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Abstract. This paper presents a pragmatic approach to protect
the integrity of execution of an application in a nomadic business
environment. Applications run in such contexts are based on the
federation of appliances collaborating through direct communication
as well as through the distribution of mobile pieces of code. Securing
the operation of an application means protecting mobile code since
execution environments may misbehave as well as protecting the
environments because mobile pieces of code are potentially malicious.
After reviewing several such protection techniques, an architecture
for securing business-to-employee and business-to-business nomadic
applications is drafted based on the trust model that can be assumed in
such a context.
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Introduction

Computer users are becoming more and more mobile thanks to the deployment
of wireless technologies and to the increasing availability of mobile personal
devices. Nomadic computing makes it possible for users to take advantage not
only of his handheld or even wearable devices, but also of the appliances in his
immediate vicinity, even if they do not belong to him. Enabling an application in
such a system means accessing global and local communication infrastructures.
For instance, UMTS can be used for communications with remote servers while
Bluetooth will enable a pocket device to access surrounding appliances (e.g.
printers, screens, sensors).

Nomadic application thus range from over the air access to a classical dis-
tributed service provided by a remote server to a set of mobile codes dispersed
over close communicating devices, which is generally called a federation of de-
vices. The latter organization helps alleviate the limitations of on-site available
communication channels (i.e. restricted bandwidth, long round-trip time, or ex-
pensive cost) or the limitations of mobile devices (i.e. lack of computational
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power, screen size). For instance, a user traveling with a cell-phone will much
more efficiently edit a document with a local public terminal than on the key-
board and screen of his phone.

Nomadic computing is especially interesting for a mobile corporate workforce,
like salesmen visiting their customers. In this context, security becomes a major
concern. First, access to the corporate resources and data must be controlled.
Second, the safety of the operations performed by a user depends in fact directly
on the integrity of execution of a program on devices that will not, for most
of them, be owned by the employee or his company, and that may potentially
be malicious. This is for instance what happens when a public terminal is used
to edit a document that is subsequently signed with the employee’s cell-phone
(assuming the employee’s private key is held by his SIM card). To ensure the
what you see is what you sign principle, it is necessary to verify the integrity
of execution of the editor. Finally, it is necessary to protect public appliances
offering some service from hostile users uploading some malicious mobile code
in order to attack the environment hosting it. If not enforced, such appliances
might be good candidates as Trojan horses of a new kind, unbeknownst to their
owner.

Application protection and devices protection have often been discussed in
the literature about mobile code security and have proven quite difficult to tackle
[ST98,BV99,LBR02,NL98]. In contrast with these works, this paper, which ex-
tends a previous work on data protection [BRKC03], suggests that both issues
be seen in terms of trust relationships:

– Can the terminal trust this piece of code and give it access to resources?
– Can the user trust this terminal to run some part of an application?

We propose a pragmatic way to evaluate the security-level of pieces of code
and devices in the very specific context of business-to-employee (B2E) and
business-to-business (B2B) nomadic applications. Access control as well as host
and code protection can thus be defined jointly.

This paper is organized as follows: Section 1 first gives a description of exist-
ing approaches to protecting environment and code parts. Section 2 presents the
architecture of the nomadic business environments we envision, including the
security requirements pursued. Section 3 gives an overview of the proposed ar-
chitecture and how to specify relationships between entities. Section 4 describes
possible enhancement of the Java security mechanism in order to protect de-
vices. Finally, Section 5 proposes a pragmatic approach to ensure the integrity
and confidentiality of execution of an application distributed on some surround-
ing devices.

1 Approaches to Environment Protection and Code
Protection

Nomadic computing requires distributing data and pieces of code in a federation
of devices that are not always controlled by the user. The problem addressed in
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this paper is twofold: on one hand, attacks may be performed by mobile programs
against the execution environment and its resources; on the other hand, mobile
code and data may be subverted by a malicious execution environment. This
section presents mechanisms dedicated to the former issue, which has been widely
addressed [LMR00], mechanisms to deal with the latter issue, and some more
global approaches. Data integrity and confidentiality has been more classically
tackled through encryption and digital signature for instance.

1.1 Protecting Execution Environments

Protecting vital resources against potentially malicious pieces of code has been
widely addressed in operating systems and virtual machines. This section lists
several approaches and their relevance for securing nomadic B2E or B2B appli-
cations.

VM approaches These approaches address the protection of the environment
through the isolation of the potentially malicious code.

Sandbox: The sandbox model is the original security model provided by Java.
It offers a severely restricted environment (the sandbox) in which untrusted
pieces of code are executed. Local code is trusted and has access to resources (e.g.
file system, network) while downloaded code is untrusted and cannot leave the
sandbox. This initial mechanism is still widely deployed: it is the default behavior
of browsers (i.e. without java plug-in), it is also used in lightweight environments
such as J2ME and Personal Java that run on cell-phones and PDAs. Finally, the
applet firewall mechanism of Java cards has similar properties. This mechanism
has now been superseded by the Java 2 security model.

Java 2 Security Model: The sandbox model has been enhanced with new
security features [GMPS97]. There is no more built-in concept defining that
local code is trusted and remote code untrusted but each piece of code receives
different rights depending on its origin (i.e. URL), on the signature, and recently
on the entity who runs the code. The access control to resources is fine-grained
and easy to configure. Permissions allow the definition of rights and programmer
can define application specific permissions (accessing a smart card, etc.). Security
Policies are used to associate permissions to pieces of code. The work presented
in this paper uses and extends those mechanisms.

JavaSeal: JavaSeal [BV99] proposes a security framework to ensure strong
security between mobile agents. Confinement mechanism avoids covert channels
between agents. Mediation ensures that security controls can be added between
pieces of code. Finally, local denial of services attacks are avoided by finely con-
trolling the resources (i.e. memory, computational power) used by agents. This
offers interesting security properties that are out of our initial scope. However,
JavaSeal could be combined with the approach proposed in this paper to offer a
full featured platform for securing mobile code in pervasive computing.
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Proof-carrying code An approach to host protection is to statically type-
check the mobile code; the code is then run without any expensive runtime
checks. Promising results were obtained in this area by the proof-carrying code
(PCC) work [NL98]. In Proof-Carrying Code, the host first asks for proof that
the code respects his security policy before he actually agrees to run it. The code
owner sends the program and an accompanying proof, using a set of axioms and
rewriting rules. After receiving the code, the host can then check the program
with the guidance of the proof. This can be seen as a form of type checking of
the program, since the proof is directly derived from it. In PCC, checking the
proof is relatively simple compared to constructing it, thus this technique does
not impose much computational burden on the execution environment. However,
automating the proof generation is still an open problem.

Two security requirements specific to nomadic systems are not fulfilled by
those approaches: a way to define rights of a piece of code in a distributed way
that should make possible the delegation of rights between entities in charge of
certifying pieces of code; and a mechanism to dynamically change the rights of
an application is also necessary. Section 4 proposes an extension of the Java 2
security model dedicated to nomadic computing.

1.2 Protecting Mobile Codes

Protecting nomadic applications often requires protecting the mobile code parts
that make it up. Protecting a mobile code against the environment that executes
it is notoriously difficult. Verifying the environment trustworthiness is possible
with some computer architectures. Other architectures in which this verification
is impossible make it necessary to resort to techniques that render the under-
standing of the behavior of a piece of code extremely difficult in order to ensure
its integrity or confidentiality of execution.

Protecting code with trusted platforms When the device that evaluates
a piece of code is trustworthy, integrity and confidentiality of execution are
ensured. Two approaches have been undertaken.

Neutral Tamper-Resistant Platform: A straightforward way to ensure that
a device can be trusted is proposed by the Trusted Computing Group (TCG)
[TCG04]. The hardware is tamper-resistant and certified. This hardware can ver-
ify whether a certified kernel is running on top of it. This kernel controls the OS,
which can check applications. This architecture makes it possible to prove that a
given environment is running. As long as all layers are trustworthy (i.e. certified
and without implementation errors), it is possible to trust the environment. In
other words, an application with some integrity or confidentiality requirements
can be executed by any TCG public terminal with the guarantee that the host
will not misbehave. For instance, it is possible to ensure that some confidential
data will be erased when the user leaves the terminal, etc.

Trusted Tamper-Resistant Module: It is also possible to provide a trusted
tamper-resistant hardware that will be in charge of executing applications. For
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instance operators provide SIM cards to their customers in order to have a
piece of hardware that is totally under control. For obvious cost reasons, this
approach suffers from limited performances. Moreover, it is not realistic to embed
a personal hardware in all surrounding devices that can be involved. Finally,
this approach only protects the execution of some program but does not protect
inputs and outputs, e.g. keyboard and display of the cell-phone bearing the SIM
card are still used.

Securing functions in malicious environments Protecting a function that
is evaluated by a potentially malicious host is a first step towards application
protection.

Secure function evaluation has been addressed by many researchers. Sander
and Tschudin [ST98] defined a function hiding scheme and focused on non-
interactive protocols. In their framework, the confidentiality of function f() is
assured by an encrypting transformation. The authors illustrated the concept
with a method that allows computing with encrypted polynomials. The poten-
tially malicious host evaluates the encrypted function and returns an encrypted
result. [SYY99] and [LBR02] present non-interactive solutions for secure evalu-
ation of Boolean circuits. Securing a program based on secure functions is not
straightforward however, and may again require the use of a personal tamper-
proof hardware.

Securing applications in malicious environments Securing the integrity
and confidentiality of a whole application is difficult.

Integrity of Software Execution: Integrity of execution is the possibility for the
program owner to verify the correctness of the execution. This problem has been
extensively studied for achieving reliability (see for example [WB97] for a survey)
but security requirements taking into account possible malicious behavior from
the execution environment were not considered. Yee [Yee99] suggested the use of
proof based techniques, in which the untrusted host has to forward a proof of the
correctness of the execution together with the result. Complexity theory shows
how to build proofs for NP-languages and how to build probabilistic checkable
proofs (PCP) [AS98]. It requires checking only a subset of the proofs in order to
assure the correctness of a statement.

Confidentiality of Software Execution: Malicious reverse engineering is an im-
portant problem of Java: byte code can easily be decompiled because it retains
a large part of the original information and because applications based on pow-
erful libraries are small. Obfuscation aims at transforming an application into
one that is functionally identical to the original but that is much more difficult
to understand. It is an empirical and mathematically unfounded solution (see
[CTL96] for a catalogue of obfuscating transformations).

To summarize, on one hand, hardware solutions to protect pieces of code
are difficult to deploy and expensive. Tamper-resistant modules are necessary to
protect private keys but it is not always affordable to have a secure hardware that
protects the execution of a whole application. Moreover, the process for certifying
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hardware is complex. On the other hand, there is no software solution to fully
ensure integrity and/or confidentiality protection of a piece of code running on
a malicious host. Indeed, all approaches presented in this section are restricted
to a set of functions, are computationally expensive, and/or cannot be proven
secure. Moreover, software manipulation does not ensure the protection of inputs
and outputs.

1.3 Trust-Based Application Protection

Rather than focusing on mechanisms to tackle either the mobile code side or the
environment side, this paper proposes a system wide and pragmatic mechanism
common to both the protection of code and environment. Environment and code
protection can be based on trust, i.e. authorizations and/or roles of application
developers and security-level of runtime environments.

Approaches based on distributed policies for managing trust [KFP01,BFK99]
do not take into account the security-level of execution environments. It is as-
sumed that policies are always enforced and it is not possible to recognize an
untrusted device from a trusted one. Policies are thus not sufficient for enforcing
the protection of applications. We however envision policies to offer a flexible
and high level specification of trust management.

Some works propose defining trust from scratch in a way similar to the cre-
ation of trust relationships among human beings. In this case, results of previous
interactions [ENT+02] or contextual information [SA02] can be necessary. In the
business context described in this paper, trust is based on a priori knowledge.
Recommendations, results of previous interactions, or even contextual informa-
tion might further be used to extend this knowledge.

2 Nomadic Business Systems: A Security Architecture

We propose a framework for protecting the pieces of code, i.e. verifying the
security-level of environment before allowing distribution, and protecting the
environment, i.e. verifying that pieces of code are authorized do access resources,
be they a database or a network connection.

2.1 Nomadic System Organization

Figure 1 shows how code distribution is done: different part of an application are
tagged according to the security requirements and the security-level (SL) of each
device is evaluated (see Section 5 and [BRKC03]). For instance, the signature
related operation of an application has to be done in a trusted enough environ-
ment. Each piece of code receives short-term authorization to access resources
(see Section 4). For instance, a word processor can call the signature function
but a game cannot.

Servers, which are not managed by the user and whose trustworthiness may
be questioned, may anyway have to deal with confidential data. Moreover, in
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Fig. 1. General overview: certified pieces of code within certified devices

order to enable flexible services, it is necessary to let users upload pieces of
code (which will be called applets in this paper) to servers. Using trust informa-
tion when deploying the application implies new constraints when distributing
data and code. This paper focuses on the implications of this environment for
satisfying to data integrity, data confidentiality, integrity of execution and confi-
dentiality of execution. In this model, integrity of execution means that servers
do not alter the execution of the application and surreptitiously modify its re-
sults. Confidentiality of execution aims at preventing the disclosure of program
semantics.

2.2 Enforcing Distributed Access Control with Nomadic
Applications

The very nature of nomadic computing, in which interactions depend on the user
location and environment, generally excludes any type of organization, hence of
a priori trust assumptions about the servers accessed. This paper specifically
addresses the business to employee (B2E) and business to business (B2B) con-
texts. This makes it simpler to construct a workable trust model. First of all,
public key based authentication is possible and meaningful since employees are
directly managed by their corporation. In contrast, in an open trust model, there
will generally be no authentication (or trust) infrastructure shared by all entities.
Secondly, trust may be based on the partnership established between companies.
The trust expectation regarding every partner’s tasks and behaviors are contrac-
tual and can be translated into a security policy. Trust may also be based on the
certification of devices, and specifically their level of tamper-resistance. Again
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compared with the open trust model, this assumption enables the automation
of secure data distribution to different devices.

The following seems realistic to assume in B2E and B2B contexts:

- Each corporation has a local public key infrastructure (PKI).
- Each employee has his/her own asymmetric key pair. Ideally, the private key

is protected by a tamper-resistant token (e.g. smart card, SIM card).
- Each device that can be part of a federation has its own asymmetric key

pair. The private key can also be protected by a tamper-resistant module.
- Attribute certificates can be delivered to employees so that they can prove

their role or that they received some authorizations to other entities.
- Attribute certificates can be delivered to devices so that a device can prove

who it belongs to its owner or whether it is tamper-resistant.
- As an extension of signed applets, a set of authorizations can be associated

to each piece of code.

In order to protect corporate resources, it is necessary to define access con-
trol policies. For instance, the rights of an employee to access corporate data
or to use services offered by the environment are easy to implement with pub-
lic key infrastructures like X.509v3 or SPKI. Relationship agreements between
corporations and rights of devices may also be specified similarly.

A contribution of this paper is to use those relationships to define the rights
of pieces of code and to distribute data and mobile codes according to the trust-
worthiness of surrounding devices. Sections 1.1 and 1.2 respectively present ex-
isting mechanisms to protect execution environments and pieces of code. The
limitations of those approaches are discussed and a new solution is proposed.

3 Specifying Trust Relationships

As explained in the previous section, B2E and B2B applications make it possible
to rely on existing trust relationships between companies, employees, and devices
to specify a protection adapted to an application. This section shows how those
relationships can be defined and verified.

3.1 Attribute Certificates

Attribute certificates have been chosen to formally define relationships and au-
thorizations between the involved actors. The proposed framework uses a propri-
etary format of attribute certificates. It is an extension of the simple public key
infrastructure (SPKI) [EFL+99] that allows to securely associate a capability
with an employee or with a device. A public key is embedded in each certificate,
and only the user or the device that is in possession of the corresponding private
key can use the capability. Rights can be delegated if the certificate allows so
and delegation can be performed in a local way without the need to connect
to a centralized authority: each user behaves as a local authority for attribute
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certificates. Delegated credentials have a short lifetime, thus rendering the use
of centralized revocation lists unnecessary, and permitting a local validation of
the certificate chain. For long-lasting capabilities, revocation lists are envisaged.
Attribute certificates are used to store a different type of information: for an
employee, it can consist of his role or personal rights; for a device, information
about its security-level and the company it belongs to may be provided.

Notations X
A,.,�−→ Y means that the entity X certifies some attributes

A = a1, · · · , an of the entity Y . For instance, attributes can define sets of autho-
rizations, security-levels, or roles. In case of authorizations, . specifies whether
those authorizations can be delegated. The clock symbol (�) refers to short term
certificates. A chain of certificates is defined as following:

X
A1,�
=⇒ Z : X

A,.−→ Y
A1,�−→ Z where A1 ⊆ A

It means that X gives some authorizations A = {a1, a2, a3} to Y and allows
delegation. Y delegates part of those rights A1 ⊆ A to Z for a short time, e.g.
A1 = {a1, a3}. It is implemented as a set of SPKI-like attribute certificates
(cryptography notations used in this paper are defined in Table 1):

X
A,.−→ Y : SIGNX(PKY , r = {a1, a2, a3},d=true, · · ·)

Y
A1,�−→ Z : SIGNY(PKZ , r = {a1, a3},d=false, · · ·)

PKA public key of entity A
SKA private key of entity A
EK(m) plaintext m encrypted with key K
h(m) digest of m using hash function h
SIGNA(m) plaintext m signed by A i.e.

SIGNA(m) = {m, ESKA(h(m))}.

Table 1. Cryptographic notations used in this paper.

Section 3.2 defines more precisely the structure of two types of certificate
chains: security-level certificates and authorization certificates.

3.2 Authorization and Trust Mechanisms

B2E or B2B context simplifies the trust model. The goal of this architecture is to
have a decentralized access control mechanism able to take into account users,
companies, and devices. For instance, when an employee accesses a corporate
resource from a partner terminal, it is necessary to verify whether this user is
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authorized to access this resource and whether this device is trusted enough to
deal with this resource. Thus it is possible to ensure that a potentially malicious
terminal cannot be used to access confidential data. When a piece of code runs
on a terminal, it is necessary to verify that the code cannot attack this device.

Authorization capabilities Authorization certificates ensure that a given en-
tity can access a resource when the security-level is sufficient. The set of at-
tributes defines authorizations, i.e. rights (R). The following authorization cer-
tificates have been defined:

- Ci
R,.e−→ Cj : Company Ci authorizes company Cj to access some resources

R = {r1, · · · , rn}. Those rights can be delegated to employees (.e). For
instance, an agreement between Ci and Cj defines that employees of Cj can
use some applications of Ci.

- Ci
R,<.e,d>−→ ECj ,m: Company Ci authorizes employee ECj ,m, who works for

company Cj , to access some resources R. Those rights can be delegated
to other employees (.e) and/or to devices (.d). When i = j the company
delegates rights to its own employee. Example: an employee ECj ,m arrives
in company Ci and receives some rights to use local facilities.

- Ci
R−→ PCi,m: Company Ci certifies a piece of code and authorizes it to

access some resources R. In this case, there is no public key in the certificate
but a digest of the code.

- ECi,m
R,<�>−→ ECj ,n: Employee ECi,m delegates some rights to employee

ECj ,n. For instance, a secretary welcomes a visitor and provides him some
rights to use local facilities.

- ECi,m
R,�−→ DCj ,n: Employee ECi,m delegates some rights to device DCj ,n.

For instance, an employee authorizes a public terminal to access a corporate
document in order to display it.

- ECi,m
R,�−→ PCi,m: Employee ECi,m certifies a piece of code and authorize it

to access some local resources R.

A valid chain of authorization certificates is defined as follows:

X1
R=⇒ Xn : {Xi

Ri,.ti−→ Xi+1 | 1 < i < n− 1}

where Ri+1 ⊆ Ri 1 < i < n− 1 and R = Rn−1

where ti ∈ {e, d} corresponds to Xi+2 1 < i < n− 2

C1
R1,.e−→ E1

R2−→ E2 where R2 ⊆ R1 is a valid chain. It can mean that company
C1 authorizes its secretary E1 to delegate some rights, be it using printers or
accessing some office, to any visitor. Visitor E2 received a subset of those rights
(e.g. accessing a given meeting room).
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Security-level capabilities Security-level certificates are necessary to define
the security-level of involved devices that will host code and data. The following
security-level certificates have been specified:

- Ci
SL−→ Cj : Company Ci trusts devices of company Cj to deal with resources

whose classification corresponds to security-level SL. For instance, all devices
of a partner company can deal with confidential data related to a given
project. It does not mean that devices are authorized to access the resource
but that an authorized user can use those devices to access the resource.

- Ci
SL−→ DCi,m: Company Ci authorizes his device DCi,m to deal with re-

sources whose classification corresponds to security-level SL. For instance, a
terminal physically protected can be certified to deal with confidential data.

A valid chain of security-level certificates is defined as follows:

Ci
SL=⇒ D : Ci

SLCj−→ Cj
SLD−→ D

where SL = SLCj
∩ SLD

C1
SL1−→ C2

SL2−→ D2 is a valid chain. It can mean that company C1 trusts a
partner company C2. C1 accepts that its employees use devices of C2 to access
some type of resource SL1 e.g. confidential and unclassified data. Company C2

certifies that a terminal is physically protected and able to deal with some type
of resource SL2.

4 Trust for Resource Protection

Protecting the integrity and confidentiality of resources from potentially mali-
cious code has been widely addressed. However, in nomadic computing systems,
new devices can be discovered at any time. It thus becomes necessary to be
able to delegate rights when mobile codes, which are parts of an application, are
distributed. This section presents an extension of the Java security model that
allows defining authorizations in a dynamic and distributed way.
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Fig. 2. Signed pieces of code: Java 2 mechanism to protect resources.
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The Java 2 security model (as illustrated in Figure 2) is identity based and
thus only provides mechanisms similar to access control list to protect resources.
[MR00] suggests that instead of signing pieces of code and associating permis-
sions with signers, manipulating capabilities such as chain of authorization cer-
tificates associated with pieces of code is required to handle multiple domains in
a manageable manner.

4.1 Multiple Domain Resource Protection

Authorization certificates are defined as follows: when company C1 allows com-
pany C2 to display data on its terminals and C2 delegates this right to its em-
ployee E2. When E2 is visiting C1 he can use the display with his authorization
chain:

C1
display,.e−→ C2

display−→ E2

When the employee E2 has to upload code P2 to display some data, he provides:

C1
display,.e−→ C2

display−→ E2
display,�−→ P2

This chain is verified and converted into Java permissions that are associ-
ated to the piece of code. The enforcement of the authorization is thus done by
the security manager. Finding a common language to exchange authorizations
between companies complicates the setup of this mechanism. At this time, only
Java permissions can be encapsulated into certificates. However, Java allows
programmers to define their own permissions and thus it is possible to define
a common framework that extends this scheme with new permissions such as
accessing smart cards or displaying data.

4.2 Reflection-Based Access Control Mechanisms

When a piece of code is loaded, its associated certificate chain is validated. A
meta-object protocol (MOP) [KdRB91] is used to intercept all method calls
done by this piece of code. The load time MOP ”byte code engineering library”
(BCEL) [Dah01] has been chosen. Each method call is redirected to a ”proxy”
that is associated to a protection domain created according to the authorization
defined by the certificate chain. Like this, it is easy to dynamically modify the
authorizations when a new certificate chain is available. Figure 3 shows how the
renewal mechanism works: when a piece of code is uploaded, it comes with some
short-term rights defined by the certificate chain. Before the validity end of the
certificate E2

R2,�−→ P2, a request for a new chain is sent and the rights of the
mobile code are adapted according to the new chain.

Reflection-based access control might allow more complex interactions where,
for instance, a piece of code run by a terminal can access local resources (e.g.
communication, intranet access, temporary files) as long as the user (or his cell-
phone) is in front of the terminal.
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5 Trust for Execution Protection

In this section, we propose to distribute data and code according to the security-
level of federated devices. Securing federations thus becomes evaluating the
security-level of each platform that takes part in the federation.

5.1 Security-Levels in B2E/B2B Applications

This evaluation is not easy to achieve in general: if a person makes use of a
terminal in a public place, it is impossible to assume that the terminal is trusted
in any way without some additional information that makes up the trust model.
In general, there is no relation that can be exploited between the user or his
company and the owner of the terminal: this can be called an open trust model
as opposed to an a priori trust model. B2E and B2B assumptions provide a clear
trust model and allow validating whether a given device is trustworthy (e.g.
managed by a partner company, patches are regularly applied). This informa-
tion is used to distribute code and data according to the security-level of each
federated device.

The security-level of a given device depends on the service provider (in B2E
or B2B scenarios, a corporate backend server). For instance, a device can be
trusted to deal with secret data of the company it belongs to while the same
device can only deal with unclassified data when accessing corporate data of
another company.

For the sake of simplicity, only three security-levels are used in this section
SL = {uncl, conf, secr}:

- unclassified (uncl): a device with security-level ’uncl’ can run pieces of code
tagged as unclassified. It can also deal with unclassified data.

- confidential (conf): access to code and data tagged as confidential.
- secret (secr): access to code and data tagged as secret.

Security-levels are defined by a chain of authorization certificates. It is possi-
ble to increase the granularity of security-levels by defining new semantics taking
into account project names, groups, etc.



15

5.2 Security-Level Verification

We use security-level capabilities defined in Section 3.2 to provide the function-
ality described above. For instance, device D is owned and managed by company
C (say for instance a wall-display in a meeting room that is physically protected).
Company C provides with device D a capability C

SLD−→ D.
Agreements between companies are necessary to formally define trust re-

lationships. Such agreements are finally implemented through the issuance of
certificates. Company C2 is a partner of C1. Employees of C2 frequently need to
work in C1’s offices and use local facilities D1. Because C2 trusts C1, they can

have the following trust relationship: C2

SLC1−→ C1. When SLC1 = {uncl, conf}, it
means that employees of C2 can use devices owned by C1 to deal with confiden-
tial and unclassified data.

The security-level of each federated device is evaluated thanks to the chain:

C2

SLC1−→ C1

SLD1−→ D1

The security-level of D1 is defined as SLC1 ∩ SLD1 . It is important to note
that there is no delegation between certificates of this chain and thus SLD1 *
SLC1 . Moreover, the length of this chain is restricted because agreements are
signed partner by partner and cannot be delegated, that is, such agreements do
not form a web of trust.

In the previous example, only the owner of a device is involved in the certi-
fication process. It is however possible to define more precise trust relationships
involving other parameters such as tamper-resistance, location, etc. This mecha-
nism makes it possible to take into account the availability of trusted platform in
corporate security policy. For instance, suppose that the owner certifies the de-

vice C
conf−→ D and the manufacturer M certifies its tamper-resistance M

TR−→ D
where TR is the tamper-resistance level. The security policy could define that
confidential data can be read on devices owned by partners with a given security-
level or by any neutral tamper-resistant device (e.g. a TCG public terminal).

5.3 Fine Grained Application Deployment

On one hand, employees would like to transparently use any surrounding ap-
pliance such as a larger display embedded in a plane seat, a printer in an air-
port lounge, or location services offered by a building. On the other hand, the
corporation has to protect its resources and prevent that an employee uninten-
tionally reveals corporate data to untrusted and potentially malicious devices.
Our approach makes it possible a tradeoff between flexibility and security. The
deployment of pieces of code is based on the corporate security policy that de-
fines whether a device certified by a given entity can be involved when getting
access to non-public data or can run some part of an application. Such an open
federation, in which devices owned by different entities are used, will have to be
restricted to secure interactions, and yet remain fully usable.
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Figure 4 presents a simple example: User E1 is an employee of C1 and extends
his cell-phone (D1) with a wall display (D2). The wall-display is owned and
managed by another company C2. The cell-phone is certified by C1 and can deal
with confidential resources. The wall-display is certified by C2 and can also deal
with confidential data. However, the trust relationship between both companies
define that only unclassified data of C1 can be displayed on devices managed by
C2. As a result, D1 can deal with confidential resources but D2 can only deal
with unclassified resources.

In order to process some data (e.g. corporate workflow), it is necessary to
download data and code (P1 and P2). The user authorizes the wall display to
get the pieces of code. Both pieces of code are sent to the wall display in an
encrypted form. P1 is tagged as unclassified and thus can be decrypted by D1

and D2. P2 is confidential and can only be decrypted by D1. In other words, part
of the data and part of the code cannot be used by D2 because it is not trusted
enough. For instance, the wall display cannot generate session keys, cannot ask
for an employee’s signature, cannot display confidential data, etc. Encryption on
the corporate server side ensures the enforcement of mandatory access control
to corporate resources (access control in Figure 4).

Fig. 4. Distribution of code, data, and keys

5.4 Key distribution

Key distribution ensures that only devices with a sufficient security-level can
access (i.e. decrypt) some data and pieces of code that have a given classification.
Suppose that a set of pieces of code P = {P1, P2, · · · , Pn} are requested from
C1’s server by an employee E1 using a federation F = {D1, D2, · · · , Dm}.

Data and code are tagged with a different classification cl(Pi) ∈ CL,
1 < i < n. For the sake of simplicity a direct mapping between security-levels
and classification has been chosen in this example. For instance, CL = SL =
{uncl, conf, secr}. A symmetric key Kcli has to be defined for each classification
cl ∈ CL:
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∀cl ∈ CL : Server generates symmetric key Kcl

Code and data are encrypted according to their classification using the cor-
responding symmetric key Kcl:

∀p ∈ P : Server encrypts piece of code p̂ = EKcl(p)(p)

The backend server has received the credential of the user and of each feder-
ated device. The security-level of each federated device Di is defined as tl(Di).
A chain of certificates has to be resolved for each device in order to verify their
security-level and distribute keys. Symmetric keys are encrypted with public
keys of devices:

∀d ∈ F and ∀cl ∈ CL :
if cl ∈ tl(d) : Server computes EPKd

(Kcl(d))
The result is that each federated device can potentially receive any encrypted

data or any encrypted piece of code. However, it only receives keys for decrypting
the parts it is authorized to deal with (Figure 4). For instance, a terminal that
is trusted enough to deal with confidential data will receive Kconfidential and
Kunclassified but will not receive Ksecret. Data confidentiality, data integrity,
integrity of execution, and confidentiality of execution are enforced by key dis-
tribution. Code, data and key distribution is done simultaneously in an XML
document.

Discussion and Conclusion

Protecting the integrity of execution of a program in a distributed and poten-
tially malicious environment has long been recognized as difficult, which might
appear as a major issue now that nomadic systems promote the use of these very
techniques for implementing applications. Fortunately enough, the assumptions
of B2E and B2B applications help solve many of the issues encountered for they
introduce trust relationships that make it possible to implement a secure system
in a pragmatic way.

The core of the framework described in this paper has been implemented.
Attribute certificates, which define authorizations and security-levels, are signed
XML documents that can be reified as Java objects. Personal Java that we use
on Pocket PC (iPAQ) with Bluetooth offers the same security features as Java
2.

The environment protection mechanism (Section 4), which relies on Java
2, associates rights with a set of Java classes and makes it possible to change
those rights dynamically based on a new chain of authorization certificates. This
approach however imposes that rights be associated with classes, and it might
be fruitful to allow object specific rights. A class loader defining distributed and
dynamic rights based on short-term certificates has to be finalized. Extending
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this work in order to associate rights to objects would however mean modifying
the virtual machine and thus loosing portability.

The protection of data and code (Section 5) is based on the relationships be-
tween device owners. In the current implementation, each device keeps its private
key in a key store. Employees’ private keys are protected by a trusted device, for
instance the employee’s PDA. To enforce the mandatory access control, we use
a SIM card that becomes a ubiquitous security token in nomadic scenarios. The
protection of the user’s keys (private key and distribution secret keys) by a SIM
card has been implemented but is not integrated. The data and key distribution
mechanism has been successfully tested within a prototype that aimed at selec-
tively accessing corporate e-mails from federated terminals according to their
security-level. The security-level evaluation of devices has been demonstrated
[BRKC03].

This framework also enables the distribution of parts of an application under
the form of mobile code by providing the support to writing explicitly indepen-
dent modules with different security requirements. We are currently studying
how a meta object protocol [KdRB91] could be used to provide language sup-
port to automatically split and distribute parts of an application according to
policy-based security requirements.

The distribution of certificates is a difficult issue: currently certificates are
pre-fetched in devices that can create new certificates by delegation. There is a
tradeoff between the computational cost of generating certificates on a PDA (i.e.
XML parsing, signature) and the communication cost of requesting certificates
from a server. We are studying web services (WS-Federations) in order to define
protocols for distributing and managing capabilities.

The integration of those different security components is under way and our
current focus is on higher level policies to make the creation and management of
certificates more flexible. For instance, some users could be authorized to define
whether a partner is trustworthy in terms of code creation and/or code hosting.
Or it should be possible to take hardware certification (e.g. Trusted Computing
Group) into account when evaluating the security-level of a device.
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