
Intra- and Inter-Stream Synchronisation for Stored Multimedia Streams

Ernst Biersack, Werner Geyer, Christoph Bernhardt
Institut Eurécom

2229 Route des Crêtes, 06904 Sophia Antipolis, FRANCE
{erbi,geyer,bernhard}@eurecom.fr

Abstract

Multimedia streams such as audio and video impose
tight temporal constraints due to their continuous nature.
Often, different multimedia streams must be presented in a
synchronized way. We introduce a scheme for the continu-
ous and synchronous delivery ofdistributed storedmulti-
media streams across a communications network. We
propose a protocol for the synchronized playback, compute
the buffer requirement, and describe the experimental
results of our implementation. The scheme is very general
and does not require bounded jitter or synchronized clocks
and is able to cope with clock drifts and server drop outs.

1. Introduction

1.1 Motivation

Advances in communication technology lead to new
applications in the domain of multimedia. Emerging high-
speed, fiber-optic networks make it feasible to provide
multimedia services such as Video On-Demand, Tele-
Shopping or Distance Learning. These applications typi-
cally integrate different types of media such as audio,
video, text or images. Customers of such a service retrieve
the digitally stored media from avideo server [1] for play-
back.

1.2 Multimedia Synchronization

Multimedia refers to the integration of different types
of data streams including bothcontinuous media streams
(audio and video) anddiscrete media streams (text, data,
images). Between the information units of these streams a
certain temporal relationship exists. Multimedia systems
must maintain this relationship when storing, transmitting
and presenting the data. Commonly, the process of main-
taining the temporal order of one or several media streams
is calledmultimedia synchronization [4].

Synchronization can be distinguished on different levels

of abstraction.Event-based synchronization assures a
proper orchestration of the presentation of distributed mul-
timedia objects. A multimedia object may be, for instance,
a news cast consisting of several subobjects like audio and
video. On a lower levelcontinuous synchronization or
stream synchronization, respectively, copes with the prob-
lem of synchronizing the playout of data streams [13]. The
classical example of stream synchronization is thelip-syn-
chronized presentation of audio and video [5].

Continuous media are characterized by a well-defined
temporal relationship between subsequent data units. Infor-
mation is only conveyed when media quanta are presented
continuously in time. For video/audio the temporal rela-
tionship is dictated by the sampling rate. The problem of
maintaining continuity within a single stream is referred to
as intra-stream synchronization. Moreover, there exist
temporal relationships between media-units of related
streams, for instance, an audio and video stream. The pres-
ervation of these temporal constraints is calledinter-
stream synchronization. To solve the problem of stream
synchronization, we have to regard both issues which are
tightly coupled.

One can distinguish betweenlife synchronization for
life media streams andsynthetic synchronization for
stored media streams [15]. In the former case, the captur-
ing and playback must be performed almost at the same
time, while in the latter case, samples are recorded, stored
and played back at a later point of time. For life synchroni-
zation, e.g. in teleconferencing, the tolerable end-to-end
delay is in the order of a few hundred milliseconds only.
Consequently, the size of the elastic buffer must be kept
small, trading-off requirements for jitter compensation
against low delay for interactive applications. Synthetic
synchronization of recorded media stream is easier to
achieve than life synchronization: higher end-to-end delays
are tolerable, and the fact that sources can be influenced
proves to be very advantageous as will be shown later. It is,
for instance, possible to adjust playback speed or to sched-
ule the start-up times of streams as needed. However, as
resources are limited, it is desirable for both kinds of syn-
chronization to keep the required buffers as small as possi-

IEEE International Conference on Multimedia Computing &
Systems, June 17-23, 1996, in Hiroshima, Japan, p. 372-381

2

ble. [9]

1.3 Context of the Synchronization Problem

The synchronization problem addressed in this paper is
motivated by our work on scalable video servers. We have
designed and implemented a video server, calledServer
Array , consisting ofn server nodes. A video is distributed
over all server nodes using a technique calledsub-frame
striping: Each video frame is partitioned inton equal
size parts , calledsub-frames, that are stored on then
different servers. If denotes the set of
sub-frames for , then:

The server array with the synchronization mechanisms
presented in this paper has been successfully implemented
in our video server prototype [1]. During playback, each
server node is continuously transmitting its sub-frames to
the client. The transfer is scheduled such that all striping
blocks that are part of the same frame are completely
received by the client at the deadline of the corresponding
frame. The client reassembles the frame by combining the
sub-frames from all server nodes.

Another example for inter-stream synchronization of
stored multimedia streams is given by Cen et al. [2]. They
describe a distributed MPEG player with the audio server
and the video server being at different locations in the
Internet environment.

2. Synchronization Scheme

2.1 Overview

We propose a synchronization scheme for the delivery
of stored media that achieves both, suitable intra- and inter-
stream synchronization. The scheme isreceiver-based and
does not assume global clocks. Resynchronization is done
by skipping/pausing, and furthermore, we apply the con-
cept of a buffer level control. To initiate the playback of a
stream in a synchronized manner we introduce a novel
start-up protocol. Our protocol has been influenced by the
ideas of Ishibashi et al. [8] who achieve inter-stream syn-
chronization by providing intra-stream synchronization for
each stream involved and by Santoso [14] who provides
conditions for a smooth playout. Forre-synchronization,
we adopt a scheme similar to the one described by Koehler
et al. and Rothermel et al. [9], [13].

We derive our synchronization scheme by step-wise
refinement: First we develop a solution for the case of zero
jitter and then relax this assumption requiring bounded jit-
ter only. Finally, we cover synchronization problems not
introduced by jitter. In each step we derive the buffer
requirements and playout deadlines to assure inter- and

fi
ci j,

Fi ci 1, … ci n,, ,{ }=
fi ci j,

j 1…n=
∪ fi=

intra-stream synchronization. We present three models
Model 1 solves the problem ofdifferent, but fixed delays

on the network connections for each substream. We pro-
pose a synchronization protocol that compensates for these
delays by computing well-defined starting times for each
server. The protocol allows to initiate the synchronized
playback of a media stream that is composed of several
substreams.

Model 2 takes into account thejitter experienced by
media-units travelling from the source to the destination.
Jitter is assumed to be bounded. To smoothen out jitter,
elastic buffers are required. Our scheme guarantees a
smooth playback of the stream and has very low buffer
requirements. Model 2 covers intra-stream synchronization
as well as inter-stream synchronization.

Model 3 solves the problems ofclock drift, changing
network conditions andserver drop outs by employing a
buffer level control with a feedback loop to the servers so
as to regain synchronization in the case of disturbances.
Again, buffer requirements are regarded with respect to the
results of models 1 and 2. The behavior of a filtering func-
tion is examined. Filters are necessary to identify whether a
problem is of long-term or short-term effect. The tuning of
some parameters is discussed.

For the proposed synchronization scheme, we assume
that a clientD is receiving sub-streams from different serv-
ers1. Client and servers are interconnected via a network
(see figure 1).

Each of the servers denoted byS delivers an indepen-
dent substream of media-units (sometimes also referred
to asframes). The production rate is driven by the server
clock. Arriving media-units are buffered in FIFO queues at
the destinationD. The playout of the entirestream, com-
posed of all the substreams, is driven by the destination’s
clock.

1It is also possible that asingle server sendsmultiple substreams to a
client. Our model is more general and covers this case too.

S

S

S

Network
D

Figure 1. Distributed architecture for the synchro-
nization scheme

3

2.2 Sources of Asynchrony

Several sources of asynchrony exist in the configuration
described in the previous section. These are: Different
delays, network jitter, end-system jitter, clock drift, alter-
ation of the average delay, and server drop outs.

2.3 Assumptions

Our synchronization mechanism usestime stamps.
Each media-unit2 scheduled by a server is stamped with
the current local time to enable the client to calculate statis-
tics, such as for the roundtrip delay, jitter, or inter-arrival
times. Moreover, we assume that each media-unit carries a
sequence number for determining media-unit order. We
could use for our purposes a protocol such as RTP, which is
currently designed by the IETF, and which provides fields
for both, time stamp and sequence number.

In contrast to other approaches, buffer requirements or
fill levels are always stated in terms of media-units or time,
instead of the amount of allocated memory. This seems
reasonable because media-unit sizes vary due to encoding
algorithms like JPEG or MPEG [9]. However, notice that a
mapping of media-units to the allocation of bytes must be
carried out for implementation purposes. Taking the largest
media-unit of a stream as an estimate wastes a lot of mem-
ory, especially when using MPEG compression. Sophisti-
cated solutions of mapping are subject of future work. In
the following, we will use the termbuffer slot to denote
the buffer space for one media-unit.

Since processing time, e.g. for protocol actions does not
concern the actual synchronization problem, we will
neglect. Finally, we assume that control messages are reli-
ably transferred.

Table 1 shows the parameters that we used to describe
our model. A set of media-units that needs to be played out
at the same time is referred to assynchronization group.

We assume that media-units are distributed in around
robin fashion across the involved server nodes. Hence, we
can identify the storage location of a media-unit by its
media-unit number3, i.e.

ServerSi mod nstores media-uniti. (1)

This leads to the following formulation of thesynchro-
nization problem:
The client must playout the media-units of all subsetsIj,
with j mod n = 0,at thesame time.

2We will also use the abbreviationmu for media-unit.
3This implies that each substream will send media-units at thesame

rate. An extension of the scheme to different media-unit rate, each one
being the integer multiple of a base rate is straight forward.

2.4 Model 1: Start-Up Synchronization

2.4.1 Introduction

Under the assumption of constant delay and zero jitter,
we solve the synchronization problem by assuring that the
first n media-units, which constitute a synchronization
group, arrive at thesame time at the client. We therefore
need

a The roundtrip delay comprises the delay for a control
message that requests a media-unit and the delay for delivering
the media-unit

Symbol Description Unit

n
number of server nodes in the
server array

N number of media-units of a stream

i, j,
media-unit index
()

k server index ()

Ij
index set ofn subsequent media-
units starting with media-unitj

Sk
denotes server nodek providing
substreamk

D
denotes the destination or client
node

si
initial sending time of media-unit
i in server time

[sec]

synchronized sending time of
media-uniti in server time

[sec]

ai
arrival time of media-uniti in cli-
ent time

[sec]

di
roundtrip delaya for media-uniti
measured at client site

[sec]

dmax maximum roundtrip delay [sec]

tstart
starting time of the synchroniza-
tion protocol

[sec]

tref
reference time for the start-up cal-
culation

[sec]

t0
earliest possible playout time of
the first media-unit

[sec]

ti
expected arrival of the media-unit
i at the client site

[sec]

arrival time difference between
media-uniti andj

[sec]

Table 1. Model parameters

υ
i j υ 0 … N, 1–,{ }∈, ,

k 0 … n 1–, ,{ }∈

si
c

δi j

4

(2)

The major problem addressed by model 1 is the com-
pensation for different delays due to the independence of
the different substreams. For instance, the geographical
distance from server to client may be different for each
server. Thus, starting transmission of media-units in a syn-
chronized order would lead to different arrival times at the
client with the result of asynchrony. Usually, this is com-
pensated by delaying media-units at the client [5]. Depend-
ing on the location of the sources, large buffers may be
required.

In order to avoid buffering to achieve the equalization
of different delays, we take advantage of the fact that
stored media offers more flexibility: The idea is to initiate
playout at the servers such that media-units arrive at the
sink in a synchronous manner. This is performed by shift-
ing the starting times of the servers on the time axis in cor-
relation to the network delay of their connection to the
client. The proposed start-up protocol consists of two
phases.
• In the first phase, called evaluation phase, roundtrip

delays for each substream are calculated, while
• In the second phase, calledsynchronization phase, the

starting time for each server is calculated and transmit-
ted back to the servers.
The model is based on the assumption of aconstant

end-to-end delay without any jitter. For the moment we do
not consider changing network conditions, server drop-
outs, and clock drift. In such a scenario, synchronization
needs to be done once at the beginning and is maintained
afterwards automatically.

We need to introduce some more notation to express
interdependencies between the parameters of the model.
We then give a description of the start-up protocol flow and
prove its correctness. We close the section with an example
of the protocol.

The starting timetstart of the protocol equals the begin-
ning of the first phase. Without loss of generality let

.
To begin with, we regard the firstn media-units of a

stream given byI0 that are distributed across the n servers.
The second phase of the protocol begins at timetref,

determined by the last of the firstn media-units that
arrives:

The difference between the arrival
times of arbitrary media-unitsi andj is needed to calculate
the starting times of the servers.

2.4.2 Start-Up Protocol

The synchronization protocol for starting playback at
the server sites is launched after all involved parties are

ti t0 i I 0∈∀=

tstart 0=

tref max ai i I 0∈{ }=
δi j ai aj i j,∀–=

ready for playback and consists of an evaluation phase and
synchronization phase. During start-up, the client sends
two different kinds of control messages to the servers:
• Eval_Request(i): Client D requests media-uniti from

serverSi, .
• Sync_Request(i,): Client D transmits the starting

time to serverSi.

(a) Evaluation Phase

• At local timetstart, clientD sends anEval_Request(i) to
serversSi, .

• ServerSi receives theEval_Request(i) at local timesi,
.

• ServerSi sends media-uniti time-stamped withsi imme-
diately back to clientD, .

• At local time ai, client D receives media-uniti from
ServerSi, .

• At local time tref, client D has received the last media-
unit.
The roundtrip delays and the
maximum round trip time , are
computed.

(b) Synchronization Phase

• At local timetref, clientD computes
the earliest playout time ,
the index that determines t0 as

, and
the delay differences as

• With these results the starting time of ServerSi is calcu-
lated in server time

.
• Client D sends aSync_Request(i,) to serverSi,

.
• At local time , serverSi receives the

Sync_Request(i,), .
• At local time , serverSi starts scheduling of the sub-

stream by sending media-uniti, .
• At local timeti, clientD receives media-uniti, .

At any time, only one synchronization group ofn
media-units must be buffered at the client; after the com-
plete reception the media-units are played out immediately.

2.5 Model 2: Intra- and Inter-Stream Synchro-
nization

2.5.1 Introduction

Model 1 shows how to cope with different but constant
delays for each substream. However, synchronization is
performed under the assumption that jitter does not exist.
Model 2 loosens this assumption and takes into account

i I 0∈∀
si
c

si
c

i I 0∈∀

i I 0∈∀

i I 0∈∀

i I 0∈∀

di ai tstart , i I 0∈∀–=
d

max
max di i I 0∈{ }=

t0 max tref di i I 0∈+{ }=
υ

υ j I 0 tref dj t0=+∈{ }=
δυ i aυ ai , i I 0∈∀–=

si
c

si d
max δυ i i I 0∈∀,+ +=

si
c

i I 0∈∀
si di tref ai–()+ +

si
c

i I 0∈∀
si
c

i I 0∈∀
i I 0∈∀

5

end-system jitter andnetwork jitter. We consider the cumu-
lative jitter and assume the jitter to be bounded.

Due to jitter, media-units will not arrive in a synchro-
nized manner although they have been sent in a timely
manner. The temporal relationship within a single sub-
stream is destroyed and time gaps between arriving media-
units vary according to the occurred jitter. Thus, an isoch-
ronous playback cannot be achieved if arriving media-units
of a substream would be played out immediately. Further-
more, jitter may distort the relationship between media-
units of a synchronization group. Hence,intra-stream syn-
chronization as well asinter-stream synchronization is dis-
turbed. To smoothen out the effects of jitter, media-units
must be delayed at the sink such that a continuous play-
back can be guaranteed. For this purpose,playout buffers
are required.

The main point addressed by model 2 is intra- and inter-
stream synchronization and the calculation of the required
buffer space. First, we regard the synchronization of a sin-
gle substream. Based on a rule of Santoso [14], we formu-
late a theorem that states a well defined playout time4 for a
substream such that intra-stream synchronization can be
guaranteed. Smooth playout cannot be guaranteed if start-
ing before the playout deadline. Starting at a later time
would require more buffer space. Afterwards, we will
extend our considerations to the synchronization of multi-
ple substreams. The main idea in order to achieve inter-
stream synchronization is to maintain intra-stream syn-
chronization for each substream [8]. We begin with an
extension of the model parameters used so far (c.f.
Table 2).

Throughout this paper, we assumebounded jitter and
we use the definition of jitter given by Rangan et al. [12]
who define jitter as the difference between the maximum
delay and the minimum delay.

(3)

(4)

2.5.2 Synchronized Playout for a Single Substream

To guarantee the timely presentation of a single stream
subject to jitter, it is necessary to buffer arriving media-
units at the client to compensate the jitter. The buffer is
emptied at a constant rate.

Santoso et al. [14] have already shown that the temporal
relationship within one continuous media stream can be

4 The playout time or playout deadline is defined as the time elapsed
at the client between arrival and playout of the first media-unit of a sub-
stream.

∆k dk
max

dk
min

, k∀–=

∆max
max ∆k k 0…n 1–{ }∈{ }=

preserved by delaying the output of the first media-unit for
 seconds. Based on this theorem, the playout

deadline is derived. The deadline given by Santoso (case
(a)) can be lowered in some situations (case (b)).

Theorem 1:Consider a single substreamk in case of
bounded jitter given by (3). Then smooth playout can
be guaranteed whenever either one of the following start-
ing conditions holds true.
(a) seconds elapsed after the arrival of the
first media-unit, or
(b) the()-th media-unit has arrived.
Proof: See [7]

When using the shifting strategy, we need to provide for
sub-streamk a total buffer of (for the derivation see
[7]).

(5)

3. Model 3: Resynchronization

3.1 Introduction

Models 1 and 2 assured both intra-stream synchroniza-
tion and inter-stream synchronization under the assumption
that jitter is bounded. In ATM based networks, this
assumptions typically holds true at least for the network
because we can express the acceptable QoS in parameters

Symbol Description Unit

m
substream or server index
()

[mu/sec]

r
requested display ate of each sub-
stream at the client

maximum delay for substreamk [sec]

minimum delay for substreamk [sec]

average delay for substreamk [sec]

jitter for substreamk [sec]

maximum jitter of all substreams [sec]

maximum upper deviation from
 due to jitter for substreamk

[sec]

maximum lower deviation from
 due to jitter for substreamk

[sec]

maximum upper deviation of all
substreams

[sec]

Table 2. Model parameters

m 0 … n 1–, ,{ }∈

dk
max

dk
min

dk

∆k

∆max

∆k
+

dk

∆k
-

dk

∆max+

dk
max

dk
min

–

∆k

dk
max

dk
min ∆k=–

∆k r⋅ 1+

bk

bk 2 ∆k ∆max+ ∆k
+

–+⋅ 
 

r⋅=

6

like throughput, delay, jitter or cell losses [3]. If the end-
system is not using a real-time operating system, bounded
jitter can not be guaranteed.

When jitter is unbounded, an application needs to make
certain assumptions on the amount of jitter since buffer
space may be limited or the increase in end-to-end delay by
too large a buffer is unacceptable [3]. To avoid buffer over-
flow in case of unbounded jitter, we introduce model 3.

Model 3 can be characterized as a scheme for resyn-
chronization. We apply the concept of abuffer level con-
trol to detect asynchrony. To recover from asynchrony, we
use feedback messages to the servers. Model 3 copes with
asynchronies introduced by:
• Alteration of the average delay
• Clock drift
• Server drop outs

An alteration of the average delay leads to agap5 or a
concentration in the continuous media stream. A gap
occurs when the average delay becomes longer, a concen-
tration can be observed when the average delay becomes
smaller. The result ofclock drift is very similar to the result
of a change in delay, but arises much more slowly. Clock
drift introduces a skew.

A mechanism is needed to adapt to changing conditions
in order to preserve synchronization without allocating
additional buffer space. Solving the problem by additional
buffering based on worst case estimates might turn out to
be a difficult task because changing conditions are unpre-
dictable. Even if we succeed to get worst case estimates,
we have to be aware that, first, resources are limited and
that, second, large playout buffers increase the overall end-
to-end delay which is not desired. Furthermore, uncon-
trolled buffering compensates the problems to a certain
amount but will not resolve them over a long period of
time.

Since all the described disturbing factors affect the
buffer level, the buffer level can be regarded as an indica-
tor for upcoming synchronization problems. Once a sink
has discovered a problem, it has to take measures to restore
synchronization. Since asynchrony is basically a shifting in
the media stream, we only need to correct this shifting.
Corrective actions must be feed back either to the source or
to the sink in order to restore synchrony. The idea of taking
the buffer level as an indicator is often referred to asbuffer
level control. Basic work in this area can be found in [13],
[9] and [10]. Our model will uses some of their basic ideas
and extends them to an applicable solution for the synchro-
nization problem. In contrast to the previous work, we take
model 1 and 2 as a basis for synchronization and extend
them with a buffer level control. We focus mainly on buffer
requirements and parameter tuning.

5The effect of a server drop out is also a gap in the media stream.

The next section examines models 1 and 2 with respect
to a buffer level control and presents a buffer model suit-
able to realize a buffer level control. Finally, we discuss the
tuning of the model parameters.

3.2 Buffer Level Control

3.2.1 System Model

The concept of buffer level control is often referred to
as acontrol loop [9]. Sources transfer media-units over the
network that arrive at the sink where they are buffered
before playout. The current buffer level is periodically
measured, and if an ill buffer level is found, the appropriate
steps are taken. Actions may affect either the buffer itself
or the server. In the former case, the loop is placed in the
client, in the latter case it includes the client, the server and
the network. Koehler et. al and Rothermel et al. [9], [13]
propose a synchronization scheme that does not adapt the
playout behavior of the server. Actions are taken exclu-
sively at the sink whether by changing the consumption
rate or by skipping/pausing. This kind of control loop com-
pensates for disturbances to a certain amount depending on
the allocated, available buffer space but sacrifices the real-
time stream continuity.

We adopt to a concept where all components of the
video server architecture are included in the control loop
similar to the approach of Cen et al. [2]. As shown in figure
2, the architecture applies feedback actions to the sources
via control messages in order to maintain synchronization
at the sink.

(a) Feedback Filter

Thebuffer level for substreamk at timet is denoted by
qtk. This value is periodically passed to afiltering function
S(qtk) to filter short-term fluctuations caused by jitter and to
compute thesmoothed buffer level . Examples for fil-
tering functions are the geometric weighting smoothing
function (with as smoothing factor) [13], [2], [11]:

,

The main goal of filtering is to distinguish between
buffer level changes caused by jitter and long-term distur-
bances. If the filter is too sensitive, or no filter is used at all,
jitter causes actions for resynchronization although no
exceptional situation has occurred. On the other hand, a fil-
ter that reacts to slowly to changing conditions takes
actions too late with the result of a longer period of buffer
starvation or overflow. Thus, presentation quality suffers.

btk

α

btk S qtk()= α bt 1k– 1 α–() qtk with α 0 1[,]∈()⋅+⋅=

7

(b) Control Function

The smoothed buffer level is passed to acontrol
function that takes appropriate actions. For each
substream buffer, alower water mark LWk and anupper
water mark UWk are defined. When falls belowLWk
or exceedsUWk, there arises the risk of starvation or over-
flow, respectively, producing an asynchrony. If this hap-
pens, a resynchronization or adaptation phase is entered
whose purpose is to move back into betweenLWk and
UWk. Depending on the extent of asynchrony, the control
function sends anoffsetotk to the source. The source either
skips the number of media-units specified in the offset or
pauses for a duration ofotk media-units. We prefer this
technique over an alteration of scheduling speed, respec-
tively production rate, at the source because we think the
latter is too resource demanding and the QoS of other cli-
ents serviced by the server might suffer.

The sink stays in its resynchronization phase for a time
R in order to let the smoothed buffer level react on the
taken measures. At the end of the resynchronization phase

 controls again whether or not the buffer level
has moved back in the normal area into betweenLWk and
UWk. If not, a new resynchronization phase is [13] started.

3.2.2 Buffer Requirements

Models 1 and 2 provide the buffer spacebk needed to
compensate jitter ([7]). In the following, we will denotebk
as akernel buffer. Applying a buffer level control only to
this buffer is not sufficient since each buffer level within
the range ofbk must be regarded as normal due to the jitter
effects. We fixLWk andUWk to 1 andbk, respectively. To
realize a buffer level control, we must admit buffer levels
below and above the watermarks. Otherwise, it is impossi-
ble to get the smoothed buffer level below or above the
watermarks.

We suggest the scheme of a so-calledvirtual buffer as
indicated in figure 3 by the dashed lines. The virtual buffer
includes at least the real buffer comprising the kernel

SinkSource

Feedback FilterControl Function

System under control

qtk

btk
S(qtk)

otkControl
message

media-units

Figure 2. System model for the buffer level control [2]

C btk 
 

btk
C btk()

btk

btk

C btk() btk

btk

buffer bk and anadditional buffer . The virtual buffer
is exclusively used for the calculation of buffer levels
below and above the real buffer. This allows for a faster
reaction of the smoothing functionS(qtk). The mapping
between the real buffer level and thevirtual buffer level
qtk is performed as follows:
• If neither buffer starvation nor buffer overflow occurs,

the real buffer level equals the virtual buffer level.
• If a buffer overflow occurs, then the virtual buffer is

increased for each discarded media-unit while the real
buffer level remains unchanged.

• If a buffer starvation occurs, then the virtual buffer is
decreased each time when the client finds an empty
buffer while the real buffer level remains unchanged.

• If the normal state of the real buffer is restored by resyn-
chronization measures, the virtual buffer level is reset to
the real buffer level.
The size of strongly influences the gracefulness of

the resynchronization6. The smoothened buffer level
always has a latency (see figure 3) compared with the vir-
tual buffer level qtk, i.e. qtk might be below LWk while
still needs some time to fall below. Let , for
instance. Then a buffer starvation occurs before it is recog-
nized by the control function. Hence, presentation quality
suffers depending on the value of . We consider the fol-
lowing three cases for the size of .
• Selecting yields no gracefulness at all. Asyn-

chrony immediately affects presentation quality and is
soon discovered by a viewer.

• can be dimensioned such that at least the period
between the rise of asynchrony and the discovery by the
control function is covered.

• For full gracefulness, has to be chosen such that
asynchrony does not affect presentation at all. The
buffer space has to cover the period between rise, dis-
covery and removal of asynchrony.

6Notice that the start-up latency is also influenced by the size of .
The larger is, the longer it takes until the first media unit of a sub-
stream is played out because of the buffer level must exceedLWk before
the playout deadline given by model 2 can be applied.

bk
A

bk
A

btk

bk

LWk UWk

virtual buffer range

qtk
latency

real buffer range

Figure 3. Buffer model with virtual and real buffers

bk
A

bk
A

btk

bk
A

bk
A

btk
bk

A
0=

bk
A

bk
A

bk
A

0=

bk
A

bk
A

8

3.2.3 Parameter Tuning

In our model, we have several parameters that must be
chosen appropriately in order to trade-off reactiveness and
overhead.

(a) Smoothing Parameter

Obviously the latency of reaction to an asynchrony
problem depends strongly on the behavior ofS(qtk). The
more indolentlyS(qtk) reacts, the later a resynchronization
phase is entered, the more buffer space may be desired
to compensate for asynchrony as much as possible. On the
other hand, the more sensitivelyS(qtk) reacts, the more
often resynchronization is done unnecessarily (due to the
effect of jitter), the less buffer space is needed to pro-
vide sufficient gracefulness. Hence, the tuning ofS(qtk)
needs to trade-off between stability and reactivity. The
choice ofS(qtk), respectively, helps to determine the addi-
tional buffer space .

For further consideration we examine the filtering func-
tion given by () with respect to second case described
above, i.e. the size of must cover the period between
rise and discovery of an asynchrony. This case is most
interesting because it is influenced byS(qtk). The behavior
of the filter is determined by the parameter :
• A large value of yields strong smoothing, a stronger

consideration of the past, and a more indolent reaction.
• A small value of yields weak smoothing, a stronger

consideration of the present, and a more sensitive reac-
tion.
An upper bound for the choice of is given by the

available memory. A lower bound should be chosen such
that starvation/overflow events due to jitter can be distin-
guished from long term disturbances. Accordingly,
should be set as high as possible while considering the
buffer available.

In our experiments (see [6] for details) we found that a
value of 0.6 or 0.7 for is a good compromise with
respect to the buffer requirement and the number of neces-
sary resynchronization actions.

(b) Degreeotk of Resynchronization

Resynchronization is performed by sending an offset to
the servers to move the buffer pointer back into the
area betweenUWk andLWk. The size of the offsetotk can
be determined by two different strategies:fixed offset or
variable offset.

Employing the fixed offset strategy,otk is set to a con-
stant value. Resynchronization is done slowly in subse-
quent resynchronization phases until synchronization is
restored. The value should not be chosen too high because

α

bk
A

bk
A

bk
A

bk
A

α
α

α

α

α

α

btk

resynchronization, e.g. due to clock drift, is in the range of
one or several media-units. High values could lead to oscil-
lation.

When applying the variable offset strategy,otk varies
depending on the extent of the occurred asynchrony.
Notice that when applying the variable offset strategy sev-
eral resynchronization phases could be needed as well
because at the time when the offset is calculated (deter-
mined by the filtering function) the total extent of asyn-
chrony might not yet be recognized. Nonetheless,
synchronization is generally restored faster with a variable
offset. We will present some experimental results that com-
pare both strategies.

(c) Duration R of Resynchronization

The duration of a resynchronization phase is defined by
R. After R seconds the control function once more com-
pares the smoothed buffer level with the watermarks.
Again, resynchronization actions may be taken.

R must be chosen sufficiently large that the server can
perform the resynchronization, that is, the action must
already have taken effect on the client. SelectingR too
small leads to numerous unnecessary resynchronization
phases where during each phase the extent of asynchrony
is overestimated. Low values ofR can result in oscillation.
For large values ofR several resynchronization phases are
needed as well but the total time of resynchronization can
become unacceptably long. So, in both cases presentation
quality might be strongly influenced.

3.3 Experimental Results

Based on the prototype implementation of the Video
Server Array we have implemented the proposed synchro-
nization scheme for evaluation purposes. For implementa-
tion details, refer to [1] and [6].

The following experiments have been performed on a
dedicated SUN Sparc 10 workstation as a client. We used
two videos, each one distributed across two servers:
• A “Bitburger” commercial, sampled at a rate of 16 fps

(frames/sec) with a total length of 462 frames7.
• A scene from the production “Seaquest”, sampled at a

rate of 16 fps with a total length of 6710 frames.
We evaluated the efficiency of the buffer level control

mechanism. The prototype of the Video Server Array is
implemented in an ATM-LAN environment. So we faced
the problem that events like gaps or concentrations within
a stream are rather unlikely. Thus, we simulated these
events in the servers. The amount of asynchrony can be

7in the context of video streams we use the term frame to denote a
media-unit.

9

specified by the user upon starting a server. The server then
periodically introduces drop outs in scheduling or sends
several frames at once. The client attempts to resynchro-
nize the server by sending back offsets. The following
parameters have been used:
• Smoothing factor for the geometric weighting function:

• Amount of injected asynchrony8: -8, -4, +4, +8 [frames]
• Resynchronization strategy:fixed offsetand variable

offset
The variable offset was calculated by taking the differ-

ence betweenqtk and the watermarks. The fixed offset was
set constant to 1. We allocated two buffer slots for the sub-
stream. This corresponds to the kernel bufferbk. Further-
more, for the additional buffering , we were using three
buffer slots each, above and belowbk. Consider figure 4,
showing the virtual buffer level and the filtered buffer level
over time for the resynchronization of a concentration of
eight frames. The y-axis shows the virtual buffer level
while the x-axis denotes the consumption period. The
upper bound (watermark) of the real buffer level is denoted
by b while the lower bound is not shown in the figure.
Thus, equals andbk is given by . The
virtual buffer level ranges from 1 to 108 because we arbi-
trarily selected a number of 50 frames above and below the
real buffer to calculate the virtual buffer. Figure 4 shows
the course of resynchronization for the fixed offset strat-
egy.

The first resynchronization phase is entered exactly dur-
ing consumption period 142 when the filtered buffer level
crosses the upper watermarkUW. The virtual buffer level
rises up to 61, that is, four frames are discarded. The client

8Negative values denote a drop out while positive values denote a
concentration.

α 0.7=

bk
A

bk
A

b UW– UW LW–

Unfiltered buffer level
Filtered buffer level

110 120 130 140 150 160 170 180 190 200 210

53

54

55

56

57

58

59

60

61

62

Consumption period [frame]

V
irt

ua
l b

uf
fe

r l
ev

el
 [f

ra
m

es
]

Resynchronization of an asynchrony of 8 frames

LW

UW

b

Figure 4. Resynchronization with the fixed offset

then sends an offset of -1 to the server. The client under-
goes 7 subsequent resynchronization phases at the whole.
These phases are indicated by the peaks. Synchronization
is restored exactly during consumption period 180 when
the filtered buffer level falls belowUW.

We now consider the same situation with the variable
offset strategy. The course of the filtered and unfiltered
buffer level is depicted in figure 5.

Resynchronization starts during consumption period

130. Again, a number of four frames is discarded. The cli-
ent first sends an offset of -3 frames to the server. Already
after this resynchronization action, the buffer level falls
below UW for a short period of time. Now, two additional
resynchronization phases are needed until synchrony is
restored. In each phase an offset of -2 is sent to the server.
Synchronization is exactly restored during consumption
period 149. In contrast to the fixed offset strategy, only 19
frame periods are needed to regain synchrony. The results
also show clearly that resynchronization with a variable
offset becomes even more efficient for larger asynchronies
because the adoption is performed faster.

4. Conclusion

We have presented a scheme for intra- and inter-stream
synchronization of distributed stored multimedia streams.
Our scheme comprises three models that assure synchroni-
zation in an environment with different delays, jitter, server
drop-outs, clock drift, and an alteration of the average
delay. The mechanisms described do not rely on synchro-
nized clocks within the network. In contrast to existing
synchronization solutions, the scheme is suitable for
streams that are striped across multiple server nodes as
well as for a single server approach.

Unfiltered buffer level
Filtered buffer level

110 120 130 140 150 160 170 180 190 200 210

53

54

55

56

57

58

59

60

61

62

Consumption period [frame]

V
irt

ua
l b

uf
fe

r l
ev

el
 [f

ra
m

es
]

Resynchronization of an asynchrony of 8 frames

LW

UW

b

Figure 5. Resynchronization with variable offset

10

The scheme presented has been successfully imple-
mented in our video server prototype [1] where each video
is distributed (striped) overn server nodes.

Acknowledgment.The work described in this paper was
supported by the Siemens Nixdorf AG, Munich.

5. References

[1] C. Bernhardt and E. W. Biersack. The server array: A scal-
able video server architecture. In W. Effelsberg,
A. Danthine, D. Ferrari, and O. Spaniol, editors,High-
Speed Networks for Multimedia Applications. Kluwer Pub-
lishers, Amsterdam, The Netherlands, 1996.

[2] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. A dis-
tributed real-time MPEG video audio player. In T. D. C.
Little and R. Gusella, editors,Proceedings of the 5th Inter-
national Workshop on Network and Operating System Sup-
port for Digital Audio and Video (NOSSDAV’95), volume
1018 ofLNCS, pages 142–153, Durham, NH, April 1995.
Springer Verlag, Heidelberg, Germany.

[3] J. S. Cormac.Synchronisation Services for Digital Contin-
uous Media. PhD thesis, University of Cambridge, Cam-
bridge, England, October 1992.

[4] W. Effelsberg, T. Meyer, and R. Steinmetz. A Taxonomy
on Multimedia-Synchronization. InProceedings of the
Fourth Workshop on Future Trends of Distributed Comput-
ing Systems, Lisbon, Portugal, Sep. 1993, pages 97–103.
Eyrolles, 1993.

[5] J. Escobar, C. Patridge, and D. Deutsch. Flow synchroniza-
tion protocol.ACM Transactions on Networking, 2(2):111–
121, April 1994.

[6] W. Geyer. Stream synchronisation in a scalable video serv-
er array. Master’s thesis, Institut Eurecom, Sophia Antipo-
lis, France, September 1995.

[7] W. Geyer, C. Bernhardt, and E. Biersack. A synchroniza-
tion scheme for stored multimedia streams. In B. Butscher,
E. Moeller, and H. Pusch, editors,Interactive Distributed
Multimedia Systems and Services (European Workshop
IDMS’96, Berlin, Germany), volume 1045 ofLNCS, pages
277–295. Springer Verlag, Heidelberg, Germany, Mar.
1996.

[8] Y. Ishibashi and S. Tasaka. A synchronization mechanism
for continuous media in multimedia communications. In
IEEE Infocom’95, volume 3, pages 1010–1019, Boston,
Massachusetts, April 1995.

[9] D. Koehler and H. Mueller. Multimedia playout synchroni-
zation using buffer level control. In2nd International Work-
shop on Advanced Teleservices and High-Speed
Communication Architectures, pages 165–180, Heidelberg,
Germany, September 1994.

[10] T. D. C. Little and F. Kao. An intermediate skew control
system for multimedia data presentation. InProceedings of
the 3rd International Workshop on Network and Operating
System Support for Digital Audio and Video, pages 121–
132, San Diego, CA, November 1992.

[11] H. Massalin and C. Pu. Fine-grain adaptive scheduling us-
ing feedback.Computing System, 3(1):139–173, 1990.

[12] P. V. Rangan, H. M. Vin, and S. Ramanathan. Designing an
on-demand multimedia service.IEEE Communications
Magazine, 30(7):56–65, July 1992.

[13] K. Rothermel and T. Helbig. An adaptive stream synchroni-
zation protocol. In T. D. C. Little and R. Gusella, editors,
5th International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video, volume 1018 of
LNCS, Durham, New Hampshire, USA, April 1995. Spring-
er Verlag, Heidelberg, Germany.

[14] H. Santoso, L. Dairaine, S. Fdida, and E. Horlait. Preserv-
ing temporal signature: A way to convey time constrained
flows. In IEEE Globecom, pages 872 – 876, December
1993.

[15] R. Steinmetz and K. Nahrstedt.Multimedia: Computing,
Communications and Applications. Innovative Technology
Series. Prentice Hall, Englewood Cliffs, NJ, 1995.

