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Abstract

We recently introduced a novel approach to face recogni-
tion which consists in modeling the set of possible trans-
formations between face images of the same person. While
our previous work focused on geometric transformations to
model facial expressions, in this article we consider feature
transformations as a means to compensate for illumination
variations. Although this approach requires to learn the set
of possible illumination transformations through a training
phase, we will show experimentally that the trained param-
eters are very robust. Even in the challenging case where
the databases used to train the transformation model and
to assess the performance of the system are very different,
the proposed approach results in large improvements of the
recognition rate.

1. Introduction

Pattern classification deals with the general problem of in-
ferring classes from observations [1]. Hence, the success
of a pattern classification system is based on its ability to
distinguish between inter- and intra-class variabilities. Face
recognition is a very challenging task as different faces have
the same global shape while face images of the same person
are subject to a wide range of variabilities including facial
expressions, pose, illumination conditions, presence or ab-
sence of eyeglasses and facial hair, aging, occlusion, etc.
Illumination, which will be the focus of this paper, remains
one of the toughest variabilities to cope with as shown dur-
ing the FERET evaluation [2] and the facial recognition ven-
dor test 2000 [3].

It is possible to deal with the illumination at three differ-
ent stages: during the preprocessing, the feature extraction
or the classification.

Preprocessing algorithms for illumination compensation
include general image processing tools such as histogram
equalization and gamma correction [4]. A simple but very
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effective preprocessing, which is based on Weber’s law, con-
sists in applying a logarithm transform to the image inten-
sity [5, 6]. Another class of preprocessing algorithms con-
sists in separating an image into its reflectance and illumi-
nation fields [7]. An assumption which is generally made
for this type of approach is that the luminance varies slowly
across the image while sharp changes can occur in the re-
flectance.

At the feature extraction stage, the goal is to derive fea-
tures that are invariant to illumination. Edge maps, deriva-
tives of the gray level and Gabor features were compared
in [5] and an empirical study showed that none of these
features was sufficient to overcome the variations due to
changes in the direction of illumination. Another idea is
to learn features which are insensitive to illumination vari-
ations such as the Fisherfaces [8].

Finally, various algorithms have been proposed to cope
with the illumination variation at the classification stage.
The idea underlying [9] is that the set of images of an object
in fixed pose, but under all possible illumination conditions,
is a convex cone in the space of images that can be approx-
imated by low dimensional linear subspaces. [10] proposed
an approach based on 3D morphable models which encode
both shape and texture information and an algorithm that
recovers these parameters from a single face image.

We recently introduced a novel approach to face recog-
nition which consists in modeling the set of possible trans-
formations between face images of the same person [11].
While our previous work focused on geometric transforma-
tions to model facial expressions, we introduce in this ar-
ticle feature transformations as a means to compensate for
illumination variations. This approach to illumination com-
pensation, which works at the classification stage, involves a
training phase to learn the set of possible illumination trans-
formations. While approaches based on learning can suffer
from poor generalization when the training and test sets are
different, we will show experimentally the good generaliza-
tion ability of our approach.

The remainder of this paper is organized as follows. A
brief review of the probabilistic model of face transforma-



tion is given in the next section. Section 3 introduces our
model of illumination transformation. Section 4 focuses
on how to find jointly the best set of geometric and feature
transformations between two face images. Finally, section
5 summarizes experimental results for a face identification
task. While it is common to train and test a system on the
same database, to assess the performance of our novel illu-
mination compensation algorithm we used two very differ-
ent databases. We think this is a much more realistic ap-
proach as, in practice, one never has access at training time
to the exact test conditions. Even in this challenging case
the proposed approach results in large improvements of the
recognition rate.

2. A model of face transformation

2.1. Framework

While most face recognition techniques directly model the
face, [11] models the set of possible transformations be-
tween face images of the same person. The global face
transformation is approximated with a set of local transfor-
mations under the constraint that neighboring transforma-
tions must be consistent with each other.

Local transformations and consistency costs are embed-
ded within the probabilistic framework of a 2D HMM. At
any position on the query face image, the system is in one
of a finite set of states where each state represents a local
transformation. Emission probabilities model the cost of lo-
cal transformations and transition probabilities relate states
of neighboring regions and implement the consistency rules.

A major assumption in our system is that the intra-class
variability is the same for all classes and, thus, that the
model of face transformation is shared by all individuals.
Hence, it can be trained on pairs of images of persons that
are not enrolled in the system.

2.2. Local Transformations

Let us assume that we have two face images: a template
image FT and a query image FQ. Feature vectors are ex-
tracted on a sparse grid from FQ and on a dense grid from
FT . We then apply a set of local transformations at each po-
sition (i, j) of the sparse grid. In our previous work, these
transformations were limited to geometric transformations
and, more precisely, to translations. Each translation maps
a feature vector of FQ with a feature vector in FT .

Let oi,j be the observation extracted from FQ at position
(i, j) and let qi,j be the associated state (i.e. local deforma-
tion). If τ is a translation vector, the probability that at posi-
tion (i, j) the system emits observation oi,j , knowing that it
is in state qi,j = τ , is bτi,j(oi,j) = P (oi,j |qi,j = τ, λ) where
λ = (λT , λM). We separate λ into face dependent (FD)

parameters λT which are extracted from FT and face inde-
pendent transformation (FIT) parameters λM, i.e. the pa-
rameters of the shared transformation model M. The emis-
sion probability bτi,j(oi,j) represents the cost of matching
oi,j with the corresponding feature vector in FT that will be
denoted mτ

i,j . bτi,j(oi,j) is modeled with a mixture of Gaus-
sians as linear combinations of Gaussians have the ability to
approximate arbitrarily shaped densities:

bτi,j(oi,j) =
∑

k

wk
i,jb

τ,k
i,j (oi,j)

bτ,k
i,j (oi,j)’s are the component densities and the wk

i,j’s are
the mixture weights and must satisfy the following con-
straint: ∀(i, j),

∑

k w
k
i,j = 1. Each component density is

a D-variate Gaussian function of the form:

bτ,k
i,j (oi,j) =

exp
{

− 1
2 (oi,j − µτ,k

i,j )T Σ
k(−1)
i,j (oi,j − µτ,k

i,j )
}

(2π)
N
2 |Σk

i,j |
1

2

where µτ,k
i,j and Σk

i,j are respectively the mean and covari-
ance matrix of the Gaussian, D is the size of feature vectors
and |.| is the determinant operator. We use a bi-partite model
which separates the mean into additive FD and FIT parts:

µτ,k
i,j = mτ

i,j + δk
i,j (1)

wheremτ
i,j is the FD part of the mean. wk

i,j , δk
i,j and Σk

i,j are
FIT parameters. Intuitively, bτi,j should be approximately
centered and maximum around mτ

i,j .

2.3. Neighborhood Consistency

The neighborhood consistency of the local transformations
is ensured via the transition probabilities of the 2D HMM.
We explain in the next section that a 2D HMM can be ap-
proximated by a set of interdependent horizontal and verti-
cal 1D HMMs. The transition probabilities of the horizontal
and vertical 1D HMMs are P (qi,j = τ |qi,j−1 = τ ′, λ) and
P (qi,j = τ |qi−1,j = τ ′, λ). They model respectively the
horizontal and vertical elastic properties of the face at po-
sition (i, j) and are part of the face transformation model
M.

2.4. Turbo-HMMs

While HMMs have been extensively applied to 1D prob-
lems, the complexity of their extension to 2D grows expo-
nentially with the data size and is intractable in most cases
of interest. [12] introduced Turbo-HMMs (T-HMMs), in
reference to the turbo error-correcting codes, to approxi-
mate the computationally intractable 2D HMMs. A T-HMM
consists of horizontal and vertical 1D HMMs that “commu-
nicate” through an iterative process by inducing prior prob-
abilities on each other. The T-HMM framework provides



efficient formulas to 1) compute efficiently P (FQ|FT ,M),
i.e. the probability that FT and FQ belong to the same per-
son knowing the face transformation model M, and 2) train
automatically all the parameters of M.

The computation of P (FQ|FT ,M) is based on a mod-
ified version of the forward-backward algorithm which is
applied successively and iteratively on the horizontal and
vertical 1D HMMs until they reach agreement.

The Maximum Likelihood Estimation (MLE) of the pa-
rameters of M is based on a modified version of the Baum-
Welch algorithm. To train M, we present pairs of pictures (a
template and a query image) that belong to the same persons
and optimize the transformation parameters λM to maxi-
mize the likelihood of the pairs of pictures.

3. Modeling the illumination variation

In this section, we will first show how to transform the il-
lumination into an additive variability in the feature domain
and then, how to constrain the illumination variation.

3.1. The illumination as an additive variability

The starting point of our approach is the well-known as-
sumption that an image I can be seen as the product of a
reflectance R and an illumination L [13]:

I(x, y) = R(x, y) × L(x, y)

Applying the logarithm operator, we obtain:

log I(x, y) = logR(x, y) + logL(x, y)

and the illumination turns into an additive term in the pixel
domain. If the feature extraction involves only linear op-
erators, such as the convolution, the illumination remains
additive in the feature domain. Denoting Fd the linear fea-
ture extraction operator for the d-th dimension of the feature
vectors and oi,j = {oi,j [1], ...oi,j [D]} the feature vector ex-
tracted at position (i, j), we get:

oi,j [d] = Fd{log I(x, y)}
= Fd{logR(x, y)} + Fd{logL(x, y)}

Hence, if the illumination was constant in each feature
component across the whole face, subtracting in each com-
ponent the average value ō[d] would be a simple approach
to removing the undesired additive illumination term. How-
ever, the illumination is unlikely to be perfectly constant in
each component. Moreover, when subtracting ō[d], one may
also discard useful reflectance information. Nevertheless,
this simple combination of logarithm transform in the pixel
domain and mean normalization in the feature domain, that
will be referred to as the Log-Mean Normalization (or LM-
Norm), and which, to the best of our knowledge, has never

been suggested, will be tested in the section on experimental
results.

Our goal is now to alleviate the unrealistic constraint
of a constant illumination in each frequency band. As the
system described in section 2 is designed to model additive
variabilities, as expressed by equation (1), a first idea would
be to train the Gaussian mixtures parameters, i.e. w’s, δ’s
and Σ’s, not only to model the facial expression variations,
but also the various possible illumination conditions. Al-
though this approach might first sound appealing, we be-
lieve it is suboptimal for two main reasons :

• A very large number of Gaussians would be neces-
sary to model all the possible variabilities, increasing
unreasonably the memory and CPU requirements.

• The choice of Gaussians at adjacent positions would
be unconstrained, which is not satisfying as the illu-
mination cannot vary in an arbitrary manner over the
face.

However, the performance of this approach will also be eval-
uated in the section on experimental results and will serve
as a baseline for our novel model of illumination transfor-
mation.

3.2. Constraining the illumination variation

The idea is to introduce feature transformations to model
the illumination variation and to enforce consistency be-
tween feature transformations at adjacent positions in the
same manner we enforced consistency between geometric
transformations. Hence, our states which represent both lo-
cal geometric and feature transformations are now doubly
indexed: qi,j = (q1i,j , q

2
i,j). q

1
i,j is the geometric transfor-

mation part of the state and q2i,j is the feature transformation

part. If qi,j = (τ, φ), the emission probability bτ,φ
i,j is still

modeled with a mixture of Gaussians:

bτ,φ
i,j =

∑

k

wk
i,jb

τ,φ,k
i,j

where the bτ,φ,k
i,j ’s areD-variate Gaussians with means µτ,φ,k

i,j

and covariance matrices Σk
i,j . The new means are of the

form:
µτ,φ,k

i,j = µτ,k
i,j + φ = mτ

i,j + δk
i,j + φ

In [11] we only separated parameters into FD and FIT pa-
rameters. Here, we go one step further by separating the
FIT parameters into geometrical transformation parameters
and feature transformation parameters.

If we assume that geometric and feature transformations
model respectively differences in facial expression and il-
lumination between images, and that facial expression and



illumination variations are mostly independent (i.e. a fa-
cial expression change between two adjacent positions has a
limited impact on the illumination change between the same
positions and vice versa), then the horizontal and vertical
transition probabilities can be separated as follows:

P (qi,j |qi,j−1) = P (q1i,j |q1i,j−1) × P (q2i,j |q2i,j−1)

P (qi,j |qi−1,j) = P (q1i,j |q1i−1,j) × P (q2i,j |q2i−1,j)

While the choice of a discrete number of geometric trans-
formations is natural due to the discrete nature of the feature
extraction grid of the template image, it is easier to deal
with the illumination with an infinite continuous set of il-
lumination states. We choose the horizontal and vertical il-
lumination components of the transition probabilities to be
D-variate Gaussians:

P (q2i,j = φ|q2i,j−1 = φ′) = P (q2i,j = φ|q2i−1,j = φ′)

=
exp

{

− 1
2 (φ− φ′)TS(−1)(φ− φ′)

}

(2π)
N
2 |S| 12

In the following we will assume that the covariance matrix
S is diagonal and therefore, that the components of the fea-
ture vectors are independent from each other. S is the only
parameter of our illumination transformation model.

4. Finding the best transformation

Let O = {oi,j} and Q = {qi,j} denote respectively the set
of all observations and states, with i ∈ [1, I] and j ∈ [1, J ].
Finding the best transformation between two face images
requires to find the sequence of states Q∗, which satisfies:

Q∗ = arg max
Q

logP (Q|O, λ) = arg max
Q

logP (O,Q|λ)

where Q = (T,Φ) and T = {τi,j} and Φ = {φi,j} corre-
spond respectively to the set of geometric and feature trans-
formations. A central idea in our approach is to apply it-
erative passes to find successively the geometric and fea-
ture transformations that best explain the transformation be-
tween the two face images.

LetQn = (Tn,Φn) be the best set of states after the n-th
iteration. Assuming for instance that we start by decoding
geometric transformations, the steps of the algorithm are as
follows:

1. Initialize Φ0: ∀(i, j), φi,j = 0, i.e. we assume there
is no illumination variation between the two images.

2. Tn = arg max
T

logP (O, T |Φn−1, λ), i.e. Tn maxi-

mizes the joint probability of observations and geo-
metric transformations knowing Φn−1, the set of pre-
viously obtained feature transformations.

3. Φn = arg max
Φ

logP (O,Φ|Tn, λ), i.e. Φn maximizes

the joint probability of observations and feature trans-
formations knowing Tn, the set of geometric transfor-
mations previously obtained.

4. Go back to step 2 until Tn and Φn converge.

We will now detail the steps 2 and 3 of this algorithm.

4.1. Finding Tn

To find the best sequence of geometric transformations Tn,
one applies the modified version of the forward-backward
algorithm introduced in [12] and estimates the occupancy
probabilities γi,j(t) = P (q1i,j = t|O,Φn−1, λ), i.e. the
probability of being in state q1i,j = t at position (i, j). At
each position (i, j), we look for the best state τ :

τ = arg max
t
γi,j(t)

Although choosing the sequence of locally optimal states
may not lead to the sequence of globally optimal states, this
approximation is valid in the case where the best sequence
of states accounts for most of the total probability.

If γi,j(τ, n) is the probability of being in state τ with
the n-th mixture component accounting for oi,j , the best
Gaussian index k is given by:

k = arg max
n

γi,j(τ, n)

If τ and k are respectively the indexes of the best state
and Gaussian at position (i, j), we introduce the quantity
Ψτ,k

i,j = (oi,j − µτ,k
i,j ) which can be interpreted as the vari-

ability that is left unexplained by the geometric transforma-
tions. Let Σk

i,j be the covariance of the best Gaussian at
position (i, j). In the following, for simplicity, we will drop
the τ and k indexes and replace the notation Ψτ,k

i,j with Ψi,j

and Σk
i,j with Σi,j .

4.2. Finding Φn

To find the best sequence of feature transformations Φn,
we can pursue two different approaches: either apply di-
rectly the Viterbi algorithm, or a modified version of the
forward-backward. In both cases, as Σi,j and S the co-
variances of the emission and transition probabilities are as-
sumed diagonal, it it simple to show that finding the best
state sequence Φ can be done independently in each of the
D dimensions. Therefore, if Ψi,j = [ψi,j [1], ...ψi,j [D]]T ,
Σi,j = diag{σi,j [1]

2
, ...σi,j [D]

2} and S = diag{s[1]2, ...
s[D]

2} in the following, we drop the dimension indexes and
use the notations ψi,j , σ2

i,j and s2.



4.2.1. Viterbi variant

We assume that transition probabilities are separable, i.e.:

P (q2i,j |q2i−1,j , q
2
i,j−1) ∝ P (q2i,j |q2i−1,j)P (q2i,j |, q2i,j−1)

(see [12] for more details on this approximation). The joint
likelihood P (O,Φ|Tn, λ) can be written as a product of
emission probabilities and horizontal and vertical transition
probabilities. For one given dimension, to find the best se-
quence of states Φn, we set ∂ logP (O,Φ|Tn, λ)/∂φi,j =
0 , ∀(i, j) and obtain:

φi−1,j + φi+1,j + φi,j−1 + φi,j+1 −

φi,j

(

s2

σ2
i,j

+ 4

)

= −ψi,j

(

s2

σ2
i,j

)

, ∀(i, j)

with obvious modifications for i = 1 or I and j = 1 or J .
This is a linear system of I × J equations with I × J un-
knowns. If equations are ordered properly, this system is
banded with bandwidth min(I, J). Hence, the complexity
of solving this system is in O((I × J) × min(I, J)

2
). We

recall that there areD such systems to solve, one per dimen-
sion of the feature vectors.

At training time, to find the optimal s2 which maximizes
logP (O,Φ|Tn, λ), we set ∂ logP (O,Φ|Tn, λ)/∂s2 = 0
and obtain:

ŝ2 =

∑

i,j

[

(φi,j − φi−1,j)
2 + (φi,j − φi,j−1)

2
]

(I − 1) × J + I × (J − 1)

In the previous formula, s2 is estimated with one pair of im-
ages. The extension to multiple pairs of images is straight-
forward.

4.2.2. Forward-backward variant

A complexity in O((I × J) × min(I, J)
2
) is much lower

than the complexity of solving a general linear system of
I × J equations with I × J unknowns which is in O((I ×
J)3). However it might still be too demanding if I and J are
large. Therefore, we explored an alternative approach which
is based on our modified forward-backward algorithm, as
applied to T-HMMs [12]. The extension from discrete states
HMMs to continuous states HMMs (also referred to as state
space models or SSMs) consists mainly in replacing sums
with integrals.

We define γi,j(φ) = P (q2i,j = φ|O, Tn, λ), i.e. the
probability of being in state φ at position (i, j). To find the
states that best explain the illumination transformation, we
choose the sequence of locally optimal states Φ, i.e.:

φi,j = arg max
φ

γi,j(φ)

We introduce the following vertical forward, backward and
occupancy probabilities:

αV

i,j(φ) = P (o1,j , ...oi,j , q
2
i,j = φ|Tn, λ)

βV
i,j(φ) = P (oi+1,j , ...oI,j |q2i,j = φ, Tn, λ)

γVi,j(φ) = P (q2i,j = φ|o1,j , ...oI,j , Tn, λ)

Defining the corresponding horizontal quantities is straight-
forward. As the emission and transition probabilities are
Gaussians, if we initialize the occupancy probabilities γ’s
in a Gaussian manner, one can show that the forward, back-
ward and occupancy probabilities are Gaussian shaped. The
parameters of these Gaussians, i.e. their means and vari-
ances, will be respectively denoted µαV

i,j , µβV
i,j , µγV

i,j and σαV
i,j

2
,

σβV
i,j

2
, σγV

i,j

2
. It is easy to show that we have:

µγV
i,j =

µαV
i,j σ

βV
i,j

2
+ µβV

i,j σ
αV
i,j

2

σαV
i,j

2
+ σβV

i,j

2 σγV
i,j

2
=

σαV
i,j

2
σβV

i,j

2

σαV
i,j

2
+ σβV

i,j

2

Successive horizontal and vertical passes of our modi-
fied forward-backward (extended to T-HMMs with an infi-
nite continuous set of states) are applied iteratively to esti-

mate µαV
i,j , µβV

i,j , σαV
i,j

2
and σβV

i,j

2
until convergence of the

γHi,j and γVi,j probability densities. As we do not have access
to γi,j but to γHi,j and γVi,j , a simple combination rule based
on the minimum divergence criterion is to set:

φi,j =
σγV

i,j

2
µγH

i,j + σγH
i,j

2
µγV

i,j

σγV
i,j

2
+ σγH

i,j

2

The complexity of this algorithm is clearly in O(I×J×N)
where N is the number of horizontal and vertical passes.

The optimal parameter s2 is given by:

ŝ2 =

∑

i,j

∫

φ,φ′
(φ− φ′)2

[

ξHi,j(φ, φ
′) + ξVi,j(φ, φ

′)
]

dφdφ′

(I − 1) × J + I × (J − 1)

where ξHi,j(φ, φ
′) = P (q2i,j−1 = φ, q2i,j = φ′|O, Tn, λ) and

ξVi,j(φ, φ
′) = P (q2i−1,j = φ, q2i,j = φ′|O, Tn, λ). Intro-

ducing the notations ραH
i,j = s2/(s2 + σαH

i,j

2
) and ραV

i,j =

s2/(s2 + σαV
i,j

2
), we get:

ŝ2 =

∑

i,j

[

(µγH
i,j − µγH

i,j−1)
2 + (µγV

i,j − µγV
i−1,j)

2
]

(I − 1) × J + I × (J − 1)

+

∑

i,j

[

ραH
i,j−1σ

αH
i,j−1

2
+ ραH

i,j−1
2
σγH

i,j

2
]

(I − 1) × J + I × (J − 1)

+

∑

i,j

[

ραV
i−1,jσ

αV
i−1,j

2
+ ραV

i−1,j

2
σγV

i,j

2
]

(I − 1) × J + I × (J − 1)



The term (µγH
i,j − µγH

i,j−1)
2 + (µγV

i,j − µγV
i−1,j)

2 corresponds
to (φi,j − φi,j−1)

2 + (φi,j − φi−1,j)
2 in the re-estimation

formula of the Viterbi variant (c.f. the previous section).
The additional terms are due to the fact that the forward-
backward algorithm integrates over all paths to estimate s2

while Viterbi only takes into account the best path.

5. Experimental results

In this section, we will first introduce the databases used
to train and test our system and briefly describe Gabor fea-
tures. We will then evaluate the performance of the LM-
Norm introduced in section 3.1 and finally the performance
of our novel model of illumination transformation.

5.1. Databases

5.1.1. The FERET face database

To train our transformation model, we used the FERET face
database [2]. 500 individuals were extracted from the FAFB
set which contains frontal views that exhibit large variations
in facial expressions but very little variability in terms of il-
lumination. There are two images per person in the FAFB
set. We also used the 200 individuals in the FAFC set which
contains frontal views that exhibit large variations in illu-
mination conditions and facial expressions. There are three
images per person in the FAFC set. All the FERET im-
ages were pre-processed to extract 128x128 pixels normal-
ized facial regions.

5.1.2. The YALE B face database

The YALE B face database [9] was used to assess the perfor-
mance of our system. It contains the images of 10 subjects
under 9 different poses and 64 illumination conditions. As
the focus of this paper is on illumination compensation, we
used only the set which contains frontal face images. We
divided the database into the four traditional subsets S1, S2,
S3 and S4 according to the angle the light source makes with
the axis of the camera (less than 12◦, between 12◦ and 25◦,
between 25◦ and 50◦ and between 50◦ and 77◦). For each
person, the 7 images in S1 were successively used as the en-
rollment image and the images in S2, S3 and S4 were used
as test images which made a total of 26,600 comparisons.
The same pre-processing that was applied to the FERET im-
ages was applied to the Yale B face images.

5.2. Gabor features

In our experiments, we used Gabor features which have
long been successfully applied to face recognition and fa-
cial analysis. Assuming polar coordinates (ρ, θ), the spec-

tral half plane is partitioned into M frequency and N orien-
tation bands [14]:

Gi,j(ρ, θ) = exp

{

−1

2

[

(ρ− ωρi
)2

σ2
ρi

+
(θ − ωθj

)2

σ2
θi

]}

with i ∈ [1,M ] and j ∈ [1, N ]

The parameters ωρi
, σρi

, ωθj
and σθi

are defined as follows:

ωρi
= ωmin + σ0

(f+1)f i−1
−2

f−1 σρi
= σ0f

i−1

ωθj
= (j−1)π

N
σθi

=
πωρi

2N

After preliminary experiments, we chose ωmin = π/24,
ωmax = π/3, f =

√
2, M = 4 and N = 6, which resulted

in 24 dimensional feature vectors. Gabor responses are ob-
tained through the convolution of an image and the Gabor
wavelets. We use the modulus of these responses as feature
vectors which introduces a non-linearity in the computation
of our features. Thus, the illumination cannot be considered
as a perfectly additive term in the feature domain.

Feature vectors were extracted every 16 pixels of the
query images and every 4 pixels of the template images in
both horizontal and vertical directions.

5.3. Performance of the LM-Norm

The goal of this section is to assess the performance of the
LM-Norm introduced in 3.1. In this first set of experiments,
we applied straightforwardly the face transformation model
introduced in [11] which does not make use of feature trans-
formations.

When the LM-Norm is associated to Gabor features, the
feature extraction consists of 3 steps:

1. logarithm transform in the pixel domain

2. Gabor features extraction

3. mean normalization in each frequency band

Gabor features combined with LM-Norm will be denoted
LM-GB features. We compared the performance of these
features to Gabor features that will be referred to as GB fea-
tures and to features that combine steps 1 and 2 and that will
be denoted L-GB features.

The face transformation model was trained on the FAFB
data only. Hence, no information on illumination variations
could be learned at training time. The transformation model
was trained as described in [11] up to 8 Gaussians per mix-
ture (Gpm). Figure 1 shows the results.

Averaging the performance over the 3 subsets, the iden-
tification rate is 68.0% for GB features compared to 74.0%
for L-GB features and 84.8% for the LM-GB features. Note
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Fig. 1. Performance of GB (Gabor), L-GB (log + Gabor)
and LM-GB (log + Gabor + mean normalization) features
when the transformation model is trained solely on FAFB.

that with L-GB features the performance decreases signif-
icantly compared to GB features on the simple S2 subset
which seems to indicate that the log transform has a nega-
tive impact on the recognition when there is little illumina-
tion variation.

We performed similar tests (not shown in this paper)
with the GB, L-GB and LM-GB features on the popular
Eigenfaces [15] and Fisherfaces [8] algorithms and observed
similar trends. We would like to underline that, although we
tested the combination of Gabor features and LM-Norm, we
believe that LM-Norm could benefit to other “linear” fea-
tures such as DCT features.

5.4. Performance of our novel approach

The goal of this second set of experiments is not only to
assess the performance of our novel model of illumination
transformation but also to assess the performance of the
simple approach discussed in section 3.1, which is based
solely on the transformation model introduced in [11] and
which does not make use of any feature transformation. The
latter algorithm will be referred to as the baseline.

For both algorithms, we applied a logarithm transform
in the pixel domain prior to the extraction of Gabor features
(L-GB features) as both methods require the illumination to
be an additive term in the feature domain.

For our novel approach, we first trained our system up
to 8 Gpm using only the FAFB data as explained in [11].
Then, using this model, we trained the covariance matrix
S, which is the only parameter of the illumination transfor-
mation model, on the FAFC data only. The assumption is
that, as the transformation model trained on FAFB already
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Fig. 2. Performance of the baseline system compared to the
Viterbi and forward-backward variants (resp. V- and FB-
variant) of our novel illumination compensation algorithm.

accounted for variations due to facial expressions, all the
variability that remained unexplained was due to illumina-
tion. The diagonal elements of S were initialized to values
close to 0 and then, 3 training iterations were applied. At
both training and test time, the number of iterations of the
decoding process described in section 4 was set to 3. To find
Φn with the forward-backward variant of the algorithm de-
scribed in section 4.2, we applied 5 horizontal and vertical
passes.

For the baseline, we simply trained the system on both
the FAFB and FAFC data up to 16 Gpm, instead of 8 Gpm,
as more data was available.

Figure 2 shows the performance of the baseline com-
pared to the Viterbi and forward-backward variants of our
novel approach (resp. V-variant and FB-variant). Compar-
ing Figures 1 and 2, one can see that adding the FAFC data
increases on the average the identification rate of the base-
line system from 74.0% to 84.1%. However, both variants
of our novel approach clearly outperform the baseline, es-
pecially for the harder S3 and S4 subsets.

It is also interesting to notice that the FB-variant out-
performs the V-variant. Actually, the latter one is optimal
in the Maximum-Likelihood framework while our modified
forward-backward based on the T-HMM framework is not
guaranteed to be optimal. However, while Viterbi only takes
into account the best path, i.e. the one that best explains
the data, the forward-backward algorithm integrates over all
paths. As explained in 4.2.2, this choice has an impact on
the re-estimation of S and we believe that the difference
in performance is mainly due to the difference in the re-
estimation formula. The average identification rate of the
V-variant and FB-variant over the three subsets are respec-



tively 89.1% and 90.8%.
We also compared our novel approach with the eigen-

faces [15] and Fisherfaces [8]. Especially Fisherfaces were
shown to compensate for illumination variations if trained
with the appropriate data. To carry out a fair comparison, we
did not apply these algorithms directly on the gray level im-
ages but on their LM-GB representations. A feature vector
was extracted every four pixels of the images in both hori-
zontal and vertical directions. The eigen- and Fisher-spaces
were trained on the FAFB and FAFC sets as was done for
our baseline system. The best identification rates we ob-
tained for eigenfaces and Fisherfaces are respectively 87.1%
and 83.1%. The fact that eigenfaces outperform Fisherfaces
is not surprising considering the small number of training
observations per class and the mismatch between training
and test conditions [16].

Finally, we would like to stress the fact that our novel
algorithm is very efficient as it takes on the average to our
best system less than 25 ms to compare two images on a
2 GHz Pentium 4 with 1 GB RAM.

6. Conclusion and future work

In this paper, we introduced a novel approach to illumina-
tion compensation, which consists in modeling the set of
possible illumination transformations between face images
of the same person. This approach is naturally embedded
in a face recognition system which already models transfor-
mations between face images due to facial expressions. We
showed experimentally that, even in the challenging case
where we trained and tested our system on two different
databases, our novel approach to illumination compensation
resulted in large improvements of the recognition rate. Note
that our results are competitive with state of the art results
recently published on the YALE B database [7].

However, much work remains to be done to perfectly
compensate for illumination variations. For the challeng-
ing S4 subset, the best identification rate we obtain is close
to 80%. Although this corresponds to an almost 70% rela-
tive error rate reduction compared to the same system with-
out any illumination compensation, we are still far from the
almost perfect recognition rate we get for the simpler S2

subset. We believe that one limitation of our current ap-
proach is the fact that the covariance matrix S in our illu-
mination transformation model is fixed for all pairs of im-
ages. We think that S should incorporate both some a priori
knowledge learned off-line through a training phase, as is
currently the case, but also some information which is de-
pendent on the pairs of images that need to be compared.

Finally, we would like to point out that, while our model
of illumination compensation has been introduced in the
context of face recognition, it could benefit to other research
areas. As our original approach to face recognition has a lot

in common with motion estimation algorithms, and espe-
cially MAP estimation of dense motion [4], we think that
our approach could be applied to the difficult problem of
motion estimation in the presence of illumination variations.
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