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Abstract of abstraction. Event-basedsynchronization assures a
proper orchestration of the presentation of distributed mul-
timedia objects. A multimedia object may be, for instance,

Multimedia streams such as audio and video impose ¢ ot f | subobiects lik di d
tight temporal constraints due to their continuous nature. a news cast consisting ot several Subobjects 1ike audio an
video. On a lower levetontinuous synchronizatioor

Often, different multimedia streams must be presented in a

synchronized way. We introduce a scheme for the continuStream synchronizationiespectively, copes with the prob-

ous and synchronous delivery distributed storeamulti- lem o_f synchronizing the playout of da.ta S.“e"’?”?s [13]. The
media streams across a communications network. WeCI""S‘S"_CaI example C.)f stream ;ynchromzaﬂon Islifheyn-
propose a protocol for the synchronized playback, Computechrgnlzt(_edpresentagpn of augm antd \_/|d((ajob[5]. lI-defined
the buffer requirement, and describe the experimental ontinuous media are characterized by a wefl-detine
results of our implementation. The scheme is very generafem.por"?1I relationship between subsgquent data units. Infor-
and does not require bounded jitter or synchronized clocksMaton is only conveyed when media quanta are presented

and is able to cope with clock drifts and server drop outs. continuously in time. For video/audio the temporal rela-
tionship is dictated by the sampling rate. The problem of

maintaining continuity within a single stream is referred to
as intra-stream synchronization. Moreover, there exist
temporal relationships between media-units of related
1.1 Motivation streams, for instance, an audio and video stream. The pres-
ervation of these temporal constraints is calietr-
Advances in communication technology lead to new stream synchronization. To solve the problem of stream
applications in the domain of multimedia. Emerging high- synchronization, we have to regard both issues which are
speed, fiber-optic networks make it feasible to provide tightly coupled.
multimedia services such as Video On-Demand, Tele- One can distinguish betwedife synchronization for
Shopping or Distance Learning. These applications typi-life media streams andynthetic synchronization for
cally integrate different types of media such as audio,stored media streams [15]. In the former case, the captur-
video, text or images. Customers of such a service retrievéng and playback must be performed almost at the same

1. Introduction

the digitally stored media fromadeo server[1] for play- time, while in the latter case, samples are recorded, stored

back. and played back at a later point of time. For life synchroni-
zation, e.g. in teleconferencing, the tolerable end-to-end

1.2 Multimedia Synchronization delay is in the order of a few hundred milliseconds only.

Consequently, the size of the elastic buffer must be kept
Multimedia refers to the integration of different types small, trading-off requirements for jitter compensation
of data streams including botlontinuous mediastreams  against low delay for interactive applications. Synthetic
(audio and video) andiscrete mediastreams (text, data, synchronization of recorded media stream is easier to
images). Between the information units of these streams achieve than life synchronization: higher end-to-end delays
certain temporal relationship exists. Multimedia systemsare tolerable, and the fact that sources can be influenced
must maintain this relationship when storing, transmitting proves to be very advantageous as will be shown later. It is,
and presenting the data. Commonly, the process of mainfor instance, possible to adjust playback speed or to sched-
taining the temporal order of one or several media streamslle the start-up times of streams as needed. However, as
is calledmultimedia synchronization [4]. resources are limited, it is desirable for both kinds of syn-
Synchronization can be distinguished on different levels chronization to keep the required buffers as small as possi-



ble. [9] intra-stream synchronization. We present three models
Model 1 solves the problem different, but fixed delays
1.3 Context of the Synchronization Problem on the network connections for each substream. We pro-
pose a synchronization protocol that compensates for these
The synchronization problem addressed in this paper igdelays by computing well-defined starting times for each
motivated by our work on scalable video servers. We haveserver. The protocol allows to initiate the synchronized
designed and implemented a video server, céledrer playback of a media stream that is composed of several
Array, consisting oh server nodesA video is distributed ~ substreams.
over all server nodes using a technique cadiglotHframe Model 2 takes into account thiter experienced by
striping: Each video framd, is partitioned intoequal media-units travelling from the source to the destination.
size partsci’j , calledub-frames that are stored on the Jitter is assumed to be bounded. To smoothen out jitter,
different servers. If; = {c, ,,...,¢; .} denotes the set of elastic buffers are required. Our scheme guarantees a
sub-frames fof, ,then:D ¢ =f smooth playback of the stream and has very low buffer
The server array With tfe synchronization mechanismsrequirements. Model 2 covers intra-stream synchronization
presented in this paper has been successfully implementeds well as inter-stream synchronization.
in our video server prototype [1]. During playback, each ~Model 3 solves the problems ofock drift changing
server node is continuously transmitting its sub-frames tonetwork conditionsand server drop outdy employing a
the client. The transfer is scheduled such that all stripingbuffer level control with a feedback loop to the servers so
blocks that are part of the same frame are completelyas to regain synchronization in the case of disturbances.
received by the client at the deadline of the correspondingAgain, buffer requirements are regarded with respect to the
frame. The client reassembles the frame by combining theesults of models 1 and 2. The behavior of a filtering func-
sub-frames from all server nodes. tion is examined. Filters are necessary to identify whether a
Another example for inter-stream synchronization of problem is of long-term or short-term effect. The tuning of
stored multimedia streams is given by Cen et al. [2]. Theysome parameters is discussed.
describe a distributed MPEG player with the audio server For the proposed synchronization scheme, we assume
and the video server being at different locations in thethat a clienD is receiving sub-streams from different serv-

Internet environment. ers. Client and servers are interconnected via a network
(see figure 1).
2. Synchronization Scheme B
S

2.1 Overview

We propose a synchronization scheme for the delivery| g Network
of stored mediahat achieves both, suitable intra- and inter-
stream synchronization. The schemeerseiver-base@nd D
does not assume global clocks. Resynchronization is doné
by skipping/pausing, and furthermore, we apply the con-
cept of a buffer level control. To initiate the playback of a  Figure 1. Distributed architecture for the synchro-
stream in a synchronized manner we introduce a novel nization scheme
start-up protocol. Our protocol has been influenced by the
ideas of Ishibashi et al. [8] who achieve inter-stream syn-
chronization by providing intra-stream synchronization for X N
each stream involved and by Santoso [14] who providesto asfram_e_s). The produ_ctlon rate is drlyen by the server
conditions for a smooth playout. Fa-synchronization, clock. Arriving media-units are buffered in FIFO queues at

we adopt a scheme similar to the one described by Koehlefe destinatiod. The playout .Of th_e entirstream, com- ,
et al. and Rothermel et al. [9], [13]. posed of all the substreams, is driven by the destination’s

clock.

S

Each of the servers denoted 8yelivers an indepen-
dentsubstream of media-units (sometimes also referred

We derive our synchronization scheme by step-wise
refinement: First we develop a solution for the case of zero
jitter and then relax this assumption requiring bounded jit-
ter only. Finally, we cover synchronization problems not
introduced by jitter. In each step we derive the buffer

requirements and playout deadlines to assure inter- and. It is also poss_lble thatsingle server sendmu_ltlple substreams to a
client. Our model is more general and covers this case too.




2.2 Sources of Asynchrony

Several sources of asynchrony exist in the configuration
described in the previous section. These are: Different
delays, network jitter, end-system jitter, clock drift, alter-
ation of the average delay, and server drop outs.

2.3 Assumptions

Our synchronization mechanism uste stamps
Each media-urft scheduled by a server is stamped with
the current local time to enable the client to calculate statis-
tics, such as for the roundtrip delay, jitter, or inter-arrival
times. Moreover, we assume that each media-unit carries a
sequence numberfor determining media-unit order. We
could use for our purposes a protocol such as RTP, which is
currently designed by the IETF, and which provides fields
for both, time stamp and sequence number.

In contrast to other approaches, buffer requirements or
fill levels are always stated in terms of media-units or time,
instead of the amount of allocated memory. This seems
reasonable because media-unit sizes vary due to encoding
algorithms like JPEG or MPEG [9]. However, notice that a
mapping of media-units to the allocation of bytes must be
carried out for implementation purposes. Taking the largest
media-unit of a stream as an estimate wastes a lot of mem-
ory, especially when using MPEG compression. Sophisti-
cated solutions of mapping are subject of future work. In
the following, we will use the terrauffer slot to denote
the buffer space for one media-unit.

Since processing time, e.g. for protocol actions does not
concern the actual synchronization problem, we will
neglect. Finally, we assume that control messages are reli-
ably transferred.

Table 1 shows the parameters that we used to describe
our model. A set of media-units that needs to be played out
at the same time is referred tosgmchronization group.

We assume that media-units are distributed fouend
robin fashionacross the involved server nodes. Hence, we

can identify the storage location of a media-unit by its
media-unit numbeé i.e.

message that requests a media-unit and the delay for delivering
the media-unit

Server§ o4 nStores media-unit Q)
This leads to the following formulation of tlsgnchro-

nization problem:

The client must playout the media-units of all subsgts

with j mod n = 0,at thesame time.

Symbol Description Unit
n number of server nodes in the
server array
N number of media-units of a stream
. media-unit index
) (,j,00{0,...,N=1})
k server indexkO {0, ...,n=1} )
I index set ofn subsequent media-
| units starting with media-unijt
S denotes server node providing
substreank
D denotes the destination or client
node
_ initial sending time of media-unit [sec]
S i in server time
< synchronized sending time Cf[sec]
I media-uniti in server time
. arrival time of media-unit in cli- [sec]
& ent time
4 roundtrip dela§ for media-uniti [sec]
! measured at client site
gmax maximum roundtrip delay [sec
¢ starting time of the synchroniza- [sec]
start tion protocol
reference time for the start-up cal-
tref culation [sec]
earliest possible playout time of
to the first media-unit [sec]
¢ expected arrival of the media-unit[sec]
! i at the client site
arrival time difference between
o : " . [sec]
ij media-unit andj
Table 1. Model parameters
a  The roundtrip delay comprises the delay for a control

2.4.1 Introduction

2.4 Model 1: Start-Up Synchronization

2We will also use the abbreviationu for media-unit.
3This implies that each substream will send media-units adeime

Under the assumption of constant delay and zero jitter,
we solve the synchronization problem by assuring that the
first n media-units, which constitute a synchronization
group, arrive at theame timeat the client. We therefore

rate. An extension of the scheme to different media-unit rate, each onenee(d

being the integer multiple of a base rate is straight forward.



ready for playback and consists of an evaluation phase and
synchronization phase. During start-up, the client sends
two different kinds of control messages to the servers:

t =1t

L=ty OOl )

The major problem addressed by model 1 is the com-

pensation for different delays due to the independence of
the different substreams. For instance, the geographical
distance from server to client may be different for each®
server. Thus, starting transmission of media-units in a syn-
chronized order would lead to different arrival times at the

Eval_Request(i)Client D requests media-unit from
serverg, DiOl,.

Sync_Request(isiC : )Client D transmits the starting
times’ to serves.

client with the result of asynchrony. Usually, this is com- (&) Evaluation Phase

pensated by delaying media-units at the client [5]. Depend-
ing on the location of the sources, large buffers may be’
required.

In order to avoid buffering to achieve the equalization
of different delays, we take advantage of the fact that
stored media offers more flexibility: The idea is to initiate *
playout at the servers such that media-units arrive at the
sink in a synchronous manner. This is performed by shift-"
ing the starting times of the servers on the time axis in cor-
relation to the network delay of their connection to the *
client. The proposed start-up protocol consists of two
phases.

* In the first phase, calledvaluation phase roundtrip
delays for each substream are calculated, while
* In the second phase, calleghchronization phase the

At local timetg,, clientD sends afeval_Request(ijo
serverss, Oi O1,.

Server§ receives thdval_Request(ipt local times;,
0iOlyg.

Server§ sends media-unittime-stamped witls; imme-
diately back to clienD, i O1,.

At local time g;, client D receives media-unit from
Serversg, Oi O1,.

At local timet,, client D has received the last media-
unit.

The roundtrip delaysd,= a, -t..., Oidl, and the
maximum round trip timed"®* = max{ qioig ., are
computed.

starting time for each server is calculated and transmit-(P) Synchronization Phase

ted back to the servers.

The model is based on the assumption afoastant
end-to-end delayvithout any jitter. For the moment we do
not consider changing network conditions, server drop-
outs, and clock drift. In such a scenario, synchronization
needs to be done once at the beginning and is maintained
afterwards automatically.

We need to introduce some more notation to express
interdependencies between the parameters of the model.
We then give a description of the start-up protocol flow and
prove its correctness. We close the section with an example
of the protocol.

The starting timeg,; of the protocol equals the begin-
ning of the first phase. Without loss of generality let
tstare = 0~

To begin with, we regard the first media-units of a
stream given bygthat are distributed across the n servers.

The second phase of the protocol begins at tije
determined by the last of the first media-units that
arrives:t,; = max{ a”i Olg}

The differences; = a—a O] between the arrival
times of arbitrary media-uniisandj is needed to calculate
the starting times of the servers.

At local timet,y, clientD computes

the earliest playout timg = max{ {.;+d, | idlg
the index v that  determines t; as
v ={j D'o\trefJ’dj =1t} ,and

the delay differences a&; = a,—a;, i Ol

With these results the starting time of Sergas calcu-
lated in server time

C max .
s = s|+d +6ui, aidly,.
Client D sends aSync_Request(isf Jo server§,
gidl,.
0

At local time s+ d, + (t,s—a) , serves receives the
Sync_Request( , Ji O1,.

At local time siC , servef§ starts scheduling of the sub-
stream by sending media-unitdi 01, .

At local timet;, clientD receives media-unif 0i O .

At any time, only one synchronization group of

media-units must be buffered at the client; after the com-
plete reception the media-units are played out immediately.

2.5 Model 2: Intra- and Inter-Stream Synchro-

nization

2.5.1 Introduction

2.4.2 Start-Up Protocol

Model 1 shows how to cope with different but constant

the server sites is launched after all involved parties argPerformed under the assumption that jitter does not exist.
Model 2 loosens this assumption and takes into account



end-system jitteandnetwork jitter We consider the cumu-
lative jitter and assume the jitter to be bounded.
Due to jitter, media-units will not arrive in a synchro- substream or server index

Symbol Description Unit

nized manner although they have been sent in a timely m (mO{0,...,n=1} ) [mu/sec]
manner. The temporal r_elatlonshlp within a s_ln_gle sub_- requested display ate of each sub-
stream is destroyed and time gaps between arriving media-| ' stream at the client

units vary according to the occurred jitter. Thus, an isoch- max _

ronous playback cannot be achieved if arriving media-units | % maximum delay for substreakn | [sec]

of a substream would be played out immediately. Further- dy
more, jitter may distort the relationship between media-
units of a synchronization group. Henogra-stream syn-

chronizationas well agnter-stream synchronizatios dis- b, jitter for substreank [sec]
turbed. To smoothen out the effects of jitter, media-units | ,max
must be delayed at the sink such that a continuous play-

minimum delay for substreakn [sec]

d average delay for substred&m [sec]

maximum jitter of all substreams [sec]

back can be guaranteed. For this purpptayout buffers A maximum  upper deviation from [sec]
are required. k d, due to jitter for substreakn

The main point addressed by model 2 is intra- and inter- ; maximum lower deviation from
stream synchronization and the calculation of the required By dy due to jitter for substreakn [sec]
buffer space. First, we regard the synchronization of a sin- + | maximum uoper deviation of all
gle substream. Based on a rule of Santoso [14], we formu- A" substreams PP [sec]

late a theorem that states a well defined playouf‘tfmm

substream such that intra-stream synchronization can be Table 2. Model parameters

guaranteed. Smooth playout cannot be guaranteed if start- . _ _ _

ing before the playout deadline. Starting at a later timep[neas;(ervgi‘?1 by delaying the output of the first media-unit for

would require more buffer space. Afterwards, we will & —d, seconds. Based on this theorem, the playout

extend our considerations to the synchronization of multi-deadline is derived. The deadline given by Santoso (case

ple substreams. The main idea in order to achieve inter{&)) can be lowered in some situations (case (b)).

stream synchronization is to maintain intra-stream syn-

chronization for each substream [8]. We begin with an Theorem 1:Consider a single substreaknin case of

extension of the model parameters used so far (c.f.hounded jittera, given by (3). Then smooth playout can

Table 2). be guaranteed whenever either one of the following start-
Throughout this paper, we assuimeundedijitter and ing conditions holds true.

we use the definition of jitter given by Rangan et al. [12] (a) d**~d,"'= A, seconds elapsed after the arrival of the
who define jitter as the difference between the maximumsirst media-unit, or

delay and the minimum delay. (b) the([ A, [ ] + 1)-th media-unit has arrived.

Proof. See [7]

min

A = dp -dy", Ok ®)
When using the shifting strategy, we need to provide for
max sub-streank a total bufferb, of (for the derivation see
AT = max{Ak‘kIZI {0...n-1}} (4) 7).

max+ +0
2.5.2 Synchronized Playout for a Single Substream By = (Bz By + 4 _AKDDW ©®)
To guarantee the timely presentation of a single stream
subject to jitter, it is necessary to buffer arriving media- 3.  Model 3: Resynchronization
units at the client to compensate the jitter. The buffer is
emptied at a constant rate. 3.1 Introduction
Santoso et al. [14] have already shown that the temporal

relationship within one continuous media stream can be \odels 1 and 2 assured both intra-stream synchroniza-
tion and inter-stream synchronization under the assumption

4 The playout time or playout deadline is defined as the time elapsedthat jitter is bounded. In ATM based networks, this
at the client between arrival and playout of the first media-unit of a sub-assumptions typically holds true at least for the network
stream. because we can express the acceptable QoS in parameters




like throughput, delay, jitter or cell losses [3]. If the end-  The next section examines models 1 and 2 with respect
system is not using a real-time operating system, boundedo a buffer level control and presents a buffer model suit-
jitter can not be guaranteed. able to realize a buffer level control. Finally, we discuss the
When jitter is unbounded, an application needs to maketuning of the model parameters.
certain assumptions on the amount of jitter since buffer
space may be limited or the increase in end-to-end delay by8.2  Buffer Level Control
too large a buffer is unacceptable [3]. To avoid buffer over-
flow in case of unbounded jitter, we introduce model 3. 3.2.1 System Model
Model 3 can be characterized as a scheme for resyn-

tChTOtn'Z datlton;[ we aphply theTconcept o?u?m‘fer Ievelhcon- as acontrol loop[9]. Sources transfer media-units over the
rol to detect asynchrony. 10 recover from asynchrony, We,qqyori that arrive at the sink where they are buffered

use feedback messages to the servers. Model 3 copes WIE(L-zfore playout. The current buffer level is periodically

asynchronies introduced by: measured, and if an ill buffer level is found, the appropriate
* Alteration of the average delay steps are taken. Actions may affect either the buffer itself
* Clock drift or the server. In the former case, the loop is placed in the
s Server dr(_)p outs client, in the latter case it includes the client, the server and
An alteration of the average deldgads to @ap’ ora "rovuonc Koehler et. al and Rothermel et al, [9], [13]

concentration in the continuous media stream. A gap ropose a synchronization scheme that does not adapt the
occurs when the average delay becomes longer, a conce layout behavior of the server. Actions are taken exclu-

tration can be observed when the average delay becom sﬁvely at the sink whether by changing the consumption

s]rcnallehr. The _res(;;ltl Ojlogktd”f_t's Very sr;mllar to tlhe Ires(u:IIt krate or by skipping/pausing. This kind of control loop com-
o a change In deay, but arises much more siowly. t1oc pensates for disturbances to a certain amount depending on

drift mtroduce_s a_skew. . ... the allocated, available buffer space but sacrifices the real-
A mechanism is needed to adapt to changing condltlon:s[ime stream continuity

in order to preserve synchronization without allocating We adopt to a concept where all components of the

addlthnal buffer space. Solving th? problem_ by additional video server architecture are included in the control loop
buffering based on worst case estimates might turn out to

b difficult task b hanai giti similar to the approach of Cen et al. [2]. As shown in figure
€ a difficult task because changing Conditions aré unpreés y,q 4 chitecture applies feedback actions to the sources
dictable. Even if we succeed to get worst case estimate

. o via control messages in order to maintain synchronization
we have to be aware that, first, resources are limited an

i t the sink.
that, second, large playout buffers increase the overall end-
to-end delay which is not desired. Furthermore, uncon-(a) Feedback Filter
trolled buffering compensates the problems to a certain

amount but will not resolve them over a long period of  thepyifer level for substreank at timet is denoted by

time. ) _ ) Oy This value is periodically passed télgering function
Since all the described disturbing factors affect the g ) to filter short-term fluctuations caused by jitter and to

buffer level, the buffer level can be regarded as an '”d'Ca'compute thesmoothed buffer levelb,, . Examples for fil-

tor for upcoming synchronization problems. Once a sink tgring functions are the geometric weighting smoothing
has discovered a problem, it has to take measures to restokg,tion (witha as smoothing factor) [13], [2], [11]:

synchronization. Since asynchrony is basically a shifting in

the media stream, we only need to correct this shifting.p =~ _ S(qy) = a b+ (1-a) O, (with o 0[0,1])
Corrective actions must be feed back either to the source or ™ k -1k tk o

to the sink in order to_res_tore synchrony. The idea of taking  The main goal of filtering is to distinguish between
the buffer level as an indicator is often referred tbufter buffer level changes caused by jitter and long-term distur-
level control. Basic work in this area can be found in [13], j5nces. If the filter is too sensitive, or no filter is used at all,
[9] and [10]. Our model will uses some of their basic ideas iier causes actions for resynchronization although no
and extends them to an applicable solution for the synchrog, centional situation has occurred. On the other hand, a fil-
nization problem. In contr_ast to the previ(_)us_work, we taketer that reacts to slowly to changing conditions takes
model 1 and 2 as a basis for synchronization and extend,c(isns too late with the result of a longer period of buffer

them with a buffer level control. We focus mainly on buffer g4 ation or overflow. Thus, presentation quality suffers
requirements and parameter tuning.

The concept of buffer level control is often referred to

5The effect of a server drop out is also a gap in the media stream.



System under control

| virtual buffer range
| media-units

| ouree | real buffer range
A AT
- - - - - - == > by bk by .
Otk Tt oo
Control
message |  Control Function Feedback Filter LW UW,

latenc
Gk Y by

CE%“(E - S(aw

) Figure 3. Buffer model with virtual and real buffers
Figure 2. System model for the buffer level control [2]

buffer b, and anadditional buffer bﬁ. The virtual buffer
is exclusively used for the calculation of buffer levels

(b) Control Function below and above the real buffer. This allows for a faster
] reaction of the smoothing functio®qy). The mapping
The smoothed buffer levell,  is passed toaatrol between the real buffer level and thigual buffer level
function C(B,) that takes appropriate actions. For each O is performed as follows:
substream buffer, wer water mark LW and anupper « If neither buffer starvation nor buffer overflow occurs,

water mark UW are defined. Wheh,  falls belol the real buffer level equals the virtual buffer level.

or exceed&JW, there arises the risk of starvation or over- . |t 5 puffer overflow occurs, then the virtual buffer is
flow, respectively, producing an asynchrony. If this hap- jycreased for each discarded media-unit while the real
pens, a resynchronization or adaptation phase is entered pffer level remains unchanged.

whose purpose is to movg,  back into betwBéfy and ., | 5 puffer starvation occurs, then the virtual buffer is
UW,. Depending on the extent of asynchrony, the control  §jecreased each time when the client finds an empty
function sends aaffsetoy to the source. The source either  sfer while the real buffer level remains unchanged.
skips the number of media-units specified in the offset or. |t the normal state of the real buffer is restored by resyn-

pauses for a duration @, media-units. We prefer this chronization measures, the virtual buffer level is reset to
technique over an alteration of scheduling speed, respec- ihe real buffer level.

tively production rate, at the source because we think the The size ofbf strongly influences the gracefulness of

latter is too resource demanding and the QoS of other cliyhe resynchronizati(ﬁn The smoothened buffer levél,
ents serviced by the server might suffer. always has a latency (see figure 3) compared with the vir-

The sink stays in its resynchronization phase for a timey 5] puffer level &% 1.€. g might be below LW while by,
R in order to let the smoothed buffer level react on the 4l needs some time to fall below. Le\g =0 , for

taken measures. At the end of the resynchronization phasgstance. Then a buffer starvation occurs before it is recog-

C(by) controls again whether or not the buffer lefigl nized by the control function. Hence, presentation quality
has moved back in the normal area into betwe&pand g ffers depending on the value . We consider the fol-

UW. If not, a new resynchronization phase is [13] started. lowing three cases for the size

« Selectingb” = 0 yields no gracefulness at all. Asyn-
gb, y g Y

3.2.2 Buffer Requirements chrony immediately affects presentation quality and is

Models 1 and 2 provide the buffer spdgeneeded to soon discovered by a viewer.
compensate jitter ([7]). In the following, we will dendig . b/; can be dimensioned such that at least the period
as akernel buffer. Applying a buffer level control only to between the rise of asynchrony and the discovery by the

this buffer is not sufficient since each buffer level within  control function is covered.
the range ob, must be regarded as normal due to the jitter For full gracefulnessbf has to be chosen such that
effects. We fixXX W, andUW, to 1 andby, respectively. To asynchrony does not affect presentation at all. The
realize a buffer level control, we must admit buffer levels  buffer space has to cover the period between rise, dis-
below and above the watermarks. Otherwise, it is impossi- covery and removal of asynchrony.
ble to get the smoothed buffer lewg]  below or above the
watermarks.

We suggest the scheme of a so-calletial buffer as SNotice that the start-up latency is also influenced by the sitq/?of
indicated in figure 3 by the dashed lines. The virtual buffer The larger bk is, the longer it takes until the first media unit of a sub-

includes at least the real buffer comprising the kernelstream is played out because of the buffer level must exdttbefore
the playout deadline given by model 2 can be applied.




3.2.3 Parameter Tuning resynchronization, e.g. due to clock drift, is in the range of

In our model, we have several parameters that must b@n€ O several media-units. High values could lead to oscil-

chosen appropriately in order to trade-off reactiveness and@tion- _ _ _
overhead. When applying the variable offset strategy, varies

depending on the extent of the occurred asynchrony.
Notice that when applying the variable offset strategy sev-
eral resynchronization phases could be needed as well
because at the time when the offset is calculated (deter-
problem depends strongly on the behavioiS@f). The mined by the filtering function) the total extent of asyn-
chrony might not yet be recognized. Nonetheless,

more indolentlyS(qy) reacts, the later a resynchronization Lo : .
phase is entered, the more buffer splaﬁte may be desire%lynchronlzatlon is generally restored faster with a variable

to compensate for asynchrony as much as possible. On th%f'fset. We will pre_sent some experimental results that com-
other hand, the more sensitive${gy) reacts, the more pare both strategies.

often resynchronization is done unnecessarily (due to the ) L

effect of jitter), the less buffer spat€  is needed to pro-(¢) Duration R of Resynchronization

vide sufficient gracefulness. Hence, the tuningS@j)
needs to trade-off between stability and reactivity. The
choice ofSqy), res/g)ectively, helps to determine the addi-
tional buffer spacé,

For further consideration we examine the filtering func-
tion given by () with respect to second case described
above, i.e. the size df,  must cover the period between”
rise and discovery of an asynchrony. This case is mos
interesting because it is influenced ¥gy). The behavior
of the filter is determined by the parameter
* A large value ofa vyields strong smoothing, a stronger

(&) Smoothing Parametera

Obviously the latency of reaction to an asynchrony

The duration of a resynchronization phase is defined by
R. After R seconds the control function once more com-
pares the smoothed buffer level with the watermarks.
Again, resynchronization actions may be taken.

R must be chosen sufficiently large that the server can
erform the resynchronization, that is, the action must
Iready have taken effect on the client. SelecBtpo
small leads to numerous unnecessary resynchronization
phases where during each phase the extent of asynchrony
is overestimated. Low values Bfcan result in oscillation.

. . . -~ For large values dR several resynchronization phases are
consideration of the past, and a more indolent reaction. . o

. : needed as well but the total time of resynchronization can
* A small value ofa yields weak smoothing, a stronger : .

) X o become unacceptably long. So, in both cases presentation
consideration of the present, and a more sensitive reac- " . : .
tion. quality might be strongly influenced.
An upper bound for the choice ef is given by the .

available memory. A lower bound should be chosen such3'3 Experimental Results
that starvation/overflow events due to jitter can be distin-
guished from long term disturbances. Accordingdy,
should be set as high as possible while considering t
buffer available.

Based on the prototype implementation of the Video
heServer Array we have implemented the proposed synchro-
nization scheme for evaluation purposes. For implementa-
In our experiments (see [6] for details) we found that at'on details, re_:fer to [1] _and [6].
value of 0.6 or 0.7 fora is a good compromise with T_he following experiments ha"? been per_formed on a
respect to the buffer requirement and the number of necesged'c_ated SUN Sparc 10 yvorkstatlon as a client. We used
sary resynchronization actions. two wd_eos, each one dlstr_lbuted across two servers:

e A “Bitburger” commercial, sampled at a rate of 16 fps

(frames/sec) with a total length of 462 frarhes
« A scene from the production “Seaquest”, sampled at a

rate of 16 fps with a total length of 6710 frames.

We evaluated the efficiency of the buffer level control
mechanism. The prototype of the Video Server Array is
implemented in an ATM-LAN environment. So we faced
the problem that events like gaps or concentrations within
a stream are rather unlikely. Thus, we simulated these
events in the servers. The amount of asynchrony can be

(b) Degreeoy of Resynchronization

Resynchronization is performed by sending an offset to
the servers to move the buffer pointgf back into the
area betweetdW, andLW. The size of the offsety can
be determined by two different strategiézed offset or
variable offset

Employing the fixed offset strategy is set to a con-
stant value. Resynchronization is done slowly in subse-
guent resynchronization phases until synchronization is

restored. The value should not be chosen too high because %in the context of video streams we use the term frame to denote a
media-unit.




specified by the user upon starting a server. The server thethen sends an offset of -1 to the server. The client under-
periodically introduces drop outs in scheduling or sendsgoes 7 subsequent resynchronization phases at the whole.
several frames at once. The client attempts to resynchroThese phases are indicated by the peaks. Synchronization
nize the server by sending back offsets. The following is restored exactly during consumption period 180 when

parameters have been used: the filtered buffer level falls belowWW.

» Smoothing factor for the geometric weighting function: We now consider the same situation with the variable
a =07 offset strategy. The course of the filtered and unfiltered

» Amount of injected asynchroﬁy—& -4, +4, +8 [frames]  buffer level is depicted in figure 5.

» Resynchronization strategyixed offsetand variable Resynchronization starts during consumption period
offset

Resynchronization of an asynchrony of 8 frames
T T T T T T

The variable offset was calculated by taking the differ-
ence betweeqy and the watermarks. The fixed offset was
set constant to 1. We allocated two buffer slots for the sub- *
stream. This corresponds to the kernel bufierFurther- 60
more, for the additional bufferingf , we were using three
buffer slots each, above and belby Consider figure 4,
showing the virtual buffer level and the filtered buffer level
over time for the resynchronization of a concentration of
eight frames. The y-axis shows the virtual buffer level Zs
while the x-axis denotes the consumption period. The>5
upper bound (watermark) of the real buffer level is denoted
by b while the lower bound is not shown in the figure. \A
Thus,bﬁ equald - UW anl| is given byUw- LW . The sah \ 1w
virtual buffer level ranges from 1 to 108 because we arbi- 10 120 130 10 10 10 170 1m0 10 200 210

R Consumption period [frame]
trarily selected a number of 50 frames above and below the
real buffer to calculate the virtual buffer. Figure 4 shows
the course of resynchronization for the fixed offset strat-
egy. 130. Again, a number of four frames is discarded. The cli-
ent first sends an offset of -3 frames to the server. Already
after this resynchronization action, the buffer level falls
below UW for a short period of time. Now, two additional

— — Unfiltered buffer level
— Filtered buffer level

59

57

al buffer level [frames]
a
o

5r 1 uw
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Figure 5. Resynchronization with variable offset

Resynchronization of an asynchrony of 8 frames
T T T T T

@
)
T
I

— — Unfiltered buffer level i

I3
s
T
|

e resynchronization phases are needed until synchrony is

;! — Filtered buffer level

restored. In each phase an offset of -2 is sent to the server.
Synchronization is exactly restored during consumption
period 149. In contrast to the fixed offset strategy, only 19
frame periods are needed to regain synchrony. The results
also show clearly that resynchronization with a variable
offset becomes even more efficient for larger asynchronies
because the adoption is performed faster.

Virtual buffer level [frames]
wn (6] [4)) o (2]
(%2} ~ e} © o

a
a

a
>

4. Conclusion

53 4 LW
MO A A0 O mption meriod [ramey 10 200 20 We have presented a scheme for intra- and inter-stream
Figure 4. Resynchronization with the fixed offset synchronization of distributed stored multimedia streams.

Our scheme comprises three models that assure synchroni-
The first resynchronization phase is entered exactly dur-zation in an environment with different delays, jitter, server
ing consumption period 142 when the filtered buffer level drop-outs, clock drift, and an alteration of the average
crosses the upper watermadkV. The virtual buffer level  delay. The mechanisms described do not rely on synchro-
rises up to 61, that is, four frames are discarded. The clienhized clocks within the network. In contrast to existing
synchronization solutions, the scheme is suitable for

streams that are striped across multiple server nodes as
8Negative values denote a drop out while positive values denote awell as for a single server approach.
concentration.




The scheme presented has been successfully implefL0]

mented in our video server prototype [1] where each video
is distributed (striped) overserver nodes.
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