
 
 

Institut Eurécom 

2229, route des Crêtes 

B.P. 193 

06904 Sophia Antipolis 

FRANCE 

 

 

Research Report RR-03-081 

White Paper:  
“Honeypot, Honeynet, Honeytoken: Terminological issues1” 

September 14, 2003 

 

 

 

 Fabien Pouget, Marc Dacier Hervé Debar 

  Institut Eurécom France Télécom R&D 

  Email: {pouget,dacier@eurecom.fr} Email : herve.debar@francetelecom.com 

                                                 
1 This research is supported by a research contract with France Telecom R&D, contract N. 425-17044 

1 



1. Introduction ..................................................................................................................... 3 
2. Existing terminology ....................................................................................................... 4 

2.1 Honeypot definitions ................................................................................................. 4 
2.1.1 Introduction ........................................................................................................ 4 
2.1.2 Lance Spitzner’s definition ................................................................................ 4 
2.1.3 Reto Baumann’s definition................................................................................. 6 
2.1.4 Definition of SearchWebservices.com............................................................... 7 
2.1.5 Barnett’s definitions ........................................................................................... 7 
2.1.6 Definitions of the SANS institute....................................................................... 8 
2.1.7 Discussion .......................................................................................................... 9 

2.2 Honeynet definitions ................................................................................................. 9 
2.2.1 Introduction ........................................................................................................ 9 
2.2.2 Lance Spitzner’s definition ................................................................................ 9 

2.3 Honeytokens definition ........................................................................................... 10 
2.3.1 Introduction ...................................................................................................... 10 
2.3.2 Lance Spitzner’s definition .............................................................................. 10 

3. Existing Classifications ................................................................................................. 11 
3.1 Lure/Defend/Study Classification ........................................................................... 11 

3.1.1 Lure .................................................................................................................. 11 
3.1.2 Defend .............................................................................................................. 12 
3.1.3 Study................................................................................................................. 13 
3.1.4 Discussion ........................................................................................................ 13 

3.2 Production/Research classification ......................................................................... 13 
3.3 Level of interaction classification ........................................................................... 14 

3.3.1 Low-Interaction Honeypots.............................................................................. 15 
3.3.2 Mid-Interaction Honeypots .............................................................................. 16 
3.3.3 High-Interaction Honeypots............................................................................. 17 
3.3.4 Summary .......................................................................................................... 19 

3.4 Discussion ............................................................................................................... 19 
4. Our Honeypot definition ............................................................................................... 20 

4.1 Concept.................................................................................................................... 20 
4.2 Structure .................................................................................................................. 22 

5. Conclusion..................................................................................................................... 24 
5. Bibliography.................................................................................................................. 25 

2 



White Paper:  
“Honeypot, Honeynet, Honeytoken: Terminological 

issues2” 
 Fabien Pouget, Marc Dacier Hervé Debar 

  Institut Eurecom France Télécom R&D 

  Email: {pouget,dacier@eurecom.fr}               Email: herve.debar@francetelecom.com 

 

                 Institut Eurécom                                                     France Télécom R&D 

       2229, Route des Crêtes ; BP 193                              42, rue des Coutures ; BP 6243 

 06904 Sophia Antipolis Cedex ; France                         14066 Caen Cedex 4 ; France 

 

Abstract 

Many different terms, definitions and classifications for honeypots, honeynets and other 

honeytokens have been proposed by several authors during the last 3 years. In this 

document, we offer a summary of the various proposals and we discuss their advantages 

and drawbacks. We also offer our own definition at the end of the paper. 

 

1. Introduction 
The concept of “honeypots” has been introduced in computing systems by Clifford Stoll 

in the late 80’s. In the 'Cuckoo's Egg' [Stol88], he describes the monitoring and tracking 

of an intruder. For this purpose, he had to create a complete but non existent government 

project, with realistic but false files which intruders spent an extended period of time 

downloading and analyzing, providing an opportunity for him to trace back their origin. It 

is only in 2001 that the term “honeypot” has been introduced by Lance Spitzner. Since 

then, several authors have proposed ad hoc definitions and classifications. This white 

paper offers a survey of the literature. 

                                                 
2 This research is supported by a research contract with France Telecom R&D, contract N. 425-17044 

3 



The paper is organized as follows. Section 2 reviews the various definitions that have 

been made. Section 3 focuses on the various classifications that have been proposed. 

However, since we are not really satisfied by these terminologies, Section 4 presents our 

definition proposal. Section 5 concludes the paper. 

2. Existing terminology 

 2.1 Honeypot definitions 

2.1.1 Introduction  

In the 90’s, Cheswik implemented and deployed a real “honeypot” [Ches92]. Bellovin 

discussed the very same year the advantages and problems related to its usage [Bell92]. 

In 98, Grundschober and Dacier ([GrDa98, Grun98]) introduced the notion of “sniffer 

detector” (see also [AbKK02]), one of the various forms of what is called today a 

“honeytoken”. As one can see, honeypots, honeytokens and honeynets have been used for 

some time in computing systems even if this terminology is quite recent. 

2.1.2 Lance Spitzner’s definition  

We present in this section some definitions that are found in articles and security web 

pages. Lance Spitzner, a senior security architect for Sun Microsystems is the author of 

“Honeypots, Tracking hackers” [Spit02]. In this book, he proposes the following 

definition: 

“A honeypot is security resource whose value lies in being probed, attacked or 

compromised.” [Spit02, page 40] 

This is the most common definition and many papers refer to it ([Cole01, Baum02, and 

Seif02]). However its precise meaning is not so clear. If we take a deeper look at it, we 

see that the definition can be decomposed as follows: 

1. One term: « a security resource » 

2. A subordinate description: “its value which lies in being probed, attacked or 

compromised” 

4 



Now, the problem is to determine what a ‘security resource’ is. Lance Spitzner follows 

the definition up with this comment:  

“This means that whatever we designate as a honeypot, our expectations and goals are to 

have the system probed, attacked, and potentially exploited. It does not matter what the 

resource is (a router, scripts running emulated services, a jail, an actual production 

system). What does matter is that the resource’s value lies in its being attacked. If the 

system is never probed or attacked, then it has a little or no value. This is the exact 

opposite of most production systems, which you do not want to be probed or attacked.” 

[Spit02, page 40] 

The reader will note that honeypots, as defined in the previous comment, can be routers 

or production systems even though they are not really considered as “security resources”.  

Thus, the comment, which is supposed to illustrate the definition, actually proposes 

another one. Let us take a simple example to illustrate the problems with this definition. 

Let us assume that we have a firewall that logs all the failed connections he can see. One 

can reasonably argue that the system is expected to be probed and attacked. Indeed a 

firewall is by definition the first line of defense against external attacks. It protects 

production systems against the wild network and is consequently exposed to probes and 

attacks. The question is: is this firewall a honeypot according to Definition 1? We would 

say that, since its first value resides in the protection it offers, this is not a honeypot. 

However, based on the comments, this is far from being evident.  

In [Spit02, page 42], the following example of a honeypot deployment is given: an old 

and unused server in the DMZ is closely watching any traffic to or from it. According to 

L.Spitzner, the server is here to “determine if there is any unauthorized activity 

happening within the DMZ”. Can we reasonably call this machine a security resource? 

Furthermore, what happens if it logs nothing? According to lance Spitzner “if the system 

is never probed or attacked, then it has a little or no value”.  It is not a honeypot 

anymore in this case.  These contradictions are mentioned by L. Spitzner, on page 41 

where he writes:  

“Honeypots are a highly flexible tool that can be applied to a variety of different 

situations. This is why the definition may at first seem vague.” 

5 



This definition, even vague, is useful though as it offers a good feeling of what honeypots 

are. However our objective is a complete honeypot presentation. So we need to know 

exactly what can be called a honeypot. Consequently we present other definitions that can 

be found in academic as well as commercial papers, even if the previous one is the most 

widespread. 

2.1.3 Reto Baumann’s definition 

Reto Baumann, a Swiss engineer, discusses in [BauPla02] Lance Spitzner’s 

interpretation. His definition slightly differs from the previous one: 

“A honeypot is a resource which pretends to be a real target. A honeypot is expected to be 

attacked or compromised. The main goals are the distraction of an attacker and the gain of 

information about an attack and the attacker.” [BauPla02] 

Thus, a honeypot is here a resource that behaves as a real target but knows that it is not 

(according to the definition given by the Cambridge Dictionary of the verb ‘to pretend’). 

Here too we consider two examples to assess the validity of that definition:  

- A firewall which logs all traffic is not a honeypot because it does not feign to be a 

real target. Both Baumann and Spitzner seem to agree on this one. 

- In the case of the unused server that passively waits in the DMZ, the question is 

more delicate. The machine is a real server (Microsoft Exchange) but is not a 

target. It is not used anymore and there is no reason a priori that the machine 

becomes a target. Furthermore how could it decide to be a target? A target is “an 

object fired at during shooting practice” (Cambridge Dictionary). The server 

becomes a target if attacked. But the decision does not come from its side.  The 

expression ‘to pretend to be real target’ is very ambiguous. Does it stand for any 

object that can eventually become a hacker target or an object that once attacked 

is not the expected target.  

We are unable to conclude in the second example if it is, or not, a honeypot deployment. 

The server does nothing but logging connection attempts. It has no pretence. On the 

contrary we would classify it as a non-honeypot deployment as the definition is not 

verified. It is surprising to define as non-honeypot the first honeypot illustration given by 

Lance Spitzner. 

6 



Furthermore Reto Baumann introduces two new restrictions in the definition. To qualify 

as a honeypot, the resource must fulfill the following goals: i) Distraction of the attacker 

and ii) Gain of information about the attack and the attacker. Is it correct to say that 

distraction is the first honeypot motivation?  It is worth noting that “distraction” is not 

even mentioned in Lance Spitzner’s first chapter called ‘History and Definition of 

Honeypots’. 

2.1.4 Definition of SearchWebservices.com 

Many documents refer to Lance Spitzner’s definition. Some of them adapt it to a more 

restrictive usage. This is the case of searchWebservices.com, a commercial portal on IT 

services. They suggest this one [Web03]: 

“A honeypot is a computer system on the Internet that is expressly set up to attract and 

"trap" people who attempt to penetrate other people's computer systems. (This includes the 

hacker, cracker, and script kiddy.) Maintaining a honey pot is said to require a 

considerable amount of attention and may offer as its highest value nothing more than a 

learning experience (that is, you may not catch any hackers).” [Web03]  

This definition is quite restrictive. First and foremost honeypots are not reserved to the 

Internet usage. They can be implemented to reveal internal attacks. In addition some of 

them are not ‘expressively set up to attract’. One simple example consists in putting a 

basic Honeyd machine (see [PoDac] for more information on Honeyd) into the DMZ. It 

is likely to be scanned and attacked but it is not “expressly set op to attract people”. 

2.1.5 Barnett’s definitions 

The University of Wisconsin-Platteville (http://www.uwplatt.edu/) as well as R.C. 

Barnett from the sourceforge.net web site ([Sour03]) mentions the following definition: 

“An Internet-attached server that acts as a decoy, luring in potential hackers in order to 

study their activities and monitor how they are able to break into a system. Honeypots 

are designed to mimic systems that an intruder would like to break into but limit the 

intruder from having access to an entire network. If a honeypot is successful, the 

intruder will have no idea that s/he is being tricked and monitored.” [Sour03] 

7 

http://www.uwplatt.edu/


Here, other restrictions are expressed, like the fact that a honeypot may not be a real 

‘server’ offering some real service on the net. Indeed, a server is a computer/device 

which provides information or services to computers on a network. It cannot be a decoy. 

Again, this differs from Lance Spitzner’s view as explained before. 

Furthermore, honeypots are not necessarily designed to mimic systems that an intruder 

would like to break into. If we consider the second example that is invoked by Lance 

Spitzner, an old and unused server that is left on the DMZ to collect some traffic is a 

honeypot. It does not mimic anything.  

2.1.6 Definitions of the SANS institute 

The last definition we propose is suggested by the SANS Institute [Sans03]. It appears in 

an article written by Michael Sink in April 2001: “The use of Honeypots and Packet 

Sniffers for Intrusion Detection” [Sink01]: 

“Within the realm of computer security, a honeypot is a computer system designed to 

capture all traffic and activity directed to the system. While honeypots can be set up to 

perform simple network services in conjunction with capturing network traffic, most are 

designed strictly as a "lure" for would-be attackers. Honeypots differ from regular network 

systems in that considerably greater emphasis is placed on logging all activity to the site, 

either by the honeypot itself or through the use of a network/packet sniffer. A honeypot is 

designed to look like something an intruder can attack to gain access to a given system.” 

[Sink01] 

The problem with this definition is that it is rather verbose and vague. It characterizes 

honeypots from “regular network systems” as those that place “considerably greater 

emphasis on logging all activity”. But many systems can be designed to capture traffic 

and activities. What does ‘greater’ exactly mean? A firewall which logs connections or 

an application that stores history may be considered as honeypot. The definition is very 

broad as many computer systems are collecting activities and traffic directed to them.  

 

 

 

8 



2.1.7 Discussion 

We have presented the five most common definitions of a Honeypot. The list is obviously 

non-exhaustive but it leads to a disappointing conclusion that none of them seems fully 

satisfactory. They do not really offer a precise, concise and non ambiguous frame to 

decide what is, or not, a honeypot. We consider, in the next Subsection, the definitions 

that exist for another term: Honeynet.  

 2.2 Honeynet definitions 

2.2.1 Introduction 

Honeynets are defined as specific instances of honeypots ([Honey1], [Honey2], 

[honey3]), but Won-Seok Lee offers in his course slides a definition which implies that a 

honeynet consists in a  network of multiple systems:   

“Honeynet is nothing more than a high-involvement Honeypot within which risks and 

vulnerabilities are the same that exist in many organizations today. It is not a single system 

but a network of multiple systems” [Lee02]. 

2.2.2 Lance Spitzner’s definition 

The definition presented by Lance Spitzner is more accurate and it is the one which is 

generally used while referring to Honeynets [Honey1]: 

“Honeynets represent the extreme of research honeypots. They are high interaction 

honeypots, which allow learning a great deal; however they also have the highest level of 

risk. Their primary value lies in research, gaining information on threats that exist in the 

Internet community today. A Honeynet is a network of production systems. Unlike many of 

the honeypots, nothing is emulated. Little or no modifications are made to the honeypots. 

This gives the attackers a full range of systems, applications, and functionality to attack. 

From this it can be learnt a great deal, not only their tools and tactics, but their methods of 

communication, group organization, and motives.” 

To sum up a Honeynet is actually a network made up of real systems designed to be 

hacked. Some architectural Honeynet models have been suggested these few months 

9 



([GenH03], [Hone02]). Those of Lance Spitzner and the Florida Honeynet Project team 

have received a lot of attention and many security groups are testing them around the 

world. A concrete outcome of that work is the creation of the Honeynet Research 

Alliance (http://project.honeynet.org/alliance/) which is a forum dedicated to “share 

ideas, experiences and findings, helping to develop Honeynet research”. 

However, the definition remains unclear. Solutions called GenI & GenII Honeynets 

(described in [PoDab]) are based on virtual networks and virtual machines as some 

honeypots do. Thus, according to the previous definition they can not be called honeynets 

since the condition “unlike honeypots, nothing is emulated” is not fulfilled by any of 

them.  

 2.3 Honeytokens definition 

2.3.1 Introduction 

Another concept appeared during the beginning of 2003, called ‘honeytoken’. This word 

has mainly been used on the honeynet mailing list. A summary of their discussion is 

presented in [Focus03].  

In fact, the idea is not new and was already suggested in many papers such as [Stol88]. 

Their definition is however presented in the following paragraph to get an overview of 

the basic concept hidden behind this word. 

2.3.2 Lance Spitzner’s definition 

One of the greatest misconceptions of honeypots is that they have to be a computer, or 

some physical resource for the attacker to interact with. While this is the traditional 

manifestation of honeypots, as defined by lance Spitzner, it is not the only one. The 

definition he gives does not state a honeypot has to be a computer; merely that it is a 

resource that bad guys should interact with.  

That is exactly what a honeytoken is: a honeypot which is not a computer. Instead it can 

be any type of digital entity. A honeytoken can be a credit card number, Excel 

spreadsheet, PowerPoint presentation, a database entry, or even a bogus login. 

Honeytokens come in many shapes or sizes but they all share the same concept: a digital 

10 

http://project.honeynet.org/alliance/


or information system resource whose value lies in the unauthorized use of that resource. 

Just as a honeypot computer has no authorized value, no honeytoken has any authorized 

use.  

The concept of honeytokens is not new, as Lance Spitzner notices in [Spit03]. This 

concept is as old as security itself. For example some map-making companies insert 

bogus cities or roads into their maps to determine if competitors are selling copied 

versions of their own maps. In Cliff Stoll's book "The Cuckoo's Egg," he deploys digital 

files to track and monitor a German hacker. While the concept is not new, the term is.  

A honeytoken is just like a honeypot. We should even say that a honeytoken is a 

particular honeypot (as honeynets are). Any interaction with a honeytoken most likely 

represents unauthorized or malicious activity. A classic example of how a honeytoken 

could work is the "John F. Kennedy" medical records example [Focus03]. U.S. hospitals 

are required to enforce patient privacy and only certain authorized people have access to 

patient data (such as doctors, nurses, etc). A honeytoken could be used for such a 

purpose. A bogus medical record called "John F. Kennedy" is created and loaded into the 

database. This medical record has no true value because there is no real patient with that 

name. Instead, the record is a honeytoken, an entity that has no authorized use. If any 

employee is looking for interesting patient data, this record will definitely stand out. If 

someone accesses it they have most likely violated the system's usage policy. 

 

3. Existing Classifications 

 3.1 Lure/Defend/Study Classification 

This classification proposes to classify tools based on one of their objectives. Indeed, 

three are recurrent in literature: to lure, to defend or/and to study. 

3.1.1 Lure 

In this case, the honeypot is used as a security measure. It aims at getting all hacker’s 

attention on the honeypot and not on the real system. Damages would be less [BauPla02]. 

11 



Honeypots can be used as decoys to trick and confuse hackers into finding vital 

information.  

They are many methods to apply this security technique and the honeypot can be used: 

- To waste attacker time. Sticky connections, long responses or endless data 

transfers are solutions to keep the attacker attention focused on the honeypot 

[Lab03]. 

- To route/filter incoming requests. If packets are suspicious and dangerous they 

may be forwarded to the honeypot instead of the production server. The attacker 

interacts with the honeypot and so he is prevented to compromise the real system 

[Bait03]. 

- To consume the resources of the attacker by sending malformed packets or by 

answering abnormally [THP03]. 

3.1.2 Defend 

Honeypots may be implemented as defensive tools.  There are two prevalent methods: 

Deception and Intimidation [Coh01]. In [Coh88], examples are presented of the use of 

deception in military campaigns dating back thousand of years. With the same approach 

Fred Cohen presents in [Coh01] a classification of defense for information systems, in 

which one of those defenses is deception: 

“Typical deceptions include concealment, camouflage, false and planted information, 

reuses, displays, demonstrations, feints, lies, and insight (Dunnigan, 1995). Examples 

include facades used to misdirect attackers as to the content of a system, false claims that 

a facility or system is watched by law enforcement authorities, and Trojan horses planted 

in software that is downloaded from a site. Deceptions are one of the most interesting 

areas of information protection (…).”[Coh88] 

Based on this military defense Fred Cohen suggests in [Coh88] to transform honeypots 

into deception tools. We notice in this definition that intimidation is already mentioned in 

the deception concept (“false claims that a facility or system is watched by law 

enforcement authorities”). To deceive, a honeypot must provide realistic responses to 

requests so that an attacker does not suspect it is a trap. To intimidate, a honeypot might 

advertise on one unauthorized deception port a default banner such as “Honeypot in Use” 

12 



which will increase the intruder’s fear of being caught in a manner similar to posting a 

security alarm sign in the physical world. 

Other defensive methods based on honeypot technologies are emerging. For instance 

honeypots can be set up next to firewalls. All packets coming into such a honeypot are by 

definition suspicious. The honeypot can be used to automatically update the firewall 

blacklist. Such an automatic countermeasure must be carefully designed to prevent 

misusers from using it to launch denial-of-service attacks. 

 3.1.3 Study 

One major motivation for building honeypots is to learn hacker’s techniques and tools. 

That way system administrators and agents can improve their forensics and defense 

techniques. The honeypot is deployed as a sensor. Its mission is to gather information 

about attack trends, attacker tools and network activities. It can provide vital attack 

signature information to other security tools, especially intrusion detection systems and 

firewalls. The results of the analysis of its data can be used to tune the sensors and, hence, 

decrease the number of false positives and/or increase the alert level of some alarms.  

3.1.4 Discussion 

This classification is interesting. Many honeypot applications are suggested. However, 

since these three objectives are not mutually exclusive, they can not be used as a basis to 

build taxonomy for honeypots.  

3.2   Production/Research classification 

Lance Spitzner explains in [Spit02] that honeypots can be classified according to their 

use. They add value to security and reduce the organization’s overall risk but in different 

ways. Following this, Martin Roesch (creator of the Snort Intrusion Detection System) 

defines in [Honey2] two categories of honeypots: 

Production Honeypots are systems that help mitigate risk in the organization or 

environment. They provide specific value to securing systems and networks by preventing 

(deception/deterrence to have attackers waste time and resources for instance), detecting  

13 



(Intrusion Detection Systems help by reducing false positives, false negatives and data 

aggregation) and responding (honeypots can easily be taken offline for further analysis). 

Honeypots can be a powerful tool to complement the reaction capabilities of a network 

administrator by capturing precise details on how the attacker got in and what they did. 

Research Honeypots give a platform to study cyber threats and fill the lack of information 

on the enemy. This becomes an educational tool. 

This classification is simpler than the previous one. We are tempted to make an analogy 

between these two: 

2. Production Honeypots: equivalent to honeypots design to catch or to defend 

3. Research Honeypots: equivalent to honeypots design to study 

But there is still no way to classify honeypot solutions with it. Moreover many 

administrators who are in charge of the security of production systems use honeypots to 

study the network activity. This simple example shows that a honeypot can easily belong 

to both categories. 

3.3 Level of interaction classification 

Lance Spitzner introduces another honeypot classification by level of interaction 

[Spit02]. How to architect a honeypot depends on the objectives it has to fulfill. A 

complex honeypot can be built to give the attacker a complete operating system with 

which to interact. However, for detecting any unauthorized activity such as scanning, a 

simpler honeypot which merely emulates a variety of services in operation can be built. 

And when capturing the latest worm for analysis is the main requirement, then a 

customized honeypot with the intelligence to interact with the worm and capture the 

worm activity should be more appropriate. 

A honeypot can offer many different functionalities and the level of interaction they offer 

to attackers is vital. It is supposed to give a granular scale with which to measure and 

compare honeypots. The more a honeypot can do and the more an attacker can do to a 

honeypot, the greater the information that can be derived from it. However, by the same 

token, the more an attacker can do to the honeypot, the more potential damage an attacker 

can do. Each level has its advantages and drawbacks which are briefly exposed in more 

details in the next three paragraphs. 

14 



3.3.1 Low-Interaction Honeypots 

A low-interaction honeypot provides certain fake services [Baum02]. In a basic form, 

these services can only be implemented by having somebody listening on a specific port 

as illustrated in figure 1. Services are limited to listening ports. For example a simple 

Unix command like: “netcat –l –p 80 > /log/honeypot/port_80.log”  could be used to 

listen on port 80 (HTTP) and log all incoming traffic to a log file. In such a way all 

incoming traffic can easily be recognized and stored. However, with such a simple 

solution it is not possible to catch communication of complex protocols. The honeypot 

cannot trace TCP connections for instance as it logs only the first connection requests 

without answering. 

On a low-interaction protocol there is no real operating system target that an attacker can 

operate on. This will minimize the risk significantly because the complexity of an 

operating system is eliminated. On the other hand this is also a disadvantage. It is not 

possible to watch an attacker interacting with the operating system. A low-interaction 

honeypot is like a one-way connection as the honeypot is only listening [Baum02]. Its 

role is very passive and it does not alter any traffic. It is used to generate logs or alerts 

when incoming packets match their patterns. 

We can classify as low-interaction honeypots tcpdump and tiny Honeypots for instance. 

They are described with more details in [PoDab]. 

15 



 

Operating 

Fake daem
on 

System 

hard 

diskOther local 

resources 

 

Figure 1: Low-Interaction honeypot (picture taken from [BauPla02]) 

3.3.2 Mid-Interaction Honeypots 

A Mid-Interaction honeypot offers richer interaction capabilities but does not provide any 

real underlying operating system target as shown in figure 2. The fake daemons are more 

sophisticated and have deeper knowledge about the specific services they provide. 

Generally speaking the attacker gets a better illusion that a real operating system exists 

and he has more possibilities to interact and probe the system. Special care has to be 

taken for security checks as all developed fake daemons need to be as secure as possible 

(buffer overflow risk, etc). Furthermore the knowledge for developing such a system is 

very high as each protocol and service has to be understood in some depth. In existing 

implementations though, fake services are often limited to simple scripts.  Honeyd, 

Specter and LaBrea are honeypot solutions that can be classified as mid-interaction 

honeypots (see [PoDa03b] for more information on these tools). 

16 



 
Operating 

Fake daem
on 

System 

hard 

diskOther local  

resources 

 

Figure 2: Mid-Interaction honeypot (picture taken from BauPla02]) 

 

 

 3.3.3 High-Interaction Honeypots 

A High-Interaction honeypot has a real underlying operating system to offer to the 

attacker as illustrated in figure 3. This leads to much higher risk as the complexity 

increases. On the other hand the possibilities to gather information, the possible attacks 

and the attractiveness increase a lot. The goal of a hacker will most likely be to get as 

many privileges as possible on the target machine. By providing a full operating system 

to the attacker we offer him the possibility to upload and install new 

services/applications. This implies that the system must be under surveillance all the 

time. All actions can, and must, be recorded and analyzed to gather more information 

about the blackhat community. R. Baumann and C. Plattner write that it is the main goal 

of a high-interaction honeypot and it legitimates the higher risk [BauPla02]. 

17 



Lance Spitzner gives in the SecurityFocus forum ([Secu03]) more information of his 

classification and explains that: “(his) perception of low interaction vs. high interaction is 

intent.  With low interaction, we intend on limiting the attacker to only emulated services.  

With high interaction honeypots, we intend on giving attacker access to the full operating 

system.  Both deployments require a real operating system.  With low interaction, the 

emulated services do run on a real operating system, as in Tiny Honeypot, Specter, and 

Honeyd.  However, the goal is to limit the attacker to interacting with just the emulated 

services and not give them access to the operating system.” 

We observe that Honeyd and Specter are classified as mid to high interaction honeypots. 

The reason is that these tools are highly configurable and their interaction level depends 

on their configuration. For instance, Honeyd services are emulated by small scripts. The 

more complex scripts are designed, the higher interaction the honeypot should manifest. 

However, as George Bakos so eloquently put it, “when dealing with blackhat 

communities, what is intended and what is gotten may be two different things.” [THP03] 

(George Bakos is the Tiny Honeypot designer).  

 

 

 

Fake daem
on

Operating 

System 

hard 

diskOther local 

resources 

Figure 3: High-Interaction honeypot (figure taken from [BauPla02] 

18 



3.3.4 Summary 

Each level of interaction has its advantages and disadvantages. The following table 1 

extracted from [Spit02] summarizes what has been said so far. In the column entitled 

‘Work to Deploy and Maintain’, one finds the time required to run and maintain the 

honeypot. In the ‘Knowledge to develop’ one, one sees the amount of pre-required 

knowledge to build a honeypot environment. The column ‘Level of Risk’ column is an 

indicator of the risk run when implementing a honeypot into one system. 

 

Table 1: Level Interaction and Honeypots 

Level of 

Interaction 

Information 

gathering 

Work to 

Deploy 

and 

Maintain 

Compromise 

wished 

Knowledge to 

develop 

Level of risk 

Low Connection 

Attempts 

Easy - Low Low 

Medium Requests Involved - Low Medium 

High All Difficult Yes High High 

 3.4 Discussion 

We have presented in this paragraph three classifications. We have tried to use these 

definitions and classifications rigorously on a large number of ‘honeypot’ tools available 

today. The experience highlighted the non-usability of what had proposed so far. Many 

tools had to be defined as belonging to many categories. For instance, if we consider the 

‘interaction’ classification, Honeyd or Specter may join the low or medium group 

depending on their configuration.  They can simply listen to ports or directly interact with 

the intruder. Simply classifying honeypots into the class of research-based or production-

based systems does not enable us to draw precise conclusions neither about the 

information a honeypot is able to gather nor about the reactions that it might have. 

The terminology approximation is confirmed by many details and mailing list questions. 

Lance Spitzner modifies its classification in [Secu03] and drops the ‘medium-interaction’ 

19 



category. As he explains, both honeypot technologies and our understanding of them 

have dramatically changed. However classifications are not supposed to change each 

year. The scientific community must share a precise vocabulary in order to communicate 

efficiently and in a non ambiguous way.  

 

4. Our Honeypot definition 

 4.1 Concept 

In order to provide a more rigorous definition of what honeypots are, we propose to take 

advantage of well-defined concepts used by the dependability community. To that end, 

we reuse the definitions proposed b several contributors within the European MAFTIA 

project. [PoSt03, page 32] introduces the notion of attack, vulnerability and intrusions as 

follows: 

 

Attack – a malicious interaction fault, through which an attacker aims to deliberately 

violate one or more security properties; an intrusion attempt. 

Vulnerability – a fault created during development of the system, or during operation, 

that could be exploited to create an intrusion. 

Intrusion – a malicious, externally-induced fault resulting from an attack that has been 

successful in exploiting vulnerability. 

 

Vulnerabilities are the primordial faults existing inside the components, in particular 

design or configuration faults (e.g., coding faults allowing program stack overflow, files 

with root setuid in Unix, naïve passwords, unprotected TCP/IP ports). Note, however, 

that a successful attacker might purposely introduce vulnerability (in the form of 

malicious logic such as Trojan horses, trapdoors, virus, worms and so on) as a step in his 

overall plan of attack. 

 

Typical examples of intrusions interpreted in terms of vulnerabilities and attacks are: 

20 



1. An outsider penetrating a system by guessing a user password: the vulnerability 

lies in the configuration of the system, with a poor choice of password (too short, 

or susceptible to a dictionary attack). 

2. An insider abusing his privilege (i.e., a misfeasance): the vulnerability lies in 

the specification or the design of the (socio-technical) system (violation of the 

principle of least privilege, inadequate vetting of key personnel). 

3. An outsider using “social engineering”, e.g., bribery, to cause an insider to 

carry out a misfeasance on his behalf: the vulnerability is the presence of a 

bribable insider, which in turn is due to inadequate design of the (socio-technical) 

system (inadequate vetting of key personnel). 

 

An intrusion is a security policy violation. It results from a vulnerability and an attack. 

But attacks are not directly observable and some conditions must be satisfied to observe 

an intrusion. More information is available in [PoSt03].  

 

Based on this strong terminology, it is easier to build an intuitive and rigorous honeypot 

definition: 

 

A honeypot consists in an environment where vulnerabilities have been deliberately 

introduced in order to observe intrusions.   

 

A system can be attacked (either from the outside or the inside) without any degree of 

success. In this case, the attack exists, but the mechanisms that protect the system or 

resource targeted by the attack are effective enough to prevent any intrusion. An attack is 

thus an intrusion attempt and an intrusion results from an attack that has been (at least 

partially) successful. So a honeypot cannot guarantee that intrusions will be observed. It 

helps observing intrusions if any.  

Why are intrusions usually difficult to observe? 

In a classic production system all is done to prevent intrusions. That is the traditional 

approach of security tools such as firewalls, access policies, antivirus, and so on. They 

21 



protect the system from specific attacks and they reduce (in theory) the system 

vulnerabilities.  

A firewall is considered a first line of defense in protecting private information for 

instance. Security administrators protect a production network from intrusion and 

degradation, and honeypots operate on the opposite. We want to observe intrusions. So 

the idea consists in injecting vulnerabilities in the system. These sleeping vulnerabilities 

lead to intrusion if correctly exploited by attacks.  

Two examples can be: 

- An open port on the server where all connection attempts are logged (a port that is 

closed in theory, the vulnerability). 

- A firewall which logs refused accesses. Vulnerabilities are these (theoretically) 

forbidden accesses.  

 

What makes the new solutions presented in [PoDab] very attractive is their relative 

independency. They are not correlated to the existing system and they do not interfere 

with the production components. Generally speaking they offer a larger observation field 

and an all-in-one way to observe, collect and analyze data. 

 4.2 Structure 

 

The honeypot consists typically in four major activities: 

- Building the environment that (eases) the observation 

 Honeypots create environments which offer the same conditions and behaviors 

than real working systems. They can be distinguished by their OS emulation 

methods, their services and network simulation methods as well as their methods 

to provide resources and data ([Spit03], [Honey4], [Honey5]). These simulation 

methods are not mandatory however to build an observation environment. A 

honeypot is a solution that should come beside the existing system and that should 

have limited impact on it. 

- Collecting observation data 

22 



The purpose of Data Collection is to log as much data on the attacker’s activity as 

possible (or wanted). The key is collecting information at many layers. The 

Honeynet Project has identified three critical layers which are firewall logs, 

network traffic and system activity [Spit02.]. It is not mandatory however to 

implement these three data collection layers.  

- Analyzing information 

Honeypots are collecting some information either by themselves or by 

complementary tools. The information analysis follows the same principle: some 

honeypots directly integrate methods in their architecture while others require 

additional tools.  

- Taking appropriate decisions 

This component is optional and few honeypots are currently using one.  

Behavior on detection, or responses, are actions taken by the environment as a 

result of a generated event. We distinguish two kinds of responses: reactions 

which concern the honeypot itself and reactions that tend to modify the external 

system. Reactions on the system may be considered as active or passive. There 

are active reactions when the environment is able to notify the existing security 

system that errors have been observed on the honeypot platform. Reactions on the 

honeypot environment are classified into two categories: forward recovery and 

backward recovery (see [Pow95] for more details on these core dependability 

concepts).   

 

Building the environment is not easy and many tools aim at simplifying this task. Each 

month new ones are found on the internet. A comparative survey is given in [PoDa03b] 

to describe some of them and to explain their main features. 

 

 

 

 

 

23 



5. Conclusion 

This existing terminology is obviously not clear enough, as it is shown in section 2. Some 

groups have ‘adopted’ these terms but are unable to provide any clear definition. In order 

to provide a more rigorous definition of what honeypots are, we propose to take 

advantage of well defined concepts used by the dependability community. This new 

terminology is briefly explained in section 4 and will be presented with more details in 

another technical report. 

 Many definitions are proposed in different mailing lists. We hope this work will help 

converging on a unanimous concept. Research is built from rigorous definitions and the 

honeypot research future depends on them too.   

 

 

 

 

 

 

 

 

 

 

 

24 



5. Bibliography 
[AbKK02] H. AbdelallahElhadj,, H. M. Khelalfa and  H. M. Kortebi, “An experimental sniffer detector: 

SnifferWall”, SEcurité des Communications sur Internet Worshop (SECI'02), Tunisia, Sept. 

2002:.http://www.lsv.ens-cachan.fr/~goubault/SECI-02/Final/actes-seci02/pdf/008-

Abdelallahelhadj.pdf  

[Bait03] Bait N Switch Honeypot from Team Violating site: http://violating.us/projects/baitnswitch/  

[Baum02] R.Baumann. “White Paper: Honeypots”. February 2002. Available on line: 

http://security.rbaumann.net/download/whitepaper.pdf 

[BauPla02]  R. Baumann, C. Plattern. Honeypots, diploma thesis. Feb. 2002 

[Bell92]      S. Bellovin, “There Be Dragons”, Proc. of the Third Usenix Security Symphosium, Baltimore 

MD. Sept.   1992. Available on line:  http://www.research.att.com/~smb/papers/dragon.pdf 

[Bell93]  S. M. Bellovin, “Packets Found on an Internet”, Computer Communications Review 23:3, pp. 

26-31, July 1993. Available on line: http://www.research.att.com/~smb/papers/packets.pdf 

[Ches92] B. Cheswick, “An evening with Berferd in which a cracker is lured, endured and studied”, 

Proc Winter USENIX Conference, San Francisco,  Jan 20, 1992.  

[Coh88]      F. Cohen, “Deception and Perception management in Cyber-Terrorism”. 1988. Paper available 

at: http://www.securityfocus.com/library/1278/scoreit 

[Coh99]       F. Cohen, “A Mathematical Structure of Simple Defensive Network Deceptions”, 1999. 

[Coh01]       F. Cohen, “A Framework for Deception”, IFIP-TC11, ‘Computers and Security’, 2001. 

[Coh02] F. Cohen, “method and Apparatus Providing Deception and/or Altered Operation in 

Information Systems”, 2002. 

[Cole01]      E. Cole. Hackers Beware. New Riders Publishing 2001. 

[DDW99]  M. Dacier, H. Debar, A. Wespi, “Towards a Taxonomy of Intrusion-Detection Systems”, 

Computer Networks, 31 (8), pp. 805-22, 1999. 

[Focus03] Lance Spizner, “Honeytokens: the Other Honeypot”, Security Focus information, July 2003. 

[GenH03]  “Know Your Enemy: GenII Honeynets Easier to deploy, harder to detect, safer to maintain”, 

by the honeynet Project members, June 2003. Available on line:   

http://project.honeynet.org/papers/gen2/ 

[GrDa98] S. Grundschober, M. Dacier, “Design and Implementation of a Sniffer Detector”, Recent 

Advances on Intrusion Detection Workshop (RAID98), 1998.www.raid-symposium.org/raid98/ 

[Grun98] S. Grundschober, “Sniffer Detector Report”, Master Thesis, Eurecom Institute , June 1998, 50 

pages, ref. Eurecom :  CE-98/IBM/GRUN - Document number: 1914. Available on line: 

http://www.eurecom.fr/~nsteam/Papers/grundschober98.ps 

[Hone02] “Know Your Enemy: Learning with User-Mode Linux Building Virtual Honeynets using UML”, 

Honeynet Project, December 2002. Available on line: http://www.honeynet.org/papers/uml/ 

[Honey1]     Honeynet Project, “Know Your Enemy: Defining Virtual Honeynets”. Sep. 2002. Available on 

line at: http://project.honeynet.org/papers/index.html 

25 

http://www.lsv.ens-cachan.fr/~goubault/SECI-02/Final/actes-seci02/pdf/008-Abdelallahelhadj.pdf
http://www.lsv.ens-cachan.fr/~goubault/SECI-02/Final/actes-seci02/pdf/008-Abdelallahelhadj.pdf
http://violating.us/projects/baitnswitch/
http://security.rbaumann.net/download/whitepaper.pdf
http://www.research.att.com/~smb/papers/dragon.pdf
http://www.research.att.com/~smb/papers/packets.pdf
http://www.securityfocus.com/library/1278/scoreit
http://www.raid-symposium.org/raid98/
http://www.eurecom.fr/~nsteam/Papers/grundschober98.ps
http://www.honeynet.org/papers/uml/
http://project.honeynet.org/papers/index.html


26 

[Honey2] Honeynet Project, “Know Your Enemy: Part I”. 2001. Available on line at: 

http://project.honeynet.org/papers/index.html 

[Honey3] Honeynet Project, “Know Your Enemy: Part II”. 2001. Available on line at: 

http://project.honeynet.org/papers/index.html 

[Honey4] Honeynet Project, “Know Your Enemy: Motives”. 2002. Available on line at: 

http://project.honeynet.org/papers/index.html 

[Honey5] Honeynet Project, “Know Your Enemy: A Forensic Analysis”. 2002. Available on line at: 

http://project.honeynet.org/papers/index.html 

[Lab03] LaBrea-The Tarpit home page: http://hackbusters.net/LaBrea.May2002 

[Lee02]       Won-Seok Lee, “Honeypots”. Ajou University Info. Comm. & Security lab. Available on line 

at: http://cesec.ajou.ac.kr/board/include/2001security/ files/phpQ2G4Q6/Honeypot.ppt 

[PoDab]    F. Pouget, M. Dacier, “Honeypot, Honeynet: A comparative survey”. Eurecom Research Report 

RR-03-082. August 2003. 

[PoDac] F. Pouget, M. Dacier, “Honeypot platform: Experimental Report”. Eurecom Research Report 

RR-03-083. September 2003.  

[PoSt03] “Conceptual Model and Architecture of MAFTIA”, D. Powell et R. Stroud (Editors),  MAFTIA 

Project (IST-1999-11583), Deliverable D21, January 2003; available on line at  

www.maftia.org. 

[Pow95]      D. Powell, “failure Mode Assumptions and Assumption Coverage: A Revised Version”, LAAS-

CNRS, France. Research Report 91462.  

[Sans03]      SANS Institute home page:  http://ww.sans.org 

[Secu03]      SecurityFocus mailing lists Archives available on line :  http://www.securityfocus.com/archive 

[Seif02]  K. Seifried, “Honeypotting with VMware – basics”.  www.seifried.org/security/ids/20020107-

honeypot-vmware-basics.html 

[Sink01]   M. Sink, « The Use of Honeypots and packet Sniffers for Intrusion Detection”, Indiana 

University of Pennsylvania, April 2001. Available on line: 

http://www.lib.iup.edu/comscisec/SANSpapers/msink.htm 

[Sour03]       Sourceforge home page: http://honeypots.sourceforge.net/ 

[Spit02] L. Spitzner, “Honeypots: Tracking Hackers”. Addislon-Wesley, ISBN from-321-10895-7, 

2002.  

[Spit03] L. Spitzner, “Honeytokens: The Other Honeypot”, 2003. Available on line at: 

www.securityfocus.com/infocus/1713 

[Stol88] C. Stoll, “Stalking the Wiley Hacker”, Communications of the ACM, Vol. 31 No5. May 1988. 

[THP03] Tiny Honeypot home page: http://www.alpinista.org/thp/ 

[Web03]      Webservices commercial IT portal  http://www.webservices.org/ 

http://project.honeynet.org/papers/index.html
http://project.honeynet.org/papers/index.html
http://project.honeynet.org/papers/index.html
http://project.honeynet.org/papers/index.html
http://hackbusters.net/LaBrea.May2002
http://www.maftia.org/
http://ww.sans.org/
http://www.securityfocus.com/archive
http://www.lib.iup.edu/comscisec/SANSpapers/msink.htm
http://honeypots.sourceforge.net/
http://www.alpinista.org/thp/
http://www.webservices.org/

	Introduction
	2. Existing terminology
	2.1 Honeypot definitions
	2.1.1 Introduction
	2.1.2 Lance Spitzner’s definition
	2.1.3 Reto Baumann’s definition
	2.1.4 Definition of SearchWebservices.com
	2.1.5 Barnett’s definitions
	2.1.6 Definitions of the SANS institute
	2.1.7 Discussion

	2.2 Honeynet definitions
	2.2.1 Introduction
	2.2.2 Lance Spitzner’s definition

	2.3 Honeytokens definition
	2.3.1 Introduction
	2.3.2 Lance Spitzner’s definition


	3. Existing Classifications
	3.1 Lure/Defend/Study Classification
	3.1.1 Lure
	3.1.2 Defend
	3.1.3 Study
	3.1.4 Discussion

	3.2   Production/Research classification
	Level of interaction classification
	3.3.1 Low-Interaction Honeypots
	3.3.2 Mid-Interaction Honeypots
	3.3.3 High-Interaction Honeypots
	3.3.4 Summary

	3.4 Discussion

	4. Our Honeypot definition
	4.1 Concept
	4.2 Structure

	5. Conclusion
	5. Bibliography

