponding to
the path from the root of the tree to its corresponding leaf.
Referring to the example in figure 1, R1 would receive the key
set {k0, k1, k3, k8} where k0 represents the data encryption
key.

To remove a member from the group, all keys associated
with the vertices of the path from the root to the leaf
corresponding to the leaving member are invalidated. The
rekeying operation then consists of substituting for these
invalidated keys with new values and broadcasting the new
values in key envelopes encrypted under keying material
known by remaining members. As depicted in figure 1, if
member R4 leaves the group, k4, k1 and k0 are updated
with k4’, k1’ and k0’, respectively. The key server then
broadcasts Ek10(k

′
4), Ek3(k

′
1), Ek′

4
(k′

1), Ek′
1
(k′

0) and Ek2(k
′
0)

with Ekx
(ky) denoting the encryption of ky with kx.

To add a member, the key server extends the tree with an
additional leaf. The server marks again all keys associated with
the vertices on the path from the leaf to the root as invalid.
A random key is assigned to the new leaf and transmitted
with a secure unicast channel. All other nodes in the path are
updated with the same algorithm as the rekeying operation for
a leaving member.

B. Shortcomings of LKH

Although the LKH scheme has been proved to be optimal
in [9], it still suffers from some drawbacks in terms of scala-
bility and reliability. Hence, when there are frequent arrivals or
departures, individual rekeying becomes inefficient and the key
server needs a strong reliable key delivery protocol because of
the existing dependency between keys of subsequent different
intervals.



1) Individual Rekeying: At each arrival or departure of a
member, the key server needs to immediately rekey the whole
group in order to ensure backward and forward secrecy [6]
which respectively prevents a member from accessing the
data sent before its arrival or after its departure. However,
individual rekeying is relatively inefficient in large groups
where join/leave requests happen very frequently. For example,
referring to the example in figure 1, if members R3 and R4

leave the group one after the other with a very short delay
between the two departures, the key server will need to modify
twice the keys located at same vertices in the tree. If on the
contrary, the key server had regrouped these two departures in
one rekeying operation, the rekeying cost would be reduced
by a half.

Batched rekeying algorithms have therefore been proposed
in [10] whereby leave and join requests collected during
an interval are processed by rekeying operations performed
during the subsequent interval. An evaluation of the batch
rekeying scheme in [10] shows a clear advantage over individ-
ual rekeying. Considering a group of 4096 members regrouped
in a key tree of degree 4, in the case of 400 leaving members,
batch rekeying requires approximatively 2147 encrypted keys
while individual rekeying requires 9600 keys.

2) Key Dependency: Although batch rekeying improves the
efficiency of LKH by reducing the rekeying cost, it does not
completely solve the synchronization problem between each
member and the key server [2]. At a new rekeying interval, the
key server uses the keys of the previous interval to encrypt new
keys. Because of this strong dependency between keys, when
a member looses some rekeying packets during a rekeying
interval, it needs to contact the key server to refresh its key set,
otherwise it will never again be able to decrypt multicast data
sent after this rekeying interval even if it still is member of the
group. Thus, the key server needs to ensure the reception of
keys by a maximum number of members before the beginning
of the next rekeying interval.

In order to deal with this problem, the authors in [3] have
designed the WKA-BKR protocol which exploits the property
that some keys are more valuable than others and defines the
replication degree of a key based on its localization in the
key tree. Moreover, Yang et al. [2] have proposed a reliable
rekeying protocol based on the use of proactive-FEC in order
to optimize bandwidth utilization.

3) The “one affects all” Failure: The LKH scheme in-
herently suffers from the “one affects all” failure. Indeed,
since all members need to update their set of keys at every
rekeying interval, frequent arrivals and departures should not
affect members that are supposed to stay in the group until
the end of the session. The key server must thus minimize the
impact of rekeying due to the frequent dynamics of short-lived
members on members that remain over longer periods of time.
This problem is discussed in the following sections and thanks
to the proposed partitioning scheme, the reliability assurance
to each partition increases based on members’ membership
duration.

IV. RESTRUCTURING LKH WITH REGARDS TO MEMBERS’
MEMBERSHIP DURATION

In order to offer a better service to “loyal” members, the
key server builds a representation that regroups members in
different categories based on their membership duration. The
degree of reliability assurance for each category increases
with their “loyalty” degree. In order to achieve an almost
full reliability solution for “loyal” members, the key server
will evaluate and adapt system parameters such as rekeying
intervals’ length.

A. Partitioning

Frequent membership dynamics should rarely affect mem-
bers who are supposed to stay in the group during the whole
session. To achieve this aim, the key server needs to separately
regroup members in n different sets with regards to the time
they have spent in the group and offer a more reliable delivery
to those whose membership duration is longer.

In [11], Almeroth et al. observed the group members’ be-
havior during an entire multicast session. The authors realized
that members leave the group either for a very short period
after their arrival or at the end of the session. Based on these
results, we define two real categories to distinguish members:

• short-duration members are supposed to leave the group
a very short period after their arrival;

• long-duration members are on the opposite supposed to
stay in the group during the entire session.

Since the key server cannot predict the time a member will
spend in a multicast session, it cannot decide if a member
belongs to the short-duration category or the long-duration
one. Thus, we propose to separately regroup members into
two monitored categories. In this proposed partitioning, a
new coming member is first considered to be volatile. If this
member spends more than a certain threshold time w in the
group, then it becomes permanent.

Thanks to this partitioning, permanent members will not
be affected by departures of volatile members but only from
departures of members from their subgroup which is supposed
to be quasi-static. The reliability processing of each monitored
category will be different and the key server must guarantee
to almost all permanent members the receipt of all neces-
sary keys with a very high probability before the receipt of
multicast data encrypted with these keys.

B. Rekeying the Two Monitored Sets

As depicted in the previous section, members are separately
regrouped in two disjoint sets:

• the set representing volatile members whose membership
duration is less than w;

• the set representing permanent members whose mem-
bership duration has exceeded w.

For efficiency reasons, volatile and permanent members
are respectively regrouped in two key trees denoted by Gv

and Gp, with Kv and Kp being keys located at the root of
each tree. Unlike the classical key tree approach, Kv and Kp



are different from Kdata which represents the data encryption
key.

A new coming member Ri first joins the tree representing
volatile members Gv and receives the actual data encryption
key and its keying material. When Ri’s membership duration
reaches w, it is directly transfered to the key tree representing
permanent members and it receives its new set of key
encryption keys.

Assuming that volatile members’ departures will happen
very frequently, in order to limit the number of leaving
members and the extra-time they can stay in the group, the
key server sets their rekeying interval Tv to a value as short
as possible. On the other hand, since permanent members are
assumed to stay longer in the group, the key server grants a
longer extra-time to these members after their real leaving-
time. Thus, the rekeying interval Tp will be set to be longer
than Tv . We define Tp as Tp = k × Tv where k is a positive
integer needed to be determined.

However, since the key tree Gv representing volatile mem-
bers is updated every Tv , the data encryption key (Kdata)
needs to be modified at the same time. In this case, permanent
members still would be affected by losses resulting from this
rekeying operation. Thus, during each Tp whereby no rekeying
for permanent members takes place, an additional feature of
our scheme allows permanent members to retrieve new data
encryption keys resulting from rekeying operations at each Tv

from their local keying material and without any information
from the key server. The key retrieval algorithm at each Tv

during one Tp is described as follows:

Kdata(i+1) = PRF (Kp,Kdata(i)) (1)

Here PRF denotes a pseudo-random function (see [12]
for further details) and provides forward secrecy for volatile
members since they do not have the knowledge of Kp.

V. PROTOCOL ANALYSIS

The global rekeying architecture being defined, we now
come to the crucial problem of determining the values of Tv ,
Tp and w. On one hand, to increase the quality of service, the
key server needs to increase as much as possible Tv and Tp to
be able to offer an almost full reliable delivery of necessary
keys. On the other hand, increasing these values implies to
let more extra-time to leaving members since rekeying is
processed in a batch for efficiency reasons. As a result, Tv

and Tp should be as small as possible for security reasons
but large enough to offer a better service to permanent
members. In order to offer to them an almost fully reliable
delivery of keying material, the key server needs to adjust these
parameters by computing the rekeying cost of each category.

A. Optimizing System Parameters

In this section, we evaluate possible values for Tv and Tp.
To evaluate Tv , the key server computes the average number

of leaving members from the volatile set and from this
information it computes an average rekeying cost including

the reliability factor which is not as large as for permanent
members. The reader can refer to [2] for the computation of
the average rekeying cost.

Based on the results in [11], membership duration can be
represented by two exponential distributions where the mean
duration of membership for short-duration members and long-
duration members is denoted by Ms and Ml, respectively. The
ratio of short-duration members over N , the total group size,
is denoted by γ.

Assuming that the system is in a steady state, given all
system parameters, the mean number of volatile members
leaving the key tree every Tv is the sum of the average leaving
members from the two real categories, ie. long and short-
duration categories. We have:

Lv = γN(1 − e−Tv/Ms) + (1 − γ)N(1 − e−Tv/Ml) (2)

Let cost(Lv) be the average rekeying cost based on Lv
1

and the overhead of packets ensuring reliability2. Tv must
then satisfy the following inequality where B is the necessary
bandwidth reserved for the rekeying operation:

cost(Lv) < B × Tv (3)

Symmetrically, the key server needs to adjust Tp (and thus
k) in order to assure an arbitrarily high degree of reliability to
permanent members independently of the number of leaving
members in this subgroup. Hence, the key server must ensure
the delivery of all keys even in the worst case where all keys
of Gp except members’ individual keys need to be modified.
This case corresponds to the event when for every d members,
1 member leaves Gp, d being the degree of the key tree.

Assuming that Np is permanent members’ group size and
hp is the depth of the corresponding key tree Gp (hp =
�logdNp�+ 1), the worst rekeying cost without any overhead
for reliable delivery is:

costinit(Lp) =
hp−1∑

i=1

di (4)

Given these results the total cost must not exceed the given
bandwidth. Thus, Tp = k × Tv must follow the following
inequality which again yields a lower bound on Tp:

k × cost(Lv) + cost(Lp) < B × Tp (5)

Once the value of Tp and Tv are determined, the next
important parameter to be estimated is w. The main criterion
for the estimation of w is to keep the partitioning of members
as perceived by the key server as close as possible to the real

1To compute Lv , the key server sums the average leaving members with
short-duration and long-duration membership. In the case of an exponential
distribution with a mean M the probability that a member leaves at Tv is
p(t ≤ Tv) = 1 − e−Tv/M .

2The overhead of packets ensuring reliability has been evaluated and
analyzed both with FEC and ARQ techniques. Details of this evaluation is
not included in this paper due to space limitations.



categories. However, there exists a tradeoff between w and the
rekeying cost of each tree, including the reliability overhead.
Hence, if w was too small, then the majority of real short-
duration members would be identified as permanent members
and this would again cause further reliability problems. On the
other hand, if w was too large, long-duration members would
stay longer in the set of volatile members and they then would
always be affected from frequent membership changes. Thus,
the key server needs to adjust w aiming at reducing the number
of penalized real long-duration members.

In order to define w, based on γ corresponding to the ratio of
short-duration members in the real partitioning, the key server
can limit the number of permanent members to (1−γ)N . The
number of permanent members in one Tp is thus defined by
the following expression3:

Np = kγNe−w/Ms + k(1 − γ)Ne−w/Ml (6)

Thus, w that achieves the closest identification of real
categories, should satisfy Np = (1 − γ)N .

B. Example

We assume that N = 65536 where 50% of the group are
short-duration members with Ms = 3 minutes and Ml = 3
hours. The bandwidth reserved for rekeying is limited to 1
Mbps and the loss probability of a rekeying packet for each
member is independent and equal to p = 0.1. Based on the
optimization method, we then compute system parameters for
an objective defined by a target probability for the rekeying
rate as perceived by a large fraction of permanent members.
The following settings for the rekeying intervals assure a
quasi-certain rekeying rate for permanent members, that is
99.99 % of permanent members have 99.99% probability of
receiving all rekeying packets:

Tv ≥ 46s

Tp ≥ 4002s

Based on these values, we then are able to compute the
threshold value w that would best fit the real partitioning
(50% long-duration members). Using the resulting value (w ≥
21000s), the protocol will eventually identify 50% of members
as permanent.

VI. CONCLUSION

Most of existing solutions in secure multicast are severely
lacking with respect to reliability and real customer expec-
tations. Hence, in the LKH scheme, because of the inherent
strong dependency between keys of different subsequent inter-
vals, all members suffer from rekey packet losses regardless
of their membership duration. Thus, we propose to separately
regroup members into two categories as volatile and perma-
nent members. A threshold value w sets the time at which a

3Here, Np corresponds to the number of members who did not leave the
group during a period w. The probability that a member does not leave the
group before w where the time is distributed exponentially with a mean M
is: p(t ≥ w) = e−w/M .

volatile member is considered permanent. In order to offer
higher reliability to permanent members, the key server adjusts
the rekeying intervals Tv and Tp of the respective two sets after
computing their corresponding rekeying cost.

The proposed protocol fits well for applications where there
exists a strong requirement for backward and forward secrecy
and where clients pay only for the amount of time they were
present in the multicast group. A typical example for such
applications is the “pay as you watch” application. Further
validation of the analytical results will involve trace based
experimental evaluations.
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