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Résuḿe en français

Cette thèse concerne l’application de l’annulation d’interf´erence pour une liai-

son montante DS-CDMA et en particuli`ere, le traitement par trajet. Il y a essentiellement

deux manières de traiter l’annulation d’interf´erence, soit apr`es ou avant que les divers com-

posants du signal (trajets multiple, antenne multiples) ont ´eté recombin´ees. Ces m´eth-

odes sont connues comme ´etant respectivement “precombining interference cancellation”

et “postcombining interference cancellation”. On montrera que le signal re¸cu peutêtre fac-

torisé en deux composantes, une composante se basant sur les param`etres variant lentement

et l’autre sur les param`etres variant rapidement. Cette observation a motiv´e l’annulation

d’interference par trajet qui n´ecessite uniquement la connaissance des param`etres variant

lentement. L’avantage ´evident d’une telle approche sont les crit`eres adaptatifs moins con-

traignant puisque la fr´equence de mise `a jour du filtre est proportionelle `a la fréquence de

changement des param`etres variant lentement. De plus, un tel filtre permet l’estimation

améliorée des coefficient d’amplitude complexes variant rapidement puisque les composantes

estimées du trajet contiennent le signal d’int´erêt avec un SINR accru par rapport au signal

reçu. On montrera plusieurs m´ethodes d’annulation d’interference qui sont ind´ependantes

des param`etres variant rapidement tout en ´evitant l’annulation du signal qui survient dans

l’approche d’origine par trajet. Des simulations prouverons les performances de cette ap-

proche. Alors que les approches lin´eaires d’annulation d’interference par trajet produisent

de bonnes performances, leurs point faible est la complexit´e d’implementation. Nous con-

sidérons donc des solutions de rechange de complexit´e inférieures tout en conservant une

approche par trajet. En particulier, nous ´etudions l’application des r´ecepteur avec expan-

sion polynômiale dans le contexte du traitement par trajet. L’expansion polynˆomiale est

une technique d’approximation du r´ecepteur LMMSE. La principale complexit´e résultant

d’une approche LMMSE est dˆueà l’inversion d’une matrice de corr´elation. Le principe de
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l’expansion polynˆomiale est de rapprocher l’approche LMMSE par une expansion polynˆomi-

ale dans la matrice de corr´elation. Nous montrerons que l’introduction du matrices diago-

nales pond´erées peut sensiblement am´eliorer la performance des m´ethodes pr´ecédemment

proposées même lors d’un d´eséquilibre de puissance entre usagers ou trajets. De plus, la

complexité introduite est tr`es raisonnable due au fait que chaque ´etage est de complexit´e dou-

ble par rapport au RAKE. En outre, la m´ethode permet d’obtenir une am´elioration du SINR

par trajet, adopt´eeà la l’estimation des amplitudes complexes. Cependant, il est difficile

d’obtenir une expression analytique de performance pour l’expansion polynˆomiale en util-

isant des techniques standard puisque la performance est toujours une fonction de l’ensemble

des séquences d’etalement utilis´ees. Par cons´equent, nous recourons aux m´ethodes r´ecem-

ment présentées dans la recherche en t´elécommunications qui aborde le probl`eme en lais-

sant les dimensions du syst`eme tendre vers l’infini. L’analyse des grands syst`emes permet

d’obtenir une expression asymptotique du SINR du r´ecepteur lin´eaire dûes aux propri´etés de

certaines classes de matrices al´eatoires. Sp´ecifiquement, la distribution des valeurs propres

de telles matrices est connue pour converger asymptotiquement vers une distribution d´eter-

ministe. Il est montre, que les coefficients pond´erés introduit dans l’expansion polynˆomiale

sont asymptotiquement ind´ependant de la puissance de l’utilisateur ou trajet et il n’y a donc

aucun avantage `a utiliser des coefficients pond´erés par trajet dans les grands syst`emes pour

l’estimation des donn´ees. Cependant, pour les besoins d’estimation d’amplitude complexe,

une approche par trajet d´emeure n´ecessaire.
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Abstract

This thesis is concerned with the application of interference cancellation for a

DS-CDMA uplink and particularly, pathwise processing. There are essentially two ways of

handling the interference cancellation, either before or after the various signal components

(multipath, multiple antennas) are recombined. These methods are know as precombining

interference cancellation and postcombining interference cancellation, respectively. It will

be shown that the received signal can be factored into two components, one of them relying

only on slow parameters whereas the other depends on fast parameters also. This obser-

vation has motivated pathwise interference cancellation which only requires knowledge of

the slow parameters. The obvious advantage of such an approach are the relaxed adaptive

requirements since the rate of change in the filter is proportional to the rate of change of the

slow parameters only. Furthermore, such a filter allows improved estimation of the fastly

varying complex amplitude coefficients since the estimated path components contain the

signal of interest with an increased SINR compared to the received signal. We will show

several interference cancelling approaches which do not rely on the fastly varying parameter

and avoid the signal cancellation which occurs in the original pathwise approach in the case

of stationary or nearly stationary mobile stations due to the correlation between the complex

amplitude coefficients. Simulations will be used to show the performance of the approaches.

While the pathwise linear interference cancellation approaches produce good per-

formance, their major drawback is a high implementational complexity. We therefore con-

sider lower complexity alternatives while maintaining the pathwise approach. In particu-

lar, we investigate the application of polynomial expansion receivers in a pathwise context.

Polynomial expansion is an approximation technique to the LMMSE receiver. The main

complexity arising from an LMMSE approach is an inverse in a correlation matrix, a fact

that is well known. The principle of polynomial expansion is to approximate this inverse
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by a low order, weighted polynomial in the correlation matrix to be inverted. We will show

that the introduction of carefully chosen diagonal weighting matrices (instead of scalars, as

previously proposed) can substantially improve the performance over previously proposed

methods under power imbalances between users and/or paths. Furthermore, the complexity

introduced is very reasonable due to the fact that every extra stage in the receiver is essen-

tially twice the RAKE receiver. Also, the method allows to obtain SINR enhanced pathwise

outputs, suitable for the estimation of the complex amplitudes.

However, it is difficult to get analytical performance expressions for polynomial

expansion using standard techniques since the performance is always a function of the cor-

relation properties of the set of spreading codes used. Hence, we resort to methods only

recently introduced in the communications community which tackle this issue by letting the

system dimensions grow to infinity. Such a large system analysis allows to get quantitative

expressions for the asymptotic output SINR of linear receivers based on the properties of

certain classes of large random matrices. Specifically, the empirical eigenvalue distributions

of such matrices are known to converge to a deterministic distribution in the limit. It is

shown, that the weighting coefficients introduced for polynomial expansion are asymptoti-

cally independent from the power of the user or even the paths and that there is therefore no

benefit in using a weighting coefficient per path in large systems to obtain a data estimate.

However, for the purpose of complex amplitude estimation, a pathwise approach remains

necessary.
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Chapter 1

Introduction

This chapter will essentially provide background information and in general in-

troduce concepts important to the whole of this work. We will begin by providing some

general background information on mobile communication systems and the development of

multiuser detection. This is followed by a thesis outline and contributions made. Finally,

in the last part of this chapter, a system model and the motivations on which it is based are

developed.

1.1 Background

In this section we will give some general background information to mobile com-

munication as it presents itself today. We will begin with an overview of recent mobile

communication systems and in particular the move from second generation systems to third

generation systems. This is followed by a brief introduction to multiuser detection in CDMA

systems by considering the motivations for multiuser detection and the shift in attention of

the research community towards suboptimal detector algorithms due to the complexity in-

volved with the optimum receiver.

1.1.1 Mobile Communication Systems - from 2nd to 3rd Generation

In recent years, the number of users of mobile communications and mobile data

services has grown at phenomenal rates across the world to such an extent that in many

13



14 1 – Introduction

countries, mobile service subscribers now outnumber the fixed line installations. While in

some countries, especially in Europe, a certain trend towards a market saturation in terms

of mobile equipment can be stated, the current wireless communications technologies such

as GSM (Global System for Mobile Communications) are nearing their capacity bound-

aries. The limited variety of services presently offered, essentially voice and transmission

of data at limiting rates, in conjunction with the expected shift from voice to multimedia

communications and the steadily growing number of users has led to the development of

third generation standards such as UMTS (Universal Mobile Telecommunication Service)

in Europe.

Mobile Communication networks and especially cellular networks are capacity

limited mainly by interference. In second generation systems, multipleaccess was essen-

tially achieved by maintaining orthogonality between users through the splitting of the time

or frequency band available. In such TDMA (Time Division Multiple Access) and FDMA

(Frequency Division Multiple Access) systems, the number of users that can be supported

is determined by the number of slots that can be made available within the limits of the

bandwidth available. In order to permit an area covering network like GSM, each cell in the

network uses a frequency different from its neighbours and cells are grouped into so-called

cell clusters of typically 3 to 7 frequencies, the so-called frequency reuse factor. The whole

network area is then covered by such clusters and the interference arising is partly due to

interference between cells using the same frequency but belonging to different clusters and

partly due to co-channel interference between different users of the same cell. Second gener-

ation systems were not planned from the outset with a particular handle on interference and

interference limitation is basically achieved by careful planning of the cell locations, that is,

frequency planning [1–5].

Along with the increasing number of mobile users, the density of users per unit

area also increases. Due to the limited number of slots and therefore users that a single

basestation can cover, the area which a basestation can cover decreases, which in turn means

that more basestations have to be employed. However, by placing the cells increasingly close

to each other, the interference among cells increases and effective frequency planning can

become very difficult.

When, as in the imminent third generation systems, a wide range of data rates

will have to be covered, capacity shortages will be accentuated and flexibility problems will

arise. Further, with the expected shift from voice to data transmission, it becomes desirable
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to operate at a lower probability of transmission errors.

In the third generation mobile system UMTS, the multipleaccess scheme of choice

is DS-CDMA (Direct Sequence Code Division Multiple Access) which no longer provides

an orthogonalisation between users in frequency or time but separates users by the signal

subspace they occupy through their assigned user waveform. In other words, users transmit

at the same time and on the same frequency [1,6–9] . In CDMA, since no separation in time

nor in frequency is required, all cells are transmitting on the same frequency, leading to a

unity frequency reuse factor. Clearly, with the notions of cluster and frequency reuse absent,

the planning of basestations is facilitated.

The main advantage of CDMA, however, is the bandwidth expansion, which al-

lows a better resolution of the multiple paths and hence a better robustness against severe

fading effects. Another advantage is its robustness against narrowband interference.

In DS-CDMA, the symbol sequence is up-sampled to the chip period and modu-

lated by a much faster evolving spreading sequence. The ratio of the symbol period to the

chip period is the spreading factor (or processing gain), which is also the factor by which

the original bandwidth gets spread. Indeed, DS-CDMA is a special case of Spread Spec-

trum Multiple Access (SSMA) which was initially introduced by the military to make the

transmitted signal look noise-like and hence not easily detectable and identifiable, as well as

difficult to jam [10–12]. In fact, this view of the noise-like signal and therefore noise-like

interference, is predominant in the case of Random sequence CDMA (RCDMA) in which

an aperiodic (random) spreading sequence is used. The US DS-CDMA Mobile System

IS-95 (Interim Standard-95) is of this type. In RCDMA, the interfering signals appear as

stationary noise with colour depending on their propagation channel. If all the interferers

are arbitrarily separated geographically so that their channels become independent, and if

the (sufficiently large number of) interfering signals are received with about equal power,

then the law of large numbers can be invoked which leads to the result that the correlation

sequence of the sum of all the interfering signals corresponds to that of a white noise. In that

case, and if the multipath propagation delay spread does not exceed a symbol period, then

the optimal receiver (in the maximum-likelihood sequence estimation sense) is the so-called

RAKE receiver, which is essentially a matched filter, matched to the cascade of spreading

sequence and channel of which the non-zero impulse response coefficients are called ’fin-

gers’, whence the term RAKE. Therefore, the IS-95 system employs strict power control to

keep the interference down. This requires fast adaptive power equalisation at the receiver.
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1.1.2 Multiuser Detection for DS-CDMA

Up to the 1980s, it was believed that the multipleaccess interference arising in

DS-CDMA systems was accurately modelled by a white Gaussian random process and thus

the RAKE is essentially optimal. In the 1980 though, it was realised that this assumption

is inaccurate in many situations (for example in near-far situations) but more to the point, it

was realised that the performance can be much improved over the RAKE by exploiting the

specific and rich structure of the multiuser signal and unravelling the multiple user contri-

butions [13]. This unravelling task is much simplified in the case of deterministic CDMA,

in which case a periodic spreading sequence is used with period equal to the symbol period.

Another problem with the RAKE receiver is that it only performs optimal MLSE (Maximum

Likelihood Sequence Estimation) if the channel delay spread remains smaller than the sym-

bol period. If higher data rates, and therefore symbol rates, are to be used as in UMTS, then

this condition will no longer always hold. In fact, in that case the receiver will also have to

perform equalisation.

In the wideband CDMA mode of UMTS, the standard proposes a combination

of periodic and (pseudo-)random spreading codes. The signal is spread using a mobile-

dependent periodic code. This code can be optionally scrambled by a random code. This

option will be enabled if simple RAKE receivers will be used. However, this option will be

disabled if more sophisticated receivers will be used. In that case, the spreading sequence

is periodic and the multiuser signal is cyclostationary with period equal to the symbol pe-

riod. Due to the spreading however, these cyclostationary signals exhibit significant excess

bandwidth with respect to the symbol rate and hence frequency domain diversity. After

oversampling with respect to the symbol rate, the stationary, vectorised received signal lives

in a spreading sequence dependent subspace. This subspace allows for linear interference

cancelling. A further dimensionality increase in signal vector space dimension and hence in

diversity can be obtained by considering multi sensor processing.

1.1.3 From the Optimum MUD to suboptimal MUD approaches

As mentioned above, the effective application of the RAKE receiver requires strict

and computationally expensive power control. The so-called near-far problem, essentially a

power imbalance problem between users so that the signal of users geographically far from

the basestations get swamped by much stronger users closer to the basestation, together
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with the computational complexity of precise power control, prompted the search for near-

far resistant multiuser detectors [11, 14, 15]. About 1983, the optimum MLSE MUD was

discovered [16–18] and presented for asynchronous multipleaccess Gaussian channels. The

MLSE solution can be implemented as a Viterbi algorithm.

Unfortunately, the Viterbi algorithm for multiuser MLSE as applied to MUD suf-

fers from a complexity which is exponential in the number of users. This prohibitive com-

putational cost has therefore prompted much research into suboptimal detector methods to

try and strike a balance between performance increase and complexity.

In multiuser detection there are essentially two categories of approaches: Linear

and non-linear. The linear approaches, e.g. [19,20], consist of replacing the RAKE receiver

by another linear receiver which is derived using an interference zero-forcing constraint or

a minimum mean square error criterion, see for example [21–23]. Zero-forcing approaches

are often hybrids with MMSE techniques (ZF-MMSE) since the zero-forcing constraints

typically do not result in a unique solution and hence MMSE techniques are applied on

the remaining degrees of freedom to reduce mean square error (MSE). The non-linear ap-

proaches [24–26] are iterative, subtractive processes. By ordering the users according to

their relative powers, a type of causality is introduced which can be mixed with the temporal

aspect in the case of multipath propagation. There are three basic variants among non-linear

interference cancelling schemes, namely, Serial Interference Cancellation (SIC) where only

the causal interference can be cancelled, Parallel Interference Cancellation (PIC) which al-

lows cancellation of all interference and, finally, Decision Feedback Interference cancel-

lation (DF) where the non-causal interference is cancelled in a linear fashion whereas the

causal interference is cancelled by subtraction. Often, SIC and PIC can be found combined

in multistage Interference cancellers. It appears, that PIC is the most powerful of these ap-

proaches, in particular when used in conjunction with soft decisions. However, due to its

iterative nature, the approach requires a reasonably good initialisation which has to be pro-

vided by another technique, typically linear. Also, because the PIC is a coherent detection

method, precise knowledge of parameters is paramount. In this study, we hence present lin-

ear approaches to MUD detection with a special focus on parameters which could eventually

be used to initialise data for one of several stages of a PIC or, indeed, be developed into a

PIC-like structure. In particular, we focus on pathwise processing which is a particularly

suitable approach for low complexity linear multiuser detection.
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1.2 Thesis Outline

The remainder of this document is organised as follows: In the rest of this chapter,

we will give a brief introduction to the mobile radio environment encountered in a CDMA

system to motivate the resulting channel model which is used throughout the document.

With the channel model defined, a general DS-CDMA system model will be introduced, fol-

lowed by a short introduction to the conventional RAKE receiver. We then start in earnest in

chapter 2 and introduce the ideas and motivations behind pathwise interference cancellation.

We will present approaches which will avoid the signal cancellation trap of the original ap-

proach introduced by Latva-aho which occurs when the multiple paths of a user are strongly

correlated. To finish the chapter off, we will show simulation results confirming the proposed

approach. While the approaches in chapter 2 are performing well, their principle disadvan-

tage is the complexity of a practical implementation and we therefore continue in chapter 3

by focusing on low complexity implementations of pathwise interference cancelling filters.

Specifically, we will consider the application of polynomial expansion. Initially, we will

introduce the principles of polynomial expansion and explain some previously proposed

approaches that either work on the received signal directly, or on the RAKE outputs. We

then carry on to propose the application of polynomial expansion receivers to the pathwise

RAKE outputs and the implementation thereof, using diagonal weighting matrices with a

scalar per signal component in contrast to previous approaches, which employ simply a

scalar weighting coefficient. While the approaches in chapter 2 were focused on the possi-

bility of obtaining filters independent from the fastly varying channel amplitudes, the focus

in chapter 3 shifts towards the estimation of the channel amplitudes and the ability to obtain

pathwise, SINR enhanced signals to be used for the estimation of the complex amplitudes.

Using numerical simulation results, we then show that significant performance gains can

be attained over the scalar approaches under power imbalances between users and multipath

components. The nature of the polynomial expansion receivers introduced, makes it difficult

to gain much analytical insight into their characteristics. In chapter 4, we are therefore intro-

ducing results from large system theory which allow to characterise polynomial expansion

performance asymptotically. This is done by letting the system dimensions grow to infin-

ity and making use of the fact that the empirical eigenvalue distributions of certain random

matrices asymptotically converge to a deterministic limit. It is found that the introduction

of a weighting coefficient per path is asymptotically not necessary, even under power imbal-
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ances between users and paths. The document is finished with a section of conclusions and

remarks.

1.3 Preliminaries

In the next few pages, we will outline some concepts necessary to the work that

follows in the next chapters. Notably, a short discussion of mobile channels and their effects

is included to motivate the choice of channel model that is used throughout this work. With

the channel model defined, we then establish a baseband signal model for a DS-CDMA

system which provides us with the notation that is used in subsequent chapters.

1.3.1 Mobile Radio Channels

1.3.1.1 Propagation Environment

The type of propagation environment that is encountered in the transmission of

information is clearly very important. In the context of mobile radio communications for the

uplink, we are interested in the characterisation of the channel from the various mobile users

to the basestation of interest.

The usual starting point to characterise any communication system is the additive

white Gaussian noise (AWGN) channel with statistically independent Gaussian noise sam-

ples corrupting the data samples. The primary source of degradation in this case, is thermal

noise generated in the receiver. In a practical system, it is always necessary to operate un-

der certain bandwidth constraints which require the introduction of band-limiting filters. At

the transmitter end, the band-limiting filter typically serves to constrain the signal to some

bandwidth dictated by regulatory constraints whereas at the receiver end, the filter is typi-

cally matched to the signal bandwidth. Due to these band-limiting operations and the filter

induced distortions, the channel introduces intersymbol interference (ISI). To reduce these

effects and to allow reliable reception, it may be necessary to employ equalisation and/or

special signal design techniques.

For a radio channel, in the absence of further specification on the propagation

characteristics, one normally assumes afree spacepropagation model. In this idealised

model, the region between the transmitter and the receiver is assumed to be free of obstacles

that might absorb or reflect the transmitted signal. In this region, it is hence also assumed
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that the atmosphere is behaving like a perfectly uniform and non-absorbing medium and

the attenuation of the radio frequency signal essentially follows the inverse-square law. The

received power in terms of the power of the transmitted signal is therefore attenuated by

a factor which is known aspath lossor free space loss[7, 8]. However, for propagation

encountered in mobile communications and most other practical radio applications, the free

space propagation model is inadequate to describe a channel where propagation takes place

close to the ground, in a non-ideal atmosphere. Furthermore, the transmitted signal will be

reflected off obstacles and arrive over multiple reflective paths at the receiver. This effect,

calledmultipath propagation, can give rise to changes in the signal’s amplitude, phase, delay

and angle of arrival. This is known asmultipath fadingwhere fading is the term employed

to describe a signal’s random fluctuations due to propagation over multiple paths.

1.3.1.2 Multipath Fading

To qualify multipath fading further, we have to distinguish between two types

of fading that occur in mobile communications,large scale fadingandsmall scale fading,

respectively.

Large scale fading is the term employed to speak of fading due to motion over large

areas and is affected by landmark sized objects such as hills, forests, built-up areas and the

like. Sometimes, the termshadowingis also used which can be understood by considering

the receiver as being in the ’shadow’ of a prominent land feature. In essence, large scale

fading estimates an average path loss as a function of the distance between transmitter and

receiver. In mobile communications, the mean loss as a function of distance is proportional

to then-th power of the distance relative to some reference distance. The reference distance

andn are factors that depend on the transmission frequency, antenna height, the type of

channel (indoor, outdoor) etc. [1,4,27]. These results are based on comprehensive path loss

measurements and their transformation in parametric formulas [28–31].

The significant effects that small changes (as small as half a wavelength) in spatial

separation between the transmitter and the receiver can have are known as small scale fading.

There are two effects of small scale fading, namely time-spreading (or signal dispersion) and

time-variant behaviour of the channel. In a mobile setting, the channel will be time-variant

due the the motion of the mobile user or also of motion in the propagation environment, for

example nearby vehicles. Hence, the rate at which the propagation characteristics change

characterises the rapidity of the fading. If there is a dominant propagation path, for example
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line-of-sight, the small scale fading envelope statistics are described by a Rician probabil-

ity density function, termedRician fading. In the absence of such a prominent propagation

path, the Rayleigh probability density function approximates the small scale fading enve-

lope, whence the nameRayleigh fading[1,7,8]. Typically, Rayleigh fading models are used

more often as it is the pdf associated with a worst case of fading per mean received signal

power due to the lack of a prominent (or specular) component in the signal. The composite

fading experienced in the mobile system is a combination of small scale fading superim-

posed on large scale fading.

In 1963, Bello [32] introduced the notion of wide-sense stationary uncorrelated

scattering (WSSUS) models which treat the signal variations arriving with different delays

as uncorrelated. The model consists essentially of four functions which allow the character-

isation of the channel. Themultipath-intensity profile,S(�) where� is time delay, describes

the average received power as a function of time delay. For wireless channels, the received

signal normally consists of a discrete number of multipath components, also referred to as

fingers. The delay difference between the first and the last path received,Tm, is called the

delay spread. The relation of the delay spread to the symbol time,Ts, allows to define two

categories of degradation:frequency-selective fading(Tm > Ts) andflat fading(Tm < Ts).

In other words, in frequency-selective fading, the multipath components of a symbol extend

beyond the duration of the symbol and therefore cause the same kind of ISI as a band-

limiting filter. Equivalently, and hence the name, it means that not all spectral components

of the signal are affected equally by the channel. Often though, ISI arising this way can be

combated effectively since many paths can be resolved at the receiver and use of multipath

diversity can be made. In the case of flat fading, all the paths are received during a symbol

period and can therefore not be resolved in general. Indeed, a major benefit of DS-CDMA

systems is the fact that the bandwidth expansion introduced with the spreading and the cor-

responding oversampling at the receiver (at chip rate or higher) with respect to the symbol

period allows much better path resolution. That is to say, the path resolvability is determined

by the sampling rate and not the symbol rate, in a DS-CDMA system.

An analogous description to signal dispersion can also be given in the frequency

domain through thespaced-frequency correlationfunction,jR(�f)j. It is simply the Fourier

transform ofS(�). R(�f) provides a description of how correlated two signals, spaced�f

in frequency, are at the receiver. From the spaced-frequency correlation function, we obtain

the coherence bandwidth, f0, which gives the range of�f for which two signals have a
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roughly equal gain and phase, i.e. a strong potential for amplitude correlation. Note that

f0 � 1
Tm

.

So far, the description in the last paragraphs has only described the behaviour

of the signal from a signal-dispersion point of view but does not allow us to say anything

about the time-varying nature of the channel due to movement of the mobile or movement

of objects in the channel, i.e. about the rapidity of the fading. This is where the last two

of the functions due to Bello come in. The functionR(�t), calledspaced-time correlation

function, measures the correlation of two sinusoids sent over the channel, spaced�t in time.

Similarly to the coherence bandwidth, we get acoherence time, T0, which tells us for how

long the channel remains approximately stationary. In other words, it tells us whether the

channel isslowly fading(T0 > Ts) or fastly fading(T0 < Ts). Assuming a mobile travelling

at a constant velocity, it is clear that the coherence time can be measured both in time and

distance.

Equivalently, the time-variation of the channel can be described, using theDoppler

power spectral density, S(v), wherev is the Doppler frequency-shift. The Doppler power

spectral density is just the Fourier transform of the spaced-time correlation function,R(�t).

Knowledge ofS(v) provides us with theDoppler spread, fd, which is the width of the

Doppler power spectrum. The Doppler spread give us information on the fading rate of the

channel. More precisely, it is a measure of the spectral spreading a signal undergoes when it

passes through the channel as a function of the time variation of the channel. The Doppler

spread is hence a function of the wavelength and relative velocity between transmitter and

receiver. This point is maybe more easily understood thinking of the coherence time rather

than the Doppler power spectral density.

1.3.1.3 Diversity in multipath fading channels

As mentioned earlier, an advantage of a wideband DS-CDMA system is the fact

that it provides diversity at the receiver. Signals with a bandwidth,W , much greater than

the coherence bandwidth, will be able to resolve paths up to a time resolution of about

1=W . Therefore, there will be approximatelyTmW resolvable signal components. Using

the approximate relation between the delay spread and the coherence bandwidth, i.e.f0 �
1
Tm

, we can see that the the number of resolvable paths can be written approximately as

W=f0 and can therefore be viewed as a means of obtaining frequency diversity. Frequency

diversity could of course also be provided by transmitting a signal over a number of different
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carriers, e.g. for a narrowband signal. Other types of diversity could be time diversity,

space diversity through multiple antennas or also angle-of-arrival diversity and polarisation

diversity.

1.3.1.4 Channel model

In DS-CDMA systems such as IS-95 or the CDMA standard as defined for UMTS,

the signalling rate is sufficiently high to ensure that the symbol duration remains well below

the coherence time and we can therefore consider the fading process slow. Hence, for our

purpose, the channel can be considered constant over at least one symbol period. We will

therefore consider a slowly fading, frequency-selective channel. Returning to the channel

model, it is known that the wideband, frequency-selective CDMA channel can be modelled

as a tapped delay line (e.g. [1, 7, 33]). The channel is modelled byM discrete multipath

components having random, complex gains and different delays, so that the channel transfer

function for usersk 2 [1 : : :K] at the basestation receiver is

hk(t) =
MX
m=1

Ak;mhk;m�(t� �k;m) (1.3.1)

wherehk andhk;m = h(�k;m) are column vectors of dimensionQ, the number of sensors

employed at the basestation receiver.hk;m defines the response of the antenna array and is a

function of the Direction of Arrival (DoA),�k;m, of the signal. For typical wireless channels,

the different paths not only arrive at different delays, but also from different angles. In clas-

sical wireless channels, it is often assumed that the antennas are omni-directional and that

the DoA of multipath signals is uniformly distributed at the receiver, in which case the mul-

tipath intensity profile is independent from the DoA. In the case of antennas with directivity

and especially for applications in space-time processing it is generally necessary to establish

a more exact relationship between the channel and the DoA. We will not pursue this any

further here and refer the interested reader to [34]. For identifiability reasons, we chose the

antenna response vector to have unity power,hHk;mhk;m = 1. Further, the specular channel

is characterised byAk;m and�k;i, the complex amplitude and the path delays, respectively.

These channel parameters can be divided into two classes: fast and slowly varying parame-

ters. The slowly varying parameters are the delays,�k;m, the DoA,�k;m, and the short-term

path power, EjAk;mj2. Hence, the fast varying parameters are the complex phases and am-

plitudes,Ak;m. The direction of arrival,�k;m, can be considered constant over an interval
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of several tens of wavelengths [35]. Since scatterers are usually assumed to be relatively far

from the BS receiver with respect to the beamwidth(spatial distance over which a given path

may be observed), the DoA does not appreciably change over this interval. This allows the

assumption of plane wave transmission [36]. Along the same lines, we can argue that the

delays as well as the path powers attributed to a given path will change slowly, being depen-

dent on large scale effects. For various statistical and other models to model the parameters

of the channel please refer to [1,7,27,30,33–35,37–39].

1.3.2 Baseband system and signal model

1.3.2.1 Asynchronous received signal model

In a DS-CDMA system, the transmitted data bits from a particular user are mul-

tiplied by a spreading code which is of much larger bandwidth than the data signal. The

chip-rate signal is then passed through a pulse-shaping filter to render it continuous-time

before is is transmitted through the mobile channel. This is shown in Figure 1.1. In what

follows, we are assuming the use of symbol-periodic spreading codes.

Denoting a given user by indexk 2 f1; : : : ; Kg, the transmitted data bitak[n]

at time instantn with symbol periodT is first upsampled to chip-rate (periodTc = T=L),

with a slight misuse of the definition of upsampling in the sense that the symbol is repeated

L times during the symbol periodT , whereL is thespreading factoror processing gain.

The upsampled data signal is then multiplied with a periodic spreading code (periodic w.r.t.

the symbol period),sk [l], and passed through a chip-pulse-shape filter to render the signal

continuous in time.

The signal is then transmitted through the mobile channel, as defined in section

1.3.1.4. At the receiver, we receive the sum of allK users in the system through aQ element

antenna array. The received signals are then low-pass filtered (anti-aliasing) and sampled at

rate1=Ts = LJ=T , whereJ is the oversampling factor with respect to the chip rate. The

continuous-time baseband signal for userk at the output of the transmitter in figure 1.1 can

be written as

y0k(t) =
1X

n=�1
ak[n] k(t� nT )

where k(t) is sometimes called the signature waveform and defined by the convolution of
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+ LPF

Transmitter Channel & Q-Antenna Receiver

sK[l]

aK[n]
p(t� lTc)

s1[l]

a1[n]
p(t� lTc)

PM
m=1 AK;mhK;m�(t� �K;m)

PM
m=1 A1;mh1;m�(t� �1;m)

y[n]
1=Ts = LJ=T

Figure 1.1: Received signal model from the transmitted data to the bandlimited and
sampled signal at the receiver

the pulse-shape and the spreading code.

 k(t) =
L�1X
l=0

sk [l]p(t� lTc) (1.3.2)

p(t) is the pulse-shaping filter and assumed to be a perfect, normalised sinc and hence has

strictly limited bandwidth. The received continuous-time signal before sampling can now

be written as the convolution ofy0k(t) with hk(t) and summing over allK users gives the

received signal:

y(t) =
KX
k=1

n 1X
n=�1

MX
m=1

(Ak;mak[n])
L�1X
l=0

sk[l]hk;mp(t� �k;m � lTc � nT ) + n(t)
o

(1.3.3)

y(t) and the Additive White Gaussian Noise (AWGN),n(t), are vector signals due to the

use of multiple sensors and are of dimensionsQ�1. ak[n]; p(t) are the transmitted symbols

for userk and the pulse-shaping filter, respectively. At the receiver front-end, the received

signal given in equation (1.3.3) is lowpass-filtered and sampled at1=Ts. After sampling, we

obtain the discrete-time vector signal model

y[n] =
1X

i=�1
P[n� i]SHAa[i] + v[n] (1.3.4)

wherey[n] = [y[n+0�Tc=J ] : : :y[n+(LJ�1)�Tc=J ]T , i.e. we stacked all samples of the re-

ceived signal for the duration of a symbol periodT intoy[n] (LJQ�1). v[n] is the sampled
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and low-pass filtered contribution of the noise,n(t). a[n] = [a1(n)a2(n) : : :aK(n)]T con-

tains the data symbols of allK users for a given time instantn, T indicating the matrix trans-

pose,A = diagfA1; : : : ;AKg is the block diagonal matrix containing the complex ampli-

tude coefficients for each user such thatAk = [Ak;1 : : :Ak;M ]T , H = diagfH1; : : : ;HKg
contains the antenna array responses whereHk = diagfhk;1; : : : ;hk;Mg where bothHk

andH are block diagonal matrices andhk;m = [hk;m;1 : : :hk;m;Q]
T is a column vector

containing the antenna array response of every antenna.S = diagfS1; : : : ;SKg where

Sk = [IM 
 (sk
IQ)]; sk = [sk [0] : : :sk[L�1]]T represents the spreading code vector,IM

andIQ denote identity matrices of dimensionsM �M andQ�Q, respectively.
 signifies

the Kronecker product. Finally, we have the contribution of the pulse-shaping filter and the

delays inP[n] = [pn;1 : : :pn;K ];pn;k = [pn;k;1 : : :pn;k;M ] and

pn;k;m =

2664
pn;k;m;0;0 : : : pn;k;m;0;L�1

...
. ..

...

pn;k;m;LJ�1;0 : : : pn;k;m;LJ�1;L�1

3775

wherepn;k;m;r;l = [p (nT + (r=J � l)Tc � �k;m) 
 IQ]. The matrices for the model intro-

duced above are therefore of the following dimensions:P[n](JLQ�KLMQ); S(KMLQ�
KMQ); H(KMQ�KM); A(KM �K); y[n](JLQ� 1).

1.3.2.2 Conventional DS-CDMA Receiver/RAKE receiver

Theconventionalorsingle-userreceiver for DS-CDMA is the matched filter. It de-

rives from analysing communication in an AWGN channel where the users are synchronous

(i.e. no multipath and�k = 0) and is a correlation demodulator. We consider the case of

a single receiver antenna and sampling at the chip rate(Q = 1; J = 1). We can write

equation (1.3.4)

y[n] =
1X

i=�1
E[n� i]a[n] + v[n]

E[n] = P[n]SHA
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In this case, the matched filter is simply given byEH [�n]. Note that since

EH [n] = AHHHSHPH [n]

=

2664
AH

1 H
H
1 S

H
1 p

H
n;1

...

AH
KH

H
KS

H
Kp

H
n;K

3775 (1.3.5)

and also

AH
k H

H
k S

H
k p

H
n;k =

�
A�k;1 : : :A

�
k;M

�2664
hHk;1(s

H
k 
 IQ)pHn;k;1

...

hHk;M (sHk 
 IQ)pHn;k;M

3775 (1.3.6)

the matched filter operation is in fact equivalent to a bank of filters matched to each user

(from equation (1.3.5)) or also to every path of every user (from equation (1.3.6)). Indeed, in

the case of multiple receive antennas, the matched filter could also be written as a filter bank

operating on every path of every user at every antenna. Further note that the matched filtering

consists of pulse-shape and spreading matched filtering, followed by antenna recombination

which is followed by amplitude recombination. The fact that the operation can easily be

viewed as matched-filtering of each of the ’fingers’ and then collecting all the energy through

recombining, the filter’s action is vaguely analogous to an ordinary garden rake, hence also

the name of RAKE receiver. Returning to ’joint’ matched filtering (withQ = 1, J = 1), we

can now write

EH [�n] � y[n] = AHHHSH
1X

m=�1

1X
l=�1

PH [l]P[l+ (n�m)]| {z }
�[n�m]

SHAa[m] + EH [�n] � v[n]

= AHHHSH
1X

m=�1
�[n�m]SHAa[m] +EH [�n] � v[n] (1.3.7)

where� denotes the convolution and we have substitutedl = �i. �[n � m] can be seen

to be the autocorrelation for the pulse-shaping matrix at shiftn �m, this is were the name

of correlation receiver comes from. From the expression for�[:], it can be seen that the

Nyquist condition for zero ISI is

�[n�m] =

8<:1H1 n�m = 0

0 otherwise
(1.3.8)
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where in the case of a single receiver antenna1 = [IL�L : : :IL�L], i.e. a block row vector

of identity matrices. This condition is satisfied ifp(t) is a sinc Nyquist pulse and the users

are at least chip-synchronous, sampled at chip-rate where the sampling is synchronous to the

users. Assuming the Nyquist condition to be met, we obtain

EH [�n] � y[n] = AHHHSH1H1SHAa[n] +EH [�n] � v[n] (1.3.9)

Note that1S = [s1 : : :sK ] (no multipath and one receiver antenna) and therefore,SH1H1S

is simply the spreading code correlation matrix. In the case where the users are synchronous

and orthogonal spreading codes,sk, are used, we obtainSH1H1S = I and

EH [�n] � y[n] = AHHHHAa[n] +EH [�n] � v[n]

=

2664
jA1j2jh1j2a1[n]

...

jAK j2jhK j2aK [n]

3775 +EH [�n] � v[n] (1.3.10)

Under the assumption of synchronous users with orthogonal codes in AWGN, this result is

the classical matched filter which maximises the output SINR (e.g. [7]). Therefore, the con-

ventional receiver manages under these ideal conditions to cancel any interference between

users due to the orthogonality of the spreading codes. However, any deviation from such

an idealised scenario such as non-ideal Nyquist pulse-shapes, timing offsets at the receiver,

asynchronism between users or multipath propagation will destroy the orthogonality of the

users and therefore interference can no longer be nulled out and the receiver will suffer from

a non-reducible error floor even under zero noise conditions. In other words, the receiver is

interference limited.



Chapter 2

Pathwise Interference Cancellation

2.1 Introduction

In linear multiuser detection approaches, there are two different ways of handling

multipath channels. The Interference Cancellation (IC) can either take place prior or af-

ter the various multipath components are recombined. These two methods are known as

precombining interference cancellationand the more commonpostcombining interference

cancellation, respectively, as defined in [40–44]. The received signal can be factored into

two components, one of them relying only on slow parameters as defined in section 1.3.1.4,

the other component relying on fast parameters, namely, the product of the data symbols with

the complex path amplitudes,Ak;mak [n]. This observation motivatespathwise interference

cancellation(PWIC) which only requires the knowledge of the slowly varying parameters as

opposed to the more commonpostcombiningapproach which requires complete knowledge

of the channel. Hence, in a pathwise scenario, the interference cancellation typically takes

place between individual multipath components before they are spatio-temporally recom-

bined. The obvious advantage of an interference cancelling filter that relies only on slow

parameters,�k;m andhk;m as a function of the DoA,�k;m, is that the adaptation require-

ments of the filter will be based on the rate of change of the slow parameters also, which are

easier to estimate as well as to relax the update rate of the adaptive interference cancelling

filter, thereby reducing the complexity of the filter. Furthermore, a pathwise filtering ap-

proach allows improved channel parameter estimation since the estimated path components

contain the signal of interest with an increased SINR compared to the received signal.

29
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2.1.1 Extension to the signal model

From equation (1.3.4) we know that the received discrete time signal at the receiver

is given by

y[n] =
1X

i=�1
P[n� i]SHAa[i] + v[n] (2.1.1)

Due to the delay spread of the multipath channel,hk(t), the transmitted symbols are spread

out in time over the duration of possibly several symbol periods. Assuming that the maxi-

mum delay spread,�max, experienced in the channel,hk(t), is known and given the asyn-

chronism between transmitter and receiver, a processing window of lengthb = d(�max +

2uT )=Te+1 symbol periods for the receiving filter will guarantee to capture the entire con-

tribution of a certain data symbol,ak[n]. It is therefore often advantageous to use samples

from the received signal over the duration of several symbol periods rather than just one,

thereby also increasing the available data for interference cancellation. Hence, in what fol-

lows, we consider amulti-shotdetector. For notational ease, let us rewrite equation (2.1.1)

as follows:

y[n] =
1X

i=�1
~P[i]~S ~H ~Aa[n � i] + v[n] (2.1.2)

where simply we letP[n] ! ~P[n], S! ~S etc. In order to consider the multi-shot detector,

let us stackN vectorsy[n] into a vectorY[n] which represents the received signal samples

over a duration ofNT , such that

Y[n] =

2664
y[n]

...

y[n�N + 1]

3775

Y[n] = PSHAan +V[n] (2.1.3)

wherean =
�
a[n]T : : :a[n �N � b+ 2]T

�T
, A = IN+b�1 
 ~A;H = IN+b�1 
 ~H;S =

IN+b�1
 ~S and~P is a banded block Toeplitz matrix of dimensionsNLPQ�KMQL(N+
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b� 1), as shown in (2.1.4).V[n] are the stacked noise samples.

P =

2666666666666664

~P[�u] 0 0

~P[�u+ 1]
.. . 0

...
.. . ~P[�u]

~P[u� 1]
.. . ~P[�u+ 1]

~P[u]
.. . . ..

0
.. . ~P[u� 1]

0 0 ~P[u]

3777777777777775
(2.1.4)

In addition, to allow the structure of the received signal to be more lucid, we can rewrite

equation (2.1.3) in terms of userk’s desired symbol’s contribution and interference terms, in

particular, ISI and MAI. This is given in equation (2.1.5),

Y[n] = PSHA| {z }
E

an +V[n]

= Ean +V[n]

= [E1;n � � �EK;nE1;n�1 � � �EK;n�N�b+2 ]an +V[n]

= Ekak [n� d] +Ekak;n +
KX

i=1;i6=k
Eiai;n +V[n]

= E
k
HkAkak[n� d] +Ekak;n| {z }

ISI

+
KX

i=1;i6=k
Eiai;n| {z }

MAI

+V[n]

| {z }
�[n]

(2.1.5)
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where

ak;n = [ak [n] � � �ak [r] � � �ak[n�N � b+ 2]] ; r 6= n� d

ai;n = [ai[n] � � �ai[n�N � b+ 2]]

Ek;n�d , Ekfor user of interest at delay of interest only

Ei = [Ei;n � � �Ei;n�N�b+2]

Ek = [Ek;n � � �Ek;r � � �Ek;n�N�b+2] ; r 6= n � d

E
k
HkAk =

MX
m=1

Ek;mhk;mAk;m =
MX
m=1

Ek;mAk;m = EkAk = Ek

Ek;m = p0k;ms
0
k; p

0
k;m = [0d p�u;k;m � � �pu;k;m 0N�d�2u�1]T

s0k = sk 
 IQ; 0z = 0(zJLQ�LQ) (2.1.6)

In this notation, the individual columns of the matrix productPSHA are denoted

by Ek;r and hence represent the contribution of a data symbolak[r] in the received signal

vector,Y[n]. Therefore, the ISI term consists of the columns and data bits inPSHA

corresponding to the user of interest’s data symbols in the past and in the future w.r.t. the

time instantn�d which defines the data symbol of interest at a given moment. Similarly, the

MAI term is given by the sum of the contributions of all users other than the one of interest

in Y[n].

From equation (2.1.3), it can now clearly be seen that the signal can be divided into

a fastly varying component and a slowly varying component.Explicitly, the productPSH

containing the pulse-shaping as a function of the delays,�k;m, the spreading codes matrix ,S,

and the antenna array response matrix ,H, are dependent only on slow channel parameters,

whereas the amplitude data product matrix,Aan, is fastly varying due to its dependence on

the complex amplitudes. This observation has led to the idea ofprecombining interference

cancellation.

2.2 Precombining LMMSE PWIC

The originalprecombining interference cancellationapproach was proposed by

Latva-aho [40], the motivation being an adaptive filter implementation of an interference

cancelling scheme that relies only on slowly varying parameters of the channel as well as
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the estimation of the channel coefficients. Namely, the fast varying parameters,Ak;m, can

be estimated using scarce training data and are not required for the IC-filter design. The

slow parameters can be estimated over a longer duration. This allows to find filters for each

pathm of a userk by employing filtersFk;m to each path and to cancel both Inter user

Interference (IUI) as well as Inter symbol Interference (ISI), caused by the multipath propa-

gation channels. The filter coefficients can typically be derived using a Linearly Constrained

Minimum Variance (LCMV) or Minimum Output Energy (MOE) approach. Using carefully

chosen constraints ,which guarantee the contribution of the target path to be present in the

filter output, such an approach is in principle equivalent to maximising the Signal to Inter-

ference plus Noise ratio (SINR) at the filter output. Since in a RAKE receiver the treatment

of the received signal is naturally pathwise in the sense that there exists a ’finger’ or pulse-

shaped matched filter in cascade with a correlator matched to the spreading code of the user

of interest, the precombining approach lends itself as an extension to the classical receiver

in DS-CDMA, the RAKE receiver. It is hence possible to envisage two ways of proceed-

ing with the pathwise interference cancellation, namely by using the correlator outputs of

the RAKE(i) as suggested above, or to use the received signal directly(ii). It may be noted

here, that it is in fact not important that the interference cancellation be necessarily before

spatio-temporal recombining of the multipath components but that there is a pathwise treat-

ment. Approach (i) is inherently attractive since the entry vector size to the filter in this case

is proportional toKM whereas in approach (ii), the entry vector is proportional toLKM .

This is particularly true in the case where the number of users,K, is small compared to the

processing gain,L, and hence promises reduced complexity. However, approach (i) is more

difficult to formulate in a discrete-time processing context, as well as to present the incon-

venience of signal structural change with a varying no. of users and/or number of paths.

Approach (i) is a true multi-user approach and is used by Latva-aho [42] to present the filter

theory, but approach (ii) is used in the context of adaptive filtering, since it allows to follow

a single-user approach, in the sense that only the information relative to the user of interest,

k, is required. Approach (ii) can hence be formulated such that the IC-filter,Fk;m for path

m of userk, works directly on the received signal given in (2.1.3), such that the filter output

can be written asFk;mY[n]. Figure 2.1 clearly shows the matched-filter structure of the

path-wise approach. Indeed, it can be seen that the 2D RAKE receiver is but a special case

of the proposed filter structure where the filtersFk;m = EH
k;m are matched toEk;m. From
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Figure 2.1: Receiver showing the matched-filter structure of the proposed approach

figure 2.1 we see that the data symbol estimate is described by

âk [n� d] = ÂH
k [n] Ĥ

H
k F̂k| {z }
F̂k| {z }

F̂k

Y[n] (2.2.1)

where

F
k
=
�
Fk;1 � � �Fk;M

�
; Fk = [Fk;1 � � �Fk;M ] ; (2.2.2)

are the stacked contributions of the path-wise filters to give a filter per user. We can see here

that the path-wise processing can be further broken down from purely path-wise processing

(estimatingFk) to path-wise and antenna-wise processing (estimatingF
k
).

The LCMV optimisation criterion to solve for a purely path-wise filterFk;m is

hence given by

Fok;m = arg min
Fk;mEk;m=1

Fk;mRY Y F
H
k;m (2.2.3)

whereEk;m is the constraint vector, chosen such that it represents the contribution of the path

of interest,Ak;mak [n�d], inY[n], i.e the column inPSH corresponding toAk;mak[n�d]
inAan. d denotes some delay with respect to the input signal time indexn, typically chosen

such that the symbols contribution corresponds roughly to the middle portion of the received

vectorYn. This leads to the solution of

Fok;m = (EH
k;mR

�1
Y YEk;m)�1EH

k;mR
�1
Y Y (2.2.4)

Hence, it can be seen that theEk;m and thereforeFk;m only depends on the slowly varying

parameters as defined earlier in section 1.3.1.4.
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2.3 User-wise Distortionless Pathwise Interference Cancellation

In the approach described in section 2.2 it is supposed that the estimation time for

RY Y is such that the complex amplitudesAk;m of the paths vary strongly over the estimation

time ofRY Y so that the coefficientsAk;m can be considered mutually independent and hence

decorrelated between different paths for a given userk. If this decorrelation is perfect, the

approach of section 2.2 is optimal in the sense that it corresponds to a maximisation of

the SINR of each path. However, if it cannot be assumed that the mobile terminal moves

sufficiently, the performance of the approach given in [42] will be limited severely as the

signalAk;mak [n� d] for the pathm of the userk can be strongly correlated with the other

pathsi 6= m since they belong to the same data symbol(see also appendix 2.A). In the

following, we present alternative approaches which avoid the problem of signal cancellation

due to amplitude correlations.

2.3.1 User-wise Distortionless PWIC (1)

It is now possible to resolve the problem of signal cancellation by requiring that

the filterFk;m for pathm blocks the contribution of the other pathsi 6= m according to the

following LCMV criteria:

Fk;m = arg min
Fk;mEk;j=�m;j

Fk;mRY Y F
H
k;m (2.3.1)

where the number of vector constraints has become equal to the number of paths,M , of user

k. Stacking the filtersFk;m : m 2 f1 : : :Mg into a matrixFk = [FHk;1 : : :F
H
k;M ]H and

Ek;m : m 2 f1 : : :Mg intoEk = [Ek;1 : : :Ek;M ], the LCMV criteria can be rewritten as

Fk = arg min
FkEk=IM

FkRY Y F
H
k (2.3.2)

with solution

Fok = (EH
k R

�1
Y YEk)

�1EH
k R

�1
Y Y (2.3.3)

In this approach, the filter will let pass all the paths,m of userk without distortion and allows

for zero-forcing. The estimate of the signal will be obtained by maximum ratio combining,

âk[n � d] =
PM

m=1A
�
k;mFk;mY[n]. This PWIC approach is also suitable to the estimation

of the complex amplitude coefficients,Ak;m, since they are contained in the filter outputs
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at improved SINR as compared to the unprocessed signalY[n]. The complex coefficient

estimation hence can be achieved through the use of a training sequence according to the

following Least-Square (LS) criterion

Âk;m = arg min
Ak;m

X
n

kAk;mak[n� d]� Fok;mY[n]k2 (2.3.4)

The disadvantage of this method lies therein that it does require the knowledge of the antenna

response vectorhk;m but does not permit the estimation thereof since the spatial recombi-

nation is implicit in the interference cancelling filter. Hence, the estimation ofhk;m would

have to be obtained independently from a different source. In the next section, we show an

alternative which allows spatial recombination after interference cancellation.

2.3.2 User-wise Distortionless PWIC (2)

In order to allow also the estimation of the channel response vectors,hk;m, the

approach in section (2.3.1) can be extended directly, so as to achieve explicit spatial recom-

bination after IC-filtering. This requires the filter to become a matrix filter,Fk;m, instead

of a vector filter unlike (2.3.1), further increasing the degrees of freedom available. Let us

define

Ek;m = Ek;mhk;m (2.3.5)

whereEk;m is a matrix, containing the contribution ofhk;mAk;mak(z) in PS of equation

(2.1.3), the spreading and the pulse-shaping matrix, as detailed in section 2.1.1. We can then

write the LCMV criteria as

Fk;m = arg min
Fk;mEk;j=IQ�m;j

Fk;mRY Y F
H
k;m (2.3.6)

if we now stack the filtersFk;m and the constraint matricesEk;m as in section 2.3.1, we

obtainF
k

andE
k

and the LCMV criterion can be written as

F
k
= arg min

F
k
E
k
=IQM

F
k
RY Y F

H
k

(2.3.7)

leading to

F
k
= (EH

k
R�1
Y YEk

)�1EH
k
R�1
Y Y (2.3.8)
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The symbol estimate is therefore given byâk[n � d] =
PM

m A�k;mh
H
k;mFk;mY[n]. This

method clearly allows for the estimation of a path’s channels response, requiring only the

knowledge of the delays,�k;m, and the spreading code,sk, for the user of interest,k, to adapt

the interference cancelling filterF
k
. The antenna array response,hk;m, can be estimated

over the duration of several bursts where as the complex channel coefficients,Ak;m, can be

obtained by estimation over a much shorter time interval. The estimates can be found by

min
Ak;m;hk;m:hHk;mhk;m=1

X
n

khk;mAk;mak [n� d]� FokY[n]k2 (2.3.9)

with solutions given in (2.3.10), using Training Sequences (TS).

ĥk;m = Vmax(F
o
k;mRY Y F

oH
k;m) � hk;me

j� (2.3.10)

Âk;m =

P
n2TS a

�
k[n� d]hHk;mF

o
k;mY[n]P

n2TS jak[n� d]j2 � Ak;me
�j�

In the case where a pilot in quadrature is used rather than a TS, we can find the complex

amplitudes through

Âk;m =
�jPn

n
Im fak [n� d]g ĥk;mFok;mY[n]

o
P

n (Im fak [n� d]g)2 � Ak;me
�j�

(2.3.11)

Due to the extra degrees of freedom compared to the approach of section 2.3.1 this approach

allows even more powerful interference cancellation. On the other hand, with the extension

of the degrees of freedom, this also means that the complexity is higher.

2.3.3 User-wise Distortionless PWIC(3)

From the filter expression for UDPWIC(2), equation (2.3.8) it can be seen that the

solution is identical to (2.3.3) in the case where we useHH for the spatial recombination in

(2.3.8). That is to say that

Fk = HH
k Fk

Usingq as a generic spatio-temporal recombination vector, we can express the SINR at the

symbol estimator output from

âk [n� d] = qHF
k
Y[n] (2.3.12)
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and

Y[n] = E
k
HkAkak[n� d] + �[n]

whereE
k
HkAk is the signal term and�[n] represents the noise and interference term as

SINR =
�2aq

HHkAkA
H
k H

H
k q

qH(F
k
RY Y F

H
k
� �2aHkAkA

H
k H

H
k )q

In order to maximise the above SINR w.r.t.q, the problem can be reformulated into a

generalised eigenvalue problem of the following form:

qmax = argmax
q

qHHkAkA
H
k H

H
k q

qHF
k
RY Y F

H
k
q

with solution

qmax = AH
k H

H
k (F

k
RY Y F

H
k
)�1

Upon backsubstitution into equation (2.3.12) we find

âk[n� d] = AH
k H

H
k FkY[n]

where

Fk = EH
k
R�1
Y Y = RaYR

�1
Y Y (2.3.13)

is a matrix filter, equivalent to an unconstrained LMMSE/max. SINR receiver. This shows

that pathwise processing does not necessarily imply sub-optimality w.r.t an LMMSE re-

ceiver. Note, however, that the filter only simplifies in the case where the estimation interval

of RY Y used in the construction ofF
k

is equal to the estimation interval ofAk and hence

q. In the case where the filter is constructed with anRY Y that is averaged over several

realisations ofAk, theRY Y used inq, will have to be computed separately and we will

use equation (2.3.12). This filter is substantially less complex to compute than the filter in

(2.3.8) while also maximising the output SINR. It is worth noting that this is neither the

case for UDPWIC(2) nor UDPWIC(1) unless the interference plus noise covariance matrix

is identity. Furthermore, this approach allows the filter to be constructed with a minimum of

a priori knowledge, in particular the path delays and the spreading code of userk, while still

allowing the estimation of the channel coefficients.
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2.3.4 Structural Filter Constraints

So far, the filters shown in the preceding sections had no structural constraints

imposed on them, other than being FIR. It is however possible, to define an a priori structural

constraint on the filterFk;m with the aim of further reducing the complexity and/or improve

the performances. Possible constraints are to define the filterFk;m to be the cascade of a

free, shorter filter and a pulse-shaped matched filter,p�(�t) or even a cascade of the pulse-

shaped matched filter as well as the spreading code correlator and a free filter part. We will,

however, not pursue this any further at this point but introduce a lower complexity method

in the next chapter.

2.4 Numerical Simulation Results

We consider a scenario withL = 8, K = 2, M = 2 and SIR=-10dB. Three

cases are shown, in whichRY Y is averaged over 1 (figure 2.2), 2 (figure 2.3) and 10 (figure

2.4) slots, respectively. By this, we simulate a situation with varying vehicle speed since

the correlation between the complex amplitudes is a function of vehicle speed. The fast

parameters are drawn randomly in each slot, while the slow parameters are constant. The

simulations show that the original approach by Matti Latva-Aho (PLMMSE curves) suffers

from signal cancellation when the fast parameters do not vary fast enough, whereas the new

approaches are fairly insensitive to the speed of variation of the fast parameters.

2.5 Conclusions

We have established the concept of user-wise distortionless pathwise interference

cancellation and introduced novel interference cancelling filters on a pathwise basis which

do not rely on the fastly varying complex amplitude coefficients. This is achieved using

the fact that the signal can be split into parts which depend on slowly varying channel pa-

rameters and fastly varying parameters, respectively. Furthermore, we have shown how to

alleviate the problem of signal cancellation in the original pathwise approach [40–42, 45]

by introducing the extra constraint to null out other paths of the user of interest belonging

to the data to be received. The obvious advantage of such an approach is its independence

from the fastly varying complex amplitude coefficients. This allows to relax the update rate
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Figure 2.2: UDPWIC compared to RAKE and PLMMSE when averaged over 1 slot
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Figure 2.3: UDPWIC compared to RAKE and PLMMSE when averaged over 2 slots
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Figure 2.4: UDPWIC compared to RAKE and PLMMSE when averaged over 10 slots

of the IC filter. Pathwise Interference Cancellation (PWIC) is an approach that allows to

separate the parameters into fastly varying and slowly varying parameters, thereby allowing

the scarce training data to be used in the estimation of the fastly varying parameters while

the whole of the received signal can be used to estimate the slowly varying parameters over

a much larger time interval. Since the interference cancellation takes place between individ-

ual multipath components before spatial-temporal recombination, the signal thus obtained

contains the desired parameters at an improved SINR compared to the received signal and

hence allows improved channel estimation. These results have been published in [46].

However, the optimal FIR approaches of the previous pages are still computation-

ally very costly and therefore difficult to implement in practice. In the next chapter, we

will introduce an alternative sub-optimal pathwise method that allows considerable gains

compared to the RAKE receiver while being substantially less costly to implement than the

above approaches.
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2.A Appendix: Signal cancellation in the case of correlated am-

plitudes

Consider the simple case of one user with two paths and a single transmitted data

symbol,a. The received signal can be written as

y = s1A1a + s2A2a+ n

= [s1 s2]

"
A1

A2

#
a+ n = SAa+ n

wheres1 is theL � 1 spreading code of user one which we assume to be (without loss of

generality) at zero delay.s2 is a delayed copy ofs1, which for the sake of simplicity, we just

model as a different spreading code, synchronous withs1. n denotes the noise vector. The

filter in the original pathwise LMMSE approach of equation (2.2.3) to estimate the first path

amplitude data productA1a is given by

Fo1 = arg min
F1s1=1

F1RyyF
H
1

Recall that the constraint was imposed to ensure the contribution of the first path in the filter

output. The minimum output variance achieved is given by

Fo1RyyF
o
1 =

�
sH1 R

�1
yy s1

��1
(2.A.1)

The received signal covariance matrix is

Ryy = �2aSRAAS
H + �2nI

= �2a SD|{z}
=B

�DHSH + �2nI

= �2aB�BH + �2nI

where we defined the amplitude correlation matrix,RAA,

E

"
A1

A2

#
[A�1A

�
2] =

"
�21 ��1�2

���1�2 �22

#
=

"
�21 0

0 �22

#
| {z }

=D

"
1 �

�� 1

#
| {z }

=�

"
�21 0

0 �22

#
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where� denotes the correlation coefficient between the amplitudes. Using the matrix inver-

sion lemma onRyy , we can write:

sH1 R
�1
yy s1 =

1

�2n

"
1� sH1 B

�
BHB+��1

�2n
�2a

��1
BHs1

#

=
1

�2n

"
1� [1 �]

�
SHS+D�1��1D�1�2n

�2a

��1 "
1

��

##
(2.A.2)

where we have usedsH1 B = sH1 SD = [1 �]D and takenD inside the inverse.� can

therefore be seen to be the correlation between the codes, i.e.sH1 s2 = �; sH1 s1 = 1, and the

codes are normalised, as usual. Consider now the inverse term, i.e.�
SHS +D�1��1D�1�

2
n

�2a

��1
=

�
SHS

��1 �
I+D�1��1D�1�

2
n

�2a

�
SHS

��1��1
� �

SHS
��1 �

I�D�1��1D�1�2n
�2a

�
SHS

��1�
(2.A.3)

where we have used a first order approximation for the inverse term, i.e. we approximate the

higher order terms in the noise power,�2n, with zero under the assumption that the SNR is

high. This is reasonable since the signal cancellation occurs at high SNR. Further note that

we can write �
SHS

��1
=

1

1� j�j2
"

1 ��
��� 1

#
(2.A.4)

and therefore

[1 �]
�
SHS

��1
= [1 0] (2.A.5)

Resubstituting equation (2.A.3) into (2.A.2), we can now write

�
sH1 R

�1
yy s1

��1 � 1

�2n

(
1�

"
1� �2n

�2a
[1 0]D�1��1D�1

"
1

0

##)
(2.A.6)

=
1

�2a�
2
1 (1� j�j2) (2.A.7)

Therefore, with a high input SNR, we can see that the SINR at the filter output is approxi-

mately given by

SINR = �2a�
2
1

�
1� j�j2� (2.A.8)
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Hence, in the case where the amplitudes are perfectly correlated,j�j = 1, and the noise

power is low, we see that the signal of interest is cancelled. This can occur when the mobile

is stationary and therefore the amplitudes will be strongly correlated. Whence, we introduce

further constraints on the filter, in particular thatFmsj = �m;j which is equivalent to zero-

forcing the other paths of the same user that might be correlated to the path of interest.



Chapter 3

Polynomial Expansion Interference
Cancellation

3.1 Introduction

The last chapter has clearly shown the benefits of using pathwise processing that

allows the separation between fastly and slowly varying parameters. Despite the good per-

formances of the approach presented in the last chapter, the approach is hampered by its

high complexity due to the use of the received signal directly, hence dimensions involved

are large. Not least the estimation ofRY Y , the received signal correlation matrix, would re-

quire a lot of data. In this chapter, we will introduce an alternative, low-complexity pathwise

approach, based on Polynomial Expansion (PE).

Polynomial expansion is an approximation technique for LMMSE receivers and

is particularly well suited for CDMA due to the presence of a large number of small corre-

lations. The fundamental principle of PE is to avoid the relatively costly correlation matrix

inverse required by an LMMSE/Decorrelator receiver by considering the correlation matrix

to be a small perturbation of an identity matrix and approximating the inverse of the corre-

lation matrix by a polynomial expansion in the perturbation matrix or, equivalently, in the

correlation matrix itself. However, for PE to work, adapted weighting factors have to be

introduced. By appropriately choosing the weighting coefficients, every additional term in

the PE can be guaranteed to improve performance and hence divergence concerns are largely

eliminated.

45
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PE has, in various forms, received a fair amount of attention recently in theliter-

ature [47–50] etc. Some works on PE have analysed the choice of scalar weighting factors

on the basis of asymptotic system analysis, leading to weight values that can be determined

a priori. In this chapter, we propose to introduce diagonal weighting matrices, which corre-

sponds to one weighting factor per signal component. We shall see that such multiple co-

efficients not only improve performance substantially in the presence of power imbalances

between users and paths, but also further improvement due to the fast adaptation of these

weights is possible since the instantaneous channel states will reflect the power imbalances

very strongly.

Moshavi, who first introduced PE [51], applied polynomial expansion to the joint

set of RAKE outputs for the various users. In this way, the polynomial expansion receiver

involves only (de)spreading and channel (matched) filtering operations and hence is mostly

parameterised in terms of the channel parameters (as opposed to the general coefficients of a

general linear receiver). Honig and coworkers apply the PE principle to the received signal

directly and were able to show [52] that PE is equivalent to theMultistage Wiener Filter[53]

in this case. We propose to introduce polynomial expansion at the level of the pathwise

RAKE outputs. As compared to Moshavi’s approach, the PE is situated before maximum

ratio combining of the path contributions and leads to pathwise interference cancellation

which will allow to estimate the path parameters (amplitudes, or even angles in the spatio-

temporal case) with improved SINR and hence with reduced estimation error. The diagonal

weighting factors we introduce hence provide a weighting per path (or even possibly per

antenna element per path in the spatio-temporal case). Maximum ratio combining after

pathwise PE then corresponds to a version of theGeneralised RAKE, the G-RAKE (the

path amplitudes multiplied by arbitrary weighting factors become arbitrary recombination

coefficients).

3.2 Principle of Polynomial Expansion

To illustrate the principle of pathwise polynomial expansion, it is beneficial to

briefly consider a simplified, synchronous signal model with a single path per user, a single

receiver antenna and chip-rate sampling (i.e.J = 1; M = 1; Q = 1). We can write the
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discrete-time received signal,y[n], forK users as:

y[n] = SeAa[n] + v[n] (3.2.1)

where we have used the following definitions:

Se = [s1 : : :sK ] (L�K)

A = diagfA1; : : : ; AKg (K �K)

a[n] = [a1[n] : : :aK [n]]T (K � 1) (3.2.2)

wheresk is the spreading code of userk andAk the corresponding complex amplitude

coefficient.v[n] is considered white Gaussian noise, as usual. In this model, the spreading

matched filter is given bySHe and we can write

x[n] = SHe SeAa[n] + SHe v[n] (3.2.3)

= RAa[n] + SHe v[n]

R = SHe Se (K �K)

it is clear that the matrixR is simply the spreading code cross-correlation matrix. Using

normalised spreading codes, i.e.sHk sk = 1, we see thatR has unit elements on the diagonal.

Therefore, let us write

R = I+R (3.2.4)

whereR contains the off-diagonal elements ofR; [R]ij � 18fi; jg. The off-diagonal

elements are small and inversely proportional to the spreading gain. We can therefore view

R as a perturbed identity matrix. From equation (3.2.3) we can see that the Linear Minimum

Mean Square Error (LMMSE) receiver and the decorrelator/zero-forcing receiver to estimate

a[n] from x[n] are given by (for reference see e.g. [21,54,55])

âdec[n] = Fdecx[n] = A�1R�1x[n]

âLMMSE[n] = FLMMSEx[n] = AH
�
�2aRAA

H + �2vI
��1

x[n]

where we assume uncorrelated data symbols and white noise, i.e.Efa[n]aH [n] = �2aIg and

Efv[n]vH[n] = �2vIg. Equally, for the estimation of the amplitude data product, we have

cAadec[n] = Fdecx[n] = R�1x[n] (3.2.5)cAaLMMSE[n] = FLMMSEx[n] =
�
�2aR+ �2v(A

HA)�1
��1

x[n]
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SinceA andAAH = AHA are diagonal matrices, the main complexity in either

the decorrelator or the LMMSE receiver is the matrix inverse involving theK �K matrix

R. The fundamental idea in polynomial expansion is now to avoid the costly inverse by

approximating the inverse as a polynomial. For simplicity, let us look at the amplitude-data

decorrelator from (3.2.5). We can write for a general, invertible matrixR [56]:

R�1 =
�
I+R

��1
=

1X
b=0

��R�b (3.2.6)

provided there is a matrix normjjjRjjj < 1 to guarantee convergence. Assuming for the

time being that the convergence condition is satisfied, we can therefore approximateR�1 by

truncating the infinite series expansion toB + 1 terms, i.e.

R�1 � ~R�1 =
BX
b=0

(�R)b (3.2.7)

Note that we could equivalently form the expansion inR instead ofR since there is a one-

to-one relationship between the two (this will be shown later in section 3.4.1). Typically, in

approximating the decorrelator in this fashion, we would be interested only in a polynomial

of very low order, such asB = 1, to keep complexity at a reasonable level. In the noiseless

case (where the decorrelator is equivalent to the LMMSE), a first-order expansion(B = 1)

in (3.2.7) leads to an amplitude-data product estimate from (3.2.5) given by

cAa[n] = ~R�1x[n] =
�
I�R�x[n]

= (2I� SHe Se)SHe SeAa[n]
= (2I�R)RAa[n] (3.2.8)

Note that the complexity introduced by PE is essentially twice the complexity of the RAKE

for every stage. In particular, every stage introduces an additional spreading followed by a

despreading operation (SHe Se). From (3.2.8) we can write the expression for the signal-to-

interference ratio (SIR) for user one, without loss in generality, from
h cAa[n]i

1
, where[:]1

denotes the first element of the vector.

SIRPE =
jA1j2(1� sH1 SeS

H
e s1)(1� sH1 SeS

H
e s1)

sH1 (I� SeS
H
e )SePSHe (I� SeSHe )s1

(3.2.9)
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where we have taken the expectation of the numerator and denominator w.r.t. the data, i.e.

Efa[n]a[n]H = �2aIg andSe = [s1 Se]; A = diagfA2; : : : ; AKg;P = A
H
A. Assuming

that the spreading codes for all users consist of i.i.d. random variablessk;l 2 1p
L
f+1;�1g,

taking the expectation of the numerator and denominator ofSIRPE, over the spreading

codes will give

SIRPE =
c

w
(3.2.10)

where we the numerator and denominator are given by

c = jA1j2(1� 2

L
(K � 1) + (K � 1)(K � 2)(Lm4m

2
2 + L(L� 1)m4

2))

w =
KX
k=2

jAkj2(1=L� 2((K � 2)Lm3
2 + L(L� 1)m3

2 + Lm2m4)

+fLm4
2(K � 2)(K � 3) + (K � 1)[m4

2L(L� 1)(L� 2) + 3m2
2m4L(L� 1) +m2m6L]

+3(K � 2)[Lm2
2m4 + L(L� 1)m4

2]g (3.2.11)

wheremx is the x-th moment of the random spreading code elementssk;l. After substitution

of the moments,mx, for the spreading code elementssk;l, and some algebraic simplifications,

we obtain

mx =

(
1

Lx=2
if x even

0 if x odd

SIRPE =
jA1j2fL3 � (K � 1)[2L2� L(K + 1) + 2]g
(
PK

k=2 jAkj2)fK(K � 5) + L(K � 2) + 6g
(3.2.12)

If we furthermore take the expectation with respect to the amplitudes (where we assumeAk

complex, with equally distributed real and imaginary parts and allAk coming from the same

distribution with finite second order moment) and then letK;L ! 1 while keeping the

loading factor� = K
L = no. users

spreading factorconstant, we can write an asymptotic large-system

result for the SIR as

SIRPE;K;L!1;�=const: =
(� � 1)2

�2(� + 1)

����
� 6=0

� 1

�2
for small� (3.2.13)
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Figure 3.1: The large-system SIR of the RAKE and the PE (without coefficients) com-
pared as a function of the loading factor,� = K=L, in the noiseless case.

In comparison, an equivalent analysis of the RAKE receiver is well known to give

SIRRAKE;K;L!1;�=const: =
1

�

����
� 6=0

(3.2.14)

In figure 3.1, the above expressions are plotted and it can be seen that a first-order poly-

nomial expansion can only improve with respect to the RAKE for loading factors� < 1
3 ,

approximately. A more in-depth analysis leading to the same conclusion has recently been

presented in [57]. The performance can be much improved by introducing scalar coeffi-

cientsdb according to some performance criterion in (3.2.7) as has been documented in

various publications e.g. [47,48,51,52,58], i.e.

R�1 � ~R�1 =
BX
b=0

dbR
b

(3.2.15)

Note that with the introduction of scalar coefficients,db, the inverse will be exactly estimated

with a finite number of stages,B < L� 1, by the Cayley-Hamilton theorem [56].
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3.3 Polynomial Expansion using scalar coefficients

As mentioned in the introductionof this chapter, there are fundamentally two ways

of applying polynomial expansion to linear interference cancellation: at the received signal

directly or alternatively at the RAKE outputs. Those two variants correspond to the ap-

proaches introduced by Honiget al.and Moshaviet al. , respectively. We briefly introduce

those two methods now.

3.3.1 Polynomial expansion applied to the RAKE outputs

Moshavi presented the original polynomial expansion receiver in 1996 [22,51] and

applied it to the joint set of RAKE outputs for the various users. In this way, the polynomial

expansion receiver involves only (de)spreading and channel (matched) filtering operations

and hence is mostly parameterised in terms of the channel parameters (as opposed to the

general coefficients of a general linear receiver). From the previous chapter (section 2.1.1,

equation (2.1.5) ), we can write the general, asynchronous received signal as

Y[n] = Ean +V[n] (3.3.1)

where the RAKE outputs are given by

EHY[n] = EHEan +EHV[n] = Ra[n] + EHV[n] (3.3.2)

whereR = EHE. The LMMSE solution for the data estimate in this case is given by

ân =
�
�2aR+ �2nI

��1
EHY[n] (3.3.3)

The aim is therefore to use a polynomial expansion inR to approximate the matrix inverse:

�
�2aR + �2nI

��1 � BX
i=0

�iR
i (3.3.4)

and therefore the symbol estimate is given by

âMoshavi =
BX
i=0

�iR
iEHY[n] (3.3.5)
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The coefficients can, for example, be obtained by solving

�oi = min
�i2f0;1;:::;Bg

Ekan �
BX
i=0

�iR
iEHY[n]k2 (3.3.6)

other methods of computing the coefficients are possible [47,48,51,58].

3.3.2 Polynomial Expansion applied to the received signal

Honig and coworkers apply the PE principle to the received signal directly. In this

case, they were able to show [52] that PE is equivalent to theMultistage Wiener Filter. The

multistage Wiener filter is a decomposition of the Wiener filter into multiple stages, based on

orthogonal projections, allowing a nested implementation thereof. Its most notable feature

is the fact that it does not require an estimate nor an inverse of the correlation matrix since

only cross-correlations between vectors and scalars are required in determining the filters at

each stage. Furthermore, this approach is suitable to reduced-rank Wiener filtering [54] by

simply stopping the nested multistage decomposition at theN th stage, whereN is the rank

required. For details, see [53].

Hence, working on the received signal directly, we can write the LMMSE estimate

as

ân = EHR�1Y YY[n] (3.3.7)

The polynomial expansion estimate for the data withB + 1 stages is hence given by

âMSWF [n] = EH
BX
i=0

wiR
i
Y YY[n] (3.3.8)

Note that

EHR�1Y YY[n] = EH(�2aEE
H + �2nI)

�1Y[n]

=
1

�2n

h
I� �2aR

�
�2aR+ �2nI

��1i
EHY[n]

=
1

�2n

" 1X
i=0

�
��

2
a

�2n
R

�i#
EHY[n]

=
�
�2aR+ �2nI

��1
EHY[n] (3.3.9)
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where we have made use of the matrix inversion lemma and an infinite polynomial ex-

pansion. Hence, the LMMSE solution working on the received signal is equivalent to the

LMMSE solution based on the RAKE outputs. Therefore, the two methods try to approx-

imate the exactly same solution if the coefficients are obtained in the same fashion (e.g.

LMMSE) for the same performance criterion.

3.3.3 Equivalence between PE at the RAKE output and PE applied to the
received signal

To show the equivalence of the two approaches with the same, finite number of

stages, we need to show a one-to-one correspondence. Assume that the two approaches are

indeed the same for the same number of stages. Then we can write

BX
i=0

�iR
iEH = EH

BX
i=0

wi

�
�2aE

HE + �2nI
�i

(3.3.10)

= EH
BX
i=0

wi

iX
j=0

�
i

j

�
(�2aEE

H )j(�2nI)
i�j

=
BX
i=0

wi

iX
j=0

�
i

j

�
(�2n)

i�j(�2a)
j EH(EEH)j| {z }

RjEH

=
BX
j=0

BX
i=j

wi

�
i

j

�
(�2n)

i�j(�2a)
j

| {z }
=�j

RjEH (3.3.11)

=
BX
j=0

�jR
jEH

where we have changed the summation order in (3.3.11). Hence, it can be seen that there

is an exact one-to-one relationship between the two approaches for any arbitrary number of

stages,B. For alternative proofs, see also [59,60].

3.4 Pathwise Polynomial Expansion

In this section, we propose to introduce diagonal weighting matrices which cor-

responds to one weighting factor per signal component, as opposed to the scalar weighting
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introduced in the last sections. We propose to introduce polynomial expansion at the level

of the pathwise RAKE outputs. As compared to Moshavi’s approach, the PE is situated

before the maximum ratio recombination of the path contributions and leads to pathwise in-

terference cancellation which will allow to estimate the path parameters (amplitudes, or even

angles in the spatio-temporal case) with improved SINR and hence with reduced estimation

error. The diagonal weighting factors we introduce hence provide a weighting per path (or

even possibly per antenna element per path in the spatio-temporal case).

3.4.1 Time Domain Filtering Notation

We shall now define the more general signal model that is used throughout the rest

of this chapter. Recall from equation (1.3.4) that the general discrete-time received signal is

given by

y[n] =
1X

i=�1
P[n� i]SHAa[i] + v[n] (3.4.1)

In order to avoid the FIR approximations inherent to a burst mode formulation like the one

used in the last chapter (see section 2.1.1) we shall now introduce a time-domain filtering

notation defined by the advance operatorq, whereqy[n] = y[n + 1] with respect to the

symbol period. Theq is equivalent toz in thez-transformdomain but we prefer the use ofq

to emphasise the delay operator aspect and not the frequency domain interpretation. To this

end, let us reformulate the received signal as given in (3.4.1) in the q-domain:

y[n] = P(q)SHAa[n] + v[n]

= E(q)a[n] + v[n]

= Ek(q)ak[n] +
KX

i=1;i6=k
Ei(q)ai[n] + v[n] (3.4.2)

where we have decomposed the signal into user contributions and made use of

P(q) =
X
i

P[i]q�i (3.4.3)

Furthermore, note that we can also write

E
k
(q)HkAk =

MX
m=1

Ek;m(q)hk;mAk;m =
MX
m=1

Ek;m(q)Ak;m = Ek(q)Ak = Ek(q)

(3.4.4)
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where the matrix dimensions are:E(q) = (JLQ�KMQ); E(q) = (JLQ�KM); E(q) =

(JLQ�K). Applying pulse-shaped matched filtering, despreading and antenna recombin-

ing, we can define

x[n] = HHEy(q)y[n] (3.4.5)

= HHEy(q)E(q)H| {z }
R(q)=I+R(q)

Aa[n] +HHEy(q)v[n]

= Ey(q)E(q)Aa[n] + E(q)yv[n]

whereEy(q) = EH(1=q�) is theparaconjugateandX
i

E
y
k;m[i]Ek;m[�i] = 1; 8 k 2 f1 : : :Kg; m 2 f1 : : :Mg

Therefore,x[n] = [x1;1[n] : : :xK;M [n]]T are the pathwise RAKE outputs, spatially but not

temporally recombined. Let us further define

R(q) = Ey(q)E(q) (KM �KM) (3.4.6)

=
X
i

R[i]q�1

diagfR[0]g = I (3.4.7)

where the fact that the diagonal elements ofR[0] are all unity, derives from the assumption of

normalised spreading codes, i.e.sHk sk = 1 and using the normalisation of the antenna array

response vectorshk;m : khk;mk = 1. From equation (3.4.5), it is clear that decorrelator

to estimate the amplitude data product,Aa[n], is given byR�1(q). We can now use the

polynomial expansion introduced in section 3.2 to write the pathwise zero-forcing receiver

by

R�1(q) � ~R�1(q) =
BX
b=0

(�R(q))b (3.4.8)

where we have truncated the infinite series toB + 1 terms. We now propose to introduce

diagonal polynomial weighting matrices instead of scalar weighting coefficients, thereby

increasing the degrees of freedom available to us. This corresponds to introducing a scalar

coefficientper path. Let us defineDb = diagfdb;1; : : : ; db;KMg and write

~R�1(q) =
BX
b=0

DbR
b
(q) (3.4.9)
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or also

~R�1(q) =
BX
b=0

DbR
b(q) (3.4.10)

Note that we can also write the polynomial in terms ofR(q) since there is a one-to-one

relationship between the expansions inR(q) andR(q). Explicitly,

BX
b=0

DbR
b
(q) =

BX
b=0

Db (R(q)� I)b

=
BX
b=0

Db

bX
j=0

Rj(q)(�I)b�j
�
b

j

�

=
BX
j=0

NX
b=j

�
b

j

�
(�1)b�jDb| {z }
�j

Rj(q)

=
BX
j=0

�jR
j(q)

where�j is another diagonal matrix.

Typically, we would only be interested inB 2 f1; 2g stages after the RAKE in or-

der to keep complexity at a reasonable level. Note that the additional complexity associated

with every PE stage is about twice the complexity of the RAKE, as mentioned in section 3.2.

3.4.2 Pathwise Filter Design

A first possibility for a pathwise design is to letD0 be an identity matrix, and

definingz[n] = R(q)x[n]. We can write (3.4.9) forB = 1 as

~R�1(q) = I+ (I�DR(q))

which allows us to determineD blindly by minimising the following variance criterion.

Do = argmin
D

Ek(I�DR(q))x[n]k2 (3.4.11)

= diagfRxzg (diagfRzzg)�1
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whereRxz = Efx[n]zH[n]g andRzz correspondingly. The resulting performance will be

evaluated by simulation. Note that no matrix inversions are required to compute thedi;j’s in

the above approach since the required correlation matrices are diagonal. An alternative is to

extend the approach in (3.4.11) to a pilot-assisted scenario. In that case, we can solve forD

using the following LMMSE criterion.

Do = argmin
D

EkAa[n]� (x[n]�D(R(q)� I)x[n])k2 (3.4.12)

= diagfA(Rax�Raz)�Rxx +Rxzg [diagfRxx� 2Rxz +Rzzg]�1

In the above examples, we have so far assumedD0 = I based on the polynomial expansion

ofR. This is, however, not optimal in general and we can write the extension to an arbitrary

number of stages as

Do
i = arg min

Di:i20:::B
EkAa[n]�

BX
b=0

DbR
b(q)x[n]k2 (3.4.13)

This can be solved through a set of linear equations, satisfying

Du =

264AdiagfRazug �
BX
b=0
b 6=u

DbdiagfRzbzug

375 (diagfRzuzug)�1 8u 2 f0; : : : ; Bg
(3.4.14)

This is, however, not convenient to solve and we can proceed differently. Looking at any

row j (corresponding to some path of some user) in equation (3.4.13), we can equivalently

write

doj = argmin
dj

EjAjal[n]� djwj [n]j2

= AjE(al[n]w
H
j [n])(Ewj[n]w

H
j [n])

�1 (3.4.15)

wherej 2 f1 : : :KMg is the path index,l = d j
M e the corresponding data symbol and we

have used the following definitions:

dj = [d0;j : : : dB;j]

zb[n] = Rb(q)x[n]

= [zb;1[n] : : :zb;KM [n]]T

wj = [z0;j : : : zB;j ]
T
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and hence the problem decouples nicely into a path-by-path solvable problem. It is worth

noting that this is not the case when the polynomial coefficient matricesDb are replaced by

scalars as the solution for the coefficients involves the summation over the pathsj and hence

there is no decoupling between paths nor users, i.e.

doi = arg min
di :i20:::B

EkAa[n]�
BX
b=0

dbR
b(q)x[n]k2 (3.4.16)

=
X
j

E(Ajal[n]w
H
j [n])(

X
j

Ewj[n]w
H
j [n])�1

A variant of the approach in (3.4.13) is the sequential computation of the stages where each

stage works on the error signal from the previous stage, i.e.

Do
b = argmin

Db

jjAa[n]�
�cAab�1[n] +DbR

b(q)x[n]
�
jj2

= argmin
Db

jjeb�1 �DbR
b(q)x[n]jj2

= diag
�
E eb�1[n]zHb [n]

� �
diag(E zb[n]z

H
b [n])

��1
eb[n] = Aa[n]� cAab[n] (3.4.17)

This approach is evidently suboptimal with respect to the more general approach given in

(3.4.13) and in practise may be difficult to implement due to the necessity of obtaining an

estimate of the error signal. We shall therefore concentrate on the approach in (3.4.13).

Given the amplitude data product after PE interference cancellation, we now need

to recombine the path contributions to obtain the symbol estimate:

â[n] = KHF(q)
h
R(q)Aa[n] + Ey(q)v[n]

i
whereK (KM�K) is a general recombination matrix of the same block diagonal structure

asA, namelyK = diagfK1; : : : ;KKg. Maximum ratio combining isK = A. F(q)

defines the linear filter corresponding to the PE approach above in (3.4.13). For the symbol

estimate of user one, we have

â1[n] = KH
1

�
Z1(q)A1a1[n] + Z1(q)A1a1[n] +X(q)v[n]

�
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where

K = diagfK1;K1g
[IM0]F(q)R(q) = [Z1(q)Z1(q)]

X(q) = [IM0]F(q)E
y(q)

a[n] = [a1[n]a
T
1 [n]]

T

A = diagfA1;A1g

and(:)1 is a signal model component acting on the useful signal contribution of user one

whereas(:)1 defines the interfering terms. Hence, the output SINR of user one can be

written as

SINR =
�2ajKH

1 Z1[0]A1j2
KH

1

�
�2a
P

i6=0 Z1[i]A1A
H
1 Z

H
1 [i] + �2a

P
iZ1[i]A1A

H
1 Z

H
1 [i] + �2v

P
iX[i]XH[i]

�
K1

Maximum ratio combining is, however, not optimal since the pathwise estimate is not de-

termined with respect to a symbol optimality criterion (but the Amplitude-data product)

whereas the SINR is computed for the symbol estimate. Hence, performance can be further

improved by maximising the output SINR for the symbol estimate with respect to the re-

combining vector,K1. We can hence optimise the SINR with respect to the recombination

vector,K1, by solving

Ko
1 = argmax

K1

SINR = argmax
K1

�2ajKH
1 Z1[0]A1j2

KH
1 R1K1

(3.4.18)

where we have defined

R1 = �2a
X
i 6=0

Z1[i]A1A
H
1 Z

H
1 [i] + �2a

X
i

Z1[i]A1A
H
1 Z

H
1 [i] + �2v

X
i

X[i]XH[i]

(3.4.19)

The solution is of the generalised eigenvalue type and given by

Ko
1 = R�1

1 Z1[0]A1 (3.4.20)

and the resulting, maximised SINR, is given by

SINRmax = �2aA
H
1 Z

H
1 [0]R1Z1[0]A1
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One of the main advantages of applying pathwise polynomial expansion is the

availability of the pathwise outputsafter interference cancellation. Often, the complex am-

plitudes are estimated by correlating the pathwise RAKE outputs with a pilot signal to esti-

mate the complex amplitudes. Compared to this approach, our method will provide us with

an amplitude data product estimate at a higher SINR and therefore allow better estimation

of fastly varying complex amplitude coefficients,Ak;m. Indeed, there are a number of ways

on how we can interpret this fact: If the amount of data available for the estimation of the

complex amplitudes is fixed, we will achieve a better SINR in our estimates which will al-

low faster adaptation of the receiver filters. Alternatively, we can take the point of view that

our approach will require less data to obtain the same estimation quality, hence a shorter

pilot. Yet another view is that we would require less power in the pilot to achieve the same

estimation quality.

3.4.3 Joint filter and recombination design

Using maximum ratio recombining withA, we can write the symbol estimate

resulting from the filtering and combining from (3.4.13) as

â[n] = AH
BX
b=0

DbR
b(q)x[n] =

BX
b=0

WbR
b(q)x[n] (3.4.21)

whereWb = AHDb = diagfwb;1; : : : ;wb;Kg, wb;k is of dimensionM � 1. Therefore,

Wb is another block diagonal matrix of the same structure and dimensions asAH . Note

that stageb = 0 hence corresponds to a Generalised RAKE (G-RAKE). The G-RAKE is a

RAKE where the path recombination vectors are optimised to maximise the symbol estimate

SINR and was introduced in [61,62]. Note however, that the direct application of the above

approach would no longer provide the pathwise, SINR enhanced, outputs but the number

of coefficients at our disposal remains at one scalar per path. Further, the performance of

(3.4.21) in terms of output SINR at the symbol estimate is by construction equal or better

than that of the approach in (3.4.13) since direct optimisation for the symbol estimate can

only be better than the sequential optimisation of the amplitude data product, followed by

max. SINR recombining. We can solve (3.4.21) per user:

wo
k = argmin

wk
jjak[n]�wkgk[n]jj2

= E(ak[n]g
H
k [n])(Egk[n]g

H
k [n])�1 (3.4.22)
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wherewk = [w0;k : : :wB;k],wb;k has dimensionsM�1 andgk [n] = [z0;k[n] : : :zB;k[n]]
T .

zb;k[n] = [0 : : :0 IM 0 : : :0]zb[n] where0 isM �M andzb;k [n] is simply the contribution

in zb[n] for the paths of userk. Alternatively, (3.4.22) can be solved using the Linearly

Constrained Minimum Variance (LCMV) approach, shown for user 1 to simplify notation

and without loss of generality, as follows

wo
1 = argmin

w1

w1Rg1g1w
H
1 subject tow1�1[0]A1 = 1

wo
1 = AH

1 �
H
1 [0]R�1

g1g1
(3.4.23)

where

�1[0] = (IB 
 [IM 0])[R[0] : : :RB+1[0]]T [IM 0]T

Rg1g1 = E(g1[n]g
H
1 [n]) (3.4.24)

The constraint ensures that the contribution of the dataa1[n] in g1[n] remains constant under

the application of the filter while minimising the estimate output variance.

While the two solutions (by LMMSE and LCMV) are equivalent when all the

parameters are known, note that the computation of the LMMSE filter from (3.4.22) requires

the desired data signal,ak [n] or an estimate thereof, whereas no information on the fastly

varying amplitudesAk is required. For the LCMV approach, the situation is the inverse and

for both cases, the estimates of eitherak [n] orAk need to be provided. Hence, in practice,

we would use an approach such as (3.4.13) to obtain the required estimates in conjunction

with (3.4.21).

In an adaptive filtering setting, the LCMV approach would be expected to be more

sensitive to estimation errors, partly because of the error introduced in the minimisation

constraint, partly because the estimation of the data can be assumed to be more robust than

the estimation of the amplitudes since the data originates from a strictly finite alphabet.

A natural extension to our proposal to introduce diagonal weighting coefficient

matrices instead of scalars, as well as providing an interesting basis for comparison, is to in-

troduce a symbolwise (joint) approach where we apply a single scalar coefficient per symbol

per stage instead of per path, i.e.

Do
b = argmin

Db

jja[n]�
BX
b=0

Db(A
HR(q)A)bAHx[n]jj2 (3.4.25)
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whereDb = diagfdb;1; : : : ; db;Kg anddb;k are scalars. This can be solved in a user-by-

user fashion, analogue to the procedure used in the LMMSE approach above. Note that this

approach is a simple extension of the work in [51] which used a scalar coefficient per stage

instead of a scalar per user.

3.4.4 Extension to spatio-temporal processing

The extension to spatio-temporal processing is straightforward. Considering equa-

tion (3.4.5)

x[n] = HHEy(q)E(q)H| {z }
R(q)=I+R(q)

Aa[n] +HHEy(q)v[n] (3.4.26)

whereR(q) is defined so as to be situated before pathwise recombination takes place, i.e. to

get pathwise polynomial expansion. Let us define

x0[n] = Ey(q)E(q)| {z }
R0(q)=I+R

0
(q)

HAa[n] +Ey(q)v[n] (3.4.27)

To extend to the spatio-temporal case, we have definedR0(q) = Ey(q)E(q) (KMQ �
KMQ) in which case we would be situated before antenna recombination and the poly-

nomial expansion would be path-antenna-wise. The techniques introduced above would

directly apply and notably equation (3.4.13) would now read:

Do
i = arg min

Di:i20:::B
EkHAa[n]�

BX
b=0

Db(R
0(q))bx0[n]k2 (3.4.28)

Further, consider the approach given in (3.4.21). Using the definitions above, the symbol

estimate would be given by

â[n] = AHHH
BX
b=0

Db

�
R0(q)

�b
x0[n] =

BX
b=0

W0
b

�
R0(q)

�b
x0[n]

(3.4.29)

whereW0
b would be of the same structure asAHHH which represents maximum ratio

spatio-temporal recombining. Hence, the approaches proposed and their corresponding so-

lutions remain fundamentally unchanged and can be modified easily to the spatio-temporal

case. We will not pursue this any further at this point.
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3.5 Numerical Simulation Results

In the following section, we will discuss the numerical results obtained from sim-

ulations. The spreading codes consist of i.i.d binary random variables such thatsk;l 2
1p
L
f+1;�1g and therefore the spreading coded are normalised,sHk sk = 1. We assume

a single receiver antenna (Q = 1). First, we will show some results for the approaches pro-

viding pathwise outputs, followed by asynchronous scenarios where we compare with the

approaches providing a symbol level output only. In order to keep complexity realistic we

use only one extra stage after the rake, i.e.B = 1.

3.5.1 Pathwise Output Approaches

In this section, results will be shown comparing the results of the approaches pro-

viding pathwise outputs. All the simulations in figures 3.2, 3.3 and 3.4 show results for

the output SINR (at symbol estimate level) obtained for user 1, averaged over 400 different

channel realisations as a function of the SNR. SNR and SINR are calculated with respect to

user 1. We will compare the following approaches to the RAKE receiver:

� PE from (3.4.8):cAa[n] =PB
b=0(�R(q))bx[n]

� PE-S from (3.4.16):cAa[n] =PB
b=0 dbR

b(q)x[n]

� PE-D from (3.4.11):cAa[n] = (I+ (I�DR(q)))x[n]

� PE-DD from (3.4.12):cAa[n] = (I�D(R(q)� I))x[n]

� PE-DDD from (3.4.13):cAa[n] =PB
b=0DbR

b(q)x[n]

In figure 3.2, we are working in a relatively low load scenario (� = K=L = 0:25) and

all the receivers can be seen to perform better than the RAKE with the PE-DDD approach

doing best. It is notable, that in this case, even the unoptimised, i.e. truncated, polynomial

expansion receiver (PE) provides some gain with respect to the RAKE. In the case of high

loading(� = 0:75), figure 3.3, it can be seen that the truncated PE receiver does no longer

work whereas the optimised approaches still perform significantly better than the RAKE.

Also note that the proposed approaches outperform the scalar PE (PE-S). In figure 3.4, the

output SINR is shown as a function of the loading factor,�. We can see that while the pro-

posed approaches are sensible to the loading factor, they degrade gracefully. Further note,



64 3 – Polynomial Expansion Interference Cancellation

−20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20
PE vs RAKE

Input SNR

O
ut

pu
t S

IN
R

PE    
RAKE  
PE−S  
PE−D  
PE−DD 
PE−DDD

Figure 3.2: Polynomial expansion vs. RAKE: K=4, L=16, SIR = -10dB

that the PE result obtained corresponds and confirms the theoretical expression obtained in

equation (3.2.13). In summary, we can see that the general multistage receiver, PE-DDD

equation (3.4.13), performs best and since the complexity of the different approaches above

is similar, the PE-DDD approach will be retained for the simulations comparing the ap-

proaches which provide a symbol level output only.

3.5.2 Asynchronous results

In this paragraph, we show extended numerical results obtained for the multipath

case, including the approaches which provide the symbol estimate directly. We will use the

following approaches:

� RAKE: â[n] = AHx[n]

� Scalar PE (Moshavi) from (3.3.5):̂a[n] =
PB

b=0 db
�
AHR(q)A

�b
AHx[n]

� Pathwise PE/PE-DDD from (3.4.13):â[n] = KH
PB

b=0DbR
b(q)x[n]

� Joint PE from (3.4.21):̂a[n] = AH
PB

b=0DbR
b(q)x[n] =

PB
b=0WbR

b(q)x[n]
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Figure 3.3: Polynomial expansion vs. RAKE: K = 12, L = 16, SIR = -10dB

We assume the maximum delay spread to be smaller than half a symbol period,T . In figure

3.5 we see the results of an asynchronous single path system (M = 1; Q = 1) where all

the users have equal power. In this case, we can see that the scalar approach is performing

practically equally well to the joint receiver while the pathwise is doing worse. If, however,

the user powers are not equal, figure 3.6, then the scalar approach is performing only just

better than the RAKE while the other approaches are not affected. When we introduce

multipath, withM = 2 paths per user, figure 3.7, while maintaining equal power (that is,

path powers are random but every user has an equal total power), we can see that the joint

approach continues to outperform the scalar approach. However, the pathwise approach is

only marginally better due to the small number of paths. In figure 3.8, finally, we have 4

paths per user. Whereas the scalar performs about the same as in the two path case, the

pathwise approach and the joint approach now clearly outperform both the RAKE and the

Scalar PE. Note that the Joint approach becomes zero-forcing (near-far resistant) in this

configuration since the number of coefficients at its disposal (for user 1),M � (B +1) = 8,

is greater than the number of interfering users,K � 1 = 7. Clearly, the Joint approach is

the most promising of the proposed receivers. However, it does require estimates of either
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Figure 3.4: Polynomial expansion as a function of loading factor: L =16, SNR = 10dB,
equal power users

the data or the amplitudes and therefore would in practice be used together with an approach

that provides those estimates, such as the Pathwise/PE-DDD approach.

3.6 Conclusions

We have introduced the application of polynomial expansion receivers to pathwise

interference cancellation. Polynomial expansion is an approximation technique for LMMSE

and Decorrelating receivers and is particularly well suited for CDMA, due to the presence of

a large number of small correlations. The method allows the approximation of the computa-

tionally costly matrix inverse required by both the LMMSE receiver and the decorrelator by

expanding the matrix inverse as a polynomial. However, for polynomial expansion to work,

polynomial weighting coefficients need to be introduced. We have shown, that giving each

signal component a separate scaling factor allows for improved performance at a small cost.

We have introduced polynomial expansion at path level, which allows for interference can-

cellation and hence improved parameter estimation. Also, we have shown that the extension
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Figure 3.5: Polynomial expansion: L=16, K=8, M=1, equal power users

to spatio-temporal processing is straightforward for the proposed receivers. Furthermore, we

introduced new approaches at the symbol level which provide more degrees of freedom by

still allowing one scalar weighting coefficient per signal component. Compared to previous

methods, we have demonstrated that significant performance gains can be achieved. These

results have been published in [63,64].
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Figure 3.6: Polynomial expansion: L=16, K=8, M=1, unequal power users
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Figure 3.7: Polynomial expansion: L=16, K=8, M=2, equal power users
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Figure 3.8: Polynomial expansion: L=16, K=8, M=4, equal power users
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Chapter 4

Large System Analysis for Pathwise

Polynomial Expansion

4.1 Introduction

We have shown in the last chapter how polynomial expansion can be applied to

pathwise interference cancellation. However, it is very difficult to get any qualitative insight

as to the behaviour of such a system. Simulations approaching more realistic scenarios with

many users and long spreading codes are computationally too costly and the direct analysis

of the expression for the SINR is firstly very complicated and secondly always a function

of the particular spreading codes, amplitudes and delays for each realisation. For example,

the LMMSE receiver, depends on the spreading codes and powers fromall the users and it

is therefore very difficult to make meaningful statements using standard analytical method-

ologies. In this chapter we will therefore make use of what is termedlarge system analysis.

Since the realisation of the spreading codes affects the SINR which can be obtained, the

spreading is assumed to be random in large system analysis. The principle then is to assume

that the number of users, as well as the spreading factor, will tend to infinity while the ratio

of the two, the loading factor, remains constant. This results in a system involving very large

random matrices. Results fromrandom matrix theoryandfree probability theorythen allow

us to obtain closed form expressions for the SINR, fundamentally based on the fact that the

empirical eigenvalue distributions of such large random matrices converges to a non-random

limit. Furthermore, it is then possible to obtain information about moments of functions

71
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of random matrices using only the limiting moments of the individual matrices involved,

something which is generally not possible.

Random matrices have been studied for quite some time in mathematics and theo-

retical physics, for applications in quantum physics. Mostly, these studies were motivated by

the need to find the eigenvalues of large random matrices, associated with energy levels. The

results obtained by Wigner around 1955 for the limiting eigenvalue density (the semi-circle

law) for random matrices generated a huge interest in the theoretical and nuclear physics

communities [65–70].

Free probability theory, on the other hand, is a theory of non-commutative prob-

ability in which the concept of independence in classical probability is replaced by that of

freeness. This theory was introduced around the mid-eighties by Voiculescu while studying

problems in the theory of von Neumann algebras. It was, however, only around 1990 that

the link between random matrix theory and free probability theory was made as Voiculescu

recognised that certain large random matrices can be modelled as free random variables

[71,72].

To our knowledge, it was the papers by Silverstein and Combettes, which brought

the techniques of random matrix theory and free probability first to the Communications

community around 1992, analysing array processing problems [73, 74]. This was followed

some time later by Tse and Hanly who introduced the application of large system analysis

to CDMA and showed analytical results for the LMMSE and the decorrelating receivers

[75]. It was demonstrated that the interference effectively decouples under the large system

analysis and that the interferers provide a level of interference to the user of interest which is

tractable. Furthermore, and probably most importantly, it was shown that the results derived

from the analysis of infinite systems provide reasonable approximations to finite dimensional

systems, with spreading gains as lowL = 32. These results have triggered quite a number

of publications where large system techniques were applied to various problems, mainly in

the information theory community ( [76–79] etc).

Motivated by the results in [49,52,80], we will in the following apply large system

techniques to the receivers developed in chapter 3.
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4.2 Asymptotic Analysis for Polynomial Expansion Receivers

We will begin the asymptotic analysis by analysing the case of a synchronous

system. In particular, we will analyse the approach found in (3.4.21) and compare it to

the extended Moshavi approach, i.e. (3.4.25) since this will provide the best comparison

between pathwise weighting and user weighting. We shall model the synchronous system

(J = 1; Q = 1; M = 1), as previously motivated in section 3.2 by considering the received

discrete-time signal:

y[n] = SAa[n] + v[n] (4.2.1)

where

S = [s1 : : :sK ] (L�K)

sk = [sk;1 : : : sk;L]
T (L� 1)

A = diagfA1; : : : ; AKg (K �K)

a[n] = [a1[n] : : :aK [n]]T

(4.2.2)

We further assume that the spreading codes consist of binary i.i.d. random variables such

thatsk;l 2 1p
L
f+1;�1g. The signal after spreading matched filtering is therefore given by

x = SHSAa+ SHv = RAa+ SHv

where we have omitted the time index andR is of dimensionsK �K.

4.2.1 Symbolwise Joint Approach

We shall begin by analysing the filter given in (3.4.25). The filter applied tox, the

pathwise RAKE outputs, is therefore given by

F =
BX
b=0

Db(A
HRA)bAH (4.2.3)
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The symbol estimate is given bŷa = Fx. We can write the output variance of the estimate

by

EfâH âg = Eftr(ââH)g
= �2atr

�
FRAAHRFH

�
+ �2vtr

�
FRFH

�
= �2a

 
BX
b=0

BX
i=0

tr
�
DbT�

b+i+2THDH
i

�!

+�2v

 
BX
b=0

BX
i=0

tr
�
DbT�

b+i+1THDH
i

�!
(4.2.4)

where we have substituted the the expression forF from (4.2.3) and used the eigendecom-

position ofAHRA = T�TH . In order to investigate the behaviour of the SINR for user 1,

we can look at element(1; 1) of the matrices under the trace operation in (4.2.4). Hence, we

can write the total energy in the estimate for user one by

Efjâ1j2g = �2a

 
BX
b=0

BX
i=0

KX
l=1

�b+i+2l db;1tl;1t
�
l;1d

�
i;1

!

+�2v

 
BX
b=0

BX
i=0

KX
l=1

�b+i+1l db;1tl;1t
�
l;1d

�
i;1

!

= �2a

 
KX
l=1

j�lj2jtl;1j2
!

+ �2v

 
KX
l=1

��1l j�lj2jtl;1j2
!

(4.2.5)

where�i =
PB

b=0 db;1�
b+1
i . We can see that the power in the estimate not only depends on

the eigenvalues, but also on the eigenvectors of the matrixAHRA. Note, that this is not the

case whenDb is replaced by a scalar. We can find the useful signal part of user one in the

total estimate power above from noting that

FRAa =
BX
b=0

Db(A
HRA)b+1a =

BX
b=0

Db

KX
i=1

�b+1i tit
H
i a (4.2.6)

and hence the useful signal part and power for user 1 can be written as

Signal1 =
BX
b=0

db;1

KX
i=1

�b+1i jti;1j2a1 (4.2.7)

Power1 = �2a

KX
i=1

KX
l=1

�i�
�
l jti;1j2jtl;1j2 (4.2.8)
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Since the SINR is given by the ratio of the useful power over the interference and noise

power, we can also write it as the ratio of useful power over total estimate power less the

useful signal power, i.e.

SINR1 =
Power1

Efjâ1j2g � Power1
=

1
Efjâ1j2g
Power1

� 1
(4.2.9)

Hence, it suffices to study the ratioPower1=Efjâ1j2g which we shall call the Signal to

Power ratio, SPR, to determine the SINR behaviour. Substituting for the useful signal power

and the total estimate power from (4.2.8) and (4.2.5), respectively, we obtain

SPR1 =
�2a
PK

i=1

PK
l=1 �i�

�
l jti;1j2jtl;1j2

�2a

�PK
l=1 j�lj2jtl;1j2

�
+ �2v

�PK
l=1 �

�1
l j�lj2jtl;1j2

�
(4.2.10)

We would now like to obtain the large system limit of the SPR by letting the number of users

and the spreading gain tend to infinity while keeping the loading factor constant. That is to

say, we letK; L ! 1 while keeping� = K
L constant. In order to do so, we make use of

the following lemma to be able to deal with the eigenvector elements in the SPR:

Lemma 1

(Lemma 4, [80]) AsK ! 1 andK = �N where all entries inS are real i.i.d. with all

moments finite and the series< ��=k > be absolutely summable, then

lim
K!1

KX
k=1

�k jtk;mj2 = lim
K!1

1

K

KX
k=1

�k (4.2.11)

holds almost surely for anym.

This result is based on the fact that any inner product of a partial eigenvector with itself

is proportional to its relative length in the limit [80], i.e. if we write some eigenvector in

terms of subvectors, sayt = [t1 t2]T wheret is of lengthL andt1 of lengthL=c (c some

constant), and by definitiontHt = 1, then in the limitlimL!1 tH1 t1 = 1=c. Using (4.2.11),

we can now write the SPR for user one in the limit:

lim
K!1

SPR1 = lim
K!1

�2a
K

PK
i=1 �i

PK
l=1 �

�
l

�2a

�PK
l=1 j�lj2

�
+ �2v

�PK
l=1 �

�1
l j�lj2

�
(4.2.12)
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Rewriting the summations over�i in terms of the weighting coefficients and the eigenvalues

gives, i.e.

KX
l=1

j�lj2 =
BX

m=0

BX
b=0

db;1d
�
m;1

KX
l=1

�b+m+1
l (4.2.13)

and similarly for the other terms. We note, that these terms depend on the aysymptotic

eigenvalue moments of the matrixAHRA asK; L ! 1. The results from large system

analysis tell us that those empirical moments almost surely converge to a non-random limit.

Hence, the sums of the eigenvalues need to be evaluated in the limit, i.e.

lim
K!1

1

K
tr
�
AHRA

�m
= lim

K!1
1

K

KX
k=1

�mk (4.2.14)

where�k is an eigenvalue ofAHRA. From [52, 75, 77] we have the following theorem,

attributed to Silverstein [68]

Theorem 2

LetCij be an infinite matrix of i.i.d. complex-valued random variables with variance 1, and

Pi be a sequence of real-valued random variables. LetX be anN�M matrix, whose(i; j)th

entry isCij=
p
N . LetP be aM �M diagonal matrix with diagonal entriesP1; : : : ; PM .

AsM ! 1, we assume the empirical distribution,F (P ), of these entries to converge

almost surely to a deterministic limitF . LetGN(�) denote the empirical distribution of the

eigenvalues of the Hermitian matrixXPXH , then, asN;M !1, and forM=N ! � > 0,

GN converges almost surely to a deterministic limitG. Let us define

m = rHRm
I r

RI = XPXH + �2I (4.2.15)

wherer is a vector of i.i.d. random elements, independent ofX andP, then

lim
K!1

m = 1m (�; �2) (4.2.16)

=

Z
(� + �2)mdG(�) (4.2.17)

where� denotes the eigenvalue random variable. Further, denote theStieltjes transformof

G(�) by

mG(z) =

Z
1

� � z
dG(�) (4.2.18)
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for z 2 C+, i.e. IM(z) > 0 which in thelimit satisfies a fixed-point equation given by

mG(z) =
1

�z + �
R �dF (�)

1+�mG(z)

(4.2.19)

Note also that

lim
K!1

m = lim
K!1

X
i

(�i + �2)mjrHuij2 (4.2.20)

= lim
K!1

1

K

X
i

(�i + �2)m (4.2.21)

= 1m (�; �2) (4.2.22)

whereui is the normalised eigenvector corresponding to�i. In the limit the termjrHuij2
terms disappears [75,80]. Since the effect ofr vanishes in the limit, we can apply the above

to write

lim
K!1

1

K
tr
�
AHRA

�m
= lim

K!1
1

K

KX
k=1

�mk (4.2.23)

= lim
K!1

rH(SAAHSH)mr (4.2.24)

= 1m (�; 0) =

Z
�mdG(�) (4.2.25)

whereG(�) is the limiting empirical eigenvalue distribution ofAHRA or SAAHSH , re-

spectively. Hence, in principle, it’s possible to findmG(z) (wherez ! ��2, or in our case

z ! 0) from (4.2.19) with respect to the power distributionF (P ), then findG(�) from the

inverse function to the Stieltjes transform and then evaluate1m (�; �2). Note that in general,

no closed form solution is possible. However, in the special case ofP = PI in equation

(4.2.15) and�2 = 0 an explicit solution is possible, given in [52]

1m (�; 0) = Pm
m�1X
i=0

�
m

i

��
m� 1

i

�
�i

i+ 1
(4.2.26)

= f(�;m) (4.2.27)

This is directly applicable to our case whenAAH = PI. This would correspond to strict

power control, equalising the received amplitudes. From the above development, it is clear

that the determination of the limiting moments is not trivial.
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Returning to our expression for the SPR and substituting for the sums over the

eigenvalues, we can write from1m (�; 0) = f(�;m):

lim
K!1

SPR1 =
�2a

�PB
b=0 db;1f(�; b+ 1)

��PB
b=0 d

�
b;1f(�; b+ 1)

�
�2a

�PB
m=0

PB
b=0 db;1d

�
m;1f (�; b+m+ 2)

�
+ �2v

�PB
m=0

PB
b=0 db;1d

�
m;1f (�; b+m+ 1)

�
(4.2.28)

In the case of equal user powers,i.e.AAH = PI, equation (4.2.26) can be used directly.

Ordering the coefficientsdb;1 and the functionsf(�;m) into vectors

d1 = [d0;1 : : : dB;1]

fn = [f(�; n) : : :f(�; n+B)]T

Fn = [fn : : : fn+B ] (4.2.29)

we can rewrite the signal to power ratio for user 1 as

lim
K!1

SPR1 =
�2ad1f1f

H
1 d

H
1

�2ad1F2d
H
1 + �2vd1F1d

H
1

(4.2.30)

=
d1f1f

H
1 d

H
1

d1

�
F2 +

�2v
�2a
F1

�
dH1

(4.2.31)

Maximising the asymptotic SINR for user one is equivalent to maximisinglimK!1 SPR1

with respect tod1 which can be seen to be a generalised eigenvalue problem. Let us define

F = F2 +
�2v
�2a
F1

(4.2.32)

and reformulate the maximisation of the SPR as

do1 = max
d1

d1f1f
H
1 d

H
1

d1Fd
H
1

do1 = fH1 F
�1 (4.2.33)

Note that sinceF is a matrix of dimensions equal to the number of stages,B + 1� B + 1,

which is generally very small, the optimal asymptotic solution is very simple to compute.

Furthermore, note that the solution is independent from the power of user one. This implies
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that the solution for the optimal weighting coefficients will asymptotically be the same for

all users and therefore, there is no benefit in applying diagonal weighting matrices. Hence,

asymptotically, we can replaceDb by a simple scalardb to obtain the same result.

The practical difficulty lies in the determination of the scalarsf(�; n) which we

require in order to find the asymptotically optimal weighting. In [52], a recursive method

based on a combinatorial argument is shown which allows the computation of thef(�; n)s.

It is based on the following idea: Note that

d1m (�; x)

dx
= m1m�1(�; x) = m

Z
(�+ x)m�1dG(�) (4.2.34)

and it can also be seen that10 (�; �2) = 1 and hence11 (�; �2) = �2 + c1 wherec1 is

some constant. In the appendix of [52], it’s also shown that

11 (�; 0) = E(P )�

12 (�; 0) = [�E(P )]2 + �E(P 2)

13 (�; 0) = �E
�
P 3
�
+ 3�2E

�
P 2
�
E [P ] + �3E3 [P ] (4.2.35)

whereP is the power random variable. There is also a method shown to compute higher

moments of1m (�; 0), for details see in [52]. Combining (4.2.35) and (4.2.34), it can

be seen that the expressions for1m (�; 0) provide the constants needed in1m (�; �2), e.g

11 (�; �2) = �2+ �E [P ] or 12 (�; �2) = 12 (�; 0)+ �4+ 2�E [P ] �2 etc. However, for

our problem, we only need the values of1m (�; 0) = f(�;m).

We propose an alternative way to compute thef(�; n) using results from free

probability theory:

Proposition 3

AsK; L!1, the matricesR andAAH are asymptotically free non-commutative random

variables (NCRV) with respect to the trace functional (see appendix 4.A).

This allows us, to compute the eigenvalue moments of the product ofR andAAH using

only the moments of the individual product terms. For example,limK!1 1
K tr

�
AHRA

�m
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for m = 1; 2 are given by

lim
K!1

1

K
tr
�
AHRA

�
= lim

K!1
1

K
tr (R)

1

K
tr
�
AHA

�
(4.2.36)

lim
K!1

1

K
tr
�
AHRA

�2
= lim

K!1

n 1

K2
tr2(R)

1

K2
tr2(AAH) +

1

K2
tr2(R)

1

K
tr(AAHAAH)

+
1

K
tr(R2)

1

K2
tr2(AAH)

o
(4.2.37)

see appendix 4.B for computation details. Note that we have the expressions for the moments

in R explicitly in (4.2.26) withP = 1 and there is no requirement for equal user power

(AAH is allowed to be different from a multiple of identity). Also, sinceA is diagonal,

tr
�
AAH

�m
= tr

�
AHA

�m
=

KX
k=1

Pm
k (4.2.38)

wherePm
k is simply the user power. We shall now follow a similar analysis for the approach

in equation (3.4.21)

4.2.2 Pathwise Joint Approach

Consider again the synchronous single path per user system with the symbol esti-

mate given by

â = AH
BX
b=0

DbR
bx = Fx (4.2.39)

with the total power in the symbol estimate given by

EfâH âg = �2atr

 
AH

BX
b=0

BX
i=0

DbR
b+1AAHRi+1DH

i A

!

+�2v tr

 
AH

BX
b=0

BX
i=0

DbR
b+i+1DH

i A

!
(4.2.40)
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The power in the estimate for user one,Efjâ1j2g, is hence given by element (1,1) from the

above expressions

Efjâ1j2g = �2a

BX
b=0

BX
i=0

A�1db;1
KX
l=1

KX
m=1

�i+1m �b+1l uHl AA
Humul;1u

�
m;1d

�
i;1A1

+�2v

BX
b=0

BX
i=0

A�1db;1
KX
l=1

�b+i+1l ul;1u
�
l;1d

�
i;1A1

= �2ajA1j2
KX
n=1

jAnj2
KX
l=1

�lul;1u
�
l;n

KX
m=1

��mum;nu
�
m;1

+�2v jA1j2
KX
l=1

j�lj2��1l ul;1u
�
l;1 (4.2.41)

where�l is the l-th eigenvalue ofR, ul is the corresponding eigenvector such thatul =

[ul;1 : : :ul;K ]T and�l is defined as in the last section. The signal component in the estimated

data is given, analogue to the last section by

FRAa = AH
BX
b=0

Db

KX
i=1

�b+1i uiu
H
i Aa (4.2.42)

and the useful signal and signal power in the estimateâ1 is given by

Signal1 = jA1j2db;1
KX
i=1

�b+1i jui;1j2a1

= jA1j2
KX
i=1

�ijui;1j2a1

Power1 = �2ajA1j4
�����
KX
i=1

�iui;1u
�
i;1

�����
2

(4.2.43)

Using the same reasoning as in the last section regarding theSINR1, we can hence form

theSPR1 as

SPR1 =
�2ajA1j2

���PK
i=1 �iui;1u

�
i;1

���2
�2a

�PK
n=1 jAnj2

���PK
l=1 �lul;1u

�
l;n

���2�+ �2v

�PK
l=1 j�lj2��1l ul;1u

�
l;1

�
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Note that the interference term in this case involves eigenvector elementsul;n for n different

from unity, in contrast to the approach of (4.2.28). We shall therefore look at this term first.

We have

Efjâ1j2g = �2ajA1j2
0@ KX
n=1

jAnj2
�����
KX
l=1

�lul;1u
�
l;n

�����
2
1A (4.2.44)

= �2ajA1j2
KX
n=1

jAnj2
KX
l=1

�lul;1u
�
l;n

KX
m=1

��mum;nu
�
m;1 (4.2.45)

The key to this problem lies with the eigenvector elements. We are not aware of a solution to

render the above independent from the eigenvectors for a general set of spreading sequences.

However, there is a way out by imposing the spreading codes to be made up of Gaussian

random variables.

Lemma 4

[72] Consider a random matrixS of dimensionL � K whose elements[S]i;j are i.i.d

Gaussian random variables with zero mean and variance1=L. The matrixR = SHS

allows the eigendecompositionR = U�UH , with U and� asymptotically independent.

Furthermore,U is thenHaardistributed.

Hence, asymptotically the eigenvector elements are i.i.d random variables from a Haar distri-

bution and most of the mixed moments are zero (for details, consult [72]). We know already

that

lim
K!1

KX
l=1

�ljul;1j2 = lim
K!1

1

K

KX
l=1

�l (4.2.46)

which means that

E
�
jul;1j2

�
=

1

K
(4.2.47)
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We therefore need to look at all the different combinations of the indices which have non-

vanishing moments in the limit. We have the following cases [72]

l 6= m; n 6= 1 = E
�
ul;1u

�
l;num;nu

�
m;1

�
= 0 (4.2.48)

l 6= m; n = 1 = E
�
jul;1j2 jum;1j2

�
=

1

K(K + 1)

l = m; n 6= 1 = E
�
jul;1j2 jul;nj2

�
=

1

K(K + 1)

l = m; n = 1 = E
�
jul;1j4

�
=

2

K(K + 1)

After substituting these moments of the eigenvector elements and some algebraic manipula-

tion, we can write the SPR for user one:

lim
K!1

SPR1 = lim
K!1

�2ajA1j2
��� 1KPK

i=1 �i

���2
�2a

�
1
K

PK
n=1 jAnj2

��
1
K

PK
l=1 j�lj2

�
+ �2ajA1j2

��� 1K PK
l=1 �l

���2 + �2v
1
K

PK
l=1 �

�1
l j�lj2

(4.2.49)

Substituting for the�l in terms ofdb;i and�l to obtain an expression suitable to determine

the weighting coefficients, we can write

lim
K!1

SPR1 = lim
K!1

num

den
(4.2.50)

where the numerator and denominator are defined by

num = �2ajA1j2
����� 1K

BX
b=0

db;1

KX
i=1

�b+1i

�����
2

den = �2ajA1j2
����� 1K

BX
b=0

db;1

KX
i=1

�b+1i

�����
2

+
�2a
K

KX
n=1

jAnj2
BX
b=0

BX
i=0

db;1d
�
i;1

1

K

KX
l=1

�b+i+2l

+
�2v
K

BX
b=0

BX
i=0

db;1d
�
i;1

KX
l=1

�b+i+1i (4.2.51)

Further substituting the limiting functions for the sums of the eigenvalues in the above ex-

pression, i.e.f(�; b) = 1
K

PK
i=1 �

b
i , we can rewrite the numerator and the denominator
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as

num = �2ajA1j2
�����
BX
b=1

db;1f(�; b+ 1)

�����
2

den = �2ajA1j2
�����
BX
b=1

db;1f(�; b+ 1)

�����
2

+ �2a
~P

BX
b=0

BX
i=0

db;1d
�
i;1f(�; b+ i+ 2)

+�2v

BX
b=0

BX
i=0

db;1d
�
i;1f(�; b+ i+ 1) (4.2.52)

where we have defined the mean power,~P , by

~P =
1

K

KX
n=1

jAnj2 (4.2.53)

Finally, by rewriting everything in the vector notation introduced in (4.2.29) we obtain:

lim
K!1

SPR1 =
jA1j2d1f1fH1 dH1

d1

�
~PF2 + jA1j2f1fH1 + �2v

�2a
F1

�
dH1

(4.2.54)

This again can be seen to be a generalised eigenvalue problem. For the optimal solution, we

hence obtain

do1 = fH1 F
�1 (4.2.55)

whereF is defined by the denominator terms on whichd1 operates, that is

F = ~PF2 + jA1j2f1fH1 +
�2v
�2a
F1 (4.2.56)

Therefore, again, we see that the asymptotic solution is indeed independent from the user

power (sinced1 is determined up to a scalar factor) and therefore there is no benefit in

employing diagonal weighting matrices asymptotically.

4.3 Asymptotic Analysis extended to Multipath Propagation

We would now like to extend the results of the previous sections to a large sys-

tem analysis in the multipath case. Most asymptotic analyses to date have treated the syn-

chronous system case, and indeed, a fully general extension to the asynchronous model is
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difficult. We will therefore introduce certain approximations in order to make the problem

tractable. Our fully asynchronous system description is given by

y[n] = P(q)SHAa[n] + v[n]

x[n] = SHPy(q) (P(q)SHAa[n] + v[n]) (4.3.1)

wherey[n] is the sampled, received signal andx[n] is the pulse-shape matched filtered and

despread signal, i.e. the RAKE finger outputs prior to combining. We will assume that the

delay spreadmaxk;m(�k;m) is much smaller than the symbol periodT so that the effect of

Intersymbol Interference (ISI) can be neglected and we can look at a one-shot detector, i.e.

y[n] = P[n]SHAa[0] + v[n] (4.3.2)

! y = PSHAa+ v (4.3.3)

Assuming that the delays are multiples of the chip-period and chip-rate sampling

(synchronised to the chip-rate), the pulse-shaped matched filtering can be assumed to be

perfect and we are left withS essentially containingspreading sequences shifted by a number

of chips equivalent to the delays. Since the delays and therefore the shifts are random and

the spreading codes are made of i.i.d random variables, we assume the spreading matrixS

to be modelled by

S = [s1;1 : : :sk;m : : :sK;M ] (4.3.4)

where thesk;m are the column vectors of lengthL, consisting of Gaussian i.i.d. random

variables for userk and pathm. ksHk;msk;mk = 1, i.e. the spreading codes are normalised.

The received signal model (J = 1; M = 1; Q = 1) and the pathwise RAKE outputs are

therefore given by

y = SAa+ v (4.3.5)

x = RAa+ SHv (4.3.6)

a as defined for one symbol, i.e.a[0], A as usual block diagonal. To further justify the

above model, note that it was found in [78] that a symbol asynchronous but chip synchronous

system is asymptotically equivalent to a symbol synchronous model for the purpose of an

SINR analysis. Also, if the pulse-shape is an ideal sinc, the fully asynchronous system is

asymptotically equivalent to the symbol synchronous system [82]. In the case of multipath,

we assume independence between paths, as in [77].
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4.3.1 Symbolwise Joint approach

The problem setting in this case is exactly the same as the one given for single

path case as can be seen from inspecting equations (4.2.3) and (4.2.4). The only difference

is the change in the eigenvalues of the matrixAHRA, i.e. we need to find

lim
K!1

1

K
tr(AHRA)m = lim

K!1
1

K
tr(RAAH)m

= lim
K!1

1

K
tr(SAAHSH)m (4.3.7)

First, note thatAAH = diag(A1A
H
1 : : :AKA

H
K) is block diagonal. By taking the expec-

tation with respect to the amplitudes,EfAAHg we get:

� if EfAk;mA
�
k;ng = 0 8 m 6= n 8 k , i.e. the path amplitudes of every userk are

assumed to be uncorrelated, then the distributionF (P ) is the limiting distribution of

the path powers and we can use the identical techniques of the last section to find a

solution to

lim
K!1

1

K
tr(REfAAHg) (4.3.8)

sinceEfAAHg is diagonal. Furthermore, if the average power in all the paths of all

the users is equal, we can again use (4.2.26).

� If EfAk;mA�k;ng = �k;m;n 6= 0 8m 6= n 8 k, i.e. the amplitudes are correlated then

the situation is more complicated since then the matrixAAH is not diagonal under the

expectation operation and the correlation coefficients will influence the eigenvalues of

AAH. The technique involving the Stieltjes transform in the last section can therefore

not be used either sinceAAH is not diagonal, which is required according to theorem

2.

However, in appendix 4.A, we show thatR andAAH are asymptotically free, noncommuta-

tive random variables. Therefore, the moments of the eigenvalues can be found by knowing

the limiting empirical distributions ofR andAAH . Note that we have the moments of the

eigenvalues ofR explicitly from (4.2.26). For the amplitudes, note that

lim
K!1

tr
�
(AAH)m

�
= lim

K!1
tr
�
(AHA)m

�
(4.3.9)

= lim
K!1

1

K

KX
k=1

Pm
k (4.3.10)
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Hence, the solution is exactly equivalent to the single path solution of section 4.2.1 and

furthermore, the solution is independent of the power distribution. Also, we notice that the

correlation between the path amplitudes of userk seems to be irrelevant in the limit and

performance is the same with or without correlation.

Hence, using the expression obtained for the moments using free probability the-

ory, it is possible to obtain explicit expressions of the SINR for the Symbolwise Joint PE

approach. Asymptotically, there is no benefit in using a coefficient per user in this model,

even under power imbalance between the users and/or the paths.

4.3.2 Pathwise Joint Approach

In this section, the multipath scenario is analysed for the pathwise joint approach,

following the same procedure as used for the synchronous case. The signal model as-

sumptions are those introduced above. The total power in the symbol estimate for user

1,Efjâ1j2g, needs to be recomputed from

EfââHg = �2atr

 
AH

BX
b=0

BX
i=0

DbR
b+1AAHRi+1DH

i A

!

+�2v tr

 
AH

BX
b=0

BX
i=0

DbR
b+i+1DH

i A

!
(4.3.11)

where we need the first element in the matrices above (i.e. the first element in the sum for

the trace). Using the eigendecomposition for R = U�UH , we can write the variance from

the symbol estimate of user one as:

Efjâ1j2g = �2aA
H
1

BX
b=0

BX
i=0

Db;1 u1�
b+1UHAAHU�i+1u1| {z }

=Jb;i

Di;1A1

+�2vA
H
1

BX
b=0

BX
i=0

Db;1u1�
b+1uH1 Di;1A1 (4.3.12)

where we have defined the eigenvector quantities by

U = [uH1 : : :u
H
K ]H

u1 = [IM 0]U

uk = [uHk;1 : : :u
H
k;M ]H
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Hence, the vectorsuk;m are the rows ofU anduk is therefore of dimensionsM �MK. We

can write the matrixJ by

J =
KX
k=1

u1�
b+1uHk AkA

H
k uk�

i+1uH1 (4.3.13)

= u1�
b+1uH1 A1A

H
1 u1�

i+1uH1 +
KX
k=2

u1�
b+1uHk AkA

H
k uk�

i+1uH1

Looking at the term fork = 1, we can write the(m;n)th element as follows:

h
u1�

b+1uH1 A1A
H
1 u1�

i+1uH1

i
m;n

= u1;m�
b+1

0@ MX
l6=m=1

uH1;lA1;l + u
H
1;mA1;m

1A
�
0@ MX
p6=m=1

A�1;pu1;p +A�1;nu1;n

1A�i+1uH1;n

Since

uH1 A1A
H
1 u1 =

 
MX
l=1

uH1;lA1;l

!0@ MX
p=1

u1;pA
�
1;p

1A

u1 =

2664
u1;1

...

u1;M

3775 (4.3.14)

i.e. uk;m are the rows ofuk and of dimensions1 � KM . Recall that asymptotically, the

elements in the matrixU are Haar distributed due to the Gaussian spreading codes, obeying

(4.2.48) under expectation (see also appendix 4.A). Therefore,

Efu1;muH1;lu1;puH1;ng = lim
K!1

u1;mu
H
1;lu1;pu

H
1;n

= 0 8m 6= n

Hence, ifm 6= n, then asymptotically

lim
K!1

h
u1�

b+1uH1 A1A
H
1 u1�

i+1uH1

i
m;n: m6=n

= lim
K!1

�
u1;m�

b+1uH1;m

�
A1;mA

�
1;n

�
u1;n�

i+1uH1;n
�

=
A1;mA

�
1;n

(KM)2

 
KMX
l=1

�b+1l

!0@KMX
p=1

�i+1p

1A (4.3.15)
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whenm = n note that

Efu1;muH1;lu1;puH1;mg = 0 8l 6= p 6= m

(4.3.16)

Therefore,

lim
K!1

h
u1�

b+1uH1 A1A
H
1 u1�

i+1uH1

i
m;n: m=n

= lim
K!1

u1;m�
b+1

MX
l6=m=1

uH1;ljA1;lj2u1;l�i+1uH1;m

+jA1;mj2u1;m�b+1uH1;mu1;m�i+1u1;m(4.3.17)

and in the limit we obtain

lim
K!1

h
u1�

b+1uH1 A1A
H
1 u1�

i+1uH1

i
m;n: m=n

=
1

KM

0@ MX
l6=m=1

jA1;lj2
1A 1

KM

0@KMX
p=1

�b+i+2p

1A
+
jA1;mj2
(KM)2

KMX
l=1

KMX
p6=l=1

�b+1l �i+1p

+
2jA1;mj2

KM(KM + 1)

KMX
l=1

�b+i+2l (4.3.18)

Looking at the second term in equation (4.3.13) involvingk 6= 1 we can write

lim
K!1

KX
k=2

u1�
b+1uHk AkA

H
k uk�

i+1uH1 =
1

KM

KX
k=2

 
MX
l=1

jAk;lj2
!

1

KM

 
KMX
m=1

�b+i+2m

!
IM

since

lim
K!1

uHk AkA
H
k uk =

I

KM

MX
l=1

jAk;lj2

lim
K!1

u1�
b+i+2uH1 =

I

KM

KMX
m=1

�b+i+2m (4.3.19)

For the second term in (4.3.11), note that

lim
K!1

u1�
b+i+1uH1 =

IM

KM

KMX
k=1

�b+i+1k
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Using the following notation introduced earlier:f(�M; l) = 1
KM

PKM
m=1 �

l
m, and using the

above results, we can now write the matrixJ as

J =

 
1

KM

KX
k=2

MX
l=1

jAk;lj2
!
f(�M; b+ i+ 2)IM + f(�M; b+ 1)f(�M; i+ 1)A1A

H
1

�f(�M; b+ 1)f(�M; i+ 1)diag
�
A1A

H
1

�
+ f(�M; b+ 1)f(�M; i+ 1)diag

�
A1A

H
1

�
+

�
2

KM + 1
� 1

KM

�
f(�M; b+ i+ 2)diag

�
A1A

H
1

�
+

1

KM
f(�M; b+ i+ 2)

�kA1k2I� diag
�
A1A

H
1

��
=

 
1

KM

KX
k=1

kAkk2
!
f(�M; b+ i+ 2)IM + f(�M; b+ 1)f(�M; i+ 1)A1A

H
1 (4.3.20)

We can now write the output variance of the symbol estimate from (4.3.11) as

Efjâ1j2g = �2a

BX
b=0

BX
i=0

f(�M; b+ i+ 2)AH
1 Db;1D

H
i;1A1 + �2a

 
BX
b=0

f(�M; b+ 1)AH
1 Db+1A1

!2

+�2v

BX
b=0

BX
i=0

f(�M; b+ i+ 1)AH
1 Db;1D

H
i;1A1 (4.3.21)

where the signal part is given by

Power1 = �2a

 
BX
b=0

f(�M; b+ 1)AH
1 Db+1A1

!2

(4.3.22)

Note here that due to multiple paths, we obtain an effective load of�0 = KM=L, due to the

dimensions ofS, which isL�KM .

Using vector notation, we can now write

KH
1 = [AH

1 D0;1 : : :A
H
1 DB;1] (4.3.23)

A1 =

2664
f(�M; 1)A1

...

f(�M;B + 1)A1

3775 (4.3.24)

Writing the output variance and minimising it under the constraint thatKH
1 A1 = 1 is equiv-

alent to maximising the SINR, i.e.

min
K1: KH

1
A
1
=1
KH

1 FK1 (4.3.25)
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where

F =
�
�2aF2 + �2vF1

�
 IM (4.3.26)

with the variables defined as previously in equation (4.2.29) with the optimal solution given

by

Ko
1 =

�
AH

1 F
�1A1

��1
F�1A1 (4.3.27)

and therefore

K1 = F�1A1 = F�1

2664
f(�M; 1)IM

...

f(�M;B + 1)IM

3775
| {z }

f1
IM

A1 (4.3.28)

and

F�1 (f1 
 IM) =

0BBBBBBB@
�
�2aF2 + �2vF1

��1
2664

f(�M; 1)
...

f(�M;B + 1)

3775
| {z }

= f1

1CCCCCCCA

 IM

=
�
DH

0;1 : : :D
H
B;1

�H
! DH

b;1 = ��b;1IM =

�h�
�2aF2 + �2vF1

��1i
b+1;:

f1

�

 IM

where [:]j;: denotes the j-th row. Therefore, it can be seen that the optimal solution is

achieved using only a scalar coefficient which is user and path independent and varies only

from stage to stage. Hence, also in this case, asymptotically there is no benefit in diagonal

weighting matrices.

Note that we can also treat the userwise PE using the above approach sinceS1A1 =PM
m=1A1;ms1;m = A01s

0
1 is also Gaussian (jA1j2 = 1). The only difference is in the loading

we need to apply, notably,�M ! �.
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4.3.3 Note on Implementation

The result above suggests that there is no benefit in using diagonal weighting ma-

trices. Since the information of the amplitudes are not included in the polynomial expansion

inR, the approach can at best do equally well to the original approach by Moshavi where the

polynomial expansion is inAHRA. Hence, the Moshavi approach imposes itself as a better

solution in the limit. However, due to the fact that the expansion involves the amplitudes, the

approach will be more sensitive to estimation error between the amplitudes and the ampli-

tude estimates. Consider the case where strict power control is employed, i.e.kAkk2 = 1.

Then, the term in the polynomial expansion will be approximated by

ÂHRA (4.3.29)

which may no longer be close to identity and therefore may not work that well using poly-

nomial expansion. A pathwise approach with an expansion inR, on the other hand, only

uses the amplitudes to recombine for the final symbol estimate and will therefore avoid any

propagation of the estimation error. Therefore, in the case where the amplitude estimates

are unreliable, for example through very fast fading, it may still be advantageous to use an

expansion inR.

The above results suggest yet another paradigm shift. Notably, the obtained re-

sults suggest a distinction based on the amplitude knowledge available. In the case where

amplitudes are available or reliable, respectively, it is advantageous to use this information

and apply userwise polynomial expansion in the termAHRA, i.e. to use the approach of

Moshavi. This approach allows to efficiently make use of all the available information while

amplitude estimation can be made part of this approach. Consider a filter following the

approach due to Moshavi where the filter for the symbol estimate is given by

â[n] = F(q)x[n] =
BX
b=0

db
�
AHR(q)A

�b
AHx[n]

=
�
d0I+ d1A

H fR(q)Ag+ d2A
H
�
R(q)AAHR(q)A

	
+ : : :

�
AHx[n]

clearly, at each term the spreading and despreading operation (essentiallyR(q)) is followed

by amplitude recombination. Therefore, we can combine those signals to obtain an ampli-

tude estimate, i.e. cAa[n] = BX
i=0

di
�
R(q)AAH

�i
x[n]
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+

� â[n]

y[n]

� cAa[n]

PATH-LEVEL

RAKE

a[n] y[n]

x[n]

v[n]

RECEIVED SIGNAL MODEL

AWGN

PE STAGE 1

SYMBOL-LEVEL

PE STAGE B

E(q)A AHEy(q)AHEy(q)

E(q)A

E(q)A AHEy(q)

Figure 4.1: Amplitude and symbol estimation suggested by LS results when amplitude
knowledge is reliable

This should allow us to obtain a polynomial receiver with minimum complexity in a large

system, while also being able to estimate amplitudes. This proposition is shown in figure

4.1. From this we can easily see the fact that every PE stage after the RAKE is twice the

complexity of the RAKE. Also, the structure shows how the symbol level signal is spread

again to path level and despread back to symbol level in every PE stage.

In the case where the amplitudes are not available or cannot be estimated reli-

ably (in fast fading, for example), we suggest to use pathwise polynomial expansion with

the expansion being inR, if possible together with differential modulation. Differential

modulation modulates the data based on the phase difference to the last transmitted symbol.

Consider

ak [n] = bk[n]ak[n� 1]

where we restrictbk to jbkj2 = 1. To obtain the amplitude-data product estimate, we write

the estimate as the true value plus some interference plus noise term:

[Aiak[n] = Aiak[n] + vi;k [n] = bkAiak[n� 1] + vi;k

= bk[Aiak[n� 1] + vi;k[n]� bkvi;k[n� 1]

Let us define

Zk = [[A1ak [n]; : : : ;\AMak[n]]
T
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+

y[n]

�

PATH-LEVEL

a[n] y[n]

x[n]

v[n]

RECEIVED SIGNAL MODEL

AWGN

PE STAGE 1 PE STAGE B

E(q) Ey(q)Ey(q)

E(q)A

E(q) Ey(q)

Correlator outputs

b̂k[n]

cAa[n]

dec

Figure 4.2: Symbol estimation employing differential modulation that requires no
knowledge of fastly varying amplitudes

We can then solve forbk by solving

b̂k[n] = min
bk2 Alphabet

kZk[n]� bkZk[n� 1]k2

If bk is constant modulus, i.e.bk = ej�k , the solution is given by estimating the angle�k
such that

�ok = decf� arg(ZHk [n]Zk[n� 1])g
This can be seen as a kind of noisy maximum ratio combining. Note that this allows the re-

combination of the paths without knowledge of the fast parameters, i.e. the path amplitudes.

This structure can be seen in figure 4.3.3.

4.4 Conclusions

In this chapter we derived analytical expressions for two polynomial expansion

approaches under large system assumptions. Interestingly, it was found that there is no ben-

efit, asymptotically, to use a scalar weighting per user or per path even under power imbal-

ances between users and paths. Furthermore, it was shown that the asymptotically optimal

solutions for the weighting coefficients are easy to compute, given the relevant eigenvalue

moments. While the asymptotic analysis proves that there is no benefit in using weighting

coefficients per path for large systems, the simulation results obtained in chapter 3 clearly

showed the benefits obtained by introducing such coefficients. Basically, we attribute those

evidently differing results to a number of factors. Firstly, the results of the asymptotic anal-

ysis are large system results which allow to introduce certain simplifications (through the
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averaging processes) which do not hold in finite dimensions and therefore, the results are

approximative in nature for finite systems. As can be seen from the simulation results pro-

vided in chapter 3, the simulations we have shown were of small dimensions, typically with

a spreading gain of onlyL = 16. Also, whereas we have run simulations using a truly asyn-

chronous system, the analysis is based on a simplified, synchronous model (assuming no

ISI, perfect pulse-shaped matched filtering and especially independent codes between paths,

binary vs. Gaussian codes). Also, in a finite system, the power of any one user may be

significant with respect to the total, finite power of all users. In an asymptotic system, on

the other hand, it is essentially assumed that the power of any one user is asymptotically a

vanishing fraction of the total power. While there are good indications that such a system

may indeed be valid asymptotically (e.g. [77,81,82]), the formal proof is still an open issue

at this point, in particular when moving away from chip synchronous to fully asynchronous

models. In addition, the correlation function of the pulse shape employed impacts on the

large system signal model and deviations from the large system results would be expected to

increase with increasing deviation of the pulse shape frequency spectrum from an ideal low-

pass filter. Another point which has been scarcely covered, is the impact of using periodic

spreading codes as opposed to aperiodic ones in large system analysis. While, given the na-

ture of large system analysis, it may be desirable to have aperiodic codes, in our simulations

we have employed periodic codes throughout. While there are a substantial number of open

issues, we do not see the asymptotic results as contradictory to what we have obtained in

earlier chapters but instead it does provide an idea of what might be a good solution.

We have to distinguish between two aspects introduced, namely, the issue of using

diagonal weighting matrices and the estimation of the amplitude data product, required for

the amplitude estimation. From the results obtained in this chapter, the consequence is that

for larger spreading gains, it is advantageous to implement the symbol estimate by using an

approach involving the polynomial expansion inAHR(q)A. In this way, the receiver can

make use of the maximum of information available (due to the inclusion of the amplitudes in

the polynomial expansion) and therefore provide the best symbol estimate. However note,

that in a situation of fast fading where the estimation of the amplitudes may become very

unreliable or if no amplitude information is available, it may still be useful to consider a PE

in R(q) only, together with differential modulation.

Considering the estimation of the amplitudes, we do require the pathwise outputs

and this, indeed, remains the main point of a pathwise treatment. This will still allow us
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to estimate the amplitudes at an improved SINR, even in the case of applying the Moshavi

approach, as was shown in the last section.

4.A Appendix: Asymptotic freeness ofR andAAH

We are interested in finding the limiting behaviour of the following expression:

lim
K!1

1

K
tr(AHRA)m = lim

K!1
1

K
tr(RAAH)m

= lim
K!1

1

K
tr(SAAHSH)m (4.A.1)

Assume the general model as motivated in section 4.3, i.e.

S = [s1;1 : : :sk;m : : :sK;M ]

R = SHS (4.A.2)

A = diagfA1; : : : ;AKg (4.A.3)

Ak = [Ak;1 : : :Ak;M ]T (4.A.4)

and the spreading codes,sk are normalised and and consist of i.i.d random elements such

thatsk;l 2 1p
L
f+1;�1g. Note thatAAH = diag(A1A

H
1 : : :AKA

H
K) is block diagonal in

the multipath case and diagonal in the single path case.

In order to show thatR andAAH are asymptotically free (Proposition 3) with

respect to the trace operator, we introduce a number of definitions required from free proba-

bility theory.

Definition 5 (Non-commutative probability spaces and random variables)

[72]:if A is a unital algebra on the complex number fieldC , and' is a linear functional

of A such that'(1) = 1, with 1 the unit element ofA, then the pair(A; ') is called a

noncommutative probability spaceand the elements ofA are called noncommutative random

variables (NCRV). The complex number'(an) is called the nth moment ofa 2 A

Definition 6 (Algebra properties)

[72]: Consider the probability space ofn � n matrices(An; 'n) whereAn is a unital

*-algebra (unit, product, sum, involution defined) and'n is the state/linear functional such

that 'n(An) = 1
nE [tr(An)], An 2 An. If as n ! 1, 'n converges to', then the
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expectation is defined w.r.t. this probability measure. Sum and product are defined in the

normal way for matrices, involution is defined by the Hermitian transpose and the unit is

given by the identity matrixIn.

Definition 7

A n � n random matrixAn is calledunitarily invariantif the probability measure ofAn

as a random matrix/noncommutative random variable is the same as that of the matrix

VnAnV
H
n for any unitary matrixVn

Theorem 8

If the distribution ofAn is unitarily invariant, it admits the following eigenvalue decompo-

sitionAn = Un�nU
H
n , whereUn and�n are independent.

Returning to the problem at hand, writing the trace ofR using the eigendecompo-

sition

tr(VRVH) = tr(VU�UHVH) = tr(Q�QH) (4.A.5)

=
KX
i=1

�i (4.A.6)

Q = VU (4.A.7)

shows thatR is unitarily invariant to any unitaryV since the product of two unitary matrices,

hereQ, is also unitary. SinceR is hermitian, it is also self-adjoint and due to the fact that

it is a random matrix,U and� are independent. Further note that the elements inU are

asymptotically i.i.d., Haar distributed random variables [72].

Theorem 9 (Theorem for free random matrices)

[71,72] Let

� An(s) be an independent family ofn�n Hermitian deterministic or random matrices,

s 2 S in some index setS

� An(s)A
H
n (s) admit a limit distribution compactly supported

� Bn(t) = U(t)B0
n(t)Un(t)H with Un(t) independent onAn(s) and B0

n(t) with

eigenvalues�1(n; t); : : : ; �n(n; t) such that

– supnmaxi �i(n; t) <1 8 t 2 T whereT is some index set
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– and(Bn(t);Bn(t))t2T has a limit distribution

Then asn!1, the family
�fAn(s)gs2S ; fBn(t);B

H
n (t)gt2T

�
is asymptotically free.

If we let (AAH)1=2 = An, R = Bn, U = Un and� = B0
n we can see that henceR and

AAH are asymptotically free.

4.B Appendix: Computation of NCRV moments

Having established thatR andAAH are asymptotically NCRVs, we are now in-

terested in finding the moments.

Definition 10 (Definition of freeness)

[72] Let (A; ') be a noncommutative probability space and letAi be subalgebras ofA (i 2
I). We say that the family(Ai)i2I is in free relation (or free) with respect to' if, for every

n 2 N andi(1); : : : ; i(n) 2 I such thati(k) 6= i(k+ 1)(1 � k � n� 1),

'(a1a2 : : :an) = 0 if and only ifak 2 Ai(k); '(ak) = 0; 1 � k � n

(4.B.1)

This basically means that every'(ak) = 0 for all elements and that neighbouring ncrv’s

from the same subalgebra are not allowed to have consecutive indices. e.g.'(a1a3) = 0

where'(a1) = '(a3) = 0 but'(a1a2) 6= 0 because the two neighbours have consecutive

indices even though'(a1) = '(a3) = 0

Theorem 11 (Moments of NCRVs)

[72,83] For free noncommutative random variablesa1; : : : ; an the following holds:

' [(a1 � '(a1)1) (a2 � '(a2)1) : : :(an � '(an)1)] = 0 (4.B.2)

which allows the computation of the moments.

As an example how this can be solved, here is an example from [83]. LetB, C 2 A be two

free subalgebras andb 2 B andc 2 C then we can writeb = b0 + b whereçb = '(b)1, so

that'(b0) = 0. Similarly we havec = c0 + c. Using the definition of freeness, we see that
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'(b0c0) = 0, thus

'(bc) = '
�
(b0 + b)(c0+ c)

�
= '

�
b0c0 + b0c+ bc0 + bc

�
= '(b)'(c) (4.B.3)

where we have used'(bc0) = '('(b)1:c0) = '(b)'(c0) = 0 and similarly for'(b0c) = 0.

Definition 12 (moments of a product of two ncrvs)

Given the free random variablesa = a0 + a andb = b0 + b we can compute the moments of

their product by:

' [(ab)m] = '(a)'(b)'
�
(ab)m�1

�
+ '

�
a0b0(ab)m�1

�
+ '(a)'

�
b0(ab)m�1

�
+ '(b)'

�
a0(ab)m�1

�
using this, e.g. the second moment is given by:

'
�
(ab)2

�
= '2(a)'2(b) + '2(a)'(b2) + '(a2)'2(b) (4.B.4)

The direct application of this formula gives the result in equation (4.2.36)
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Conclusions

In chapter 2 we have established the concept of user-wise distortionless pathwise

interference cancellation which is independent of the fastly varying complex amplitude coef-

ficients. This could be achieved through the separation of the received signal into fastly and

slowly varying components. Furthermore, we have alleviated the problem of signal cancel-

lation that occurs in the original pathwise approach when there is strong correlation between

the amplitudes of different paths of the same user. The advantage of the approaches intro-

duced is the relaxed adaptation requirements due to the filter’s independence from the fastly

varying coefficients. This allows the scarce training data to be used in the estimation of the

fastly varying parameters while the whole signal can be used to estimate the slowly varying

parameters over a much larger interval. Since the interference cancellation takes place be-

tween paths, the signal thus obtained contains the desired parameters at an improved SINR

compared to the received signal and hence allows improved channel estimation. However,

the approaches of chapter 2 are computationally costly to implement and we have therefore

considered pathwise polynomial expansion as a low complexity approach in chapter 3. Poly-

nomial expansion allows the approximation of the computationally intensive matrix inverse

required by both the LMMSE receiver and the decorrelator by expanding the matrix inverse

as a polynomial. However, for polynomial expansion to work, weighting coefficients need to

be introduced. We have shown, that giving each signal component a scalar weighting factor

allows for improved interference cancellation and therefore improved parameter estimation.

Also, we have shown that the extension to spatio-temporal processing is straightforward.

Furthermore, we have also introduced new polynomial expansion approaches which work

at symbol level and provide more degrees of freedom by still allowing a scalar coefficient

per signal component. Unfortunately, it is very difficult to characterise the performance be-

haviour of a polynomial expansion receiver analytically using standard techniques, not least
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due to the fact that the output SINR is a function of the particular set of spreading codes,

delays and amplitudes used. We have therefore resorted to what is known as large system

analysis in chapter 4. This method lets the dimensions of the system grow to infinity and

assumes the spreading codes to be made up of i.i.d. random variables. The resulting SINR,

involving large random matrices, can then be simplified based on the fact that the empiri-

cal eigenvalue distributions of certain classes of asymptotically infinite matrices converge

to a deterministic distribution. Interestingly, it was found that there is no benefit asymp-

totically in using a weighting coefficient per multipath component or per user, even under

power imbalances. Furthermore, it was shown that the asymptotically optimal solution for

the weighting coefficients can be found easily, given the relevant moments of the eigenvalues

of the large random matrices. While the asymptotic analysis proves that there is no benefit

attained by the introduction of weighting coefficients per signal component, the simulations

in the preceding chapter have clearly shown that performance can be improved by increasing

the number of coefficients. We attribute this discrepancy to a number of open issues which

remain in the large system analysis. Notably, the asymptotic analysis is by its very nature

only approximate for finite systems. Since the simulations presented are all with relatively

low spreading factor, a certain amount of disagreement between the results can be expected.

Furthermore, the simulations have been run using a truly asynchronous system whereas the

large system analysis is based on a simplified, symbol-synchronous system. While there are

good indications that such a system may asymptotically hold for the asynchronous model,

the formal proof at this point in time is still an open issue. Also, the correlation function

of the pulse-shaping filter is of importance in the large system signal model and devia-

tions from the large system results would be expected with increasing deviation of the pulse

shape frequency spectrum from and ideal low-pass filter. Finally, the impact of using peri-

odic spreading codes versus aperiodic ones in large system analysis remains unclear. It is,

however, important to distinguish between two aspects of polynomial expansion receivers

introduced in this document, the issue of using diagonal weighting matrices and the esti-

mation of the amplitude data product, respectively. In consequence of the results obtained

from the large system analysis, it is advantageous to estimate the symbols from an approach

following the original polynomial expansion receiver, that is, to use a polynomial expansion

involving the amplitudes. Due to the extra amplitude information which such an approach

utilises, any approach which does not make use of this information can only perform worse.

It is worth mentioning, however, that in the case where amplitude estimates are very unreli-
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able due to very fast fading, the application of purely pathwise polynomial expansion may

still be advantageous, particularily in conjunction with differential modulation. Consider-

ing the issue of amplitude estimation, we continue to require the pathwise outputs and this,

indeed, remains the main point of a pathwise treatment. It is shown that even using an ap-

proach providing symbol outputs, it is still possible to obtain pathwise signals and combine

pathwise with symbolwise polynomial expansion in order to profit from the benefits of both

approaches.
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