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Abstract

Providing authentication mechanisms for IP-Multicast
streams is paramount for the development of large scale
commercial multicast content delivery applications. This
need is particularly strong for the delivery of real time
content, such as live video/audio news events or financial
stock quote distribution. However, this turns out to be a
quite challenging problem for many reasons. First, the au-
thentication of the multicast data must be verifiable by a
potentially very large number of untrusted recipients. Sec-
ond, since multicast communication protocols are almost
always best effort, the authentication mechanisms needs
to authenticate received content despite the potential loss
of some packets. Finally, the authentication mechanism
needs to be efficient enough to cope with real time data
and should have a small communication overhead.

We propose a new multicast authentication scheme de-
signed to authenticate real time multicast packet streams
with a potentially unlimited number of recipients. This
scheme provides both integrity and nonrepudiation of ori-
gin, and in a majority of situations, it performs with less
overhead in bytes per packet than previously proposed
practical real time stream authentication schemes.

1 Introduction

IP-Multicast [8] allows the scalable delivery of packets
to a potentially unlimited number of recipients. As such,
it is a very interesting mechanisms for commercial appli-
cations that deliver streamed content to a large group of
recipients, such as video/audio broadcasting. However,
some security issues need to be solved[12] before these
application are deployed on a large scale. The most basic
needed security mechanisms for large scale commercial
multicast applications are confidentiality and authentica-
tion. In fact, the key distribution algorithms employed in
many multicast confidentiality proposals[16, 30, 23, ...]
require a form of authentication to assure that the keys
originate from a legitimate key distribution entity. Conse-
quently, we argue that authentication is probably the most

needed multicast security mechanism.
To allow packets to be authenticated in a stream, the

source must add authentication information to the dis-
tributed content. This authentication information is used
by recipients to ascertain the origin of the transmitted con-
tent. In the context of multicast authentication, we distin-
guish two types of distributed contents: pre-recorded and
real time. Pre-recorded content describes content that is
known in advance to the source, such as a film or mu-
sic. For such content, the authentication information can
be computed and inserted in the stream in advance. On
the other hand, real time content describes content that
is produced in real time such as live sports event broad-
casting, news events or financial stock quotes. Real time
content requires some of the authentication information to
be computed in real time, which adds further constrains
on the efficiency of the authentication algorithm. Thus,
an efficient real time authentication algorithm can be used
for pre-recorded data while the converse is not necessarily
true. Moreover, it seems that real time application natu-
rally have a stronger need for authentication. Consider as
an example, the disastrous consequence that source im-
personation could have for an application such as stock
quote distribution, where a malicious entity could gen-
erate bogus financial data. The main goal of this work
is to provide a multicast authentication with a emphasis
on low communication overhead, for real time data appli-
cations where a low delay is acceptable and will not be
perceived at the message level. For an approach directed
more specifically to pre-recorded data, we refer the reader
to [9], [15] and [29].

1.1 Two Levels of Authentication

We distinguish two levels of authentication:

Source Authentication: allows a recipient to verify the
origin of the content.

Nonrepudiation (of origin): allows the recipient to
prove the origin of the data to a third party.

In traditional two party communications, source authen-
tication is provided with efficient symmetric techniques
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using a MAC (Message Authentication Code) which re-
lies on a secret key shared between the two communicat-
ing parties. On the other hand, nonrepudiation is provided
with a digital signature, using asymmetric cryptographic
techniques which have a cost that is several orders of mag-
nitude higher than a MAC.

Canetti et al. have proposed a multiparty extension[7]
to MACs in the context of multicast, but their scheme has
some drawbacks. Most notably, the communication over-
head is important and the security of the scheme is only
defined up to a coalition of � malicious recipients forg-
ing data for a chosen recipient. Recent work from Boneh
et al.[4] suggest more generally that extending symmet-
ric MAC techniques in the multicast setting will not be
possible without new advances in cryptography. As we
will see, except TESLA[22], current practical multicast
authentication techniques are not fully built on symmetric
techniques but rely instead partially on asymmetric tech-
niques. As a consequence many of these schemes, includ-
ing ours, also provide nonrepudiation of origin.

1.2 Real Time Multicast Authentication Chal-
lenges

There are two main factors which make multicast
stream authentication a challenge:

A Multiparty Factor: we have an unlimited number of
untrusted recipients.

A Streaming Factor: we want to authenticate data from
a potentially infinite stream of packets transmitted
over a lossy channel.

The multiparty factor has a strong impact on the secu-
rity requirements of a multicast authentication scheme.
Indeed, a fundamental difference between multicast and
two-party authentication is that in multicast we consider
the recipients as potential adversaries. This rules out the
use of a symmetric MAC key shared between the source
and the recipients, because recipients should not be able
to impersonate as the source of the stream.

The streaming factor has several design implications.
Firstly, we do not view the stream as a unique object that
is authenticated all at once, but rather as a sequence of
consecutive chunks of data that need to be authenticated
individually as they are received. Secondly, recipients
should be able to authenticate packets starting from an ar-
bitrary point in the stream or at least on the boundary of
a small block of packets. Multicast is often implemented
over UDP and assumes only a best effort delivery mech-
anism and many multimedia multicast applications toler-
ate losses with a graceful degradation in playback quality.
Consequently, one of the most important design require-
ment of a multicast authentication scheme is the ability to

authenticate packets amid losses in the network (for non-
lossy streams, see for example [9]).

From all the observation we made, we can establish
several parameters to measure the quality of a real time
stream authentication scheme:

� Robustness: the ability of the scheme to authenticate
received data despite losses in the network.

� Joinability: the ability of recipients to start authenti-
cating packets from an arbitrary point in the stream.

� (Server Side) Buffering: the maximum number of
packets that need to be stored on the server to com-
pute robust authentication information.

� (Authentication) Latency: the maximum number of
additional packets that need to be received before a
packet can be authenticated.

� Computational Cost: the computational cost of the
scheme.

� Communication Overhead: the number of bytes
per packets which describe the embed authentication
information.

Buffering and Latency appear in some situations where
authentication information pertaining to a packet is stored
in one or several other packets. Ideally we would like a
scheme that has perfect robustness, that is joinable on ev-
ery packet, has no buffering or latency and has an over-
head as well as a cost similar to what is found in a MAC
scheme. In practice however, such a perfect scheme does
not exist and a compromise needs to be found between
these parameters.

1.3 Related Work

A straightforward stream authentication method would
be to use a public key signature on each packet of the
stream. In theory, this is well suited for real time streams
and the authentication is joinable on any packet. However,
adding a typical 1024 bit signature[28] (or 128 bytes) to
every packet represents a consequent overhead, moreover,
the computational cost of a public key signature makes
such a solution impractical in many scenarios. Conse-
quently stream authentication proposals have taken two
approaches, sometimes in combination: design more ef-
ficient signature schemes and amortize the cost of signa-
tures over several packets.

Faster digital signatures designed with stream authenti-
cation in mind where proposed by Rohatgi [27], as well as
Wong and Lam [31]. These proposals come however with
a communication overhead that makes them impractical



in many situations. The BiBa scheme proposed by Per-
rig [21] offers a significantly improved broadcast signa-
ture scheme which has a lower computationnal overhead
but still a communication overhead that is only slightly
lower than a traditionnal public key signature. On the
other hand, these schemes including the one in [9], still
have the advantage of offering a fully real time authenti-
cation (ie. with no delay at all).

A complementary approach is to amortize the signature
over several packets in a block. The stream is itself di-
vided into many small blocks that have each a unique dig-
ital signature that is combined with hash/MAC techniques
to authenticate the packets in the block. We refer to these
techniques as well as the one we propose in this work as
hybrid approaches. Wong and Lam proposed one of the
first hybrid approaches in their hash tree construction[31],
which is robust to any number of losses in a stream but
has a consequent overhead per packet, even larger than
the size of a digital signature. Instead of being robust to
any type of packet loss, recent stream authentication pro-
posals have been designed to adapt to loss patterns that
are more specific to the Internet. This allows a significant
gain in terms of overhead. First, based on the observation
that losses usually occur in bursts in TCP/IP[20], Golle
and Mogadugo[10] proposed a scheme that could toler-
ate (1 or several) bursty loss(es) of at most � packets in
a block. Packets are linked together in a “hash chain”,
the last packet of which is digitally signed. However, the
scheme has some drawbacks, and in particular, the trans-
mission of the signature is not clearly addressed. Inde-
pendently Perrig et al. proposed a more complex “hash
chain” construction called EMSS[22] which is adapted to
multiple losses and which better addresses signature trans-
mission. Recently, in a scheme called SAIDA[19], which
shares similarities with our work, Park et al. used the IDA
(information dispersal algorithm) to transmit authentica-
tion information pertaining to each block of packets in a
stream. We discuss these related proposals more in detail
in section 5.

As a complementary approach to their EMSS scheme
Perrig et al.[22] proposed a very efficient time based
stream authentication scheme called TESLA. It provides
source authentication but does not offer nonrepudiation,
which is not a problem for many applications. Its most
interesting feature is that it tolerates arbitrary packet loss
with a low overhead. Its main drawback is that it requires
all the recipients to establish a loose clock synchronization
with the source through a initial unicast exchange which
may not be always practical in a large multicast group.

1.4 Overview of our Scheme

Our scheme uses a combination of hash and signature
techniques with FEC, or more precisely, erasure codes.

The two most employed techniques to achieve reliable de-
livery of packets in computer communication protocols
are ARQ (Automatic Repeat reQuest) techniques and FEC
(Forward Error Correction). ARQ techniques are used ev-
ery day in Internet protocols such as TCP, while FEC tech-
niques have long been confined to the telecommunications
world. However, there has been recently a surge in interest
for FEC techniques in the Internet world, often in com-
bination with more traditional ARQ approaches[18, 6].
While in the telecommunications world FEC techniques
are used most often to detect and correct errors occur-
ring in the transmission of a stream of bits, they are used
in the Internet world to recover from the loss of packet
sized objects. Indeed, in the Internet world a packet is
either received or lost. A packet can be considered lost
if it does not arrive after a certain delay or perhaps if
it has bad checksum. Our idea was first to use FEC to
transmit the signature alone, but we soon realized that
FEC could also be used as an alternative to hash trees[31]
or chains[22, 10] to transmit authentication information,
with lower overhead per packet in most cases than any
other scheme suitable for real time broadcasts.

The central contribution of this work is the proposal of
a joinable real time robust stream authentication scheme
with nonrepudiation of origin. It uses Erasure Codes to
provide a lower overhead per packet than previous real
time authentication stream proposals, while being adapted
to realistic multicast Internet loss patterns.

A brief overview of erasure codes will be presented in
the next section. Our scheme is formalized in section 3 as
well as its relationship with Internet loss patterns which
are modeled with a Markov chain. Section 4 discusses
the cost and overhead of our scheme and presents its use
in a few concrete scenarios. Finally, we review other real
time lossy stream authentications schemes in section 5 and
compare them with our approach.

2 Background

2.1 Erasure Codes

An erasure code generation algorithm
����� �

takes a set�	��
��������������� ���
of � source packets in a block and pro-

duces �������� code packets:

!��"��������#!%$ �'&(��) �+*,�-��� � � �  

The main property of the set . �/
"!0����������#!%$ �'&(��) �
is

that any subset of � elements of . suffices to recover the
source data

�
with the help of a decoding algorithm 1 � .

To be exact, the decoding algorithm 1 � needs to know the
position, or index, of the � received elements in . to re-
cover

�
. This information can often be derived by other

means (such as the packet sequence number) and we will
assume in the remaining discussion that this information



is available implicitly to 1 � . If the first � code packets are
equal to the source packets, that is


! � ���������#! � � � �
where
!0�"���������#! $ � &(� ) � * � �"� � � �  , we call the code systematic

and the extra redundancy packets

"! $ � & � ) ���������#! $ � &(� ) �

are
called parity packets. Systematic codes are very useful
since they do not require any additional processing from
the recipient in the case where no loss occurs.

It is important to note that Erasure Codes are not used
in the same context in the Internet as in telephony. Here
the codes are not designed to recover damaged packets but
rather the loss of full packets in a block of several packets.
Intuitively, an individual packet can therefore be viewed
more like a single code symbol rather than a set of sym-
bols. For a good introduction to practical erasure codes we
refer the reader to the work of L. Rizzo[26] where Reed-
Solomon erasure codes are described. These codes op-
erate in

��� �����  and may not be efficient for large data
blocks of packets (several hundred kilobytes). However,
they are suitable in our scenario since we work on data
units that are much smaller than a packet (typically 16 or
20 bytes), as shown below. For faster codes, we refer the
reader to the work of M. Luby et al. on Tornado Codes
[14, 6], where codes with near linear coding and decoding
times are described.

In the remaining of this work,
� �"� � � �  will describe

a practical systematic erasure code generation algorithm
which takes � source packets and produces ��� � �� code
packets. If

� � 
� � ���������#� � �
is the source data and .

are the � extra generated parity packets, we will write
�	� . � * � �"� � � �  . The corresponding decoding algo-
rithm will be denoted 1 � � �  and if 
 describes the set of
received elements and

�
the source data, we will write� * 1 � ��
  to describe the recovery process.

2.2 Notations

In this work we will consider a stream to be divided in
consecutive blocks of � packets. Since a stream does not
necessarily exactly contain a number of packets which is
an exact multiple of � we allow the use of dummy padding
packets at the very end of the stream to match a � packet
boundary. Our authentication scheme is parameterized by� the block size in packets and ���� � ����� � the maximum
expected loss rate per block.

We will denote � as a cryptographic hash function
such as SHA[17] or MD5[25] which produces hashes of�

bytes. The couple ��� ���  will denote the digital sig-
nature and verification algorithms respectively associated
with the source of the packet stream, such as RSA[28, 1]
for example. The size of the signatures will be expressed
as � bytes. For RSA, a typical value for � is 128 bytes (or
1024 bits).

3 Stream Authentication

3.1 Authentication Tags

Consider a block as a sequence of � packets � � ���������� ����� .
Let


 � ���������� � �! �#" * � �$� "  � be the set of hash values
of these packets with a cryptographic hash function ��� �  .
From this hash set we build a set of � authentication tags
!% � ��������&% � � with the following algorithm ')( � � *,+ which uses
some of the notations introduced in the previous section:

Tag generation: ')( � � *,+
INPUT:


 � ���������� � � �
OUTPUT:


-%�����������&% � �
�.� � �+*,� � ��/0* �21 � �  (1)3 * � �$��� � �  � �����  � � *  # (2)
 . � . �+* �54 � $ �,6 *�)�7 ��/ * �21 � �  � 3  
where . � �  � 3 (3)

Split

 . � . � into

� equal length tags

!% � ���������8% � � . (4)

We propose a more visual representation of the tag algo-
rithm on figure 1.

We observe that ')( � � *,+ uses two different erasure codes,
in steps (1) and (3). The values


 . � . � on line (3) is of
total length that is a multiple of � bytes, because we have� �:9 � � �<; �  >= �@?A�B��C . This allows us to divide


 . � . �
into equal length tags on line (4). To exploit the tag gen-
eration algorithm we will first define our authentication
criterion:

Authentication criterion: In this work we say that a
packet � " is fully authenticable in a block if, given the
set of hashes


 � �"�������� � � � of packets in the block and their
signature 3 � � �$� � ���  D �����  D � *  � , we can verify that both� � 3 � ��� ���  D �����  D � *  � �FE �HG)I and � �$� "  � � "

.
The proposed schemes in this work are based on the

following property of the tag generation algorithm.

Proposition 1. Let J � � � � ��������� � � � be a block
of � packets and


 ��� ��������� � �  � " * ���2� "  � its asso-
ciated hash set. If we compute K � 
!% � ���������&% � � *
'B( � � *,+ � 
 ��� �������� � � �  then any subset of at least

9 � � �L; �  >=
packets in J can be authenticated using any subset of at
least

9 � � �L; �� M= tags in K .

Proof. Define � �N9 � � �L; �  >= . Let JPO � � ��Q&R �������� ��Q>S-�
be a subset of � packets in J and let KTO � � %!U R ��������8%-U SV� be
a subset of � packets in K . We can compute


 �  � 3 � *1 4 � $ �,6 *�)�7 �2KWO  since KWO contains � � 9 � � �L; �  >= ele-
ments. Let X � 
 � Q R ��������� � Q SY � Q>Z * � �$� Q>Z  � be
the hashes of the received packets. We can recover



���� ������������ ���� ���� 		

 �������� �� ���� ����

������������� �!�#"$"$"$�%� &('

� �
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Figure 1. the tag generation algorithm


 � � ��������� � � � form D and
�

by computing

 � � �������� � � � *1 � �$X  � �  . Finally we can compute

� � 3 �'
 � � �������� � � �  to
authenticate the received packets JTO to verify our authen-
tication criterion. E

A direct corollary of the proposition above is that both
a block of packets and their authentication tags can with-
stand a loss rate of at most ?0�)��C elements while allowing
us to authenticate the remaining packets.

Finally, from the construction of the algorithm above
we can determine the size of an authentication tag:

Proposition 2. Let
�

define the length of our crypto-
graphic hashes and � the size of the signatures. The size of
an individual authentication tag is expressed as a functionF ��� � �� of both the number of packets in a block and � the
maximum expected loss rate per block, as follows:

F ��� � �� �HG 4 $ �,6 *�) � 7 ���-��?0� � ��C �  9 � � ; �� &��=
where G � ��I� is an integer function which returns the

lowest multiple of � greater or equal to I .

Proof. Let
!

denote the size of the value

 . � . � and�

the size of
�  � 3 padded to the proper length, both on

line (3) of the algorithm. We have
F �2� � �  � !KJ � . From

the erasure code parameters on line (3) we have
! �

� 4 $ �,6 *�) � 7#&</ *ML �214 $ � 6 *�) � 7 � � �4 $ �,6 *�) � 7 and thus
F ��� � �� � N4 $ �,6 *�) � 7 .

The value of
�

is the the sum of the size of
�

and the
signature 3 , padded to the appropriate length for the era-
sure code of line (3). From line (1) we compute the size
of
�

as ?A� � ��C � and write � as the size of 3 which yields� � G 4 $ �,6 *�) � 7 ���-��?0� � ��C �  . E
3.2 Proposed Schemes

In our stream authentication scheme we propose to pig-
gyback authentication tags in the packets of a block and
use Proposition 1 to authenticate received packets when
the loss rate in a block is less than � . We propose 3 differ-
ent variants of our scheme which only differ by the posi-
tioning of the authentications tags.

In this section we will denote a stream as a set of O
blocks D � ��������� DQP . The individual � packets in each blockD " are identified as � � R �V� � �������� � � R � ��� . The correspond-
ing authentication tags are identified as

% � R �V� � ���������8% � R � � � .
The packets � � R �TS � are a combination of just two things:
stream data packet 1 � R �TS � and an authentication tag.

ECU: The unbuffered sender scheme. In this scheme
we use packets in a block D $ " & � ) to piggyback authenti-
cation tags pertaining to block D " . The

SVU%W
packet in a

block D " is thus defined as � � R �TS � � 
 1 � R �TS �> � % � R ; � �XS � � .
This requires the sender to create an extra padding dummy



block D $ P & � ) to allow the last block DQP to be authenti-
cated. This scheme has the particularity that it does not
require any stream data packet buffering from the sender,
only the hashes of the packets in the current block need
to be stored by the sender who can then compute the nec-
essary authentication tags to be piggybacked in the next
block. In this sense, this scheme is truly an real time au-
thentication scheme. The tradeoff of this construction is
that the receiver will experience a latency of two blocks in
the worst case before he can authenticate the first packet
in a blocks he received.

This construction creates a dependency between two
consecutive blocks, thus in the event of a loss that exceeds
the threshold � and in particular if a whole block D " is lost
than we will not be able to authenticate D $ " 6(� ) .

An interesting aspect of the ECU scheme is that it also
gives an extra amount of time for the sender to compute
the signature of a block and the second authentication
code. Recalling line (3) of the tag generation algorithm we
have


 . � . � * � 4 � $ � 6 *�)�7 ��/ * �21 � �  � 3  where

 . � . � is

split in � authentication tags. Accordingly we can rewrite
 . � . � as

 �  � 3 � . � , thus the first �  �  authentication

tags will contain elements representing
�

, then the next
group of ��� ��� tags will represent the signature 3 and finally
the last group of tags will represent the � ; �  �  ; ��� ���
associated parities. Consequently, the first authentication
coding operation on line (1) of our algorithm needs to be
produced before sending block D $ " & � ) , however, the sig-
nature on line (2) only needs to be computed after the first
�  �  packets of D $ " & � ) and the second code on line (3)

only needs to be ready after the �  �  ����� ��� first packets of

D $ " & � ) .
EC2: The double buffer scheme. Instead of piggy-
backing tags in the next block, we examine the possi-
bility of piggybacking tags in the previous block. In
other words, the tags of block D " are put in packets of
block D $ " 6(� ) and packets in a block D " are defined as� � R �XS � � 
 1 � R �XS �� � % � R � � �TS � � . This requires the sender to
create an extra padding dummy block at the beginning of
the data stream. The main advantage of this construction
is that the receiver can authenticate each received packet
immediately upon reception. The main drawback of this
scheme is that it requires the sender to buffer two blocks at
a time. In this sense it is not a truly real time scheme but in
some applications, our double buffering is still acceptable.

This construction also creates a dependency between
blocks similar to ECU, with similar consequences.

EC1: The single buffered scheme. The most obvious
construction and perhaps the one that offers the best com-
promise between the sender buffering and the receiver au-

thentication latency is to piggyback the tags of a block D "
in the block D " itself. Packets in a block are simply de-
fined as � � R �XS � � 
 1 � R �TS �� D % � R �XS � � . This scheme requires
the sender to buffer one block and adds a maximum veri-
fication latency of one block for the receiver.

A advantage of this scheme is that it does not create a
dependency between blocks, thus if a block losses packets
beyond the expected maximum loss rate � , the authenti-
cation of neighboring blocks in the stream remains unaf-
fected.

3.3 Parameter Choice

Until now we proposed a method which can authenti-
cate a block when a threshold of less than �B� packets are
lost in a block of � packets. However we need to relate
these parameters to concrete average network loss patterns
and we will now discuss the choice of the two main pa-
rameters of our scheme: � the block size and � the maxi-
mum loss rate per block.

The goal of an hybrid scheme is to amortize the cost
of a signature over several packets. Thus the greater the
block size, the less often we will need to compute a signa-
ture. On the other hand the block size influences the au-
thentication latency and/or the sender buffer size, depend-
ing on which scheme is chosen. The EC2 has the lowest
possible authentication latency (1 packet) but the biggest
buffering, whereas ECU has no sender-side packet buffer-
ing but a maximum 2 block authentication latency. As we
said above, EC1 seems to be a good compromise in most
situations with both a buffering and a maximum authen-
tication latency of one block. Once a scheme is chosen,
we recommend to choose the largest possible block size� within the constraints of the application authentication
latency requirements.

The parameter � depends on the loss pattern of our
network. There has been quite a few studies about In-
ternet loss patterns for applications such as Audio Uni-
cast/Multicast [2], Internet Telephony[3], Multicast [32,
33], TCP[20] TCP/UDP[5]. These studies differ on their
analysis and their scope, however there is a general con-
sensus among most studies that:

1. Packet losses are not independent. When a packet is
lost the probability that the next packet will be lost
increases, which means that losses in the Internet are
often bursty.

2. However the majority of bursts are small (from 1 to
6-7 packets).

3. There are some very rare long bursts, lasting up to
a few seconds (In [5] the authors suggest that these
bursts could attributed to network disruption or main-
tenance).



In this work, we propose to refer to a model often sug-
gested to describe bursty losses in Internet traffic which
is a simple 2 state Markov chain [3, 34] also called the
Gilbert model, where state 0 represents a packet received
and state 1 a packet lost by the recipient. If � denotes
the probability of going from state 0 to state 1 and � the
probability of going from state 1 to state 0 we have the
following transition matrix[11]:� ��� � �L; �  �� � �L; �� ��

This model simulates well the fact that the loss proba-
bility of packet increases when the previous packet is lost
( ��� �T; � ), rather than being uncorrelated ( � ��� � �

).
The probability that � consecutive packets are lost is equal
to � � ; �� � 6 � � which describes a geometric distribution of
mean 	 � � J � . According to [3], the head of the distribu-
tion seems to model Internet loss patterns well with some
inaccuracies in the tail. But in any case, if a very long
burst rarely occurs, with extremes such as those stated in
point 3 above, it does not make sense to invest much effort
to make our scheme robust for those bursts since most the
data that needs to be authenticated is likely to be lost itself.
The long term average loss rate 
 � is given by solving the
equation ��
� � 
 �  � � � ��
�� � 
 �  , which yields 
 � � �� &�� .
We further note that Perrig et al.[22] as well as Park et
al.[19] have used this model in their own stream authen-
tication schemes.

The strategy we followed in this work was first to
choose � , then to simulate a Markov chain over a very
large number of blocks and adjust the parameter � such
that most blocks would be verifiable (we chose an arbi-
trary value of 99% verifiable blocks). The Markov chain
parameters were derived from 	 : the average loss rate and
 � : the average burst length. Note that here the number
of losses in a block of � packets can be successfully mod-
eled as a the number of successes in trials of a Bernoulli
process with parameter 
 � , which is approached by the
normal distribution. This approximation could also give
us some analytical results but we found the simulations to
be more informative.

4 Discussion

4.1 Computational Cost

Our scheme involves 3 types of operations:
� cryptographic hash computations.

� a digital signature.

� 2 coding and decoding operations.

For each block, the source needs to compute � hash op-
erations, a digital signature (which includes a hash), and

generate the 2 codes. Here, the hashing and signing costs
are equivalent to other hybrid schemes such as EMSS[22]
or Hash Chains[10]. The amount of computation done by
the recipient depends on the losses in the network. In an
ideal situation we just computes � hashes and verifies a
signature. If packets are lost some additional decoding
operations will be needed. The codes are used to recover
hashes of packets, rather then the packets themselves, thus
we will be manipulating small amounts of data. In tradi-
tional uses of Erasure Codes, the packets size � is typi-
cally over a thousand bytes, while here, we are looking at
figures ranging from � ���

to � ����� � bytes in the most
extreme cases.

If we take a simple Reed-Solomon Erasure Code[26],
the computational decoding cost is � � O � I � �  where O
is the number of original message packets, and I the ad-
ditional parities needed (corresponding to the loss) and� the size of a packet. The coding cost is similarly in� � O � � � �- where � is the number of parities.

For demanding situations, we can turn to more efficient
codes such as Tornado Codes[14]. These codes are prob-
abilistic and come with what is called a slight “decoding
inefficiency”: � � ���  :O packets are needed to recover O
original packets with high probability. These codes use
the binary XOR operation as a basic operation as opposed
to Galois Field operations in the Reed Solomon case, thus
we achieve very efficient coding and decoding times of� �#�%O � �  ln � � J �  ��  . Note that the use of tornado codes
would thus conduct us to modify our definitions in section
3 to take the decoding efficiency into account. However,
in [6] significant values of ��� � � � � are considered, thus
the results we propose in this work should not be signifi-
cantly different with such a small overhead increase if we
use Tornado Codes.

Compared to other hybrid real time authentication
streams, the main tradeoff of our scheme is in the is the ad-
ditional computational cost generated by the erasure code.
However, since we are operating on small code packet
size, the cost over a block should remain very reasonable.
We will show in the next section that the substantial gain
we can achieve in terms of overhead per packet is clearly
worth the extra computational effort.

4.2 Overhead

4.2.1 Evaluation

The overhead in bytes per packet of our 3 schemes is
uniquely defined by the size of an authentication tag.
Thus, recalling Proposition 2 in section 3 we can express
the overhead as a function

F ��� � �� of the maximum ex-
pected loss rate per block � and the number � of packets
in a block:



F �2� � �  � G 4 $ �,6 *�) � 7 �2� � ?0� � ��C �  9 � �L; �  8��=
where G � �%I0 is an integer function which returns the

lowest multiple of � greater or equal to I .
We would like to emphasize again that this overhead

includes the signature overhead. Table 1 presents a sam-
pling of

F � � � �� for different values of � and � , with � �� ��� bytes (1024 bit RSA) and
� � ���

(MD5[25]). Note
that

F �2� � �  remains surprisingly small if either � large or� is reasonably low.

� \ � 16 32 64 128 256 512 1024

0.05 10 6 4 2 2 2 1
0.10 12 7 5 3 3 3 2
0.25 16 11 8 7 6 6 6
0.50 32 24 20 18 17 17 17
0.75 80 64 56 56 50 49 49

Table 1. Overhead bytes per packets for differ-
ent values of � and �

4.2.2 Case studies

To be more concrete we applied our scheme to the two
case studies Perrig et al. propose in their work for the
EMSS[22] real time stream authentication scheme. We
recall their first case study:

A municipality wishes to collect traffic information
from sensors distributed over the streets. The system re-
quirements are as follows:

� The data rate of the stream is about 10 Kbps, about
20 packets of 64 bytes each are sent every second.

� The packet drop rate is at most 5% for some recip-
ients, where the average length of burst drops is 5
packets.

� The verification latency should be less than 10 sec-
onds.

We propose to use the ECU scheme since the sensors
may have limited memory, thus the verification latency
of 10 seconds allows us to use a block of 100 packets
(200/2 since a block is authenticated by the next one).
Given the drop rate and the average length of bursts, we
constructed a corresponding two state Markov chain with� � � � � � � � � � � � � � � � and simulated it over 10000 blocks
of 100 packets. For Markov chain simulation techniques
we referred to Häggström[13]. We found that 99% of
those blocks experienced a loss less than 27 packets, thus

we decided to choose � � � � ��� . The overhead1 per packet
is then only

F � � � � � � � ���� � � bytes !
The second case study proposed by Perrig et al. is re-

lated to real-time video broadcasting, with the following
requirements:

� The data rate of the stream is about 2Mbps, or 512
packets of 512 bytes each every second.

� The packet drop rate is at most 60% for some re-
cipients, with an average length of burst drops of 10
packets.

� The verification latency should be less than 1 second.

We propose again the EC1 scheme and because of the ver-
ification latency, we have to limit � to 512 packets. We
simulated the corresponding Markov model over 10000
blocks and found that 99% of those blocks experienced
a loss of less than 375 packets. We decided to choose� � � � ��� � ��� �VJ � � � , which gives us an overhead per
packet of

F � � � � � � � ���  �
	 �
bytes.

loss av. burst � � F �A� � �' 
rate length

Example 1 5% 5 100 0.27 8
Example 2 60% 10 512 0.73 45
Example 3 10% 3 32 0.47 22
Example 4 10% 50 512 0.50 18
Example 5 80% 10 200 0.905 160
Example 6 5% 5 1024 0.1 2

Table 2. A few case studies.

As a complement to the two proposed scenarios above,
Table 2 shows a few of our other simulation results, fol-
lowing the same approach as above for different average
burst loss lengths and loss rates. Example 1 and 2 simply
repeat the two case scenarios above. Example 3 shows
that with a small block size, parameter � is significantly
higher than the network loss rate. Similarly, an extreme
average burst length increases the value of � as shown in
example 4. Finally we have two extreme examples of the
parameters of our scheme: first in a very lossy network
which requires 160 bytes of overhead per packet which
more than the size of a public key signature, and to finish
we have an ideal case, with a small loss and a long block
size which gives us a surprisingly low overhead per packet
of 2 bytes !

4.3 Denial of Service

In their work on stream authentication for pre-recorded
streams[15], Miner and Staddon briefly discuss the use

1If we had chosen the EC1 scheme instead, we would have � ������ ,� ��� " � and � ? � � � BK��� .



of Erasure Code techniques as an additional robustness
mechanism. Their objective is different from ours here,
since they use Erasure Codes as a mean to “reinforce”
their “hash and MAC chain” rather than as a substitute
as we do. However, they make an interesting remark that
Erasure Code techniques may be vulnerable to “Denial of
Service” since an adversary who modifies the transmit-
ted parities may render the authentication of the received
packets impossible. We observe that this remark is also
valid for our scheme: if a some packets are lost and if
an adversary modifies the tags piggybacked on the data
packets the verification process may not function properly
if the decoding algorithm requires those parities. In our
scheme, the authentication information used for one block
is not used to compute the authentication information of
another block, and thus there is no authentication chain
across several blocks. This implies that a DoS that affects
a block in our scheme will not impact another block and
will not disrupt the rest of the communication stream.

Other stream authentication schemes based on a chain-
ing mechanism are less vulnerable to this type of DoS
attack. In protocols such as Hash Chains[10] and in
EMSS[22] several signature packets are sent to authen-
ticate a block. An adversary thus needs to modify several
more packets than in our scheme to prevent a recipient
from authenticating a block.

The stream authentication schemes that are the most re-
sistant to DoS are the ones that include a signature with
each packet such as [31], [9], [27] and [21]. In those
schemes a modified packet can be discarded immediately
if the signature verification fails.

5 Comparison

5.1 Hash Trees

Wong and Lam[31] proposed the construction of hash
trees, in a scheme that can authenticate received packet in
a block no matter how many packets are lost. In their most
interesting scheme, using a cryptographic hash function� , they construct a complete balanced binary tree, where
the leafs are the hashes

� "
of the packets � " in the block

and the other vertices are hashes of their two children as
shown on the example on figure 2.

The source computes a signature of the value represent-
ing the root of the binary tree and sends it to the recipi-
ents. Each data packet � " is augmented with the minimum
set K " of complementary values it needs to recompute the
value associated to the root of the tree. This set K " is the
set of vertices that are siblings to all the vertices on the
path from

� "
to the root of the tree. For example on fig-

ure 2, packet ��� is sent with K�� � 
 ��� � ����� � ���	� �
and

the recipient can verify the signature of the root
� �
� �

���2���$��� � �  � �$��� # - �����  - �����  . To allow the received
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h78h56h34h12
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Figure 2. Authentication tree for an 8 packet block

packets to be authenticated independently (and make the
scheme joinable on any packet), the authors of [31] sug-
gest to append the signature of the root of the tree to
every packet which leads to an overhead per packet of� � � ln � ���' ; �  � � bytes. This schemes has thus an even
larger overhead per packet than the “sign each” approach,
though the signature only needs to be computed once for
each block. Just like EC1 (and EC2), the scheme requires
the sender to buffer the whole block before the first packet
of that block can be sent.

5.2 Hash Chains

Based on the observations of Paxson[20] who con-
ducted a large scale survey of TCP/IP Internet communi-
cations and who showed that losses often occur in bursts,
Golle and Modadugu[10] proposed a stream authentica-
tion mechanisms designed to tolerate the loss of packets
in bursts of at most

�
packets in a block. They construct

a directed acyclic graph between the packets of the block,
by putting the cryptographic hash of a packet in one or
several other packets. If a packet � is signed then any
packets ��O for which there exists a path in the graph join-
ing � O to � can be authenticated. In their work, Golle and
Modadugu propose methods to design such acyclic graphs
in an optimal way regarding bursty packet losses. Their
simplest scheme is constructed as shown on the example
of figure 3: the hash of a packet � " is stored both as part of
the following packet � " & � and as part of � " & � &� . Finally
the hashes of the last � � � �  packets are sent, along with
a signature of these � � � �  hashes for verification.

The same authors further refined their hash chain con-
struction, to create “Augmented Chains”, which require to
buffer a few packets, but allows a smaller set of hashes
to be signed at the end. The principle remains the same
and we refer the reader to their work [10] for details. It
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Figure 3. Augmented chain resisting to bursts
of 6 packets in a 16 packet block.

is worth noting that their first scheme can tolerate several
bursts in a block while the augmented chain construction
may have difficulties in some situations if there are sev-
eral bursts in the same block, consequently we will focus
on their first scheme in this comparison.

Hash Chain Overhead: The authors of [10] do not de-
tail how to choose

�
nor do they provide a clear method to

deal with signature loss except to suggest the transmis-
sion of several copies of the signature. If these signa-
tures are transmitted far enough apart, we can consider
that their loss probabilities are uncorrelated. If we assume
that � signatures are transmitted, we can approximate
the cost of the hash chain construction as

F���� ��� � �' �
�
$  & � )XL W &��� � � � bytes per packets, with the notations

already used throughout this work. The size of � is es-
sentially constrained by the authentication latency, which
here is at most the distance between the first packet of the
block and the � U%W redundant signature that is transmitted
for that block. Since the simple hash chain construction
is not sender side buffered similarly to ECU, the � sig-
natures pertaining to a block are transmitted after the last
packet of that block.

Recalling the Markov chain model of section 3 we know
that the probability that a burst of � lost packets occurs is� � � � ; �  $ � 6 � ) with an average length of

� J � packets in a
burst. Consequently we will choose

�
in the hash chain

such that the probability that a burst exceeds
�

is low, for
example such that

�L;	��
�� $  & � ) �%� � ; �� � 6(���������
. If

we refer to the two case studies we borrowed from EMSS
in section 3, we would have:

� Case 1: We propose � �@� � � , � � � ,
� � � � since� � � � � . We would transmit the first signature at the

end of the block and the second signature 20 packets
later (1 second). The probability that one of the sig-
nature arrives is approximately

�T; � � � � � � � � ��� � �
and the overhead per packet is

F ��� ��� � �' � ��� bytes.

� Case 2: This case is more problematic because the
network is extremely lossy and the signature has a
high probability of being lost. Indeed if we take
� � � the probability that one redundant signature at
least arrives is

� ; � � � � �F� � ��� (if we take � � 	
the

signature arrival probability is lowered to � � ��� ). But

this means that each block is transmitted along with
4 to 8 signatures and it becomes difficult to define a
reasonable size for � � � � � . If we choose � small
then we need to compute several signatures per sec-
ond and we need to send several copies of each them
during the same time (without a guaranty that losses
will be independent). If we choose � larger then the
probability of authenticating a packet within the au-
thentication latency becomes lower. As a indication,
if � � � ��� , � � � , � � 	 � since � � � ��� , we haveF���� ��� � �� � � � bytes.

No matter how good the network conditions are and no
matter how long the block size is, the hash chains have
at least an overhead of � � � per packets (with perhaps 1
or 2 extra bytes for the signature). Comparatively, our
scheme has clearly a lower overhead when the network is
not too lossy, with such extremes shown as in Example 6
in table 2. For more lossy streams, our scheme maintains a
high authentication probability despite the losses, without
encountering the problems we described here in Case 2.

5.3 EMSS

Perrig et al. used a similar hash chain idea in their
EMSS[22] scheme. Their work is targeted at more gen-
eral loss patterns and proposes a method to deal with
signature loss. As opposed to the work of Golle and
Modadugu which uses a deterministic edge relationship
pattern among the packets in the chain, the EMSS scheme
uses randomly distributed edges. Moreover, packets are
chained across blocks, thus event if all the redundant sig-
natures pertaining to a block are lost the signature in the
next block can be used to authenticate the data (extending
the authentication latency). They performed several sim-
ulations in order to tune the right number of hashes to in-
clude in each packet depending on the loss characteristics
of the stream. The signature of a block is transmitted sev-
eral times to allow it to reach the recipient with high prob-
ability, depending on the characteristic of the network.

Since we borrowed our 2 test cases directly from EMSS,
we can recall their results here as a comparison. The sim-
ulations conducted in the EMSS scheme, give an overhead
of ��� bytes in the traffic information scenario (with an av-
erage verification probability per packet of 98,7%) and an
overhead of

� �
bytes in the video stream scenario (with

a minimum verification probability of 90%). In the latter
scenario, the signature of a block alone which is trans-
mitted twice only has an estimated probability of arrival
of � � ��	 � � ; � � � � , but since there is linking between
blocks a packet may be verified by the signature of future
blocks, however in this case we understand that the ver-
ification latency limit of a packet will be exceeded. We
would also like to highlight that their scheme used 80 bit
key-less hashes while we use 128 bit hashes (MD5). A



similar value in our scheme would have given an even
lower overhead per packet and also a lower overhead in
the Hash Chain construction.

Despite longer hashes, in both cases, our scheme has
lower overhead and a higher probability of block verifica-
tion within the required maximum authentication latency.

5.4 SAIDA

Recently, J. Park et al. proposed a stream authen-
ticastion scheme called SAIDA[19] which shares a lot
of similarities with our work. The skeleton of their
scheme is similar to the ECU scheme : they devide the
stream into blocks and compute the hashes of each packet
in a block, next they use the IDA (information disper-
sion algorithm[24]) to compute authentication informa-
tion with added redundancy. This authentication informa-
tion is then piggybacked in the next block. Provided that
a certain threshold of (1-p).b out of b packets are recieved
in a block, the reciepients can recover the hashes of the
packets and the signature of a block.

There is however an important difference with our
scheme : in SAIDA, only the piggybacked authentication
information is used to recover the hashes and the signa-
ture of a block. In our scheme some hash values are com-
puted from the recieved blocks themselves. By definition,
this allows our scheme to have a lower communication
overhead per packet than SAIDA. Using the previously
introduced notations in this work, the overhead in bytes

per packet of SAIDA can be computed as � ��� R����	��
� $ � & � W )4 $ �,6 *�) � 7
versus � ��� R����	��
�� $ � &L/0*ML �$1 W )4 $ � 6 *�) � 7 in our scheme. This advantage
can be attributed to the use of a two level erasure code in
our scheme, where SAIDA uses only a single redundancy
code.

Conclusion

In this work we propose a new approach to real time
lossy stream authentication, which is joinable on block
boundaries. Though the general idea of using erasure
codes in an authentication scheme is not completely new
in itself, we believe that our scheme uses them in a quite
novel way. Where previous proposals used hash linking,
we use erasure codes to achieve a lower communication
overhead per packet. Moreover, we propose a concrete
mechanism describing how to transmit the authentication
information as well as the digital signature associated to
a block with equivalent recovery probabilities. We pro-
posed buffered and unbuffered variations of our scheme
which offer an interesting alternative to other real time
stream authentication mechanisms in many situations.
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