
Topology-Centric Look-Up
Service

L. Garcés-Erice1, K.W. Ross2, E.W. Biersack1,
P.A. Felber1, and G. Urvoy-Keller1

1 Institut EURECOM
06904 Sophia Antipolis, France
{garces|erbi|felber|urvoy}@eurecom.fr

2 Polytechnic University
Brooklyn, NY 11201, USA

ross@poly.edu

Abstract. Topological considerations are of
paramount importance in the design of a
P2P lookup service. We present TOPLUS,
a lookup service for structured peer-to-peer
networks that is based on the hierarchical
grouping of peers according to network IP
prefixes. TOPLUS is fully distributed and
symmetric, in the sense that all nodes have
the same role. Packets are routed to their des-
tination along a path that mimics the router-
level shortest-path, thereby providing a small
“stretch”. Experimental evaluation confirms
that a lookup in TOPLUS takes time com-
parable to that of IP routing.

1 Introduction

Several important proposals have recently been put
forth for providing a distributed peer-to-peer (P2P)
lookup service, including Chord [1], CAN [2], Pastry [3]
and Tapestry [4]. These lookup services can be com-
pared in many ways, including speed of lookup, imple-
mentation complexity, symmetry, potential for caching,
and resilience to faults and attacks. It turns out that
for many measures — like speed of lookup and poten-
tial for caching — it is highly desirable that the lookup
service takes the underlying IP-level topological consid-
erations into account. Acknowledging the importance
of topological considerations, researchers have recently
proposed a number of modifications to the original
lookup services that take topology into special consid-
eration [5–7].

It is our position that topological considerations are
of paramount importance in a P2P lookup service, and
therefore, when designing a lookup service, topology
needs to be built in from the ground up. In this paper
we explore the following issues:

1. How can we design a P2P lookup service for which
topological considerations take precedence?

2. What are the advantages and disadvantages of such
a topology-centric design?

3. How can the topology-centric design be modified
so that the advantages of the original design are
preserved but the disadvantages are abated?

To respond to the first question, we propose a new
lookup service, Topology-Centric Look-Up Ser-
vice (TOPLUS), that has been expressly designed
from the ground up to exploit the topological structure
of the underlying Internet. In TOPLUS, nodes that are
topologically close are organized into groups. Further-
more, groups that are topologically close are organized
into supergroups, and supergroups that are topolog-
ically close are organized into hypergroups, etc. The
groups within each level of the hierarchy can be het-
erogeneous in size, and the fan-outs from the groups
can also be heterogeneous. The groups can be de-
rived directly from the network prefixes contained in
BGP tables or from other sources. TOPLUS has many
strengths, including:

– Stretch: Packets are routed to their destination
along a path that mimics the router-level shortest-
path distance, thereby providing a small “stretch”.

– Caching: On-demand P2P caching of data is
straightforward to implement, and can dramati-
cally reduce average file transfer delays.

– Efficient forwarding: As we shall see, nodes can
use highly-optimized IP longest-prefix matching
techniques to efficiently forward messages to the
next hop.

– Symmetric: Although TOPLUS has been care-
fully designed to reflect the underlying network
topology, all nodes have similar responsibilities.

TOPLUS is an “extremist’s design” to a topology-
centric lookup service. At the very least, it serves as
a benchmark against which other lookup services can
compare their stretch and caching performance.

After describing the TOPLUS lookup service in de-
tail, we evaluate its performance using several group
structures derived from a large set of prefixes, obtained
mainly from BGP routing tables. Experimental results
show that TOPLUS provides a small stretch in most
configurations. To obtain near-optimal stretch figures,
however, nodes must maintain quite large routing ta-
bles.

This paper is organized as follows. We present re-
lated work at the end of this section. In Section 2 we
describe the TOPLUS design, and we elaborate on its

limitations and possible solutions in Section 3. In Sec-
tion 4 we describe how we obtained the nested group
structures from BGP tables and our measurement pro-
cedure for evaluating the average stretch. We then pro-
vide and discuss our experimental results. We conclude
in Section 5.

Related Work

In [5], the authors show how the original CAN de-
sign can be modified to account for topological con-
siderations. Their approach is to use online measure-
ment techniques to group nodes into “bins”. Although
this measurement-based, binning technique can signif-
icantly reduce CAN’s stretch, the resulting stretch re-
mains significant in their simulation results.

In [6], the authors examine the topological proper-
ties of a modified version of Pastry. In this design, a
message typically takes small topological steps initially
and big steps at the end of the route. We shall see that
TOPLUS does the opposite, initially taking a large
step, then a series of very small steps. Although [6]
reports significantly lower stretches than other lookup
services, it still reports an average stretch of 2.2 when
the Mercator [8] topology model is used. Coral [9] has
been recently proposed to adapt Chord to the Internet
topology. Coral organizes peers in clusters and uses a
hierarchical lookup of keys that tries to follow a path
inside one peer’s cluster whenever possible. The query
is passed to higher-level clusters when the lookup can’t
continue inside the original cluster.

Cluster-based Architecture for P2P (CAP) [10] is a
P2P architecture that has been built from the ground
up with topological considerations. However, TOPLUS
differs from CAP in many ways. Most importantly,
CAP is an unstructured P2P architecture whereas
TOPLUS is a structured DHT-based architecture.
Also, CAP uses a two-level hierarchy whereas TOPLUS
uses a multi-level hierarchy, and CAP uses “supern-
odes” for managing groups whereas TOPLUS uses
a symmetric design. Nevertheless, although TOPLUS
does not mandate a specific clustering technique, we
believe the clustering procedures of Krishnamurthy
and Wang [11, 12] used in CAP are currently among
the most promising techniques to create the groups in
TOPLUS.

2 Overview of TOPLUS

In a P2P lookup service, each key is under the respon-
sibility of some up node. Given a message containing

key k, the P2P lookup service routes the message to
the current up node that is responsible for k. The mes-
sage travels from source node ns, through a series of
intermediate peer nodes n1, n2, . . . , nv, and finally to
the destination node, nd, which is the node responsible
for k.

The principal goals of TOPLUS are as follows: (1)
Given a message with key k, source node ns sends the
message (through IP-level routers) to a first-hop node
n1 that is “topologically close” to nd; (2) After arriving
at n1, the message remains topologically close to nd as
it is routed closer and closer to nd through the sub-
sequent intermediate nodes, until it finally reaches nd.
Clearly, if the lookup service satisfies these two goals,
the stretch should be very close to 1. We now formally
describe TOPLUS in the context of IPv4.

Let I be the set of all 32-bit IP addresses.3 Let G be
a collection of sets such that G ⊆ I for each G ∈ G.
Thus, each set G ∈ G is a set of IP addresses. We refer
to each such set G as a group. Any group G ∈ G that
does not contain another group in G is said to be an
inner group. We say that the collection G is a proper
nesting if it satisfies all the following properties:

1. I ∈ G.
2. For any pair of groups in G, the two groups are

either disjoint, or one group is a proper subset of
the other.

3. For each G ∈ G, if G is not an inner group, then G
is the union of a finite number of sets in G.

4. Each G ∈ G consists of a set of contiguous IP ad-
dresses that can be represented by an IP prefix of
the form w.x.y.z/n (for example, 123.13.78.0/23).

As shown in Section 4, the collection of sets G can
be created by collecting the IP prefix networks from
BGP tables and/or other sources [11, 12]. In this case,
many of the sets G would correspond to ASes, other
sets would be subnets in ASes, and yet other sets would
be aggregations of ASes. This approach of defining G
from BGP tables require that sets be massaged so that
the four properties of a proper nesting are satisfied.
Additionally, some of the groups may be aggregated,
and new artificial tiers may be introduced, in order to
reduce the size of the nodal routing tables. Note that
the groups differ in size, and that the number of groups
within a group (the fanout) is also different from group
to group.
3 For simplicity, we assume that all IP addresses are per-

mitted. Of course, some blocks of IP addressed are pri-
vate and other blocks have not been defined. TOPLUS
can be refined accordingly.

It is straightforward to see that if G is a proper nest-
ing, then the relation G ⊂ G′ defines a partial order-
ing over the sets in G. This partial ordering defines a
partial-order tree with multiple tiers. The set I is at
tier-0, the highest tier. A group G belongs to tier 1
if there does not exist a G′ (other than I) such that
G ⊂ G′. We define the remaining tiers recursively in
the same manner (see Figure 1). Note that each of the
leaf groups in the partial order tree is an inner group.

2.1 Node State

Each up node is required to know the IP addresses
of a relatively small part of all up nodes. To de-
scribe this node state, let L denote the number of
tiers in the tree, let U be the set of all current up
nodes and consider a node n ∈ U . Node n is con-
tained in a collection of telescoping sets in G; denote
these sets by HN (n),HN−1(n), · · · ,H0(n) = I, where
HN (n) ⊂ HN−1(n) ⊂ · · · ⊂ H0(n) and N ≤ L is the
tier depth of n’s inner group. Except for H0(n), each
of these telescoping sets has one or more siblings in the
partial-order tree (see Figure 1). Let Si(n) be the set
of siblings groups of Hi(n) at tier i. Finally, let S(n)
be the union of the sibling sets S1(n), · · · ,SN (n).

As part of node n’s state information, for each group
G ∈ S(n), node n should know the IP address of at
least one node in G. Also, node n should know the IP
addresses of all the other nodes in its inner group. We
refer to the collection of these two sets of IP addresses
as node n’s routing table, which constitutes node n’s
state.

Now consider the number of IP addresses stored in
a node’s routing table. Assume that the node’s in-
ner group is in the lowest tier, L. Then, the total
number of IP addresses in the node’s routing table is
|HL(n)| + |S(n)|. During the formation of the nested
groups, it is desirable to prevent the routing table from
becoming too large in order to minimize nodal storage
and computation. At the same time, is also desirable
to prevent a node’s inner-group table from becoming
too large.

2.2 XOR Metric

Each key k′ is required to be an element of I ′, where
I ′ is the set of all s-bit binary strings, where s is fixed
and s ≥ 32. A key can be drawn uniformly randomly
from I ′, or it can be biased as we will describe later.
For a given key k′ ∈ I ′, denote k for the 32-bit suffix
of k′. Note that k is in I and hence corresponds to an
IP address. Throughout the discussion below, we will

typically refer to a key’s 32-bit suffix rather than to the
original key itself. Thus any key or IP address k can be
expressed as k = k31k30 . . . k1k0.

The XOR metric defines the distance between two
ids j and k as:

d(j, k) =
31∑
ν=0

|jν − kν | · 2ν

The metric d(j, k) has the following properties:

– If d(i, k) = d(j, k) for any k, then i = j. This is a
curious property, which does not hold for standard
metrics in Rn.

– max d(j, k) ≤ 232 − 1.
– Let p(j, k) be the number of bits in the common

prefix of j and k. If p(j, k) = m, d(j, k) ≤ 232−m−1.
– If d(i, k) ≤ d(j, k), then p(i, k) ≥ p(j, k).

Note that d(j, k) is a refinement of longest-prefix
matching. If j is the unique longest-prefix match with
k, then j is the closest to k in terms of the metric.
However, if there are ties in the longest-prefix match,
the metric will break the ties. The Kademlia DHT [13]
also uses the XOR metric.

For any given key k, let n∗ be the node in U that
minimizes d(k, n), n ∈ U . Node n∗ is said to be “re-
sponsible” for k. Because two nodes cannot be equally
close to k, the responsible node x∗ is uniquely defined.

2.3 The Lookup Algorithm

Each node n has a lookup API. Node ns inputs into
the API a key k (that is, the 32-bit suffix of k′), and
the API returns the up node nd that, among all the up
nodes, is the closest to k in terms of the XOR metric.

Suppose node ns wants to look up k. Node ns de-
termines the node in its routing table that is closest to
k in terms of the XOR metric. Suppose node nj is the
closest. Then node ns forwards the message to nj . The
process continues, forwarding the message from peer to
peer, until the message with key k reaches a node nd
such that the closest node to k in nd’s routing table is
nd itself. It is trivial to prove that nd is the node that
is responsible for k.

Because the groups and their nestings have been de-
rived directly from the underlying topology, TOPLUS
is topology centric. If the set of groups form a proper
nesting, then it is straightforward to show that the
number of hops in a look up is at most L+1, where L is
the depth of the partial-order tree. Typically, big topo-
logical jumps will be made initially (for example, going

H3

H2

1H

H0=I

1S

3S

2S

tier−3

tier−2

tier−1

n

Fig. 1. A sample TOPLUS hierarchy (inner groups are represented by plain boxes).

from source AS to destination AS); subsequent jumps
will typically be decreasingly shorter as the message
converges on the target subnet. Note that TOPLUS
satisfies the two goals described at the beginning of
the section. In the first hop the message will be sent to
a node n1 that is in the same group, say G, as nd. The
node n1 will likely be topologically close to nd. Once
the message arrives at G, it will remain in G until it
arrives at nd.

As previously mentioned, each node in TOPLUS
mimics a router in the sense that it routes messages
based on a generalization of longest-prefix matching
of IP addresses. To this end, nodes can use highly-
optimized longest-prefix matching schemes [14] de-
ployed in high-speed routers for routing messages.

2.4 Overlay Maintenance

When a new node n joins the system, n asks an arbi-
trary existing node to determine (using TOPLUS) the
closest node to n (using n’s IP address as the key). De-
note this closest node by n′. Node n then initializes its
routing table with n′’s routing table. Node n’s routing
table should then be modified to satisfy a “diversity”
property: for each node ni in the routing table, n asks
ni for a random node in ni’s group. This way, for every
two nodes in a group G, their respective sets of dele-
gates for another group G′ will be disjoint (with high
probability). This “diversity” property aims at making
routing more robust, because in case one delegate fails,
it is possible to use another node’s delegate.

Also, a small fraction of existing node tables should
be modified when n joins: all nodes in its group must
update their inner group tables.

Maintenance of the overlay network is relatively sim-
ple. Note that groups, which are virtual, do not fail;
only nodes can fail. Existing groups can be partitioned
or aggregated on a slow time scale, as need be. When
needed, keys can be moved from one group to another
lazily: when a node receives a query for a key that it
is not storing, the node can perform itself a query ex-
cluding its own group. Once the key is retrieved from
its formerly corresponding location, subsequent queries
can be normally satisfied.

2.5 On-Demand P2P Caching

An ISP (such as a university, a corporate campus, or a
residential ISP) often deploys a Web cache to improve
file transfer times. In a similar manner, TOPLUS can
provide a powerful caching service.

Suppose that a node ns wants to obtain the file f
associated with key k. Once ns learns from the lookup
service that another up node nd is responsible for a key
k, node ns asks nd to send it the file directly. Unfor-
tunately, there may be bottleneck physical links (for
example, ISP peering interfaces) between ns and nd. It
would then be preferable if ns could obtain a cached
copy of file f from a topologically close node, perhaps
from a node on the same high-speed LAN as ns.

To this end, suppose that some groupG ∈ G wants to
provide a caching service to the nodes in G (G could be
an inner group, or it could be a group higher up in the
hierarchy). Further suppose all pairs of nodes in G can
send files to each other relatively quickly. For example,
all the nodes in G may be interconnected with a high-
speed LAN.

In this distributed caching service, all the nodes in G
are configured to first contact the “cache” in G before

attempting to download the desired file from the global
lookup service. This is done as follows. Let the network
prefix forG be denoted by w.x.y.z/r. Now suppose some
node ns ∈ G wants to find the file f associated with
key k ∈ I. Then ns creates a new key, kG, which is k
but with the first r bits of k replaced with the first r
bits of w.x.y.z/r. Node ns then inserts a message with
key kG into TOPLUS. The lookup service will return
to ns the node nG that is responsible for kG. Node
nG will be in G, and all the messages traveling from
ns to nG will be confined to G. ns then asks nG for
f . If nG has f (cache hit), then nG will send f to ns
at a relatively high rate. If nG does not have f (cache
miss), nG will use TOPLUS to obtain f from the global
lookup service. After obtaining f , nG will cache f in
its local shared storage and pass a copy of f to ns.

Thus all the nodes in G cooperate to provide a dis-
tributed cache with storage aggregated across all the
nodes in G. Each node would employ a file replacement
policy, such as least recently used. As with an ordinary
Web cache, the more popular files are more likely to be
cached in G. The techniques in [15] can be used to op-
timally replicate files throughout G to handle intermit-
tent nodal connectivity. Also, this distributed caching
idea can be extended to distributed cache hierarchies
(analogous to Web cache hierarchies). Finally, files can
be pushed into groups, creating distributed set of CDN
nodes in each of the designated groups.

3 Drawbacks and Solutions

Because the TOPLUS design gives precedence to topo-
logical considerations, TOPLUS should exhibit excel-
lent stretch and caching performance. But admittedly,
these features come by sacrificing other desirable prop-
erties in a P2P lookup service. We now discuss some
of the drawbacks of the TOPLUS design. As well as
approaches to address these drawbacks.

Non-uniform population of id space: The num-
ber of keys assigned to an inner group will be approx-
imately proportional to the number of IP addresses
covered by the inner group. However, the number of
active nodes in an inner group is not necessarily pro-
portional to its size (in terms of IP address coverage).
This means that some nodes may be responsible for a
disproportionate number of keys.

Lack of virtual nodes: Because nodes have differ-
ent storage, processing, and bandwidth, it is desirable
to assign larger proportion of keys to more powerful
nodes. The CAN, Chord, Pastry and Tapestry lookup

services can handle heterogeneous nodes by assigning
virtual nodes to the more powerful peers. TOPLUS,
as currently defined, does not facilitate the creation of
virtual nodes.

Correlated node failures: Many applications built
on top of a lookup service, including persistent file
storage, require that key/data pairs be replicated on
multiple nodes. As with Chord, Pastry. and Tapestry,
TOPLUS can replicate key/data pairs on successor
nodes within the same inner group. However, when
replicating in this manner, if an entire inner group fails
(for example, if an access link crashes), then all copies
of the data for the key become unavailable. Because in
the other look up services there is no correlation be-
tween node id and locality, these services are not as
sensitive to correlated node failures.

We now outline a number of enhancements to
TOPLUS that solve or partially solve the problems
listed above. The first enhancement is to use a non-
uniform distribution when creating keys. Specifically,
suppose there are J inner groups, and we estimate
the average fraction of active nodes in inner group j
to be qj . Then when assigning a key, we first choose
an integer (deterministically) from {1, 2, . . . , J} using
the weights q1, . . . , qJ . Suppose we choose group j,
and group j has prefix w.x.y.z/n . We then choose a
key uniformly from the set of IP addresses covered by
w.x.y.z/n .

In order to address the lack of virtual nodes and
other issues resulting from the tight coupling of node
ids to IP addresses, we assign each node a perma-
nent “virtual id” uniformly distributed over the address
space of the node’s inner group. More powerful nodes
are assigned multiple permanent virtual ids, thereby
creating virtual nodes. In the inner group table, for
each IP address in the table we also list all the virtual
ids associated with the IP address. After making this
change, we modify TOPLUS as follows. As before, the
lookup process continues until the message reaches a
node n such that the longest prefix match is inside the
inner group of n. But once the message is at n, node n
now determines, among all the virtual ids in its inner
group table, the virtual id that is the closest to the key
(according to the exclusive-or metric). n then sends the
message to the node corresponding to this virtual id.

Finally, we address the issue of correlated node fail-
ures. To solve this problem, when we replicate key/data
pairs, we need to distribute the replicas over multiple
inner groups. Further, when one inner group fails, we
need to detect the failure and move copies of key/data
pairs to new inner groups. TOPLUS can be modified

to solve this problem, but comprehensive solutions are
fairly involved. Due to lack space, we only sketch a
partial solution here: rather than using a single hash
function, we use K distinct hash functions. A node that
publishes some content (data or meta-data) in the sys-
tem will thus store the content at K different locations
that are geographically dispersed with high probability.

4 Benchmarking TOPLUS

In TOPLUS, a group is defined by an IP network pre-
fix. Instead of simply dividing the IP space in arbitrary
chunks, we have used IP prefixes obtained from two
sources: the BGP routing tables of routers in the In-
ternet, and the prefixes of well-known networks (such
as corporate LANs or ISPs). The BGP information of-
fers a coarse-level perspective of the Internet group-
ing, while IP prefixes from LANs or ISPs provide a
finer-level clustering. As shown in [12, 10], the IP pre-
fixes obtained from BGP routing tables form clusters
of hosts that are topologically close to each other. Our
assumption is that this locality property is preserved to
some extent in coarser IP prefixes that regroup clusters
(super-clusters), and recursively as IP prefixes become
shorter and clusters become larger. Using this IP prefix
information, we aim at constructing a topology-centric
TOPLUS hierarchy which routes queries to their des-
tinations in a time comparable to that of IP routing.

IP network prefixes were obtained from several
sources: BGP tables provided by Oregon Univer-
sity [16] and by the University of Michigan and
Merit Network [17]; network IP prefixes from rout-
ing registries provided by Castify Networks [18] and
RIPE [19]. After merging all this information and elim-
inating reserved and non-routable prefixes, we have ob-
tained a set of 250,562 distinct IP prefixes that we or-
ganize in a partial order tree (denoted as Prefix Tree
hereafter). Studies from NLANR [20] show that about
20% of the total usable IP space was routable in 1997,
and 25% in 1999. As our tree covers 35% of the to-
tal usable IP space, we believe that it offers a nearly
complete view of the Internet in 2003.

4.1 Measuring Stretch

The stretch is defined as the ratio between the aver-
age latency of TOPLUS routing (using the Prefix Tree)
and the average latency of IP routing. Ideally, we could
use the traceroute [21] tool to measure the delay be-
tween arbitrary hosts in the Internet.4 However, secu-
4 This can be achieved specifying one of the two host as a

gateway packets must pass through.

Source IP prefixes provided

Oregon University 123,593

Michigan U. and Merit Network 104,552

Castify Networks 143,082

RIPE Routing Registry 124,876

Total distinct IP prefixes 250,562

Table 1. IP prefixes obtained from different sources.

rity measures deployed in almost every Internet router
nowadays prevent us from using this simple and accu-
rate measurement technique. Therefore, we have used
the King [22] tool to obtain experimental results. King
gives a good approximation of the distance between
two arbitrary hosts by measuring the latency between
the DNS servers responsible for these hosts.

The general principle of our measurements is shown
in Figure 2, where peer at address 1.2.3.4 sends a query
for key k, whose responsible peer is 193.56.1.2. Fol-
lowing the TOPLUS routing procedure, peer 1.2.3.4
must first route the query inside the tier-1 group con-
taining k. Peer 1.2.3.4 selects a delegate from its rout-
ing table in group 193/8, because k/32 ⊂ 193/8 (note
that there cannot be another group G in tier-1 satis-
fying k/32 ⊂ G). Assuming the delegate is in group
193.50/16, the query is first routed along path labeled
with latency d1 in Figure 2. Then, the delegate se-
lects the (unique) tier-2 group inside 193/8 which con-
tains k: 193.56.0/20. Let the new delegate node be in
tier-3 group 193.56.2/24. The query is forwarded to
that delegate node along path d2. Finally, the destina-
tion group 193.56.1/24 is reached with the next hop
d3 (we neglect the final forwarding of the query inside
the destination group). In contrast to TOPLUS rout-
ing, the query would follow path d between 1.2.3.4 and
193.56.1.2 with IP routing. The stretch for this partic-
ular case would be d1+d2+d3

d .
In general, we consider the length of the path from

one peer to another as the weighted average of the
length of all possible paths between them. Path weights
are derived from the probability of a delegate peer to
be in each of the different group at each tier. Assum-
ing a uniform distribution of peers in the Internet, the
probability of node n choosing a delegate in group G at
tier i with parent S ∈ Si+1(n) can be computed as the
number of IP addresses in all inner groups descendant
of G divided by the number of IP addresses in all inner
groups descendant of S. To simplify computations and
keep them local to tier i, we approximate this proba-

...

d1

d2

1.2.3.4193.56.1.2

d3

d

1.2/16

193.50/16 193.51/16 1.2.0/17

193.56.2/24 193.56.1/24 1.2.3/24

193.56.0/20

193/812.18.64/18

Fig. 2. Path followed by a query in the Prefix Tree.

bility by computing the space of IP addresses covered
by the network prefix of G, divided by the space of IP
addresses covered by all groups children of S (including
G). For instance, for the first hop in Figure 2, the prob-
ability of the delegate peer being in group 193.50/16 is

216

216+216+(224+224) = 0.498; using the simplified formula,

the probability is approximated as 216

216+216+212 = 0.48.
Consider a query issued by node ns in inner group S

for a key k owned by node nd in inner group D at tier
N . Let dT (G,G′) be the TOPLUS latency between a
node in group G and a node in group G′ and dIP (G,G′)
be the corresponding direct IP latency. Let H0, . . . HN

(as in Section 2.1) be the telescoping set of groups as-
sociated to node nd (hence H0 = I and HN = D). To
reach nd, ns forwards its request to its delegate node ng
belonging to one of the inner groups G in H1. Hence:

E[dT (S,D)] =
∑
G⊂H1

pG(E[dIP (S,G)] + E[dT (G,D)])

(1)
where pG is the probability of ng being in G. Thus,

pG = |G|
|H1| . Note that E[dIP (S,G)] = 0 if ever ns ∈

H1, since in this case ns is its own delegate in H1.
The process continues with ng forwarding the query
to its delegate node n′g in one of the inner groups G′

in H2. The equation for E[dT (G,D)] is thus similar to
Equation (1):

E[dT (G,D)] =
∑

G′⊂H2

pG′(E[dIP (G,G′)] + E[dT (G′, D)])

(2)
where pG′ = |G′|

|H2| . N successive recursions thus allow
to obtain the value of E[dT (S,D)].

To obtain the average stretch of the Prefix Tree,
we compute the stretch from a fixed origin peer to
1,000 randomly generated destination IP addresses us-
ing King to measure the delay of each hop. We compute
the path length from the origin peer to each destina-
tion peer as the average length of all possible paths to
the destination, weighted according to individual path
probabilities (as described above). Finally, we compute
the stretch of the Prefix Tree as the average stretch
from the origin peer to each of the 1,000 destination
peers. Note that the choice of the origin peer is not
important because the routing always starts at tier-1,
independent of how deep the origin peer is located in
the hierarchy. For the experiments, we chose an origin
peer at Institut Eurecom with IP address 193.55.113.1.
We used 95% confidence intervals for all measurements.

We now detail the different Prefix Tree configura-
tions that we have considered in our experiments.

Original

16−bit
regrouping

8−bit
regrouping

Original+1

3−Tier

0 25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

Tier−1 Tier−2 Tier−3 Tier−4 Tier−5

Fig. 3. Number of groups per tier in the Prefix Trees.

Original Prefix Tree. We call “Original Prefix Tree”
the tree resulting from the ordering of the IP prefixes
using operator ⊂. The partial order tree has 47,467 dif-
ferent tier-1 groups (prefixes); 10,356 (21.8%) of these
groups have at least one tier-2 subgroup; further, 3,206
(30%) of tier-2 groups have at least one tier-3 sub-
group. The deepest nesting in the tree comprises 11
tiers. The number of non-inner group at each tier de-
creases rapidly with the tier depth (following roughly
a power-law) and the resulting tree is strongly unbal-
anced.

Figure 4 (left) shows the distribution of prefix
lengths in tier-1. As most prefixes of more that 16 bits
do not contain nested groups, the Original Prefix Tree
has a large number of tier-1 groups. Consequently, the
routing tables of each peer will be large because they
have to keep track of one delegate per tier-1 group.
On the other hand, since 61% of the IP addresses cov-
ered by the tree are within tier-1 inner groups, a large
number of peers can be reached with just one hop.

stretch TOPLUS vs. IP (± confidence interval)

Tier Original 16-bit regroup. 8-bit regroup.

1 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
2 1.29 (±0.15) 1.32 (±0.14) 1.56 (±0.23)
3 1.31 (±0.16) 1.30 (±0.17) 1.53 (±0.23)
4 1.57 (±0.50) 1.41 (±0.20) 1.56 (±0.50)

Mean 1.17 (±0.06) 1.19 (±0.08) 1.28 (±0.09)

Table 2. Stretch obtained in each tree, depending on the
tier of the destination peer.

We computed an average stretch of 1.17 for the
Original Prefix Tree, that is, a query in TOPLUS takes
on average 17% more time to reach its destination than
using direct IP routing. In Table 2 we present the av-
erage stretch for IP addresses located in inner groups
at tiers 1 to 4. As expected, we observe that the deeper
we go in the tree to reach a destination, the higher the
stretch becomes (because there is a higher probability
of making more hops). Note that more than half of the
queries had for destination a peer in a tier-2 group.

Modified Prefix Trees. As previously mentioned, a
large number of groups are found in tier-1 and all peers
in the network must know a delegate in each of those
groups. In order to reduce the size of the routing tables,
we modify the tree by “aggregating” small groups that
have a long prefix into larger groups not present in our
IP prefix sources. We consider groups to be “small” if

their prefix is longer than 16 bits; this represents 38,966
tier-1 groups for our experimental data.
16-bit regrouping: A first approach consists in ag-
gregating small groups into 16-bit aggregate prefix
groups. This means that any tier-1 prefix a.b.c.d/r
with r > 16 is moved to tier 2 and a new 16 bit prefix
a.b/16 is inserted at tier-1. We call this approach “16-
bit regrouping”. This process creates 2,161 new tier-1
groups, with an average of 18 subgroups in each of
them. The distribution of tier-1 prefixes is shown in
Figure 4 (middle).

The resulting tree contains 10,709 tier-1 groups, 50%
(5,454) of which contain subgroups. We have measured
an average stretch of 1.19 for that tree (see Table 2).
These results indicate that 16-bit regrouping essen-
tially preserves the low stretch.
8-bit regrouping: We have experimented with a sec-
ond approach to prefix regrouping, which consists in
using coarser, 8-bit aggregate aggregate prefix groups.
Any tier-1 prefix a.b.c.d/r with r > 16 is moved to
tier 2 and a new 8 bit prefix a/8 is inserted at tier-
1 (if it does not already exist). We call this approach
“8-bit regrouping”. This process creates 45 new tier-1
groups, with an average of 866 subgroups in each of
them. The distribution of tier-1 prefixes is shown in
Figure 4 (right).

The resulting tree contains 8,593 tier-1 groups (more
than 5 times less than our Original Prefix Tree). 38%
(3,338) of these groups contain subgroups and almost
half of tier-2 groups (1,524) have again subgroups. The
tree is clearly becoming more balanced and, as a direct
consequence of the reduction of tier-1 groups, the size
of the routing table in each peer becomes substantially
smaller. We have measured an average stretch of 1.28
for the new tree (see Table 2). This remarkable result
demonstrates that, even after aggressive aggregation of
large sets of tier-1 groups into coarse 8-bit prefixes, the
low stretch property of the original tree is preserved.

4.2 Routing Table Size

The principal motivation for prefix regrouping is to re-
duce the size of the routing tables. We estimate the
size of the routing tables by choosing 5,000 random
uniformly distributed IP addresses (peers); for each of
these peers n, we examine the structure of the tree
to determine the sibling sets S(n) and the inner group
nodesHN (n), and we compute the size |S(n)|+|HN (n)|
of the routing table of node n.

Table 3 shows the mean routing table size depend-
ing on the tier of the peer, as well as the average size

8 12 16 20 24 28 32
10

0

10
1

10
2

10
3

10
4

10
5

Original Tree

Prefix length (bits)

F
re

qu
en

cy

8 9 10 11 12 13 14 15 16
10

0

10
1

10
2

10
3

10
4

16−bit Regrouping Tree

Prefix length (bits)

F
re

qu
en

cy

8 9 10 11 12 13 14 15 16
10

0

10
1

10
2

10
3

10
4

8−bit Regrouping Tree

Prefix length (bits)

F
re

qu
en

cy

Fig. 4. Prefix length distribution for the tier-1 groups of the three Prefix Trees: Original, 16-bit regrouping and 8 bit
regrouping.

over all tiers. Looking at the tree structure, one imme-
diately understands that the route table size is mainly
determined by the number of tier-1 groups. If we elimi-
nate their delegates from the routing table, we see that
the size of the routing tables needed to route queries
inside each tier-1 group remains small.

Mean routing table size

Tier Original 16-bit regroup. 8-bit regroup.

1 47,467 0 10,709 0 8,593 0

2 47,565 98 10,802 93 8,713 120

3 47,654 187 10,862 153 8,821 228

4 47,796 329 11,003 294 8,950 357

5 47,890 423 11,132 423 9,016 423

Mean 47,547 80 10,788 79 8,699 106

Table 3. Mean routing table size in each tree depending on
the tier of a peer. For each tree, the left column is the full
routing table size and the right column is the size without
tier-1 groups.

Even using 8-bit regrouping, routing tables count
more than 8,000 entries (see Table 3). We recognize
that this is a very large number of peers to be aware
of, even when other P2P systems can present similar
figures, such as [23], where all peers know each other.
To further reduce the routing table sizes, we trans-
form the “original” and the “16-bit-regrouping” trees
such that all tier-1 prefixes are 8-bit long, which will
limit the number of tier-1 groups to at most 256. We
refer to the resulting trees as “Original+1” and “16-
bit+1”. For this purpose, any tier-1 prefix a.b.c.d/r
with r > 8 is moved to tier 2 and a new 8 bit prefix
a/8 is inserted at tier-1 (if it does not already exist).

We finally create another tree called “3-Tier” that
has no more than 3 tiers. The top tier is formed by

Mean routing table size

Tier Original+1 16-bit+1 3-Tier

1 143 143 143

2 436 223 105

3 831 288 13

4 1,279 428 -

5 696 556 -

Table 4. Mean routing table size in the trees where all
tier-1 groups have 8-bit prefixes.

up to 256 groups with 8-bit long prefixes, tier 2 by
up to 256 groups with 16-bit long prefixes, and the
third tier by up to 256 groups each with a 24-bit long
prefix. The mean routing table sizes for these three
trees, presented in Table 4, show dramatic reduction
in the number of entries that must be stored by each
peer. However the stretch is significantly penalized by
these transformations on the tree, as shown in Table 5.
We clearly face a tradeoff between lookup latency and
memory requirements.

Original+1 16-bit+1 3-Tier

stretch (TOPLUS/IP) / 1.90 / 2.01 / 2.32 /
confidence margin (±0.20) (±0.22) (±0.09)

Table 5. TOPLUS vs. IP stretch in the trees where the
tier-1 groups all have 8-bit prefixes..

5 Conclusion

TOPLUS takes an extreme approach for integrating
topological consideration into a P2P service. TOPLUS

is fully distributed, and is also symmetric in the sense
that all nodes have the same role. TOPLUS bears some
resemblance to Pastry [3, 6] and Tapestry [4]. In partic-
ular, Pastry and Tapestry also use delegate nodes and
prefix (or suffix) matching to route messages. However,
unlike Pastry, we map the groups directly to the under-
lying topology, resulting in an unbalanced tree without
a rigid partitioning, and in a routing scheme that ini-
tially makes big physical jumps rather than small ones.
We have shown that TOPLUS offers excellent stretch
properties, resulting in an extremely fast lookup ser-
vice. Although TOPLUS suffers from some limitations,
which we have exposed and discussed, we believe that
its remarkable speed of lookup and its simplicity make
it a promising candidate for large-scale deployment in
the Internet. Furthermore, TOPLUS can be employed
in a straightforward manner to implement on-demand
P2P caching of data in ISPs or corporate networks,
and can serve as a benchmark for measuring the per-
formance of other lookup services.

References

1. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” in Proc. ACM
SIGCOMM, 2001.

2. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proc.
ACM SIGCOMM, 2001.

3. A. Rowstron and P. Druschel, “Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems,” in IFIP/ACM International
Conference on Distributed Systems Platforms (Middle-
ware), (Heidelberg, Germany), pp. 329–350, November
2001.

4. B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph,
“Tapestry: An infrastructure for fault-tolerant wide-
area location and routing,” Tech. Rep. UCB/CSD-01-
1141, Computer Science Division, University of Cali-
fornia, Berkeley, Apr 2001.

5. S. Shenker, S. Ratnasamy, M. Handley, and R. Karp,
“Topologically-aware overlay construction and server
selection,” in Proceedings of Infocom’02, (New York
City, NY), 2002.

6. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron,
“Topology-aware routing in structured peer-to-peer
overlay networks,” Tech. Rep. MSR-TR-2002-82, Mi-
crosoft Research, One Microsoft Way, Redmond, WA
98052, 2002.

7. A. D. Joseph, B. Y. Zhao, Y. Duan, L. Huang, and J. D.
Kubiatowicz, “Brocade: Landmark routing on overlay
networks,” in Proceedings of IPTPS’02, (Cambridge,
MA), Mar. 2002.

8. H. Tangmunarunkit, R. Govindan, S. Shenker, and
D. Estrin, “The impact of routing policy on internet
paths,” in INFOCOM, pp. 736–742, 2001.

9. M. Freedman and D. Mazieres, “Sloppy hashing and
self-organizing clusters,” in Proc. of 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), Mar.
2003.

10. B. Krishnamurthy, J. Wang, and Y. Xie, “Early mea-
surements of a cluster-based architecture for P2P
systems,” in ACM SIGCOMM Internet Measurement
Workshop, (San Francisco, CA), Nov. 2001.

11. B. Krisnamurthy and J. Wang, “On network-aware
clustering of web sites,” in Proc. SIGCOMM 2000, Aug.
2000.

12. J. Wang, Network Aware Client Clustering and Appli-
cations. PhD thesis, Cornell University, May 2001.

13. P. Maymounkov and D. Mazieres, “Kademlia: A peer-
to-peer informatic system based on the XOR metric,”
in Proceedings of IPTPS’02, (Cambridge, MA), Mar.
2002.

14. M. Waldvogel, Fast Longest Prefix Matching: Algo-
rithms, Analysis, and Applications. Aachen, Germany:
Shaker, Apr. 2000.

15. J. Kangasharju and K. W. Ross, “Adaptive replication
and replacement strategies for P2P caching.” unpub-
lished, July 2002.

16. “http://rv-archive.uoregon.edu/.” Oregon University
“Route Views” archive.

17. “http://www.merit.edu/∼ipma/routing table/.”
Merit Network, Internet Performance Measurement
and Analysis (IPMA) Project.

18. “http://www.castify.net.” Castify Networks.
19. “http://www.arin.net/whois/arinwhois.html.” Whois

service at RIPE.
20. “http://moat.nlanr.net/ipaddrocc/.” NLANR.
21. “http://www.traceroute.org.” Traceroute site.
22. K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King:

Estimating latency between arbitrary internet end
hosts.,” in Proceedings of 2nd Internet Measurement
Workshop 2002, (Marseille, France), November 2002.

23. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and
T. D. Nguyen, “PlanetP: Infrastructure support for
P2P information sharing,” Technical Report DCS-TR-
465, Department of Computer Science, Rutgers Univer-
sity, 2002.

