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Abstract

In this work we analyze the performance of multiple-access fading chan-
nels with delay constraints, which arise since the fading dynamics is slow
with respect to the tolerable decoding delay.

In the �rst part of the work, we consider a simple, decentralized, unco-
ordinated system where users access at random the channel whenever they
have data to transmit. To cope with background noise, fading and inter-
ference from other users, packets that are negatively acknowledged by the
receiver are retransmitted. At the receiver, packets related to the same infor-
mation bits are combined together to increase decoding reliability. We study
three di�erent protocols in terms of total throughput (bit/s/Hz) as function
of several di�erent parameters. Closed form throughput formulas are derived
by using random coding, typical set decoding and renewal-reward theory ar-
guments. Then, we perform a comparison between systems that implement
at network layer a repetition protocol and at physical layer di�erent receiver
structures. We compare the optimized throughput as a function of the aver-
age transmit energy per successfully received bit. In doing so we get insight
into the optimal choice of the system parameters, like the transmission rate
and the average channel load.

In the second part, we consider a completely centralized system, where
users know the channel state and vary rate and power according to the
channel conditions so that their rate is always inside the fading dependent
achievable rate region. We de�ne a variable coding scheme and study the
corresponding long-term average capacity region. Since we assume that
code-words can span a given number of consecutive time slots and that the
channel is known only up to the current slot, the optimal solution is given
in terms of Dynamic Programming algorithm. Then, we consider the per-
formance in the low spectral e�ciency regime, which is where the major
bene�ts of transmitter feedback occur. We derive the long-term average ca-
pacity region per unit energy (in�nite bandwidth regime) and the wideband
slope region (wideband regime). We show that the simple one-shot pol-
icy that concentrates the available energy in only one of the fading states,
chosen on the basis of its strength and of how likely it is that a more favor-
able fading state will appear before the end of the code-word, is wideband
optimal.
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R�esum�e

L'objet de ce travail est d'analyser l'e�et des contraintes de retard sur
la performance des canaux gaussiens multi-utilisaturs avec �evanouissement.
Dans notre mod�ele, dû �a la dynamique tr�es lente de l'�evanouissement par
rapport au retard de d�ecodage tol�erable, chaque mot de code est a�ect�e par
un nombre �ni d'�etats d'�evanouissement.

Dans la premi�ere partie, nous consid�erons un syst�eme simple, d�ecentral-
is�e et non coordonn�e qui est acc�ed�e au hasard par les utilisateurs toutes
les fois qu'ils ont des donn�ees �a transmettre. Pour faire face au bruit, �a
l'�evanouissement et �a l'interf�erence d'autres utilisateurs, les paquets de don-
n�ees qui ont �et�e n�egativement reconnus par le r�ecepteur sont retransmis. Au
r�ecepteur, les paquets li�es au même bit d'information sont combin�es pour
augmenter la �abilit�e de d�ecodage. Nous �etudions trois protocoles di��erents
en termes de d�ebit total (bit/s/Hz) en fonction du nombre d'utilisateurs, du
retard, du d�ebit du code, de la probabilit�e d'acc�eder au canal, du nombre
de retransmissions et du rapport signal �a bruit. Puis, nous ex�ecutons une
comparaison entre di��erents syst�emes qui utilisent aux couches hautes un
protocole �a r�ep�etition et �a la couche physique di��erentes strat�egies de d�e-
tection. Nous comparons le d�ebit total en fonction de l'�energie moyenne par
bit correctement re�cu. En faisant une telle comparaison, nous obtenons la
valeur optimale des param�etres de syst�eme, comme le d�ebit de transmission
et le chargement moyen de canal.

Dans la deuxi�eme partie, nous consid�erons un syst�eme compl�etement
centralis�e, o�u les utilisateurs connaissent l'�etat du canal et peuvent changer
le d�ebit de transmission et la puissance selon l'�etat du canal de fa�con qu'ils
soient toujours �a l'int�erieur de la r�egion de capacit�e. Nous d�e�nissons un
syst�eme de codage �a d�ebit variable et �etudions sa r�egion de capacit�e �a long
terme. Puisque nous supposons que les mots de code peuvent être �etal�es
sur un nombre donn�e de slot cons�ecutifs dans le temps et que le canal est
connu seulement jusqu'au slot actuel, la solution optimale �a notre probl�eme
est donn�ee en termes d'algorithme de programmation dynamique. En�n,
nous consid�erons la performance du syst�eme d�ecrit quand il est utilis�e sur
un canal �a bande tr�es large. Nous caract�erisons la performance quand la
largeur de bande est in�nie (valeur minimale de l'�energie moyenne par bit)
ainsi que quand la largeur de bande est grande mais �nie (r�egion de pentes
de l'e�cacit�e spectrale). Nous prouvons que la simple politique d'allocation
de puissances \one-shot", politique qui concentre toute l'�energie disponible
dans un seul des �etats d'�evanouissement, est optimale dans un syst�eme �a
tr�es large bande.
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Chapter 1

Multiple-access

communication over fading

channels

In this �rst chapter, we review briey the model we have adopted for the
fading channel and summarize the information theoretic results on multiple-
access channels that are relevant to the rest of the dissertation. The chapter
ends with the thesis outline and the list of our contributions.

1.1 Introduction

For many years after Shannon's landmark paper \A mathematical Theory
of Communications" in 1948, information theory has seemed the play-�eld
of mathematicians galvanized by the elegance of the newly born branch of
mathematics.

Practical applicability of information theory results has been unclear
for long time. On one hand, information theory models were thought to
be \too simplistic" with respect to the complexity of the real-world sys-
tems and hence, the rigorous results derived from those models, could not
be successfully implemented in any communication systems. On the other
hand, capacity limits predicted by information theory were thought to be
not applicable because of the complexity involved in the capacity achieving
co-decoding schemes.

Nowadays, things have radically changed. First of all, complexity is
less and less an issue and computation capability grows very fast. More-
over, modern coding techniques can approach the information theory limits

13



14 Chapter 1 Multiple-access communication over fading channels

in at least some important single-user channel models. Finally, multi-user
communication has been spured by the tremendous growth of wireless sys-
tems. The ever growing demand of wireless services every-where every-time
\obliges" to access those limits that information theory predicts.

The result is that today information theory inspires the techniques at
the basis of the design of compression, coding, signaling and detection of
contemporary information systems. With the increasing demand of more
capable systems, in terms of bandwidth and bit rate, information theory is
bound to have an even stronger impact on future communication systems.

In this work, we shall focus on the multiple-access Gaussian channel
with fading, commonly used to study the up-link of wireless systems, that
consists of many senders transmitting to a common receiver by sharing the
same communication channel impaired by additive noise and multiplicative
fading. We start by describing the physical propagation channel and by
characterizing its time-varying behavior from a statistical point of view.
Then, we shall summarize background information theoretic results related
to this multiple-access channel model and provide the motivations of our
work. We conclude this introduction, outlining the main contributions of
this thesis and by describing of the structure of the report.

1.2 Propagation channel model

A fading multipath channel is generally characterized as a linear, time-
varying system with impulse response c(t; �), or a time-varying frequency
response C(t; f), which is a wide-sense stationary random process in the
variable t. Time variations of c(t; �) result in frequency spreading of the
transmitted signal, which is generally called Doppler spreading. Multipath
propagation results in spreading the transmitted signal in time. By assum-
ing that the multipath signals propagating through the channel at di�er-
ent delays are uncorrelated (widesense stationary uncorrelated scattering),
a doubly spread channel can be characterized by the scattering function
S(� ;�), which measures the power spectrum of the channel at delay � and
frequency o�set �.

From the scattering function, we obtain the delay power spectrum of the
channel by averaging over �, i.e., Sm(�) =

R
S(� ;�)d� and the Doppler

power spectrum by averaging over � , i.e., Sd(�) =
R
S(� ;�)d� . The range

of values over which the delay power spectrum Sm(�) is non-zero is de�ned
as the multipath spread Tm of the channel. Similarly, the range of values
over which the Doppler power spectrum Sd(�) is non-zero is de�ned as the
Doppler spread Bd of the channel. The Doppler spread Bd provides a mea-
sure of how rapidly the channel impulse response varies in time: a slowly
varying fading channel has large coherence time, where the channel coher-
ence time is de�ned as Tcoh = 1=Bd, and a fast varying fading channel has
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small coherence time. In a similar manner, the inverse of the multipath
spread Tm is de�ned as channel coherence bandwidth, i.e., Bcoh = 1=Tm,
and measures the width of the interval of frequencies which are similarly
a�ected by the channel response: the channel response at frequencies whose
separation is smaller than Bcoh is highly correlated.

The product TmBd is called the spread factor of the channel. If TmBd <
1, the channel is said to be underspread, otherwise it is said to be over-
spread. Generally, if the spread factor TmBd � 1, the channel can be easily
estimated by the receiver while, when the spread factor TmBd > 1, channel
estimation is extremely di�cult.

1.2.1 Flat fading channels vs. frequency selective channels

Let x(t) be the transmitted signal, let X(f) denote its Fourier transform and
let W denote its bandwidth. The received signal, without additive noise, is
given by

r(t) =

Z
c(t; �)x(t� �)d� =

Z
C(t; f)X(f)ej2�ftdf (1.1)

If the signal bandwidth is much smaller than the coherence bandwidth
of the channel, i.e., W � Bcoh, then all the frequency components in X(f)
undergo the same attenuation and phase shift. This implies that, the time-
variant transfer function of the channel C(t; f) is constant in within the
bandwidth W , i.e., C(t; f) = c(t). Such a channel is called frequency-
nonselective or at fading. In this case, the received signal r(t) simpli�es
to

r(t) = c(t) x(t) (1.2)

i.e., the multipath components of the channel are not resolvable because
the signal bandwidth W � Bcoh = 1=Tm and the overall e�ect on the
transmitted signal is a multiplicative attenuation.

A frequency-nonselective channel is said to be slowly fading if the time
duration of a transmitted symbol, de�ned as Ts, is much smaller than the
coherence time of the channel, i.e., Ts � Tcoh. Since, in general, the signal
bandwidth W > 1=Ts, it follows that a slowly fading frequency-nonselective
channel is underspread. We de�ne a rapidly fading channel as a channel
that satis�es Ts > Tcoh.

When the transmitted signal has a bandwidth W greater than the co-
herence bandwidth of the channel Bcoh, the frequency components of X(f)
with frequency separation exceeding Bcoh are subjected to di�erent gains
and phase shifts. In such a case, the channel is said to be frequency se-
lective. The multipath components separated in delay by at least 1=W are
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resolvable. The resulting channel model is a tapped-delay line with time-
varying tap coe�cients

c(t; �) =
NX
n=1

cn(t)�(� � n=W ) (1.3)

where cn(t) in the complex channel gain on the n-th path and N = bTmWc+
1 represents the number of resolvable paths.

1.2.2 Ergodic channels vs. nonergodic channels.

Up to now, we distinguished between slowly varying and rapidly varying
channels on the basis on the symbol duration Ts with respect to the channel
coherence time. Other relevant parameters are the signaling bandwidth W
and the transmission duration of the whole message (code-word) T . We
distinguish between ergodic and nonergodic channels according to the whole
code-word transmission duration T with respect to the variability of the
fading process measured by Tcoh, assuming that c(t; �) is a nondegenerate
random process (otherwise Tcoh ! 1). The fact that a speci�c channel is
underspread (TcohBcoh > 1) and that can be treated as a at slow-fading
process (W � Bcoh), does not imply that the total transmission duration
may not span a large number of dimensions (WT � 1) so that the channel
can be viewed as ergodic, hence giving rise to standard notions of the er-
godic capacity [1]. Ergodic capacity is the classical Shannon type capacity
whose operative de�nition is provided by the coding theorem. Note that
the condition WT � 1 is required for Shannon type capacity to exists even
for non-faded time-invariant channels as otherwise reliable communication
is not possible.

When the product WT is not large, then the channel is nonergodic.
This cases arises when the fading dynamic is slow with respect to the (toler-
able) code-word duration. Nonergodic channels are of primary importance
to study the e�ect of delay on the system performance. For non ergodic
channels, capacity in the Shannon sense is not de�ned. The nonergodic case
gives rise to interesting information-theoretic settings as capacity versus out-
age [2] and delay-limited capacities [3], all relying on notions of compound
channels [4].

1.2.3 Statistical characterization of the fading

There are several probability distributions that have been used to model

the statistical characteristics of the fading channel. Let �
�
= jc(t; �)j2 be the

fading power, where for notation convenience we omit the variables t and

� . We indicate with 

�
= E[�] the average fading power and with fX(x) the

probability density function (pdf) of the random variable X .
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Rayleigh distribution. When there are a large number of scatterers in
the channel that contribute to the signal at the receiver, an application of
the central limit theorem leads to a Gaussian process model for c(t; �). If the
process is zero-mean, then the envelope of the channel impulse response has
a Rayleigh probability distribution and the phase is uniformly distributed
in the interval [0; 2�], hence

fjcj(x) =
2x



e�x

2=
 x � 0

and the fading power is exponentially distributed f�(x) =
1

e

�x=
 for x � 0.

Nakagami-m distribution. An alternative statistical model for the en-
velope of the channel response is the Nakagami-m distribution. The pdf for
this distribution is

fjcj(x) =
2mm

�(m)
m
x2m�1e�mx

2=
 x � 0 (1.4)

and the parameter m � 1=2 is referred to as fading �gure. By varying the
parameters m and 
, this distribution provides more accuracy in matching
the observed signal statistics. The Nakagami-m distribution can be used,
as an example, to model land mobile or indoor channels. It includes the
Rayleigh distribution as a special case m = 1. The pdf of the fading power
is f�(x) =

mm

�(m)
mx
m�1e�mx=
 for x � 0.

Rice distribution. A distribution which is appropriate for modeling a
Gaussian fading channel in which the impulse response has a nonzero mean
component, usually called a specular component, in the Rice distribution.
The pdf is

fjcj(x) =
2(1 +K)x



e�

1+K



x2�KI0

 
2x

r
K(1 +K)




!
x � 0 (1.5)

where K is de�ned as the ratio of the nonfading (specular) signal component
over the variance of the zero-mean Gaussian component and where I0(�) is
the zero order modi�ed Bessel function of �rst kind. The two extreme cases
of K = 0 and K ! 1 give, respectively, the Rayleigh fading pdf and the
degenerate case of constant fading. The Rice distribution is a particularly
appropriate model for line-of-sight communication links, where there is a
direct propagating signal component (the specular component) and multi-
path components due to secondary reections. The pdf of the fading power

is f�(x) =
(1+K)


 e�
1+K

 x�KI0

�
2
q

xK(1+K)



�
for x � 0.
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Two-state distribution. To model communication channels where either
the signal is received undistorted or it is corrupted to result useless is the
two-state model. The fading assumes only two possible values: jcj = 1 (good
channel) with probability p and jcj = o (bad channel) with probability 1�p,
i.e.,

fjcj(x) = p �(x� 1) + (1� p) �(x) (1.6)

where �(�) is the Dirac delta function. The two-state channel model is com-
monly used in communication network to model the underlaying physical
channel. It �nds a natural application in modeling line-of-sight satellite
communications.

1.2.4 Adopted fading model

Throughout the whole work, we shall model our communication channel as
frequency non-selective (W � Bcoh) and slowly varying (Ts � Tcoh). In
particular, we assume a block-fading model. The time axis is divided into
slots of duration Tcoh seconds; the fading is assumed to remain constant on
the whole slot and to change on the subsequent slot in an i.i.d. (indepen-
dent and identically distributed) fashion. The duration of a code-word is
an integer multiple of the slot duration, i.e., T=Tcoh = N ,. On every slot
the number of degree of freedom is large (TcohW � 1) so that to guarantee
reliable communication on each slot and to allow for reliable channel esti-
mation. In our model the transmitted messages are delay-sensitive and the
value of N is intended to measure the \tolerable" delay. If N !1 then our
channel is ergodic, otherwise it is not.

Most of the numerical examples shall assume a Rayleigh fading model
for the fading coe�cients. In Chapter 4, in the contest of capacity per
unit energy, we shall also report results for the two-state channel and in
Chapter 5, considering system performance in the wideband regime, we
shall make use of the Rice distribution and the Nakagami-m distribution.

1.3 Multiple-user channel model

A general network model comprises Ntx transmitters and Nrx receivers, each
of which equipped with a set of multiple antennae. The channel between a
particular receiving antenna nr and a particular transmitting antenna nt is
characterized by a time-varying linear �lter with impulse cnt;nr (t; �). This
communication system is characterized by specifying: a) to which degree the
channels cnt;nr(t; �), for each (nt; nr) pair, are known at each transmitter
and receiver, usually referred to as Channel State Information (CSI); b)
the communication mode of each transmitter (in the general case, is a mix
of multi-access broadcast interference and relay communication modes); c)
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the network topology: the con�guration and connectivity of the system as
well as the mobility of senders and receivers; d) the power constraints that
can be an average power applied to each of the transmitting antennas or an
average over all the transmitting antennas, the average can be taken over the
each code-word (\short-term" average) or over many transmitted code-words
(\long-term" average); e) the bandwidth which usually is a critical design
parameter; f) the delay constraint which poses a limitation on any practical
system and determines the very existence of a Shannon type capacity region.

We shall consider a multi-access system with Ntx = K � 1 senders and
Nrx = 1 receiver, each of which equipped with a single antenna. All senders
and the receiver know the joint statistics of fading gains and the statistics
of the noise. The receiver tracks perfectly the fading coe�cients of all users,
i.e., perfect receiver CSI, while for the transmitters we shall treat both the
cases of no transmitter CSI and perfect transmitter CSI. About the other
constraints, we shall discuss them in deeper details in the sequel.

For a superlative state-of-the-art tutorial on fading channels, the reader
can refer to [5].

Before proceeding with an overview of the thesis content, we briey
summarize the information-theoretic results on multi-user fading channels
relevant to our work.

1.3.1 What Information theory does study ...

A channel of bandwidth W is accessed by K users who send code-words of
length T to a common receiver. The number of channel-symbols per code-
word is L = WT � 1. The (discrete time) received complex signal ys at
time s is

ys =
KX
k=1

ck;sxk;s + ns (1.7)

where xk;s stands for the channel input of the k-th user at time s and ck;s
designates the fading value at time s for user k. The ergodic assumption
means that fck;sg are jointly ergodic in the time index s and independent
from user to user (in the index k). The additive-noise ns is proper complex
Gaussian random variable of zero mean and variance N0. The k-th input
is subjected to average-power constraints E[1=L

PL
s=1 jxk;sj

2] � Pk. For the
de�nitions of code, achievable rates and capacity region for channel (1.7)
refer to [1].

Capacity region. Almost contemporarily, Ahlswede [6] and Liao [7] proved
that the capacity region of a discrete memoryless multiaccess channel is the



20 Chapter 1 Multiple-access communication over fading channels

set of vectors (R1; � � � ; RK) 2 R
K
+ that satisfy

X
k2S

Rk � I(X(S); Y jX(Sc); Q) (1.8)

for all S � f1; 2; � � � ; Kg. The input pdf is the form Pr(X1; � � � ; XK; Q) =
Pr(Q)

QK
k=1 Pr(XkjQ) where Q is the auxiliary \time-sharing" random vari-

able that makes the capacity region to be a convex set. The symbol I(X(S); Y jX(Sc); Q)
designates the mutual information between Y and X(S) (the input signals
indexed by S) given Q and X(Sc) (the input signals indexed by the com-
plementary set of S).

A general formula for the multiple-access capacity region was found by
Te Sun Han in [8] extending the information-spectrum approach of [9]. For-
mally, the capacity region is determined by the inequalities (1.8) but where
I(X(S); Y jX(Sc); Q) has the meaning of the lim-inf in probability of the
information density [9].

Capacity region of the constrained input Gaussian channels with
receiver CSI only. We concentrate now on the additive Gaussian chan-
nel. In [10], Wyner showed that, if the channel gains ck are perfectly known
at the receiver but not at the transmitters, then the capacity region of (1.7)
is determined by the following inequalities

X
k2S

Rk � E

"
log

 
1 +

1

N0

X
k2S

jckj
2Pk

!#
(1.9)

for all S � f1; � � � ; Kg and where the average is with respect to the joint
distribution of (c1; � � � ; cK). Capacity (1.9) is achieved by independent and
identically distributed (i.i.d.) proper complex Gaussian input (X1; � � � ; XK)
where Xk has zero mean and variance Pk. To achieve capacity (1.9), there is
no need of variable-rate code. Long enough codebook (T � Tcoh), optimal
for the unfaded case, are optimal also for the faded case provided that the
whole statistics of the fading is revealed within the span of each code-word,
i.e., to get the averaging e�ect of (1.9). For delay-sensitive messages trans-
mitted over slowly-varying channels, the total delay need to achieve capacity
can be intolerable.

Some insight into (1.9) can be gained by comparison the multiple-access
capacity region with the TDMA achievable region. In a TDMA system,
every user transmits for a fraction �k of the time with average power Pk=�k,
where �k are non-negative \time-sharing" parameters such that

PK
k=1 �k =

1. Therefore, the k-th user achieves rateR
(tdma)
k = �k E[log(1+(Pkjckj

2)=(N0�k))].
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Give a subset S, the corresponding rate-sum satis�es

X
k2S

R
(tdma)
k =

X
k2S

�k E

�
log

�
1 +

1

N0

Pk
�k
jckj

2

��
(a)
�
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�
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k2S Pk jckj
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(b)
� E

"
log

 
1 +

1

N0

X
k2S

Pk jckj
2

!#
(c)
� log

 
1 +

1

N0

X
k2S

Pk E[jckj
2]

!

where (a) follows by log-sum inequality [1], (b) follows since x log(1 + 1=x)
is increasing in x � 0 and

P
k2S �k � 1 by de�nition of f�kg and (c) follows

form Jensen's inequality. From this series of inequalities we can derive some
of the most peculiar characteristics of multi-user fading channels.

First of all, the RHS of inequality (b) coincides with the rate-sum achieved
by rate vectors on the closure of the capacity region (1.9). This proves that,
for any choice of the time-sharing coe�cients, the TDMA achievable re-
gion is strictly inside the multiple-access capacity region. Hence, any access
scheme that orthogonalises the users, in the time domain, in the frequency
domain or in the code space, is suboptimal for a multi-user channel.

Second, the inequality in (c) holds with equality only for unfaded chan-
nels, i.e., jckj

2 is a degenerate random variable. Hence, without transmitter
CSI, the fading can only decrease capacity with respect to the unfaded Gaus-
sian channel with gain equal to E[jckj

2]. The common believe that \fading
is bad", and hence has to be compensated for, might come form this simple
application of Jensen's inequality. This idea is one the common misconcep-
tion based on inaccurate information-theoretic analysis. In fact, in order to
compensate for the \deleterious e�ect" of fading, some form of power control
must be undertaken at the transmitters. Power control can be e�ective only
if the transmitters know the fading values they are assumed to compensate
for. However, in that case of transmitter CSI, the capacity region is no
longer given by (1.9) since its derivation is based on the assumption that
the transmitter cannot track the channel.

Third, the only case where the three inequalities in (a), (b) and (c)
hold with equality is for S = f1; � � � ; Kg, for unfaded channel and for �j =

(E[jcjj
2]Pj)=(

PK
k=1 E[jckj

2]Pk). Therefor, TDMA is optimal, in the sense
that the boundary of the TDMA achievable region touches the boundary of
the capacity region, in one single point and only in the unfaded case.

Forth, the use of the central limit theorem for a symmetric system, i.e.,
same power constraint Pk = P and same fading statistics ck � fc(x) for
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all the users, allows to write the maximum rate-sum (equation (1.9) for
S = f1; � � � ; Kg) in the limit for large K as

E

"
log

 
1 +

KP

N0

KX
k=1

1

K
jckj

2

!#
K!1
�! log

�
1 +

KP

N0
E[jckj

2]

�
(1.10)

thus proving that, as the number of users grows, the e�ect of fading is
mitigated by the average e�ect of many users.

Capacity region of the constrained input Gaussian channel with

receiver and transmitter CSI. We assume now that every transmitters
knows the whole set of fading coe�cients fc1; � � � ; cKg. In this setting,
the transmit power of each user can be varied according to the channel
condition. We search for the best power allocation pk(c1; � � � ; cK) such that

E[pk(c1; � � � ; cK] = Pk for all k.
In the single-user case, Goldsmith and Varaiya showed that the optimal

power allocation is \water�lling" in time [11]. In the single-user case, the
availability of CSI at the transmitter in addition to the receiver gives lit-
tle advantage in terms of average reliable transmitted rate, and this small
advantage is in particular pronounced for low signal-to-noise ratio (SNR)
values, where the unfaded Gaussian capacity log(1 + P=N0) may be sur-
passed.

In the multi-user setting channel state information at the transmitters
has a tremendous impact. The optimal transmission strategy that maxi-
mizes the rate-sum is a form of channel-state driven TDMA while, for the
case of CSI at the receiver only, TDMA is strictly suboptimal. Indeed,
in [12], Knopp and Humblet showed that the rate-sum is maximized by let-
ting only the user enjoying the best channel to be active and allocate power
according to the water�lling law. In contrast to the single-user case [11],
where optimal power control marginally increases the average rate, in the
multiple-user case, the optimal power control gives a substantial growth in
capacity which increases with the number of users K. The reason for this
result is that if K is large, then with high probability at least one of the
users have a very high channel gain. Such a channel is in fact advantageous
even over the unfaded Gaussian channel with the same average power gain.
Fading creates a form of diversity that is often referred to as \multi-user
diversity".

The whole capacity region for the fading multiple-access channel was
found by Tse and Hanly in [13]. By exploiting the polymatroid structure
of the multiaccess Gaussian capacity region, they provided the characteri-
zation of the optimal power allocation that achieves the boundary points of
the capacity region. The optimal policy is such that in every fading state,
only the subset of user enjoying \good enough" channel are allowed to trans-
mit. Power and rate are allocated such that the active users can be decoded
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sequentially: the �rst user is decoded by treating all the other active users
as noise, then its code-word is re-encoded and subtracted from the over-
all received signal, at this point the the second strongest user is decoded
treating the remaining users as interference. The process continues this way
until all the users are decoded. Interestingly, the decoding order is fading
independent and the joint decoding process is based on single-user decod-
ing and stripping. Also in this case Gaussian codebooks are optimal. The
delay incurred by applying optimal power policy can be very long, longer
than in the case of no transmitter CSI since here users are active only when
the corresponding channel is \good". With optimal policy, there are not
only problems of delay, but also of fairness especially for users with \bad"
channel statistics.

Capacity region per unit cost. An interesting problem is to assign
a non-negative cost to each symbol of the channel input alphabet and to
�nd the maximum number of bits that can be reliably transmitted on the
channel per unit cost. For the Gaussian channel considered so far, the cost
is the power and the system has an average cost constraint in the form

E[jXkj
2] � Pk. Verd�u in [14] showed that the capacity per unit cost of a

memoryless stationary channel is

U =
[
Pk>0

f(r1; � � � ; rK) 2 R
K
+ : (r1P1; � � � ; rKPK) 2 C(P1; � � � ; PK)g

where C(P1; � � � ; PK) is the standard Shannon capacity region with average
constraints E[jXkj

2] � Pk for all k. In particular, for additive channels the
computation of U boils down to the computation of the single-user capacity
per unit cost. The single-user capacity per unit cost is the inverse of the
minimum transmit energy per reliable information bit. Minimum transmit
energy per reliable information bit. is of particular importance in the case
of system working in low-power regime, also called wideband regime.

Description of other interesting results on multiple access channels can be
found in [5] and references therein. Among those the characterization of the
capacity region for channels with ISI [15], for channels with feedback [16]
and for arbitrarily varying channels [4]. For the non-ergodic case, relevant
\rate measures" are the outage capacity [2] and delay limited capacity [3].
We do not mention these results only because we shall not refer to them in
the sequel of the work.

1.3.2 .. and what Information theory does not consider

From the overview on ergodic capacity we gave in the previous section, it is
clear that the implementation of capacity achieving strategies in practical



24 Chapter 1 Multiple-access communication over fading channels

systems performs poorly when average delay and fairness among users is con-
cerned. Moreover, the model adopted for multiple-access channels assumes a
�x number of users who transmit continuously. In other words, information
theory has always neglected the bursty nature of sources and the role of delay
and concentrated on the tradeo� rate-power, while communication network
has mainly focused on random arrival and collision resolution [17, 18].

In common models for communication network, a user accesses the chan-
nel when it has a message to transmit. An attempt to analyze the case where
only a subset of the whole population of users may be active, is the so called
\L-out-of-K multiple-access channel" model [19]. Here, at most L out of
potential K users are simultaneously active, and the achievable reliable rate
region, irrespective of the identity of the active users, is of interest. This
model is motivated in a sense by random-access aspects, but it does not cap-
ture the fact that the number of transmitting users might itself be random
and not �xed. Rather, it can be thought as an upper bound to the number
of active users and the derived region as a worst case achievable rate region.

To maintain a �xed �nite delay over fading channels, two information-
theoretic approaches have been considered: outage capacity [2] and delay
limited capacity [3]. The �rst consider the code-word rate as a random
variable which depends on the fading current value. If the rate is smaller
the actual transmission rate then an error (outage) occurs, otherwise the
error probability behaves according to the error exponent. In the second
case, power control is used to invert the channel so that the receiver sees an
unfaded channel so that transmission rate is keep constant. The drawback
of this approach is that certain channels, like a Rayleigh fading channel,
cannot achieve any positive rate with �nite average transmit power.

A remarkable attempt to combine information theory and communica-
tion network is due to Telatar and Gallager [20]. In [20] the multi-user
system is assimilated to a processor-sharing system and model as a single-
server queue. The service time required by the users is determined by con-
sidering the error exponent. The stability region is derived as well as the
average delay for several di�erent SNR. There are a certain number of re-
cent works that bring information theory concepts into the communication
network community, in particular Berry and Gallager [21], and Bettesh and
Shamai [22, 23]. These works treat the single user-case and are concerned
with the minimization of the average bu�er length, and hence the average
delay, with a given average power constraint.

Although, an ever-growing number of researchers in the information the-
oretic community looks at communication network problems, the \union
between those two �elds remain unconsumed" [18].
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1.4 Thesis outline

From what summarized in the previous two sections, it emerges that incor-
porating \practical" system features into information theoretic models is a
challenging open problem. It was precisely the idea of addressing this prob-
lem what we had in mind when three years ago this work started. We were
interested in studying of the impact of delay constraints on the performance
of multiple-access channels with fading. We analyzed the problem from two
almost complementary point of view and those two views are reected in
the division in two parts of this report.

Part I. In Part I, inspired by the tutorial paper of Ephremides and Ha-
jek [18] and the pioneer work of Telatar and Gallager [20], we study a simple
multi-access system where users access at random the channel whenever they
have data to transmit. Due to random activity, users cannot be coordinated
and hence the systems operates in a completely decentralized way. The
senders transmit at constant power and constant rate, since no channel state
information is available at the transmitters. The decoder performs single-
user decoding (interfering users are treated as noise). In such a system,
users retransmit negatively acknowledged packets until successful decoding
take place or a time-out expires. The introduction of a time-out models
the fact that information is delay-sensitive and hence, if a packet is not
received within a given maximum delay, the information becomes useless.
To improve decoding at the receiver side, previously received packets are
not discarded, but are combined in order to improve decoding at the next
decoding attempt.

Many works are available in literature on repetition protocols in con-
junction with packet combining techniques. All of them analyze a particu-
lar co-decoding scheme and the related results may not be easily extended
to systems with di�erent parameters. Here, we use information theoretic
notions, like random coding and typical set decoding, for the analysis of
the the throughput of three di�erent protocols. Therefore, our results are
independent of a particular co-decoding scheme and must be looked at as
limiting performance in the usual information-theoretic sense.

In particular:

� In Chapter 2 we show that typical set decoding has very desirable prop-
erties for Hybrid-ARQ, in the limit for large product bandwidth code-
word duration. From a renewal-reward theory approach, we obtain
closed-form throughput formulas for three simple protocols: a gener-
alization of slotted Aloha (ALO), a repetition time diversity scheme
with maximal-ratio packet combining (RTD) and an incremental re-
dundancy scheme based on progressively punctured codes (INR).

Then, we analyze the e�ect of delay and rate constraints on the through-
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put, as well as the limiting behavior with respect to the slot spec-
tral e�ciency, the channel load and the transmit SNR. Interestingly,
all three protocols are not interference-limited, and achieve arbitrar-
ily large throughput by simply increasing the transmit power of all
users. Furthermore, for an optimal choice of the transmission rate the
INR protocol achieves the ergodic rate of the underlaying block-fading
channel.

Publications related to this chapter are:
[24] G.Caire and D.Tuninetti, \ARQ Protocols for the Gaussian Col-
lision Channel", in Proceedings 2000 IEEE International Symposium
on Information Theory (ISIT2000), Sorrento (Italy), June 2000;
[25] G.Caire and D.Tuninetti, \The throughput of Hybrid-ARQ pro-
tocols for the Gaussian collision channel", in IEEE Transactions on
Information Theory, Volume n.47 Issue n.5, July 2001, Pages 1971-
1988.

� In Chapter 3 we compare the performance of systems that imple-
ments, at MAC layer, one of the three di�erent Hybrid-ARQ pro-
tocols analyzed in Chapter 2 and emploies, at physical layer, di�er-
ent receiver/decoding strategies. The chosen performance measure is
maximum throughput versus average energy per successfully received
information bit. In particular, we consider either single-user decoding
based systems, as the system introduce in Chapter 1 and a random
spread DS-CDMA system, as well as systems based on joint decoding,
as successive cancelation and full joint decoding. In carrying out the
optimization of the throughput with respect to the various systems
parameters we get insight into optimal of the transmission rate (pa-
rameter depending on the users) and of the average channel load (value
that must be kept close to its optimum by an appropriate admission
control system).

We show that the unspread system outperforms SUMF DS-CDMA,
which is throughput-wise limited, but it is outperformed by MMSE
DS-CDMA. All the systems have the same behavior in terms of through-
put and of optimal system parameters. In the low Eb=N0 regime, the
optimized throughput is the same for all the systems and coincides
with that of a SUMF DS-CDMA, achieved by an in�nite number of
users per degree of freedom transmitting at vanishing rate. In the
high Eb=N0 regime, while SUMF DS-CDMA is interference limited,
the other systems are not. For this range of Eb=N0 the optimized
systems \self-orthogonalize", in the sense that optimal throughput is
achieved by having on the average only one user per degree of freedom,
i.e., one user per chip for the DS-CDMA and one active user per slot
for the unspread system. All the SUD-based systems are outperformed
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by MUD-based systems.

Our publications related to this chapter are:
[26] D.Tuninetti and G.Caire, \The optimal throughput of some wire-
less multi-access systems", in Proceedings 2001 IEEE International
Symposium on Information Theory (ISIT2001), Washington DC (USA),
June 2001;
[27] D.Tuninetti and G.Caire, \The optimal throughput of some wire-
less multi-access systems", to appear in IEEE Transactions on Infor-
mation Theory.

Part II. In the second part, we take a somewhat complementary point
of view with respect to Part I. We consider a completely centralized and
coordinated system, where users are active all time, know the channel state
and allocate rate and power according to the channel state in order to be
always inside the fading dependent capacity region. We assume that the
fading dynamics is slow with respect to the tolerable decoding delay, and
hence code-words are a�ected by a �nite number of di�erent fading states. In
contrast to capacity achieving coding strategies for ergodic channel, or \clas-
sical" approaches to deal with �xed code-word duration, like outage analysis
or delay limited analysis, where the desired performance is achieved by con-
stant rate transmission, here we consider a variable rate coding scheme.
Since the transmission rate is a random variable, we de�ne and characterize
the \long-term average capacity region" as well as its asymptotic behavior
for increasing (laxer) delay. Due to causal nature of feedback, the solution
is given in terms of Dynamic Programming algorithm.

In particular:

� In Chapter 4 we formally de�ne our variable rate coding scheme and
give a characterization of the boundary of the corresponding long-time
average capacity region.

We prove that long-term average capacity is achieved, for delay equal
to one slot, by constant power allocation, while, when the delay con-
strain is relaxed, the optimal causal policy tends to the optimal er-
godic policy without delay constraint and non-causal channel state
information [13]. Moreover, our setting gives the correct trade-o� be-
tween peak-to-average constrained systems and complete freedom in
the power allocation. Furthermore, it proves that past and future
channel knowledge are immaterial when the delay constraint is not
too severe.

In a system characterized by energy limitation at the transmitter, a
sensible design criteria is to look at the long-term average capacity
per unit energy. We show that in this case the optimal power policy is
\one-shot", i.e., the optimal policy concentrates all the energy in only
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one of the fading states. That state is chosen on the basis of not only
its strength, but also how likely it is that a more favorable fading state
will appear before the end of the code-word.

Our publications related to this chapter are:
[28] D.Tuninetti and G.Caire. \The long-term average capacity region
per unit energy", in the Proceedings of the Thirty-�fth Annual Asilo-
mar Conference on Signals Systems and Computers (Asilomar2001),
Paci�c Grove (USA), November 2001;
[29] D.Tuninetti and G.Caire. \The long-term average capacity re-
gion per unit energy with application to protocols for wireless sen-
sor networks", in Proceedings of the 2002 European Wireless Confer-
ence (EW2002), Firenze (Italy), February 2002. Best Student Paper
Award.

� Since in the low-energy regime or wideband regime, it is not enough
to look at capacity per unit cost, in Chapter 5 we study the wideband
slope of the spectral e�ciency curve at the point of minimum energy
per bit (the inverse of the capacity per unit energy). We extend the
single-user wideband analysis to the multi-user case by introducing the
notion of wideband slope region. We show that the \one-shot" policy,
that achieves capacity per unit energy, is also optimal in the sense of
wideband slope.

Our publications related to this chapter are:
[30] S.Verd�u and G.Caire and D.Tuninetti, \Is TDMA optimal in the
low power regime?", in Proceedings of the 2002 IEEE International
Symposium on Information Theory (ISIT2002), Lausanne (CH), June
2002;
[31] D.Tuninetti and G.Caire and S.Verd�u, \Fading multiaccess chan-
nels in the wideband regime: the impact of delay constraint", in Pro-
ceedings of the 2002 IEEE International Symposium on Information
Theory (ISIT2002), Lausanne (CH), June 2002;
[32] D.Tuninetti and G.Caire and S.Verd�u, \The impact of delay con-
straint and causal feedback on the wideband performance of block-
fading multiple-access channels", submitted to IEEE Transactions on
Information Theory, February 2002.

Chapter 6 concludes the report by briey summarizing the main results
our our work.
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Chapter 2

Retransmission protocols for

multi-user channels

In this �rst part of the thesis, we take an information-theoretic view of some
simple protocols for reliable packet communication based on Hybrid-ARQ
(Automatic Retransmission reQuest) over a slotted multi-user channel with
noise and fading and study the system throughput and average delay. As an
application of the Renewal-Reward theorem, we obtain closed-form through-
put formula and then we consider its optimization with respect to the var-
ious system parameters. Since random coding and typical set decoding are
assumed throughout the whole work, our results are independent of the partic-
ular coding/decoding technique and should be regarded as limit performance
of the system in the information theoretic sense. We conclude the chap-
ter with some considerations on practical implementation of Hybrid-ARQ
strategies.

2.1 Introduction

In order to support new services (e.g., wireless mobile access to the Internet),
next generation wireless communication systems will implement packet-
oriented data transmission in addition to standard mobile telephony [33].
This implies bursty sporadic communication from a large population of
users, that may require instantaneous large data rates and very small er-
ror probabilities for a short time. Motivated by the above consideration,
we take an information-theoretic view of some simple protocols for reliable
packet communication based on \Hybrid-ARQ", i.e., on combining channel
coding and Automatic Retransmission reQuest (ARQ) [34, 35].

31
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As remarkably well illustrated by Ephremides in [18], information theo-
retic techniques are not yet of widespread use in the domain of networking.
Steps in this direction are represented by the work of Shamai and Wyner on
cellular systems [36, 37] and of Telatar and Gallager [20]. In [20], the mul-
tiple access Gaussian channel is assimilated to a processor-sharing system
and is analyzed as a queue with single server and an in�nite bu�er length.
The required service time for each user is de�ned in terms of random coding
bound on the error probability. A code-independent analysis of the mean
transmission duration is obtained as an application of Little's Theorem [38].

Our work is mainly inspired by [20]. We study a system where users
transmit their signal bursts in a completely uncoordinated way (user random
activity) and where the transmission is governed by an Hybrid-ARQ proto-
col, designed to cope with background noise, fading and interference from
other users (or \collisions", following the terminology introduced in [39]).

In packet data transmission two techniques are commonly used to con-
trol transmission errors: Forward Error Correction (FEC) and Automatic
Retransmission reQuest (ARQ). With FEC, channel coding is used with the
purpose of correcting the errors introduced by the channel before deliver-
ing, irrespectively of whether the errors have been successfully corrected,
the packet to the end-user/application. With ARQ, a code is used to detect
errors. When a packet is detected in error, the transmitter is informed via a
feedback channel of the transmission failure and it is asked to retransmit the
same packet. Retransmissions go on until the packet is positively ACKnowl-
edged (ACK) by the receiver. The choice between these two strategies is
dictated by the system constraints. ARQ is simple, provides high reliability
(low probability of decoding error) but the throughput (number of infor-
mation bits successfully delivered per unit of time) is not generally high
and the latency (time interval between packet generation and its successful
decoding) is large due to the repetition mechanism. On the other hand,
FEC has a constant throughput, since a message is always delivered, but
the reliability is quite low since it is possible that a wrong message is passed
to the end-user [34]. For these reasons the two strategies are employed in
di�erent contest: FEC is used when a feedback channel is not available,
delay requirements are strict and the probability of error needs not be very
small, while ARQ is used when delay constraints are not so stringent but a
small error rate is required.

FEC and ARQ can be combined together in what is called Hybrid-ARQ.
In literature, several types of Hybrid-ARQ protocols have been proposed
(see [34, 35] and references therein): Type I Hybrid-ARQ uses one code
to detect and simultaneously correct errors, always the same packet is re-
transmitted; Type II Hybrid-ARQ uses two codes: one high rate code to
detect errors and one low rate code to detect and correct errors, informa-
tion and redundancy are alternatively retransmitted but only the last two
received packets are taken into account for decoding; Type III Hybrid-ARQ
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uses a code like Type II but only the redundancy part is retransmitted and
the previously received packets are combined together in order to gener-
ate a code with lower rate. Packet combining can be based on hard deci-
sions [40, 41, 42, 43, 44] or on soft channel outputs [45, 46, 47, 48], e.g.,
maximal-ratio, equal-gain or selection combining.

Type III Hybrid-ARQ can be generalized by generating several di�erent
redundancy packets from the same information bits and by sending them at
each retransmission request. For example, soft decoding of maximal-ratio
combined packets can be seen as an elementary form of generalized Type
III Hybrid-ARQ, based on soft-decoding of a repetition code of variable
length. Example of generalized Type III Hybrid-ARQ that employ di�erent
codes are [49, 47, 50]. In [49], a family of codes, called Rate Compatible
Punctured Convolutional Codes, is designed so that all code bits of any
code of the family are used by all lower rate codes. Transmission starts
with the higher rate code and further coded bits are provided whenever
necessary by using lower rate codes. Since each high rate code is part of a
lower rate code, all codes can be decoded with the same decoder. In [47, 50]
Compatible Punctured Convolutional Codes are introduced. All the codes
of the family are derived from the same mother code, all have the same
rate, the same distance property and give the original mother code when
combined together. At each transmission the decoder tries to recover the
information message from the last received packet and only in the case where
a non-correctable error is detected, the last received packet is combined with
the previous ones. More recently, Turbo-codes [51] have been suggested as
candidates for packet combining, exploiting the fact that they are systematic
and produce incremental redundancy by puncturing the parity bits [52] or
by changing the interleaver [53].

Analysis of Hybrid-ARQ protocols in terms of throughput, error rates
and delay can be found in [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]. Most
works carry out a \separated analysis", i.e., consider a completely symmetric
system with respect to any user, and study the behavior of the protocol for
a particular reference user modeled as a Markov chain. In general, analysis
depends on the type of codes and decoding/error-detection technique em-
ployed. Modeling the system as Markov chain might be complicated, since
in each state one must convey all the information about the memory of the
system. In [65], Zorzi proposes the use of renewal theory [66] in order to
analyze ARQ protocols.

In this chapter we take an information theoretical view of some retrans-
mission protocols in a scenario characterized by user random activity and
time-sensitive information which imposes a maximum decoding delay. We
assume that users transmit their signal in a completely uncoordinated way
and access the channel at random, like in slotted Aloha systems [38]. Even
though any point in the capacity region of multiple access channels can be
implemented with low complexity by successive \stripping" [67], this re-
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quires a good deal of coordination among the users [13, 3, 68] that may
not be suited to random user activity, hence we assume that the receiver
is formed by a bank of single-user decoders, and does not implement joint
decoding, i.e., each decoder treats the signals from other users as noise.
We study the system performance in terms of throughput and average de-
lay for three simple idealized protocols: a coded version of slotted Aloha
(Type I Hybrid-ARQ with user random activity), a repetition scheme with
maximal-SINR (Signal to Interference plus Noise Ratio) packet combining
(Type III Hybrid-ARQ with user random activity) and an incremental re-
dundancy scheme with general coding (generalized Type III Hybrid-ARQ
with user random activity). By applying the renewal-reward theorem [66],
we obtain a closed-form throughput formula under a delay constraint and
code rate constraint for a completely symmetric system. Since we consider
random coding and typical set decoding, our results are independent of the
particular coding/decoding technique and should be regarded as a limit in
the information theoretic sense.

We derive closed form throughput formulas for all the three protocols,
then we carry out their optimization with respect to the di�erent system
parameters. Interestingly, we show that the ARQ system is not interference-
limited even if no multi-user detection or joint decoding is used, i.e., arbi-
trarily high throughput can be obtained simply by increasing the transmit
power of all users, as opposed to conventional CDMA where the throughput
tends to a �nite limit as all users increase their transmit power [69, 70]. As
a byproduct of this analysis, we provide a stronger operational meaning to
the information outage probability of block-fading channels and we obtain
the closed form probability distribution of SINR with Rayleigh fading and
a Binomial- and Poisson-distributed number of interferers, extending the
result of [37].

The rest of the chapter is organized as follows: in Section 2.2 we de-
scribe the system model; in Section 2.3 we deal with typical set decoding
and error detection; in Section 2.4 we derive the system throughput and
we prove that our Hybrid-ARQ strategy is not interference limited; in Sec-
tion 2.5 we �nd the throughput for an unconstrained system; in Section 2.6
we present the optimization with respect to the transmission rate and in
Section 2.7 we discuss some issues about the practical implementation of
the proposed Hybrid-ARQ protocols. The proofs of the results are provided
in the Appendices at the end of the chapter.

Our publications related to this chapter are:
[24] G.Caire and D.Tuninetti, \ARQ Protocols for the Gaussian Collision
Channel", in Proceedings 2000 IEEE International Symposium on Informa-
tion Theory (ISIT2000), Sorrento (Italy), June 2000;
[25] G.Caire and D.Tuninetti, \The throughput of Hybrid-ARQ protocols for
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the Gaussian collision channel", in IEEE Transactions on Information The-
ory, Volume n.47 Issue n.5, July 2001, Pages 1971-1988.

2.2 The slotted Gaussian channel with feedback

In the system under investigation, K users share a common radio channel of
bandwidth W in order to transmit their information messages to a common
receiver. Users are provided with a common time reference. The time axis
is divided in slots of duration T and users transmit signal bursts of duration
slightly less than T , aligned with the slots. Apart from the slotted trans-
mission mode, users are completely uncoordinated. Each user can transmit
about L = bWT c independent complex symbols over one slot (assuming
WT � 1 [1] 1). The received signal over slot s can be written as

ys =
X

k2K(s)
ck;sxk;s + �s (2.1)

where K(s) � f1; : : : ; Kg denotes the set of active users over slot s, �s is
a proper complex Gaussian random vector of dimension L with i.i.d. (inde-
pendent and identically distributed) components of zero mean and variance
N0, xk;s is the complex signal of user k transmitted in slot s with constant

average energy Ek
�
= E[jxk;sj

2=L], ck;s is the complex fading coe�cient for
user k assumed constant (block-fading model [2]) over the whole slot with

instantaneous power �k;s
�
= jck;sj

2, i.i.d. for all s and k, with cdf (cumula-
tive distribution function) F�(x). For �nite L no positive rate is achievable.
However, we can consider a sequence of channels indexed by the slot length
L and study the achievable rates in the limit for L!1. This is a standard
mathematical abstraction in the study of the limit performance of block-
fading channels [2] and it is motivated by the fact that, in many practical
applications, the product WT is large and T is much smaller than the fading
coherence time. 2

User k encodes its information messages, of b bits each, independently
of other users, by using a channel code with code book Ck � C

LM of length
LM over the complex numbers, where M is a given integer. Code-words are
divided into M sub-blocks of length L, each of which is modulated into a

1For large WT , a complex symbol (or dimension) can be transmitted approximately
in one second and one Hz. More precisely, the spectral e�ciency expressed in bit/s/Hz
can be obtained by multiplying the coding rate (bit/complex-symbol) by the modulation
spectral e�ciency (expressed in complex-symbols/s/Hz), that depends on the modulation
excess bandwidth [71].

2For example, in the 3rd generation UMTS standard a packet-radio random access
scheme is supported with variable slot duration 0:625 � T � 10 ms, bandwidth W = 5
MHz [72] and modulation spectral e�ciency up to 0:2, obtained by using direct-sequence
spread-spectrum modulation with raised-cosine pulses with roll-o� 0:22. This means that
L = b0:2WTc is between 625 and 10000 complex symbols per slots.
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signal burst and is transmitted over one slot. We let Ck;m, form = 1; : : : ;M ,
denote the punctured code of length mL obtained from Ck by deleting the
last M �m sub-blocks.

Each user selects the slots for transmission according to its own time-
hopping random sequence, independently of the other users [73]. Time-
hopping sequences can be seen as random \on-o�" processes, where a user
can transmit only when it is \on". We assume that the receiver knows a
priori the time-hopping rule of all users in the system [73]. 3 Transmission is
governed by the following retransmission protocol, run in a decentralized way
by each user k. When a new code-word is ready for transmission, user k sends
the �rst L symbols on the �rst allowed slot, say s1, according to its time-
hopping rule. The receiver decodes the code Ck;1 by processing the received
signal ys1 . If decoding is successful, a positive acknowledgment (ACK) is
sent back to user k over an error-free and delay-free feedback channel and
the transmission of the current code-word stops. On the contrary, if the
receiver detects an error, a negative acknowledgment (NACK) is sent. In
this case, user k sends the second block of L symbols of the same code-word
on the next allowed slot, say s2. Now, the receiver decodes the code Ck;2
by processing the received signal blocks fys1 ;ys2g. Again, if decoding is
successful an ACK is sent and the transmission of the current code-word
stops. On the contrary, if a decoding error is detected, a NACK is sent back
and user k transmits the third block of L symbols of the same code-word on
the next allowed slot. The process goes on this way: after the transmission
of m bursts of the current code-word, code Ck;m is decoded by processing

the received signal fys : s 2 Sk;mg, where Sk;m
�
= fs1; : : : ; smg denotes

the sequence of slots where transmission of user k took place. If successful
decoding occurs at the m-th transmission, the e�ective coding rate for the

current code-word is R=m bits/s/Hz, where R
�
= b=L. In the sequel we shall

refer to R as information rate.

In general, the slots s 2 Sk;m are non-adjacent. We let n denote the
delay (expressed in number of slots) between the instant where a code-word
is generated and the current time (time ticks at the slot rate). Obviously,
m � n (see Fig. 2.1). In any practical application, an information message
must be delivered to the receiver within a maximum delay of N slots, where
for simplicity N is assumed common to all users and all messages. If success-
ful decoding does not occur within delay N , the message becomes useless.
Moreover, since the code-words of Ck have M sub-blocks, the same message
can be transmitted in at most M signal bursts. If successful decoding does

3This assumption is not particularly restrictive, and is analogous to the standard as-
sumption of CDMA with pseudo-random \long" spreading [74], where the receiver is
assumed to know the spreading sequences of all users it wishes to decode. In practice,
we might think of an access mechanism, run at a much slower time-scale than packet
transmission, that assigns to new users entering the system a time-hopping sequence.
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n = 8

m = 4

Code word
generation time

Current time

Figure 2.1: Example: m = 4 transmitted bursts (shadowed) over n = 8 slots
since the current code-word generation.

not occur within M transmitted bursts, the message is lost. We shall refer
to N and M as the \delay" and \rate" constraints, respectively. The trans-
mission of a code-word can stop in three cases: i) Successful decoding occurs
at the m-th transmitted burst and in n slots, with m � M and n � N ; ii)
No successful decoding occurs afterM transmitted bursts and n � N slots;
iii) No successful decoding occurs after N slots and m � M transmitted
bursts.

There are several ways to handle transmission failures (cases (ii) and
(iii) above). For example, in the case of time-sensitive information, the
current message is simply discarded. In other applications, delay is not
a strict requirement (N is very large) and the current message may be
kept in the transmission bu�er for a later attempt. Several practical ARQ
protocols have been proposed to handle transmission failures (see references
in Section 2.1). The analysis carried out in the following considers the
simpli�ed scenario where an in�nite sequence of messages is available to
all users and, in the case of transmission failure, the current message is
discarded and the next message is encoded and transmitted in exactly the
same way. Since in our model there is not a packet arrival process, we are
not concerned with instability and input bu�er overow, typical \problems"
of classical analysis of Aloha protocols. The time-hopping sequence for slot
selection is not modi�ed by transmission failures (e.g., there is no idle state,
waiting for better channel conditions). It is important to notice that each
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user runs its own ARQ protocol independently of the other users. The only
way in which users inuence each others is through mutual interference that
occurs when several users transmit their bursts over the same slot.

The single-user decoder for user k has perfect knowledge of the channel
gain f�k;s : s 2 Sk;m ; k 2 K(s)g

�k;s
�
=

�k;sEk
N0 +

P
j2K(s):j 6=k �j;sEj

(2.2)

Estimation of the channel gains can be accomplished in practice with high
reliability by inserting training symbols into each signal burst, as currently
done in most CDMA and TDMA cellular standards [75], at the price of a
slight rate loss.

The ARQ protocol described above is a general incremental redundancy
scheme (denoted by \INR" for brevity). We consider also the following par-
ticular cases.
Generalized Slotted Aloha. The slotted Aloha protocol [38] (denoted by
\ALO" for brevity) is obtained by assuming for each user k a suboptimal
decoder that considers only the last received signal block. In classical slotted
Aloha it is assumed that a decoding failure occurs (and is detected) when-
ever a collision occurs. In mobile systems, users might be received at very
di�erent power levels because of fading, shadowing and di�erent distances
from the receiver. In this case, a packed can be decoded successfully even if
a collision occurs (capture e�ect) [64]. Here, we consider a generalized ALO
where channel coding is used and messages may be decoded correctly even
in the presence of collisions, depending on the SINR.
Repetition time-diversity. A simple time-diversity scheme (denoted by
\RTD" for brevity) is obtained by repeating the same burst of L sym-
bols [45, 46] randomly interleaved at each retransmission. This is equivalent
to construct the user code Ck as a concatenated code, where Ck;1 � C

L is the
outer code and a simple repetition code of length M is the inner code. After
the m-th transmission, the receiver performs maximal-ratio combining [45]
of the de-interleaved signals and decodes the outer code Ck;1 based on the
combined signal.

2.3 Coding, decoding and error detection

We assume that all code books Ck are generated randomly and indepen-
dently, with i.i.d. components, according to a given pdf q(x) over C with
mean zero and variance Ek. For each user, an encoding function  k :
f1; : : : ; eRLg ! Ck is de�ned and revealed to the receiver.

A key point of the ARQ schemes described in Section 2.2 is that decoding
errors should be detected. Any complete decoding function, based on a parti-
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tion of the channel output space into eRL regions (e.g., MAP decoding or ML
decoding), is not suited to this purpose, unless an explicit error-detection
stage after channel decoding is introduced (e.g., in many cellular systems
a CRC is inserted into the information message [35, 75]). This however is
undesirable since it decreases the throughput by adding extra redundancy.
An alternative is the use of possibly suboptimal decoders in terms of error
probability, but featuring a built-in error detection capability. Moreover, it
is desirable to decode all punctured codes Ck;m, for m = 1; : : : ;M , by the
same decoder.

In particular, we examine the following error correction/detection scheme.

Consider decoding for user k after m received blocks, and let x
(w)
k =  k(w)

be the transmitted code-word corresponding to information message w.
The decoder adds to the received signal fys : s 2 Sk;mg other M � m
dummy signal blocks zi, generated independently of the received signal, 4

to form the observation Y = (ys1 ; : : : ;ysm ; z1; : : : ; zM�m) of length LM ,
and then decodes the \mother code" Ck according to the typical set rule
�k : C

LM ! f1; : : : ; eRL; eg (see [1] and Appendix 2.A for details) de�ned
as follows:
Let Ew be the event that x

(w)
k is the unique code-word jointly typical with

Y. Then,

� �k(Y) = bw if, for some bw 2 f1; : : : ; eRLg, the event E bw occurs.

� �k(Y) = e in any other case.

Since decoder k treats all other user signals as additive noise, it \sees" a
virtual additive noise channel given by

ys = ck;sxk;s + vk;s (2.3)

where

vk;s = �s +
X

j2K(s):j 6=k
cj;sxj;s (2.4)

is the interference plus noise vector. We let pk;s(yjx) denote the single-
letter transition pdf of the above channel (2.3), conditioned on the chan-
nel gains fcj;s : j 2 K(s)g and on the set of active users K(s), and we
de�ne I(q(x); pk;s(yjx)) to be the mutual information (per letter) of chan-
nel (2.3), expressed as a functional of the pdfs q(x) and pk;s(yjx). Obviously,
I(q(x); pk;s(yjx)) varies randomly from slot to slot, since it depends on the
random set K(s) and on the random channel gains fcj;s : j 2 K(s)g.

4In practice, in decoding of punctured convolutional codes dummy symbols are set to
zero, but in the limiting case considered here it is su�cient that they are statistically
independent of the channel input.
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We examine the behavior of codes Ck;m with decoder �k de�ned above,

for a given sequence of channel transition pdfs P
�
= fpk;s(yjx) : s 2 Sk;mg.

The average error probability is de�ned by

Pr(errorjP;Ck)
�
= e�RL

eRLX
w=1

Pr(Ewjw;P;Ck)

A decoding error when message w is transmitted is not detected if, for somebw 6= w, the event E bw occurs. Then, the average probability of undetected
error is de�ned by

Pr(undetected errorjP;Ck)
�
= e�RL

eRLX
w=1

Pr

0@ [
bw 6=w

E bw

������w;P;Ck
1A

The following results, proved in Appendix 2.A, show that the typical set de-
coder de�ned above is asymptotically optimal for both error and undetected
error probabilities, for large burst length L:
Lemma 1 (achievability). For all � > 0 there exist L and codes Ck 2 C

LM

of size eRL with

Pr(errorjP;Ck) < �

for all m = 1; : : : ;M and channel sequences P such thatX
s2Sk;m

I(q(x); pk;s(yjx)) > R }

Lemma 2 (converse). For all channel sequences P such thatX
s2Sk;m

I(q(x); pk;s(yjx)) < R

then

Pr(errorjP;Ck;m)! 1

for any code Ck;m 2 C Lm of size eRL as L!1. }
Lemma 3 (error detection). For all � > 0 and channel sequences P there
exists L such that any code Ck 2 C

LM of size eRL satis�es

Pr(undetected errorjP;Ck) < � }

The optimal input distribution q(x) of the interference channel (2.3) is
not known in general [1]. For the sake of mathematical tractability, we con-
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sider (somewhat arbitrarily) proper complex Gaussian inputs for all users. 5

Then, the mutual information takes the form

Ik;m
�
=

X
s2Sk;m

log(1 + �k;s) (2.5)

From the above results we have that, by using Gaussian codes and typi-
cal set decoding at each step m of the ARQ protocols of Section 2.2, the
probability of decoding error is arbitrarily small if R < Ik;m, very large if
R > Ik;m and decoding errors are detected with arbitrarily large probability,
for su�ciently large L. Practical future system for mobile data transmis-
sion will be characterized by a very large value of the product WT , in order
to support large instantaneous bit rates. This motivates a system analy-
sis under the assumption of very large L. In this regime, we shall assume
that, for all k and m, Pr(errorjR < Ik;m) = 0, Pr(errorjR � Ik;m) = 1 and
Pr(undetected error) = 0.

In analogy to what done above for the INR scheme, we can de�ne random
coding and typical-set decoding for ALO and RTD. For the sake of brevity,
we state without details that, as L ! 1, also for these schemes there
exist codes for which Pr(errorjR < Ik;m) and Pr(undetected error) vanish
and Pr(errorjR � Ik;m) goes to 1, provided that the correct expression for
the mutual information is used. In RTD, the received signal (2.3) takes
the form ys = ck;s�k;sxk + vk;s, since at each retransmission request the
same codeword xk is sent after being randomly interleaved with the random
permutation matrix �k;s. The deinterleaved received vector seen by the
k-th decoder on slot s is then ��1

k;sys = ck;sxk +��1
k;svk;s, for vk;s being the

interference due to the other active users on slot s and the background noise
(see de�nition in (2.4)). Assume now that user k was active on slots s and
slots `, i.e., fs; `g � Sk;m for some m � 2, as well as another user j, i.e.,
fk; jg � K(s) \ K(`). Now, the covariance matrix of the j-th user signals
xj;s and xj;` is zero only if on slot ` user j was not attempting to retransmit
codeword xj;s. In case of retransmission, the two signals are identical, i.e.,
xj;s � xj;`. Hence, E[xj;sxHm;`] = EjIL 1fxj;s � xj;`g where IL is the L� L

identity matrix. With the random permutation �k;s, the vectors ��1
k;svk;s

for all s 2 Sk;m are independent in the limit for large L. 6 This can be easily

5From the point of view of a practical implementation, it is interesting to access the
limiting performance of Hybrid-ARQ schemes with input alphabets of �nite cardinality.
Lemmas 1, 2 and 3 remain valid provided that the correct expression for the mutual
information is used. For example, in [76] the authors replicate the results of [24] in the
case of codes mapped over BPSK by considering the mutual information of symmetric
binary-inputs block-fading AWGN channel [77] instead of (2.5).

6The mutual information I(y;x) between a scalar Gaussian input x of variance �2x and
a vector of observations y = cx+ v, where the noise v is independent of x and Gaussian
with covariance matrix �v = E[vvH ], is given by I(y;x) = log(1+ �2xc

H��1
v c), assuming

the vector c known. If �v is diagonal then I(y;x) = log
�
1 + �2x

P
i

jcij
2

[�v]i;i

�
.
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seen by

E[�
�1
k;svsv

H
` �

�1
k;` ]

= E

24��1
k;s

24 X
j 6=k : j2K(s)

cj;s�j;sxj;s + �s

3524 X
m6=k :m2K(`)

c�m;`x
H
m;`�

H
m;` + �H`

35��H
k;`

35
= N0 1fs = `g IL + E

24��1
k;s

X
j 6=k : j2K(s)\K(`)

cj;sc
�
j;`

�
�j;sxj;sx

H
j;`�

H
j;`

�
��1
k;`

35
=

(
N0 IL +

P
j 6=k : j2K(s) jcj;sj

2Ej IL s = `P
j 6=k : j2K(s) cj;sc

�
j;`Ej 1 fxj;s = xj;`g

1
L1L s 6= `

since E[�] = 1=L 1L where 1L is the L�L matrix made of all 1. Therefore,
the mutual information between xk and the vector ySk;m = [��1

k;sys : s 2
Sk;m] in the limit for large L is given by

Ik;m = log
�
1 +

X
s2Sk;m

�k;s

�
(2.6)

ALO takes into account only the most recent received signal burst, there-
fore the corresponding Ik;m is given by

Ik;m = log(1 + �k;sm) (2.7)

Remark: Bounded distance and iterative decoding. Obviously,
the typical set decoder considered above is not suited for practical imple-
mentations. However, it is interesting to notice that some non-ML practical
decoding schemes show a behavior similar to the typical-set decoder. For
example, bounded-distance decoding [78] outputs the message w if the re-
ceived signal falls inside a sphere centered on the code-word corresponding
to w, while if the received signal is not in any sphere, an error message e is
declared. Another example is provided by the iterative decoding scheme [79]
used to decode Turbo-codes. The component codes of the Turbo-code are
individually decoded by symbol-by-symbol soft-in soft-out decoders shar-
ing and updating some common information about the reliability of the
symbol-wise decisions. Typically, if the code-word is correctly decoded all
component decoders agree on the symbol-wise decisions, while in the pres-
ence of decoding errors the decoders keep on reversing the symbol decisions
at each iteration [80]. This ill behavior, as well as the low reliability for
some symbols, can be used as error indicators [81].

Remark: analogy with the block-fading channel. Under the as-
sumption of Gaussian user code made here, the channel model(2.3) is totally
analogous to the block-fading AWGN channel with perfect channel state in-
formation at the receiver introduced in [2]. In [2], decoding is always per-
formed after M blocks and the probability of decoding failure for large L is
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given by Pr(Ik;M � R), and is referred to as information outage probability.
Outage probability �nds a very natural interpretation as the limiting error
probability for large block length averaged over the random coding ensem-
ble and over the fading states [82]. A question left open in [2] and in many
subsequent works is whether it exists a code sequence (for increasing values
of the block length L) with error probability arbitrarily small for all fading
states such that Ik;M > R. Notice that this is not a trivial question, since
if the choice of the code sequence depends on the particular fading state,
outage probability would not be achievable (it would require side informa-
tion at the transmitter). The existence of codes asymptotically good for all
fading states satisfying Ik;M > R is given by Lemma 1 (see the details of
the proof in Appendix 2.A). In this respect, information outage probability
is not just an average probability of error over a code ensemble, but it can
be approached by a given (deterministic) sequence of codes.

2.4 Throughput analysis

In this section we compute the throughput of the ARQ protocols of Sec-
tion 2.2 with the coding and decoding scheme of Section 2.3, in the limit for
large L. Our analysis is valid under the following idealized assumptions:

1. An in�nite number of information messages is available for each users.
As soon as a user stops the transmission of the current code-word, it
encodes the next packet and starts its transmission in the next selected
slot. As explained in Section 2.2, transmission of a code-word can stop
either because successful decoding occurs, or because the delay or rate
constraints N and M are violated (decoding failure).

2. The feedback channel is delay-free and error-free.

3. Users select slots for transmission so that the number of slots between
two consecutive transmissions of the same user is i.i.d., geometrically
distributed with identical parameter pt for all users. In order words,
on each slot s each user transmits a signal burst with probability pt
and does not transmit with probability 1 � pt. The expected number
of users transmitting over a slot is G = ptK (average channel load).

4. The system is completely symmetric with respect to any user: all users

have the same transmit SNR 
�
= E=N0, i.e., Ek = E 8k = 1; : : : ; K

and the same transmission rate R.

Let t count the number of slots, bk(t) the number of information bits from

user k successfully decoded up to slot t and Rk(t)
�
= bk(t)=L the correspond-
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ing number of bit/s/Hz. The overall throughput �N;M is given by

�N;M = lim
t!1

1

tL

KX
k=1

bk(t)

= K lim
t!1

1

t
R1(t) (2.8)

where the second line follows from the symmetry of the system with respect
to any user.

Consider user 1 transmission. Under the above assumptions, the event
that user 1 stops transmitting the current code-word is recognized to be a
recurrent event [66]. A random reward R is associated to the occurrence
of the recurrent event. In particular, R = R if transmission stops because
successful decoding, and R = 0 if transmission stops because delay/rate
constraint violation. We can apply the renewal-reward theorem [66] and get

�N;M = K lim
t!1

1

t
R1(t) = K

E[R]

E[T]
with prob. 1 (2.9)

where T is the random time between two consecutive occurrences of the
recurrent event (inter-renewal time).

In order to evaluate E[R], the mean reward, and E[T], the mean inter-
renewal time, we focus on the transmission of a given code-word of user 1 and
we de�ne the auxiliary random variable M to be the number of transmitted
bursts between the instant when the code-word is generated and the instant
when its transmission is stopped (i.e., between two consecutive occurrences

of the recurrent event). We de�ne the event Am
�
= fI1;m > Rg, and the

probability q(m) that the random sequence I1;1; I1;2; : : : ; I1;m; : : : of mutual
information at the user 1 decoder crosses level R at the m-th step (and not
before), or, in other words, the probability of having successful decoding
with m transmitted bursts. This is given by

q(m) = Pr(A1; : : : ;Am�1;Am) (2.10)

= Pr(A1; : : : ;Am�1)� Pr(A1; : : : ;Am) = p(m� 1)� p(m)

where

p(m)
�
= Pr(A1; : : : ;Am) = 1�

mX
`=1

q(`) (2.11)

The joint probability distribution of T and M

fT;M(n;m)
�
= Pr(T = n;M = m)
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is obtained explicitly as follows (in the case M � N otherwise the rate
constraint is meaningless):

fT;M(n;m) =

8>>>>>>>>>>><>>>>>>>>>>>:

(1� pt)
N n = N;m = 0

v(N;m) +

 
N

m

!
(1� pt)

N�mpmt p(m) n = N; 1 � m �M � 1

v(n;M) +

 
n � 1

M � 1

!
(1� pt)

n�MpMt p(M) M � n � N;m =M

v(n;m) m � n � N � 1; 1 � m �M � 1

0 elsewhere

(we use the short-hand notation v(n;m) for

�
n � 1
m� 1

�
(1� pt)

n�mpmt q(m)).

In Appendix 2.B we show that fT;M(n;m) is a well-de�ned probability dis-
tribution for all 0 � pt � 1, N � M > 0 and non-negative non-increasing
sequence fp(m)g with p(0) = 1.

At this point, we are ready to compute E[R] and E[T]. A reward R is
obtained for (T;M) = (n;m) if successful decoding occurs in slot n after
code-word generation and with m transmitted bursts. This corresponds to
placing m�1 transmissions in the �rst n�1 slots without success, and them-
th transmission in the n-th slot with success, which occurs with probability
v(n;m). Therefore, the average reward is given by

E[R] = R

MX
m=1

NX
n=m

v(n;m) (2.12)

= R

"
1�

M�1X
`=0

�
N

`

�
(1� pt)

N�`p`tp(`)�
NX

`=M

�
N

`

�
(1� pt)

N�`p`tp(M)

#
and the average inter-renewal time is given by

E[T] =
MX
m=0

NX
n=1

n fT;M(n;m) (2.13)

=
M�1X
m=0

1

pt
p(m)

"
1�

mX
`=0

�
N + 1
`

�
(1� pt)

N+1�`p`t �
�
N
m

�
(1� pt)

N�mpm+1
t

#
Finally, the desired closed-form expression for the system throughput is
given by

�N;M = RG

"
1�

M�1X
`=0

�
N

`

�
(1� pt)

N�`p`tp(`)�
NX

`=M

�
N

`

�
(1� pt)

N�`p`tp(M)

#
M�1X
m=0

p(m)

"
1�

mX
`=0

�
N + 1
`

�
(1� pt)

N+1�`p`t �
�
N

m

�
(1� pt)

N�mpm+1
t

#(2.14)
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Protocols INR, RTD and ALO described before, for given parameters N ,
M , R, G, K and , di�er in the probabilities p(m). Consider �rst INR and
RTD. These schemes have memory, since the receiver accumulates mutual
information, for INR, or SINR, for RTD, over the sequence of slots S1;m.
From (2.5) and (2.6), since �1;s is non-negative, it is apparent that the
random sequence fI1;mg is non-decreasing with probability 1. Then, A` �
Am for all ` � m and we can write

p(m) = Pr(Am)

For ALO, I1;m given by (2.7) has no particular monotone behavior. However,
the receiver has no memory of past signal bursts and the events Am are i.i.d.,
hence we can write

p(m) = Pr(A1; : : : ;Am) =
mY
i=1

Pr(Ai) = Pr(A1)
m

Finally, for all protocols examined we obtain a compact expression for p(m)
as

p(m) =

8>><>>:
Pr
�P

s2S1;m log(1 + �1;s) � R
�

INR

Pr
�
log(1 +

P
s2S1;m �1;s) � R

�
RTD

Pr (log(1 + �1;1) � R)m ALO

(2.15)

From (2.14), it can be easily shown that �N;M is a decreasing function of the
probabilities p(m) and, from (2.15), that the probabilities p(m) are related
by

Pr

0@ X
s2S1;m

log(1 + �1;s) � R

1A � Pr

0@log(1 + X
s2S1;m

�1;s) � R

1A
� Pr (log(1 + �1;1) � R)m (2.16)

for every m � 1. Then, as expected, the three protocols are related by

�
(INR)
N;M � �

(RTD)
N;M � �

(ALO)
N;M (2.17)

The computation of p(m) in (2.15) may not be done in closed form
for every fading statistics and every protocol. For the INR and RTD it
is not possible to �nd closed-form expressions for the probabilities p(m).
However, these can be calculated easily for any m as follows. Let Z = �1;1
and I = log(1 + �1;1). Then, from de�nitions (2.15), we see that for INR,
p(m) is the cdf of the sum of m i.i.d. RV's distributed as I , evaluated in
R, and for RTD, p(m) is the cdf of the sum of m i.i.d. RV's distributed
as Z, evaluated in 2R � 1. For small m, p(m) can be evaluated from the
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distribution of �1;1 (e.g., by using the characteristic function). Since this
approach involves discrete Fourier transforms whose length increases with
m, it cannot be applied for large m. In this case, from the central limit
theorem [83] we have that 1p

m

P
s2S1;m �1;s and 1p

m

P
s2S1;m log(1 + �1;s)

are close to Gaussian RV's, for large m. Therefore, p(m) can be easily
evaluated from the Gaussian cdf. For the sake of brevity, we skip the details
of numerical computations. However, it is interesting to notice that none of
the results of this work are obtained by Monte Carlo simulation. For ALO,
we have that

�
(ALO)
N;M = RG(1� p(1)) (2.18)

independently of N and M . This result is expected, since ALO has no
memory and both delay and rate constraints are irrelevant. Note that (2.18)

is the throughput (2.14) for M = 1, i.e., �
(INR)
N;1 = �

(RTD)
N;1 = �

(ALO)
N;1 = �

(ALO)
N;M

independent of the delay constraint N .
Interestingly the throughput �N;M can be made arbitrarily large by in-

creasing the user transmit SNR . Since the throughput for ALO is a lower
bound for the other two protocols, it is su�cient to prove that ALO is not
interference limited. Let J be the number of interfering users on a given slot
and let Pr(J = k) the probability that J equals k, for k 2 f0; � � � ; K � 1g.
We can write

lim
!1 �N;M = lim

!1GRPr(log(1 + �1;1) > R)

= lim
!1GR

K�1X
k=0

Pr(J = k) Pr
�
�1;1 > 2R � 1jJ = k

�
� lim

!1GR(1� pt)
K�1Pr

�
�1;1 >

2R � 1



�
where the last inequality follows from considering only the event J = 0.
Now, we choose an � > 0 such that F�(�) < 1, and we let R = log(1 + �).
Finally, we obtain

lim
!1 �N;M � lim

!1G(1� pt)
K�1 (1� F�(�)) log(1 + �) =1

as desired. This means that the ARQ system is not interference limited,
even if no joint decoding is implemented at the receiver: arbitrarily high
throughput can be obtained by simply increasing transmit SNR of all users,
irrespectively of power control, fading, etc ... Intuitively, this is due to the
fact that there is a non-zero probability that only one user is active on any
given slot, and can transmit at very high instantaneous rate.

Fig. 2.2 shows �N;M vs. R for transmit SNR  = 10dB, K = 50 users,
load G = 1, delay constraintN = 100 and increasing values of rate constraint
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Figure 2.2: �N;M vs. R for =10dB, K=50, G = 1 and N = 100 for INR
on AWGN channel.

M for the INR protocol on the AWGN channel (no fading). As already
pointed out, the curve forM = 1 coincides with the throughput of the ALO
protocol. The di�erent curves overlap for small R since one transmitted
burst is su�cient to decode. For M > 1 the throughput is non-zero also for
R larger than log2 (1 + ) = 3:5. For example, for M = 2 the maximum
mutual information that can be accumulated is 2 log2 (1 + ) = 6:9.

2.5 Unconstrained throughput

In this section, we study the throughput for an unconstrained system, i.e.,
for N;M !1. In fact, form (2.16), we see that the sequence p(m) for both
INR and RTD is \sub-geometric", i.e., that p(m) � p(1)m for all m � 1,
with equality only for m = 1. From this observation, it is possible to show
that for, both INR and RTD, the throughput is increasing in N andM , i.e.,
that

�N+`;M+r � �N;M

for all `; r � 0, with equality for ` = 0; r = 0 only. This result is intuitive,
since it makes sense that the throughput is going to increase by relaxing the
delay or the rate constraints. However, it is not completely trivial since both
the numerator (average reward) and the denominator (average inter-renewal
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time) of (2.14) are increasing functions of N and M . As a matter of fact,
both the INR and the RTD protocols have the nice feature that \the longer
we wait the more we gain".

In the following we indicate with � the unconstrained throughput, i.e.,
� = limN;M!1 �N;M . We notice here that all three protocols without con-
straints yield zero packet loss probability: the transmission of a code-word
ends only when it is correctly decoded. Hence, the unconstrained through-
put is easily obtained from (2.14) as

� =
RG

1X
m=0

p(m)

=
RG

E[M]
(2.19)

where we used the fact that
P1

m=0 p(m) =
P1

m=1mq(m) = E[M], the
average number of transmitted bursts needed for successful decoding. In
passing, we notice that E[M]=pt is the mean delay (measured in slots) for
the transmission of an information message, i.e., it is the average number of
slots between the generation of a code-word and its successful decoding. It
is worth pointing out that (2.19) holds for pt > 0. In fact, for all �nite N ,
we have

lim
pt!0

�N;M = RG(1� p(1)) (2.20)

In other words, in the limit for in�nite population (for every �nite G letting
pt ! 0 is equivalent to let K !1), the INR and RTD protocols with �nite
delay constraint are equivalent to ALO. In fact, in this case a large number
of users transmit with very small probability, and the probability that a user
transmit more than once in any �nite time N is negligible. Therefore, either
the packet is successfully decoded at the �rst attempt, or it is discarded,
like in ALO. On the contrary, for N ! 1 the limit for in�nite population
is di�erent for the three protocols and it is given by (2.19). In case we relax
only the delay constraint, i.e., N !1, then for any �niteM the throughput
is given by

�1;M = RG
1� p(M)PM�1
m=0 p(m)

(2.21)

Note that for ALO, � = �N;M , given in (2.18), can be obtained ex-
plicitly for the AWGN channel and for the Rayleigh fading channel (see
Appendix 2.E). For the channel without fading we have

�(ALO) = RG

K(R;)�1X
`=0

�
K � 1
`

��
G

K

�` �
1�

G

K

�K�1�`
(2.22)
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where

K(R; ) =

�
1

2R � 1
�

1



�
+ 1 (2.23)

is the maximum number of simultaneous users in a slot that can be correctly
decoded (notice that, depending on R and , a collision does not correspond
necessarily to an error, since K(R; ) might be larger than 1). For K !1,
(2.22) yields

�(ALO) = RG

K(R;)�1X
`=0

e�G
G`

`!
(2.24)

that for K(R; ) = 1 reduces to the well-known result of classical slotted
Aloha, �(ALO) = RGe�G.
For the channel with Rayleigh fading we have

�(ALO) = RG e�(2
R�1)=

�
1�

G

K
(1� 2�R)

�K�1
(2.25)

which for K !1 yields

�(ALO) = RGe�(2
R�1)=�(1�2�R)G (2.26)

Up to our knowledge, the probability distribution function of the SINR with
Rayleigh fading and Binomial- or Poisson-distributed number of interferers
(see Appendix 2.E), used in (2.25) and (2.26), was not known in closed form
prior to this work.

Figs. 2.3 and 2.4 show � vs. R, for the INR, RTD and ALO protocols,
with  = 10dB,K = 50 users, load G = 1 in AWGN and Rayleigh fading, re-
spectively. For ALO on AWGN channel, � is zero for R > log2 (1 + ) = 3:5
since for higher rates the SINR is not enough even in the absence of inter-
ferers (the system becomes power-limited rather than interference-limited).
In the case of Rayleigh fading, � decreases with R but it is positive even for
R > log2 (1 + ), since there is a non-zero probability that the fading gain
is larger than one.

2.6 Optimal information rate

In Section 2.4 we expressed the throughput as a function of di�erent system
parameters: the delay constraint N , the rate constraint M , the transmit
SNR , the information rate R, the number of users K, the channel load
G and the di�erent protocols fp(m)g. In Section 2.5 we showed that an
ARQ system is not interference limited and that the throughput can be
increased by relaxing the delay and rate constraint, i.e., the average reward
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Figure 2.3: � vs. R for =10dB, K=50, G = 1 on AWGN channel.
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Figure 2.4: � vs. R for =10dB, K=50, G = 1 on Rayleigh fading channel.
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E[R] increases faster than the average delay E[T] = E[M]=pt. From Figs. 2.3
and 2.4 it is clear that there exists optimal value of R for a given number
of users K, channel load G and transmit SNR . The rest of the section is
devoted to the determination of the optimal information rate. We indicate
with �� the R-optimized unconstrained throughput, i.e., �� = supR�0 �.

We start by considering the limit for large R. In Appendix 2.C we show
that

lim
R!1

� =

8><>:
GE[log(1 + �1;1)] INR

0 RTD

0 ALO

(2.27)

For INR, � < GE[log(1 + �1;1)] for all �nite R. This fact is quite hard to
show directly by using (2.19), since the probabilities p(m) depend on R but a
closed form is not available. However, we can provide a simple indirect proof

of the statement as follows. The quantity C
�
= E[log(1+�1;1)] is the capacity

of the memoryless L-block interference channel [84] given in (2.3), where the
interference signal vk;s is proper complex Gaussian with i.i.d. components
and where �k;s is the SINR for block s. A well-known result states that feed-
back does not increase the capacity of memoryless channels [1]. Then, even if
the encoder has available the sequence of past received vectors y1; : : : ;ys�1,
the maximum transmissible rate for channel (2.3) is C. 7 Hence, we conclude
that � = GC is actually the maximum achievable throughput on this chan-
nel, irrespectively of the feedback and for any choice of R. From a practical
system design point of view, in the absence of rate and delay constraints it
is convenient to work with a very high information rate R, irrespectively of
the channel load G and the transmit SNR .

For INR the maximum throughput is achieved for in�nite delay. It is
interesting to notice that, with in�nite delay, the same maximum throughput
(with zero packet loss probability) can be achieved by a system without
feedback (just forward error correcting codes) [39]. It is natural to ask
why the ACK/NACK feedback channel should be implemented at all. The
answer is provided by closer examination of the average delay: the system
without feedback needs a very large (in�nite) delay in order to transmit
with arbitrarily small packet loss probability for all values of � [39]. On the
contrary, the INR protocol achieves zero transmission failure probability
with �nite average delay for all � strictly less than GC. Fig. 2.5 shows the
average number of transmitted bursts E[M] vs. � for the ALO and INR

7It is important to notice that (2.3) is memoryless at the block level, but not at the
symbol level. Feedback does not provide any capacity increase if the feedback channel
works at the slot rate, i.e., it sends back the whole received vector ys at the end of each
s-th slot. This is precisely the way the ACK/NACK feedback works. On the contrary,
capacity would be clearly increased by a feedback working at faster rate, which sends back
the components of ys as soon as they are received, during each s-th slot.
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Figure 2.5: E[M] vs. � for  = 10dB, K = 50 and G = 1 for ALO and INR
on Rayleigh fading channel.

protocols in the case of Rayleigh fading, for  = 10dB, K = 50 users and
load G = 1. The corresponding average delay is given by E[M]=pt.

As opposed to INR, the throughput for very high R is zero for RTD and
ALO. In fact, ALO and RTD involve strongly suboptimal coding schemes,
for which E[M] grows faster than R. Thus, the limiting � is zero. Since
� = 0 for R = 0 and goes to 0 for large R, for both protocols there exist an
optimal �nite non-zero R. Unfortunately, the closed form expression of the
optimal R seems infeasible, but, at least for the ALO protocol on AWGN,
we can gain insight by taking a closer look at (2.22) and (2.24). It is easy
to see that the supremum of �, for �xed G, K and , is always obtained
when R = log(1 + 

1+J ) for some integer J , where J + 1 is the maximum
number of users that can collide on the same slots without causing a decoding
error. Therefore, maximizing with respect to R is equivalent to searching
for the maximum of the expression G log(1+ 

1+J ) Pr(J interferes) over the
non-negative integers J 2 f0; � � � ; K � 1g. In particular, for small G the
maximum is obtained by J = 0. In this case, the throughput is maximized
by choosing the largest possible R, i.e., R = log(1 + ), and by letting the
protocol alone to take care of collisions, like in conventional slotted Aloha.
As G increases, the maximum is obtained by larger and larger J . In this
case, the throughput is maximized by choosing R in order to tolerate up to
J interferers, i.e., R = log(1 + 

1+J ) (a decoding error occurs only when
there are more than J interferers). In this way, the task of coping with
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Figure 2.6: �� vs. G for INR and CDMA, =10dB in AWGN and Rayleigh
fading.

collisions is shared by channel coding and by the retransmission protocol:
channel coding yields no errors for up to J +1 active users in the slot, while
if the number of active users is larger than J + 1 retransmission is needed.
Figs. 2.6 and 2.7 show �� vs. G for INR and ALO respectively, for =10dB
on AWGN and Rayleigh fading channel.

From Figs. 2.6 and 2.7 it is apparent that there exist a limiting value of
�� as G grows towards in�nity. In Appendix 2.D, we show that

lim
G!1

�� =

8><>:
log(e) INR

log(e) RTD

log(e) ��� ALO

(2.28)

where �� = E[�1;1] and � = supu�0 u[1�F�(u)]. For AWGN, F�(u) is a step
function with jump in u = 1, therefore � = �� = 1. For Rayleigh fading,
F�(u) = 1 � e�u=�� , therefore � = ��=e and limG!1 �� = log(e)=e. This
shows that for large channel load G all schemes are equivalent in AWGN,
while ALO performs worse than INR and RTD in Rayleigh fading. In fact,
ALO considers only the most recent received block for decoding. Hence,
there is no \averaging e�ect" with respect to the fading a�ecting the useful
signal over a long sequence of slots.

As G becomes large, a very large number of users transmit in every slot.
In the limit, the system is equivalent to a CDMA system with an in�nite
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Figure 2.7: �� vs. G for ALO, =10dB in AWGN and Rayleigh fading.

number of users K and in�nite spreading gain N , such that the ratio K=N
is equal to G [69, 70]. In fact, the channel load G is precisely the (average)
number of users per dimension (per chip). The throughput of such CDMA
system with single-user matched �lter is given by [85, 86]

�(cdma) = GE

�
log

�
1 +

�1;1

1 + G��

��
(2.29)

Its maximum is log2(e) bit/s/Hz, obtained for G ! 1. Interestingly, the
throughput of CDMA is less than log2(e) for all �nite G, while for the INR,
RTD and ALO schemes there might exist a range of G for which �� > log2(e).

2.7 Concluding remarks

Combined channel coding and retransmission protocols appear to be a viable
and simple solution for reliable packet-radio communication requiring high
instantaneous rates and very low error probability and characterized by
bursty sporadic transmission and by mild delay constraints.

In this chapter, we presented an information-theoretic throughput analy-
sis of some ARQ protocols under idealized but fairly general conditions. We
showed that typical set decoding has very desirable properties for Hybrid-
ARQ, in the limit for large slot dimension. From a renewal-reward theory
approach, we obtained closed-form throughput formulas for three simple
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protocols: a generalization of slotted Aloha (ALO), a repetition time diver-
sity scheme with maximal-ratio packet combining (RTD) and an incremental
redundancy scheme based on progressively punctured codes (INR). We an-
alyzed the e�ect of delay and rate constraints on the throughput, as well
as the limiting behavior with respect to the information rate and the chan-
nel load. Interestingly, all three protocols are not interference-limited, and
achieve arbitrarily large throughput by simply increasing the transmit power
of all users.

The channel model described in Section 2.2 is, admittedly, quite simple
and idealized. In order to get some insight into the e�ect on performance
of the di�erent system parameters, we made some hypothesis to make the
model tractable. In the rest of the section, we discuss the way our model
compares with practical systems and we also consider some practical imple-
mentation issue.

� We assumed that L, the number of complex symbols per slot, is large
enough to guarantee reliable communication on each slot, in other
words this assumption allows us to write Pr(errorjR < Ik;m) = 0 and
Pr(errorjR � Ik;m) = 1. As we already pointed out in a footnote, this
is quite realistic, in fact, in many practical applications the product
WT is large.

� The assumption of block-fading is common in information theoretic
studies of channels with fading. This is motivated by the fact the
in relatively slowly moving environment and with reasonably system
bandwidth, the Doppler spread is negligible. This assumption holds,
for example, for indoor environments [72]. The i.i.d. assumption is
realistic for slotted communication where slots are separated in time
and/or frequency. In our model, due to user random activity, this
hypothesis is not at all restrictive.

� The hypothesis of completely symmetric system with respect to any
user was made for sake of simplicity. It may be restrictive since dif-
ferent class of users, characterized by di�erent sets of six parameters
(M;N; pt; R; ; F�(x)), are present in a practical system. The appli-
cation of the renewal-reward theorem in still possible under the as-
sumption of fading independent form slot to slot and from user to user
with identical distribution with respect to the time index and single-
user based decoding. The SINR is given by (2.2) and its cdf is easily
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obtainable as

F�k(Rk)
�
= Pr[�k;s � Rk]

=
X

uj2f0;1g : j2f1;��� ;Kg; j 6=k

Y
j

[ujpj + (1� uj)(1� pj)] �

�

Z
R
K�1
+

F�k

0@Rk
k

�
1 +

X
j

ujxjj

�1AY
j

dF�j (xj)

The probabilities p(m) are still given by (2.15), where we need to
compute the m-fold convolution of F�k(Rk) (for RTD) or of FIk (Rk) =
F�k(2

Rk�1) (for INR). The joint distribution of (T;M) in (2.12) is still
valid. For each user k, we need a fTk;Mk

(nk ; mk) obtained by substi-
tution of (N;M; p(m); pt) in (2.12) with the corresponding parameters
for user k. Finally, the throughput is given by

� =
KX
k=1

E[Rk]

E[Tk]

where E[Rk] and E[Tk] are given by (2.12) and (2.13) respectively. It
is clear that in this way we have a not-manageable expression function
of 6K parameters. Alternatively, the system performance can be eval-
uated with simulation but the challenge of this work was to develop a
closed form throughput analysis.

� The assumption of perfect receiver channel state information, in the
sense of knowledge of fading gains for all the active users on every slot
may appear unrealistic. Actually, the fading can be estimated very
reliably by inserting a training sequence into each slot at a price of
slight loss in rate. The assumption that the receiver knows exactly
the time-hopping sequences of all users (the active set) might not be
realistic. If user activity is random and not known to the receiver, our
results can be seen as an upperbound on the achievable throughput
obtained by a genie-aided receiver which knows a priori the active
users in each slot. True random access, where the receiver must also
detect which users are active, in order to make the appropriate packet
combining, might be studied by inserting in our framework an active
user detection scheme.

� Practical coding and decoding schemes based on incremental redun-
dancy and featuring built-in error detection capability should be used
with Hybrid-ARQ. As we already pointed out, a complete decoding
scheme (es. Maximum Likelihood Viterbi decoding) is not suited for
this propose; in this case a CRC must be inserted in each slot, as
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currently done in all practical systems, at the price of rate loss. An-
other possibility to overcome the problem is the use of redundancy
introduced by higher layer protocols or the use of the statistics of the
metric computed at the receiver [76].

� In practice, binary codes are used which are mapped on bi-dimensional
constellations before being sent on the channel, es. for high rate data
transmission the UMTS standard proposes the use of Turbo Codes
mapped on a QPSK constellation. In our analysis we assumed Gaus-
sian coding, which would correspond to the use of a modulation with
in�nite points. Actually, in order to get theoretical inside into the
performance of �nite channel input alphabets, our analysis remains
valid provided that the correct expressions for the mutual informations
in (2.5), (2.6) and (2.7) are used. In [76], the authors computed a lower
bound on the throughput performance of binary 1/M short constraint
length convolutional codes mapped on BPSK based on worst case pair
wise error probabilities. Their results shows that at low channel load
performance predicted by theoretical analysis with binary input, very
close to the theoretical performance with Gaussian input, are achieved
by the considered convolutional codes. At high channel load, they show
that the computed bound is too loose and that there is a great gap
between simulations and theoretical performance with Gaussian input.
The question left open is how to narrow that gap. It is shown by sim-
ulation that increasing the code complexity (larger constraint length)
is not the way to go, the authors then suggested to use of more com-
plex co/decoding schemes like Turbo Codes or the use of multi-point
constellations. Turbo-codes (or other forms of concatenated coding)
with iterative decoding appear to be a promising solution. However,
the behavior of iterative decoders in the presence of decoding errors
should be better characterized in order to exploit it for error detection.

� As in most of the available literature on Alhoa protocols, we assumed
an error/delay free feedback channel. This is a bit unrealistic but it
simpli�es the analysis. As argued in [38], a delayed feedback causes
no fundamental problems and doesn't change substantially the result
of the simpli�ed analysis. Feedback errors and delay were consider
in [54, 55, 58, 59] by employing Markov chain since all these phenomena
introduce memory in the system.

� Here, we concentrated on a very simple receiver that does not attempt
to decode the users jointly. A natural direction for future research
is to consider joint decoding at the receiver (e.g., implemented by
stripping). A theoretical di�culty is represented by the user random
activity [18]. In fact, because of random access, the capacity region
varies from slot to slot and it is not known in advance, unless a com-
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plicated reservation/allocation scheme is implemented. Also, the set
of interfering users might be di�erent from slot to slot, and it is not
clear how to carry out joint decoding across the slots. First steps in
this direction are taken in [87, 68].

We conclude with system considerations. In most practical applications,
packet-radio networks must co-exist with other systems, as for example a
connection-oriented CDMA system where a large number of low-power low-
rate users transmit continuously. Quite a lot of work has been dedicated
to the problem of power control for bursty transmission, where closed-loop
schemes are not e�ective, in the fear that high-rate high-power bursty users
might create too much interference to an underlying CDMA system. An
appealing consequence of our study is the following: instead of trying to
control bursty users, we can let them transmit at full-power. Thanks to the
ARQ protocol, the signal from all bursty users can be eventually decoded
correctly and subtracted from the received signal, so that the underlying
CDMA system \sees" a clean channel, as if the bursty users were not there.
In this way, the two quite di�erent system could be layered one on top of the
other. Obviously, in order to make this claim rigorous several issues must be
addressed in the details: perhaps the most important of which is the delay.
In fact, CDMA users can be decoded only after the signal from bursty users
has been subtracted. Then, the variable decoding delay associated with the
ARQ protocol imposes a variable decoding delay also on the CDMA system.
If CDMA users have a strict delay constraint (e.g., due to real-time speech
transmission, like in cellular telephony), outages due to the occurrence of
large decoding delay events must be taken into account.

Appendix

2.A Proofs of Lemmas 1,2 and 3

Following standard continuity arguments [77], we consider a quantization of
the input and a partition of the output of (2.3) and we work on the resulting
discrete channel. The results for the continuous channel can be obtained by
taking the supremum over all input quantizations and output partitions. Fix
a sequence of channel transition probabilities P = fpk;s(yjx) : s 2 Sk;Mg.
Let P (fxk;s;ys : s 2 Sk;mg), P (fxk;s : s 2 Sk;mg) and P (fys : s 2 Sk;mg)
be the joint and the marginal probability distributions induced by P and
by the input distribution q(x). Since on every slot s 2 Sk;m the quantized
version of channel (2.3) is a time-invariant DMC, for the weak law of large
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numbers [83] we have the following limits in probability

lim
L!1

1

L
logP (fxk;s;ys : s 2 Sk;mg) = �

X
s2Sk;m

Hk;s(X; Y )

lim
L!1

1

L
logP (fxk;s : s 2 Sk;mg) = �mHk(X)

lim
L!1

1

L
log P (fys : s 2 Sk;mg) = �

X
s2Sk;m

Hk;s(Y )

where

Hk;s(X; Y )
�
= �

X
x;y

q(x)pk;s(yjx) log q(x)pk;s(yjx)

Hk(X)
�
= �

X
x

q(x) log q(x)

Hk;s(Y )
�
= �

X
x;y

q(x)pk;s(yjx) log
X
x0

q(x0)pk;s(yjx0)

are the joint, input and output entropies per letter in slot s. The typical set
A�k;m is de�ned as the set of all sequences fxk;s;ys : s 2 Sk;mg satisfying������ 1L logP (fxk;s;ys : s 2 Sk;mg) +

X
s2Sk;m

Hk;s(X; Y )

������ � �

���� 1L log P (fxk;s : s 2 Sk;mg) +mHk(X)

���� � ������� 1L logP (fys : s 2 Sk;mg) +
X

s2Sk;m
Hk;s(Y )

������ � �

By letting I(q(x); pk;s(yjx))
�
= Hk(X) + Hk;s(Y ) � Hk;s(X; Y ), and by fol-

lowing the same steps in [1, Th. 8.7.1], we get that any rate less than
1
m

P
s2Sk;m I(q(x); pk;s(yjx)) is �-achievable. In particular, for m = M and

given sequence of channels P, for su�ciently large L there exists codes Ck of
length LM and rate R=M with error probability (with typical set decoding)
less than � if

R <
X

s2Sk;M
I(q(x); pk;s(yjx)) (2.30)

In order to prove Lemma 1 we need to show that: i) there is a single code Ck
having error probability uniformly less than � over all sequences of channels
P satisfying (2.30); ii) for all 1 � m �M , if R <

P
s2Sk;m I(q(x); pk;s(yjx)),
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then the punctured code Ck;m obtained from Ck by taking the �rst m sub-
blocks of length L has also error probability less than �.

From the random coding achievability part and from the strong converse
(it holds for every sequence of channels as shown by Lemma 2) we have that

EC[Pr(errorjP;C)]! 1

(X
s

I(q(x); pk;s(yjx)) � R

)

as L ! 1, where 1fAg denotes the indicator function of the event A and
where EC denotes expectation over the ensemble of all codes of size eRL

and block length LM generated according to the input distribution q(x).
By averaging also with respect to the sequence of channels and exchanging
expectations with respect to C and with respect to P (we can always do it,
since the integrand is non-negative and bounded by 1) we obtain

EC[EP[Pr(errorjP;C)]]! Pr

0@ X
s2Sk;M

I(q(x); pk;s(yjx)) � R

1A
Then, there exists a family of codes C� for increasing L such that

EP[Pr(errorjP;C
�)] � Pr

0@ X
s2Sk;M

I(q(x); pk;s(yjx)) � R

1A (2.31)

for L su�ciently large. Because of the strong converse, Pr(errorjP;C�) !
1 for all P such that

P
s2Sk;M I(q(x); pk;s(yjx)) � R. Then, in order to

satisfy (2.31) it must be Pr(errorjP;C�) ! 0 for all channel sequences P
such that

P
s2Sk;M I(q(x); pk;s(yjx)) > R. This shows that, asymptotically,

there exist codes C� such that

Pr(errorjP;C�)! 1

(X
s

I(q(x); pk;s(yjx)) � R

)

for all channel sequences P.

Now, let Ck;M = C� and assume that for a given sequence of channels

R <
X

s2Sk;m
I(q(x); pk;s(yjx)) (2.32)

for some 1 � m � M . Then, we can extend the sequence of channels by
adding to fpk;s(yjx) : s 2 Sk;mg other M �m dummy useless memoryless
channels whose output is independent of the input. Since the mutual infor-
mation on the lastM �m blocks is zero and because of (2.32), the resulting
sequence of M channels P0 satis�es Pr(errorjP0;Ck;M) ! 0. Notice that
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extending the sequence of channels is equivalent to appending dummy out-
put signal blocks zi independent of the channel input to the received signal
fys : s 2 Sk;mg, as described in Section 2.3. This concludes the proof of
Lemma 1.

In order to prove Lemma 2 we use the limit in probability

lim
L!1

1

L
log

P (fxk;s;ys : s 2 Sk;mg)

P (fxk;s : s 2 Sk;mg)P (fys : s 2 Sk;mg)
=

X
s2Sk;m

I(q(x); pk;s(yjx))

where the LHS is the limiting normalized information density over the m
slots and where, for a �xed sequence of channels, the RHS is a constant.
Therefore, the inf-information rate and the sup-information rate (see def-
initions in [9]) coincide and, from [9, Th. 7], the strong converse holds,
conditionally on the sequence fpk;s(yjx) : s 2 Sk;mg.

In order to prove Lemma 3 we use the simple relation[
bw 6=w

E bw �
n
fx

(w)
k;s ;ys : s 2 Sk;mg =2 A

�
k;m

o

8 w 2 f1; : : : ; eRLg and for all m = 1; : : : ;M . This implies that

Pr(undetected errorjw;P;Ck;m) � Pr
�n
fx

(w)
k;s ;ys : s 2 Sk;mg =2 A

�
k;m

o���w�
< � (2.33)

where the second inequality holds for arbitrary � > 0 and su�ciently large
L, since the probability that the channel input and output sequences are not
jointly typical vanishes as L ! 1 [1, Th. 8.6.1]. Then, Lemma 3 follows
from averaging (2.33) over all transmitted messages.

2.B Probability distribution of the inter-renewal
time

The joint pdf of T and M can be expressed by

fT;M(n;m) =

8>>>>>><>>>>>>:

(1� pt)N n = N;m = 0

v(N;m) + g(N;m) n = N; 1 � m �M � 1

v(n;M) + r(n;M) M � n � N;m =M

v(n;m) m � n � N � 1; 1 � m �M � 1

0 elsewhere

(2.34)
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where we de�ne

v(n;m) =

�
n� 1
m� 1

�
(1� pt)

n�mpmt q(m)

r(n;M) =

�
n � 1
M � 1

�
(1� pt)

n�MpMt p(M)

g(N;m) =

�
N
m

�
(1� pt)

N�mpmt p(m)

where q(m) is de�ned in (2.10), p(m) in (2.11) and they are related by
q(m) = p(m� 1)� p(m).

We show that (2.34) is a well-de�ned probability distribution for any
N �M > 0, 0 � pt � 1 and non-negative decreasing sequence fp(m)g with
p(0) = 1. Since all terms in (2.34) are non-negative, it is su�cient to show
that their sum is 1. We use the identity

N�1X
n=k

�
n

k

�
an�k(1� a)k+1 = 1�

kX
`=0

�
N

`

�
aN�`(1� a)` (2.35)

(for 0 � a � 1) and write

X
n;m

fT;M(n;m) =
MX
m=1

NX
n=m

v(n;m) +
M�1X
m=0

g(N;m) +
NX

n=M

r(n;M) (2.36)

For the sake of brevity, we let s(`)
�
=

�
N

`

�
(1� pt)

N�`p`t . The �rst, second

and third terms in the RHS of (2.36) are given by

MX
m=1

NX
n=m

v(n;m) = 1�
M�1X
`=0

s(`)p(`)� p(M)

 
1�

M�1X
`=0

s(`)

!
(2.37)

by

M�1X
m=0

g(N;m) =
M�1X
m=0

s(m)p(m) (2.38)

and by

NX
n=M

r(n;M) = p(M)

 
1�

M�1X
`=0

s(`)

!
(2.39)

where we used the fact that
PN

k=`+1 q(k) = p(`)� p(N). The result follows
by noting that the second and third term in the RHS of (2.37) are the
opposite of the terms given in (2.38) and in (2.39).
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2.C Limits for large R

We want to establish the limiting behavior of the unconstrained system
throughput for large R. To this purpose we consider limR!1 1=�, where �
is given in (2.19).

We need the following lemmas:
Lemma C.1. Let X be a RV with cdf FX(x). Then, 8 y,

1fx�ygFX(y) � FX(x) � FX(y) + 1fx�yg(1� FX(y)) (2.40)

}
Lemma C.2. If an ! a as n!1, then for any non-negative �nite integer
k

bn =
1

n+ k

nX
i=1

ai ! a for n!1 (2.41)

}

INR protocol. We let Xi
�
= log(1 + �1;si) for si 2 S1;m and �X

�
= E[Xi].

Then, for �1 > 0 and b = �X + �1 we can write

lim
R!1

1

�
= lim

R!1
1 +

P1
m=1 Pr(

Pm
i=1Xi < R)

RG

(a)

� lim
R!1

1

RG

1X
m=1

1fR�mbgPr

 
1

m

mX
i=1

Xi < b

!
(b)

�
1

Gb
lim
R!1

1

bR=bc+ 1

bR=bcX
m=1

Pr

 
1

m

mX
i=1

Xi < b

!
(c)
=

1

G(�X + �1)
(2.42)

where (a) follows by applying Lemma C.1 to the RV
Pm

i=1Xi with x = R
and y = mb; (b) follows by noting that b=R � 1=(bR=bc + 1); (c) follows
from Lemma C.2 with k = 1. In fact, for the Large Deviation Theorem [88,
Sec.5.11], it exists a non-negative function �(�), for every � > 0 such that
Pr[Xi � �X > �] > 0, for which we can write

Pr

"
mX
i=1

(Xi � �X) > m�

#
� e�m�(�)

hence

1� e�m�(�) � Pr

"
1

m

mX
i=1

Xi � � + �X

#
� 1
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which implies that

lim
m!1Pr

"
1

m

mX
i=1

Xi � �X + �

#
= 1

Similarly, for �2 > 0 and b = �X � �2 we can write

lim
R!1

1

�
= lim

R!1
1 +

P+1
m=1 Pr (

Pm
i=1Xi < R)
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� lim
R!1
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Pr
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mX
i=1

Xi < b

!
+ 1fR�mbg

#
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R!1

1
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m=1
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m

mX
i=1

Xi < b

!
+

1

Gb
lim
R!1

1

bR=bc

bR=bcX
m=1

1

(a)
=

1

G(�X � �2)
(2.43)

In order to get (a), we use the fact that, for the Large Deviation Theorem [88,
Sec.5.11] applied to the sum of m i.i.d. random variables �Xi, it exists a
non-negative function  (�), for every � > 0 such that Pr[�Xi+�X > �] > 0,
for which we can write

Pr

"
mX
i=1

(�Xi + �X) > m�

#
� e�m (�)

which implies that

Pr

"
1

m

mX
i=1

Xi < �X � �

#
� e�m (�)

hence, by summing over m, we get

1X
m=1

Pr

"
1

m

mX
i=1

Xi < �X � �

#
�

e� (�)

1� e� (�)

which gives a �nite positive bound. Therefor, (a) follows. Eventually, we
get G (�X � �2) � limR!1 � � G(�X + �1) and by letting �i ! 0 for i = 1; 2
and recalling that, by de�nition, �X = E[log(1+�1;1)] we obtain the desired
result.

It is important to notice that the hypothesis Pr[Xi � �X > �] > 0 for
some � > 0 does not hold for constant Xi (degenerate random variable). In
our model, the SINR Xi is a deterministic constant only if pt = 1 (no user
random activity, i.e., G = K) and constant fading. It is immediate to show
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that all the three protocols are maximized by R =
�
1 + 

1+(K�1)
�
and that

sup
R�0

�(ALO) = sup
R�0

�(RTD) = sup
R�0

�(INR)

= K log

�
1 +



1 + (K � 1)

�
= K E[log(1 +Xi)]

therefor our statement supR�0 �(INR) = GE[log(1+Xi)] holds in full gener-
ality.

ALO and RTD protocols. We let Xi
�
= �1;si for all si 2 S1;m and

�X
�
= E[Xi]. Then, for � > 0, b = �X + � and by following the same steps

that lead to (2.42), we can write

lim
R!1

1

�
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R!1
1 +

P1
m=1 Pr

�Pm
i=1Xi < 2R � 1

�
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m=1

Pr

 
1

m

mX
i=1

Xi < b

!

=
1

Gb
lim
R!1

eR � 1

R
= 1 (2.44)

This shows that limR!1 �(RTD) = 0 and since �(ALO) � �(RTD), the same
result holds for ALO.

2.D Limits for large G

We want to establish the limiting behavior of the unconstrained system
throughput maximized with respect to the rate R, i.e. �� = supR�0 � for
� given in (2.19), for large load G. To this end, we need to consider the
limiting behavior of the RV

PJ
j=1 �j where J is the number of interfering

users in a given slot, binomially distributed and �j is the channel gain of
user j, assumed to be i.i.d. and independent of J , with �nite mean �� and
variance �2�. Since G = ptK � K, as G! 1 also K ! 1. The mean and
the variance of J , indicated with �J and �2J respectively, are given by

�J = pt(K � 1) = G
K � 1

K
� G

�2J = (1� pt)pt(K � 1) � G=4 (2.45)
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By iterating expectation, we obtain

E

24 JX
j=1

�j

35 = ���J

Var

24 JX
j=1

�j

35 = �2J�
2
� + �J�

2
� (2.46)

Putting together (2.45) and (2.46) we conclude that 1
G

PJ
j=1 �j converges

in probability to �� as G!1, in fact

Var
hPJ

j=1 �j

i
G2

�
E[�2]

G
! 0

�J
G

= G
K � 1

K

1

G
! 1 (2.47)

From continuity of the functions 1=(1 + x) and log(1 + x) for x > 0, the
following limits for G!1 hold in probability

G�1;1 !
�1;1
��

G log(1 + �1;1) ! log(e)
�1;1
��

(2.48)

INR and RTD protocols. By using (2.48), and the fact that, in the
case of INR �� = GE[log(1 + �1;1)] (obtained for R ! 1 as proved in
Appendix 2.D), we have

lim
G!1

�� = lim
G!1

GE[log(1 + �1;1)]

= log(e) E

�
�1;1
��

�
= log(e) (2.49)

Notice that (2.48) implies
P

s2S1;m log(1 + �1;s) ! log(1 +
P

s2S1;m �1;s) in
probability, as G ! 1. Then, the probabilities p(m) given in (2.15) for
INR and RTD are equal in the limit for large G. Since � depends on the
particular protocol only through the probabilities p(m), we conclude that
limit 2.49) holds also for RTD.
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ALO protocol. For ALO we have

lim
G!1

sup
R�0

RG [1� Pr (log(1 + �1;1) � R)]

= lim
G!1

sup
R�0

RG [1� Pr (G log(1 + �1;1) � RG)]

= lim
G!1

sup
R�0

RG

�
1� Pr

�
log(e)

�1;1
��

� RG

��
(a)
= lim

G!1
log(e)

��
sup
u�0

u(1� F�(u)) (2.50)

where (a) follows by letting u = RG��= log(e) and by noticing that the
expression that must be maximized depends on the product RG and not
on G alone, therefore maximization with respect to R or with respect to u
yields the same result.

2.E Some useful cdf's

In order to simplify the notation of (2.2), we indicate the active users on
slot s by k = 0; 1; : : : ; jK(s)j� 1 (user 0 is the reference user) and we de�ne
the following RV's:

� User k instantaneous SNR, Xk
�
= �k;s.

� The number of interfering users J
�
= jK(s)j � 1.

� The MAI instantaneous power-to-noise ratio Y
�
=
PJ

k=1Xk with Y = 0
if J = 0.

� The instantaneous SINR Z
�
= X0

1+Y .

� The instantaneous mutual information (IMI) I
�
= log(1 + Z).

J is binomially distributed as

Pr(J = u) =

�
K � 1
u

��
G

K

�u �
1�

G

K

�K�u
for u = 0; : : : ; K�1. For K !1, this converges to the Poisson distribution

Pr(J = u) = e�G
Gu

u!

for u � 0.
Without fading, Xk is constant and equal to . Then, Y; Z and I takes

on the values u, 
1+u and log(1 + 

1+u ) with probability Pr(J = u) given
above.
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In the case of normalized Rayleigh fading,Xk is exponentially distributed
with mean ,

FX(x) = 1� e�x= (2.51)

The pdf of Y is readily obtained as a sum of u-fold convolutions of the pdf
corresponding to (2.51), weighted by Pr(J = u). This yields the cdf

FY (x) = 1�
K�1X
u=1

Pr(J = u)
u�1X
k=0

e�x=
(x=)k

k!
(2.52)

The derivation of the cdf for the SINR Z is more involved (the details are
postponed to the end of this Appendix). We obtain

FZ(x) = 1�
K�1X
u=0

Pr(J = u)
e�x=

(1 + x)u

= 1� e�x=
�
1� pt

x

1 + x

�K�1
(2.53)

Finally, the cdf of the IMI I is obtained from (2.53) by a simple change of
variable as

FI(x) = 1�
K�1X
u=0

Pr(J = u)e�(e
x�1)= e�xu

= 1� e�(2
x�1)= �1� pt(1� 2�x)

�K�1
(2.54)

obviously, all the above cdfs are de�ned for x � 0 and are zero for x < 0.
In the limiting case of K ! 1, the pdf corresponding to (2.52) was

found in [36], and it is given by

fY (x) = e�G
"
�(x) + e�x=

s
G

x
I1

 s
4xG



!#
(2.55)

where �(x) is the Dirac delta function and I1(x) is the �rst-order modi�ed
Bessel function of the �rst kind. The SINR cdf for in�nite users is given by

FZ(x) = 1� exp

�
�
x


�

Gx

1 + x

�
(2.56)

and the corresponding IMI cdf is obtained from (2.56) by a change of variable
as

FI(x) = 1� exp

�
�
2x � 1


� (1� 2�x)G

�
(2.57)
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Calculation of the SINR cdf conditioned on the number of inter-

fering users. Let eX and eY be two independent RV's obtained as the sum
ofA and B i.i.d. exponentially distributed RV's with mean 1=�, respectively.eX and eY follow the Gamma cdf

F (x) = 1�
N�1X
k=0

(�x)k

k!
e��x (2.58)

for N = A and N = B, respectively. For an arbitrary b � 0, consider the

RV eZ =
eX

b+eY . Notice that, with b = 1, � = 1= and A = 1, eY is Y jJ = B,eZ is ZjJ = B and eX is X . The following derivation generalizes the result
obtained in [37]. The cdf of eZ is given by

FeZ(z) = Prf eZ � zg = Prf eX � (b+ eY )zg
=

Z +1

�1
dy

Z z(b+y)

�1
dxf eX(x)feY (y)

=

Z +1

0
feY (y)F eX(z(b+ y))dy

=

Z +1

0

�

(B � 1)!
(�y)B�1e��y

"
1�

A�1X
k=0

(�x)k

k!
e��x

#z(b+y)
x=0

dy

= 1�
A�1X
k=0

kX
`=0

Z +1

0

�(�y)B�1

(B � 1)!

(�zb)k�`

(k � `)!

(�zy)`

`!
e��y��zb��zydy

= 1�
e��zb

(1 + z)B

"
A�1X
k=0

kX
`=0

(�zb)k�`

(k � `)!

�
z

1 + z

�` �
B � 1 + `

B � 1

�#
�

�

�Z +1

0

�(1 + z)

(B � 1 + `)!
e��(1+z)y [�y(1+ z)]B�1+`dy

�
(2.59)

where the integral in braces in the last line is equal to 1, since the integrand
is a Gamma pdf.

For A = 1, the double summation in the last line of (2.59) reduces to
one, and we obtain

FeZ(z) = 1�
e��zb

(1 + z)B
(2.60)



Chapter 3

A system comparison

In this chapter, we compare the performance of systems that implements,
at network layer, one of the three di�erent Hybrid-ARQ protocols analyzed
in the previous chapter and emploies, at physical layer, di�erent receiver
structures. The chosen performance measure is maximum throughput ver-
sus average energy per successfully received information bit. In particular,
we consider the following single-user decoding based systems: the system
introduce in chapter 2 and a random spread CDMA system. We conclude
the chapter, and this �rst part of the thesis, by studying the throughput of
retransmission protocols on top of decoders that performs joint decoding of
the active users.

3.1 Introduction

In the previous chapter we introduced a simple (unspread) system that, in
order to cope against multi-user interference and fading, retransmits erro-
neously received packets. We analyzed the throughput performance of three
di�erent packet combining techniques, referred to as ALO, RTD and INR
protocol, as function of several system parameters: the number of users K,
the system load G, the delay constraint N , the rate constraintM , the infor-
mation rate R, the transmit SNR  and the fading statistic F�(x). Then,
we showed that the throughput is increasing in both N and M and, for an
unconstrained system (M;N ! 1), we optimally designed the information
rate R. In doing so, we showed that the optimized throughput for INR co-
incides with the ergodic capacity of the underlying single-user block fading
channel, i.e., the ergodic capacity of a fading channel with fading statistics
equal to that of the SINR of the considered multiple-user collision channel.

71
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In this chapter, we present an information-theoretic comparison of some
not-power-controlled multi-access wireless systems based on single-user de-
coding in an Hybrid-ARQ prospective. The systems we have chosen for
our performance comparison have been considered in a number of previous
works ([24, 85, 87] and references therein). These systems are intrinsically
quite di�erent: some assume an in�nite number of users with vanishing cod-
ing rate but with non-zero probability of accessing the channel while others
assume \bursty" users with instantaneously non-vanishing coding rate but
with vanishing probability of accessing the channel. Here, we do not question
the validity of these (quite idealized) models, on the contrary, the related
basic results are our starting point for comparison. In order to provide a fair
performance measure, we compare the systems in terms of their maximum
unconstrained throughput versus Eb=N0, the average transmit energy per
correctly received information bit. The system throughput, as a function of
Eb=N0, is given in parametric form and its optimization is often involved.
We present analytic closed-form results and very rarely we shall resort to
numerical calculation (never to computer simulation). As a byproduct of
this analysis, we obtain insight on the optimal choice of system parameters
in order to obtain maximum throughput.

As pointed out in the concluding remarks of Chapter 2, a natural di-
rection to extend the present analysis is to consider joint decoding at the
receiver (e.g., implemented by stripping). A theoretical di�culty is repre-
sented by the user random activity [18]. In fact, because of random access,
the capacity region varies from slot to slot and it is not known in advance,
unless a complicated reservation/allocation scheme is implemented. Also,
the set of interfering users might be di�erent from slot to slot, and it is
not clear how to carry out joint decoding across the slots. We conclude the
chapter, and the �rst part of the thesis, by analyzing two ALO-based sys-
tems that jointly decode the largest possible subset of active users: the �rst
is a Successive Interference Canceler (based on stripping) with Single-User
Decoding at each decoding step (SIC-SUD) and the second is a Joint Multi
User Decoder (JMUD) [87]. Finally, we analyze the throughput of an INR
strategy on top of a joint decoder that either decode all the active users
on none, thus providing a lower bound to any clever joint decoding INR
strategy on top of random user activity.

We begin by considering the unspread system analyzed in Chapter 1,
where a population of users access at random a channel and use retransmis-
sion as the only mean to combat fading and interference form other users.
Then we turn to a random spread Direct Sequence Code Division Multi-
ple Access (CDMA) system with linear detectors [85], namely, Single User
Matched Filter (SUMF) and Minimum Mean Square Error (MMSE). In this
channel model, users are assigned randomly and independently signature se-
quences that are assumed known at the receiver. In general, the SINR at
the output of the linear �lter depends on the correlation between the signa-
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ture sequences of all the users. In a system with in�nitely long spreading
sequence and in�nitely many users, the output SINR of any user is only
function of a scaled version of the fading experienced by the user itself.
In [85], the authors study the total capacity per second per Hz by charac-
terizing the asymptotic performance in low Eb=N0 regime and high Eb=N0

regime. Here, we analyze the throughput performance in an Hybrid-ARQ
prospective. After that, we concentrate on the joint decoding systems.

We show that the unspread system outperforms SUMF-CDMA, which
is throughput-wise limited, but it is outperformed by MMSE-CDMA. All
the systems have the same behavior in terms of throughput and of optimal
system parameters. In the low Eb=N0 regime, the optimized throughput is
the same for all the systems and coincides with that of a SUMF-CDMA,
achieved by an in�nite number of users per degree of freedom transmitting
at vanishing rate. In the high Eb=N0 regime, while SUMF-CDMA is in-
terference limited, the other systems are not. For this range of Eb=N0 the
optimized systems \self-orthogonalize", in the sense that optimal through-
put is achieved by having on the average only one user per degree of freedom,
i.e., one user per chip for the CDMA and one active user per slot for the un-
spread system. All the SUD-based systems are outperformed by MUD-based
systems. In particular, we �nd that an INR protocol that either decodes all
users or asks to all the users to retransmit is throughput-wise optimal, in the
sense that it achieves the the ergodic rate-sum of the underlying block-fading
multiple-access channel. This shows that an optimal INR strategy \forces"
the user to transmit together, i.e., the system load is equal to the number
of users, and does not attempt to decode a subset of the active users.

The rest of the chapter is organized as follows: in Section 3.2 we briey
revise the system model introduced in Chapter 1 to account for spreading; in
Section 3.3 we derive the throughput versus Eb=N0 curves for the unspread
system and for the random spread CDMA system in conjunction with ALO,
RTD and INR protocols; in Section 3.4 we analyze throughput versus Eb=N0

for systems based on joint-decoding and in Section 3.5 we point out our
conclusions.

Our publications related to this chapter are:
[26] D.Tuninetti and G.Caire, \The optimal throughput of some wireless
multi-access systems", in Proceedings 2001 IEEE International Symposium
on Information Theory (ISIT2001), Washington DC (USA), June 2001;
[27] D.Tuninetti and G.Caire, \The optimal throughput of some wireless
multi-access systems", to appear in IEEE Transactions on Information The-
ory.
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3.2 System model

In this section we generalize the system model introduced in the previous
chapter in order to include systems with spreading. The system of Chapter 2
is then obtained as a special case of this more general model.

We assume a complex channel of bandwidth W Hz whose time axis is
divided in slots of duration T seconds. Every slot can accommodate packets
of L � WT independent complex dimensions, in the limit of WT � 1. The
channel is impaired by additive noise and by frequency-at fading, assumed
constant for the whole slot duration and independent for each slot and each
user. The channel is accessed randomly and independently, with probability
pt on every slot, by a population of K users.

Each transmitter has an in�nite sequence of information packets to en-
code, spread and transmit. Let S be the length of the spreading sequence
andM be a given integer. User k encodes its packet of b data bits into a code
word of length LM=S complex symbols and spreads it, so that each data
packet corresponds to a channel packet of LM modulation symbols (chips)
to send over the channel. Before actual transmission the channel packet is
split into M \chunks" to �t the slot duration. The transmitters have no
Channel State Information (CSI), hence users transmit at constant rate and
constant power. Let E be the transmit energy per channel symbol, N0 be
the noise spectral density and  = E=N0 be the transmit SNR. Note that
in the sequel, depending on the context, we shall use the terms \complex
symbol", \degree of freedom", \dimension" or "chip" to indicate a basic

channel use, i.e., one second per Hz. The quantity R
�
= bS=L is referred

to as the information rate and represents the number of data bit per coded

symbol before spreading. The quantity G
�
= K pt=S is referred to as channel

load and represents the average number of active users per dimensions. The
system analyzed in Chapter 2 is obtained for S = 1;

Each time a transmitter is active, it sends on the current slot the not-yet
transmitted chunk of L chips of the current channel packet. At the receiver,
the sequence of slots where a user was active are collected, combined and
used for decoding. On every slot, decoding of all active users is attempted.
Then, via an error and delay free feedback link, an ACK is sent to all users
for which decoding has been successful, while a NACK is sent to all users for
which decoding has not been successful. When a user gets an ACK, it stops
transmitting the current channel packet and the next time it is active it starts
transmitting the �rst chunk of the next channel packet. On the contrary,
when a user gets a NACK, the next time it is active it transmits the next
chunk of the current channel packet. If successful decoding is not obtained
afterM transmitted chunks, or afterN slots since the generation of the data
packet, the packet is lost. M and N are referred to as the rate constraint
and delay constraint, respectively. Three Hybrid-ARQ schemes are taken
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into account: an ALOha-type scheme (ALO), where channel packets are
made of the same basic code words of length L repeated M times, and
where previously received chunks are discarded; a Repetition Time-Diversity
scheme (RTD), where channel packets are also made of the same basic code
words of length L repeated M times, but where previously received chunks
are combined by maximal ratio combining before decoding; an INcremental
Redundancy scheme (INR), where channel packets are e�ectively made of
M di�erent segments of L symbol each, and previously received chunks are
all taken into account at each decoding attempt.

The receiver for each user is formed by a chip matched �lter (the chip
pulse-shaping waveform is assumed to be a Nyquist pulse), a sampler at
chip rate, a linear �lter, a packet combiner and a decoder. By stacking in
a vector the S chips referring to the same coded symbol, the discrete-time
model for the received signal (at symbol rate) is y =

P
k2K ckskxk + z

where z 2 C S is a proper complex Gaussian noise vector of zero mean and
per-component variance N0, K is the set of active users during the current
channel use, sk 2 C

S is the spreading sequence of user k, xk 2 C is the
k-th user transmit modulation symbol and ck 2 C is the k-th user fading

amplitude. Let �k
�
= jckj2 be the fading power, that we assume i.i.d. with

cumulative distribution function (cdf) F�(x). The receiver has perfect CSI,
i.e., it knows the set of active users K, the fading gains ck and the spreading
sequences sk for all k 2 K. Without any claim of optimality, we assume
that users employ Gaussian random codes and that the decoder is based on
typical set decoding.

The systems under investigation belong to one of the following classes:
Unspread SUD-based systems. This systems are analyzed in [24]. In
this case, S = 1 and sk = 1 for all k. For an in�nite population of users
(K ! 1) and for all �nite G, the probability pt that a user transmit on any
given slot is vanishing and the number of active users, i.e., the cardinality
of the active set K, is a Poisson distributed random variable.
Unspread MUD-based systems. Those systems have S = 1 and sk = 1
for all k. Following [87], we assume an in�nite population of users that
transmit with probability pt = 1, i.e., G = K ! 1, this results in a �nite
throughput (aggregate rate) and a vanishing per-user rate.
CDMA system with random spreading. In this case, following [69, 70,
85, 86], we assume S;K !1 and K=S ! d, where d is the maximum num-
ber of active users per chips. The user spreading sequences sk are random
generated with i.i.d. components drawn according to an arbitrary probabil-
ity assignment with zero mean, variance 1=S and bounded forth moment.
Transmission follows again the same Hybrid-ARQ scheme described before.
The linear �lter is either a SUMF or a linear MMSE �lters [89]. The channel
load is given by G = ptd, hence for all �nite G and d, pt is non-vanishing.

As we already pointed out in the introduction, those systems are intrinsi-
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cally quite di�erent. Here, we are interested in studying the performance of
repetition protocols on top of di�erent physical layer access techniques and
not in questioning the system model validity or their practical applicability.

3.3 Optimized throughput

For a symmetric system with respect to any user, the unconstrained system
throughput (expression (2.19) in Section 2.5) is given by

� =
RG

1 +
P1

m=1 Pr (I(1) � R; � � � ; I(m) � R)
(3.1)

where I(m) is the accumulated mutual information between the receiver
output and the transmitter after m received slots and it is given by

I(m) =

8<:
Pm

s=1 log(1 + �s) INR
log(1 +

Pm
s=1 �s) RTD

log(1 + �m) ALO
(3.2)

for �s being the SINR of the reference user in slot s. For the di�erent systems
we have

�s =

8>>>>>>>><>>>>>>>>:

�k
1 +

X
i2K:i6=k

�i
Unspread system

A� SUMF� CDMA with A = 
1 +G E[�]

A� MMSE� CDMA with A :  = A

1�GE

�
A�

1 +A�

� (3.3)

The SINR expressions for the CDMA system are derived in [85].
As already pointed out, the throughput (3.1) optimized with respect toR

coincides with the ergodic single-user capacity of the underlying block-fading
channel for the INR protocol

�(INR) = G E [I1] (3.4)

and with the outage single-user rate for the ALO protocol

�(ALO) = G sup
R�0

R Pr(I1 > R) (3.5)

with Pr(I1 � R) = p(1) being the information outage probability. Note
that �(INR) = �(ALO) only if the mutual information I1 is a deterministic
constant. In general, �(INR) � �(RTD) � �(ALO).

Since the users transmit for a fraction pt of the time and the average
number of received information bits per modulation symbol per user is S�=K,
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the average energy per received information bit is Eb = (Ept)=(S�=K) =
EG=�. Hence, the user SNR  is related to Eb=N0 by

 =
Eb
N0

�

G
(3.6)

Notice the di�erence between this de�nition of Eb=N0 and the common def-
inition used by coding theorists in a single-user channel. There, Eb is the
energy per transmitted information bit, irrespectively of error probability,
i.e., on the fraction of erroneously received bits. Here, Eb denotes energy
per successfully delivered information bit at the receiver, which in a mul-
tiuser channel prone to collisions and packet loss is a more sensible de�nition.
For the sake of notation simplicity, in the rest of the chapter we use natural
logarithms. Hence, � will be expressed in nat/s/Hz and we will use the
notation En=N0, instead of Eb=N0, to indicate that En is the energy per
received nat. All results can be readily translated in more usual bit/s/Hz
vs. Eb=N0 recalling that 1 nat=log2 (e) bits and that log(2) = �1:5917 dB.

Next, we derive the throughput versus En=N0 curves. After the opti-
mization of (3.1) with respect to the information rate R (see Section (2.6)),
the throughput is a function of G and , i.e., � = h(G; ). By substi-
tuting (3.6) into the throughput function we obtain the implicit equation
� = h(G; (En=N0)(�=G)) whose explicit solution, i.e., � = g(G;En=N0) that
we shall refer to as spectral e�ciency, is generally not available in closed
form. The curve we are interest in is the optimized spectral e�ciency, i.e.,
� = supG�0 g(G;En=N0). Notice that, while the throughput h(G; ) is non-
zero for every  > 0, the spectral e�ciency g(G;En=N0) is non-zero only for
En=N0 > (En=N0)min [85], where (En=N0)min is given by�

En
N0

�
min

= lim
!0+

G

h(G; )
=

�
lim
!0+

1

G

@h(G; )

@

��1
(3.7)

We shall see that (3.7) is function of the protocol only and not of the sys-
tem implemented at physical layer. In [14] it is shown that the inverse of
(En=N0)min has the meaning of capacity per unit energy.

3.3.1 The single-user system

We start by analyzing a reference single-user system.
For the ALO protocol the throughput is given by

� = pt sup
R�0

�
R

�
1� F�

�
eR � 1



���
(3.8)

clearly maximized for pt = 1, i.e., G = 1, since the optimal value of R only
depends on . By noting that the maximization over R can be re-written as

� = sup
��0

flog(1 + �) [1� F�(�)]g (3.9)
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by letting R = log(1 + �), it follows after some algebra that

lim
!0

d�

d
= sup

��0
�[1 � F�(�)] (3.10)

Then, the minimum value of En=N0 is given by�
En
N0

�
min

=
1

sup��0 �[1� F�(�)]
(3.11)

For the RTD protocol the throughput is given by

� = pt sup
R�0

R

1 +
P1

m=1 Pr
hPm

s=1 �s �
eR�1


i
= pt sup

��0
log(1 + �)

1 +
P1

m=1 Pr [
Pm

s=1 �s � �]
(3.12)

again maximized for pt = 1. The �st derivative with respect to  at  = 0
is given by

lim
!0

d�

d
= sup

��0
�

1 +
P1

m=1 Pr [
Pm

s=1 �s � �]

= E[�] (3.13)

where the last equality follows from Appendix 2.C. Hence, the minimum
En=N0 is �

En
N0

�
min

=
1

E[�]
(3.14)

Note that (En=N0)
(ALO)
min � (En=N0)

(RTD)
min with equality if and only if �

is a deterministic constant, i.e., channel without fading. In this case, the
throughput curves of all the three protocols, and hence the spectral e�ciency
curves, coincide.

For the INR protocol the maximum throughput with respect to R (see
Appendix 2.C) is given by

� = ptE[log(1 + �)] (3.15)

which is maximized by pt = 1 and gives the same (En=N0)min of RTD
protocol. Interestingly, to achieve capacity per unit energy, i.e., (En=N0)min,
it is enough to adopt the simpler RTD strategy instead of the more complex
INR strategy.
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Examples. In the examples we consider two fading statistics: constant
fading, i.e., F�(x) = 1fx � 0g, and Rayleigh normalized fading, i.e., F�(x) =
(1 � e�x)1fx � 0g. For all the protocols and for the two fading statistics
considered here, except for ALO, we have (En=N0)min = 1 = 0dB. For ALO
in Rayleigh fading we have (En=N0)min = e = 4:3429dB.

The optimization of the throughput with respect to the information rate
R (see Appendix 3.A) yields to the following parametric expressions of the
spectral e�ciency curve:

� ALO/RTD/INR without fading: for  � 0(
� = log (1 + )
En
N0

= 
�

(3.16)

� ALO with Rayleigh fading: for R � 08><>: � = Re
�e

R � 1
ReR

En
N0

= ReR
�

(3.17)

� RTD with Rayleigh fading: for R � 08<: � = eR +R� 1

En
N0

=
1 + (R� 1)eR

�
(3.18)

� INR with Rayleigh fading: for  � 0(
� = e1=Ei(1=)
En
N0

=

�

(3.19)

Fig. 3.1 shows the throughput � vs. En=N0 for the single user system.
Notice that, without fading, all the three protocols have the same spectral
e�ciency which is the upperbound to the throughput of any multi-access
system without power control, as we shall see later. It is interesting to
notice that the major bene�ts of RTD with respect to ALO occur at low
En=N0.

3.3.2 Unspread system

For the ALO protocol the throughput of the unspread system is given by

� = G sup
R�0

(
RPr

"
�k

1 +
P

i2K:i6=k �i
>

eR � 1



#)

= G sup
��0

8<:log(1 + �) E

241� F�
0@� + �

X
i2K6=k

�i

1A359=; (3.20)
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Figure 3.1: Throughput versus En=N0 for a single user system.

and for vanishing  we have

� = G sup
��0

�
�E [1� F�(�)] + o(2)

	
(3.21)

Hence, also for the unspread system with ALO we get�
En
N0

�
min

=
1

sup��0 �[1� F�(�)]
(3.22)

In the same way, it is easy to see that the RTD and INR for the unspread
system achieve �

En
N0

�
min

=
1

E[�]
(3.23)

as in the single user case. Interestingly, (En=N0)min is function of the pro-
tocol and the fading statistics, but not of the system, and is the same for
every G, i.e., the same minimum energy per bit can be achieved by systems
with non optimized G.

Examples. Again, we give examples of the optimized spectral e�ciency
curves for the case of channels without fading and channels with Rayleigh
fading. We assume that in the system there are in�nite users, i.e., K !1,
with vanishing probability of transmitting, thus resulting in a �nite channel
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load G. The number of active users per slot follows a Poisson distribution,
i.e., Pr(k active users) = e�GGk

k! .

� ALO without fading

� = sup
J�0

"
log

�
1 +



1 + J

� JX
k=0

Ge�G
Gk

k!

#
(3.24)

It is easy to see that the supremum of � in (3.5), for �xed G and ,
is always obtained when R = log(1+ 

1+J ) for some integer J , where
J+1 is the maximum number of users that can collide on the same slots
without causing a decoding error. Therefore, maximizing with respect
to R is equivalent to searching for the maximum of the expression
G log(1 + 

1+J ) Pr(J interferes) over the non-negative integers J .

� RTD without fading

� = G sup
R�0

R

1 +
1X
m=1

Pr

"
mX
i=1

�i � eR � 1

# (3.25)

where �i are i.i.d. 8i with probability mass function Pr
�
�i =


1+k

�
=

e�GGk=k! for k � 0. In this case we optimization over R and G has
to be performed numerically.

� INR without fading

� = G
X
k�0

e�G
Gk

k!
log

�
1 +



1 + k

�
(3.26)

since in this case the optimization of the throughput overR yields (3.4).

� ALO with Rayleigh fading

� = G sup
R�0

R exp

�
�
eR � 1


�G(1� e�R)

�
(3.27)

where the cumulative distribution function (cdf) of the SINR � with
Rayleigh fading and a Poisson distributed number of interfering users
was derived in Appendix 2.E.

� RTD with Rayleigh fading.
In this case the throughput is again given by (3.25), but �i are i.i.d. 8i
with cdf F�(x) = [1� exp(�x= �Gx=(1 + x))] (see Appendix 2.E).
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Figure 3.2: Throughput versus En=N0 for an unspread system.

� INR with Rayleigh fading

� = G

Z 1

0
exp

�
�
ex � 1


� G(1� e�x)

�
dx (3.28)

here again, the maximization over R yields (3.4) and the distribution
of the SINR � was derived in Appendix 2.E.

Fig. 3.2 shows the throughput � versus En=N0 for the unspread system, with
ALO and INR protocols only. The RTD case was not evaluated because of
its complexity, due to the fact that for a given pair (G; ) the cdf of

Pm
i=1 �i

for all m � 1 needs to be computed. In Chapter 2 it is shown that RTD
lies between ALO and INR. Fig. 3.3 shows the inverse of optimal G, i.e.,
the number of degree of freedom per user, versus En=N0 for the unspread
system with ALO and INR protocol.

A parametric closed form expression of the optimized throughput can
be found for the ALO protocol with Rayleigh fading only. The deriva-
tion is reported in Appendix 3.B. By carrying out the optimization over
G, it emerges that there exists an certain interval of En=N0, the interval
En=N0 2 [(En=N0)min; (En=N0)th], for which � is maximized by G ! 1
(see Appendix 3.B). In this interval, the maximum throughput is attained
by in�nite number of users per degree of freedom transmitting at vanishing
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Figure 3.3: Inverse of optimal G versus En=N0 for an unspread system with
ALO and INR protocol.

rate (G!1 implies R! 0) and it is given by

� =

�
En
N0

��1
min

�

�
En
N0

��1
(3.29)

In the interval En=N0 > (En=N0)th, the throughput is maximized by a �-
nite G and non-zero R and furthermore, as En=N0 ! 1, optimal G tends
to G ! 1. This means that maximum throughput is obtained by hav-
ing on the average only one active user per degree of freedom transmit-
ting at non-vanishing rate. The introduction of the parameter (En=N0)th,
makes unambiguous the expressions \low En=N0", that refers to the inter-
val En=N0 2 [(En=N0)min; (En=N0)th], and \large En=N0", that refers to the
interval En=N0 > (En=N0)th. In the case of ALO with Rayleigh fading, we
have (En=N0)th = 2e = 7:3532 dB.

The curve for ALO without fading was obtained via the numerical tech-
nique described in Appendix 3.C. It presents a change in slope at (En=N0)th =
9:7305 dB due to the fact that optimization over J in (3.24) gives either
J = 0 for En=N0 > (En=N0)th or J ! 1 for En=N0 � (En=N0)th. This
means that for low En=N0 users must encode their messages at vanishing
rate and transmit all the time, while for large En=N0 users must encode
their messages with non-vanishing rate and transmit (on the average) one
at a time. This e�ect of self-orthogonalization of the optimized system is
shown in Fig. 3.3.
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The same numerical technique described in Appendix 3.C was used to
obtain the curves for the INR protocol with and without fading. In both
cases the En=N0 threshold is (En=N0)th = 2 = 3:0103 dB and optimal G
tends to G! 1 as En=N0 !1. Again, this e�ect of self-orthogonalization
is shown in Fig. 3.3.

3.3.3 CDMA system with random spreading

This system has been analyzed in [69, 70, 85]. The system is \single-user"
like, in the sense that the SINR is function only of the fading experienced by
the user itself, while the random nature of the system, i.e., random activity,
fading and spreading sequences, is taken into account by the deterministic
(in the limit for large K) constant A given in (3.3). For this reason, we
can apply the results obtained in Appendix 3.A for the \single-user like"
case for what concerns the maximization over the information rate R and
for the determination of (En=N0)min. The maximization over G is more
complicated because A is also function of G.

From the expression of A in (3.3) we have that for SUMF

A =  + o() for  � 1

while for MMSE

 = A+ o(A) for A� 1

Hence, for both systems A �  for  ! 0, which implies � = A� � �, i.e.,
in the limit for small  the random spread CDMA is equivalent to the single
user system. We conclude that that (En=N0)min for ALO is given by (3.11)
and for RTD and INR is given by (3.14).

In order to obtain the explicit expressions of the spectral e�ciency
curves, we �rst write the throughput of the three protocols as � = GAg(A)
where g(A) depends on the protocol and is given by

g(A) =

8>>>>>>>>>>><>>>>>>>>>>>:

max
��0

�
log(1 + A�)

A�
�[1� F�(�)]

�
ALO

max
��0

8>>>><>>>>:
log(1 + A�)

A�

�

1 +
1X
m=1

Pr

"
mX
i=1

�i � �

#
9>>>>=>>>>; RTD

E[log(1 + A�)]
A INR

(3.30)

For all the three protocols, g(A) is non-increasing in A � 0 and achieves
it maximum for A = 0. Interestingly, g(0) = (En=N0)

�1
min. By substituting
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(�=G)(En =N0) =  into the expression of A in (3.3), we obtain an expression
of G parameterized by A

G =
1

A

�
En
N0

1 + f(A) �
En
N0

(3.31)

where f(A) depends on the system and it is given by

f(A) =

(
E[�] SUMF

E
h

�
1 + A�

i
MMSE

(3.32)

Also f(A) is non-increasing in A and achieves it maximum for A = 0.

Seen the one-to-one relationship between G and A, the maximization of
the spectral e�ciency over G � 0 can be turned over the maximization over
A � 0. Finally, with straightforward algebra, we get to

� = sup
A�0

g(A)�

�
En
N0

��1
f(A)

(3.33)

that for SUMF, with any protocol, reduces to

� =

"�
En
N0

��1
min

�

�
En
N0

��1# 1

E[�]
(3.34)

achieved for A = 0, which is equivalent to G!1.

Examples. The functions g(A) for the di�erent protocols are

� ALO/RTD/INR without fading

g(A) =
1

A
log(1 + A) (3.35)

� ALO with Rayleigh fading

g(A) = e
�x�e

x � 1
xex

�����
xex=A

(3.36)

� RTD with Rayleigh fading

g(A) = e�x
��
1+(x�1)ex=A (3.37)
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Figure 3.4: Throughput versus En=N0 for a CDMA system with random
spreading.

� INR with Rayleigh fading

g(A) =
1

A
e1=AEi

�
1

A

�
(3.38)

and the functions f(A) for the MMSE-CDMA system are

� Without fading

f(A) =
1

1 + A
(3.39)

� Without fading

f(A) =
1

A

�
1

A
� e1=AEi

�
1

A

��
(3.40)

and f(A) = 1 for SUMF-CDMA.
Fig. 3.4 shows the throughput � versus En=N0 for CDMA with random

spreading.
Fig. 3.5 shows the inverse of optimal G versus En=N0 for the CDMA with

MMSE. We did not report the curves for CDMA with SUMF because in this
case optimal G is G!1 (A = 0) for all protocols, for every fading statistics
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Figure 3.5: Inverse of optimal G versus En=N0 for an MMSE-CDMA system
with random spreading.

and for every En=N0 > (En=N0)min. Again, G ! 1 for all En=N0 means
that � is maximized by in�nite users per chip transmitting with vanishing
coding rate.

For MMSE (see Appendix 3.D), we have (En=N0)th = 2e = 7:3532 dB for
ALO with Rayleigh fading, (En=N0)th = 13:18 dB for RTD with Rayleigh
fading, (En=N0)th = 2 = 3:0105 dB for INR with Rayleigh fading and all
the protocols without fading. For En=N0 > (En=N0)th there exists a �nite
G optimizing the throughput with G ! 1 as En=N0 ! 1. This e�ect of
self-orthogonalization of the optimized system is shown in Fig. 3.5. Notice
that, for su�ciently high En=N0, the optimal G for MMSE tends to one from
below. In fact, as pointed out in [85], at high En=N0 the MMSE system is
interference limited if GPr[� > 0] > 1.

3.4 Unspread system with joint decoding

In this last part of the chapter, we study the performance of three systems
based on joint decoding.

We �rst consider the two systems described and analyzed in [87]. The
setting is analogous to the unspread system with continuous user activity,
i.e., pt = 1, but users transmit and are decoded on a strict slot-by-slot
basis (in our terminology, it is an ALO protocol). The decoder is either a
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Successive Interference Canceler (stripping) with Single-User Decoding at
each decoding step (SIC-SUD) or a Joint Multi User Decoder (JMUD). In
both cases, users are ranked in decreasing received SNR order. The SIC-
SUD strips users once at a time starting from the strongest and the stripping
process continues until it is possible to decode user reliably. The JMUD
attempts to decode all K users. If decoding is not successful, it treats the
weakest user as noise and attempts the decoding of the remaining K � 1
users. It proceeds in this way until successful decoding of a subset of users
occurs. While in an ergodic setting SIC-SUD and JMUD are equivalent, in
the sense they both achieve maximum throughput, in the realm of outage
(our setting) they perform di�erently.

Here, we set pt = 1 because it is not clear how to de�ne packet combining
techniques in conjunction with joint decoding. In fact, when user access at
random the channel, the set of active user di�ers from slot to slot.

While in the previous sections we have optimized the spectral e�ciency
of SUD-based system with respect to the information rate R and to the
channel load G = K pt, here the channel load is �xed to be to the equal
the number of users in the system. Hence, for these MUD-based systems,
the information rate R is optimized but the channel load is not. For this
reason, we shall refer to those systems as \G-non-optimized". The spectral
e�ciency curves we shall obtain are then to be intended as lower bound to
the performance of systems optimized with respect to G.

Furthermore, a closed form analysis of the SIC-SUD and JMUD is pos-
sible only in the limit for K ! 1. As we shall see, having imposed
G = K !1 turns to be heavily suboptimal for SIC-SUD.

We conclude the section, with the analysis of a system where users trans-
mit with probability pt = 1 and adopt an INR protocol. Here, we assume
that the decoder does not attempt to decode the largest possible subset of
users, as in the case of SIC-SUD and JMUD, instead if decoding of all the
active users was unsuccessful, then all the users retransmit new redundancy.
Therefore, this INR-MUD scheme is a lower-bound to any \clever" joint
decoding INR strategy on top of random user activity. As we shall prove,
this INR-MUD scheme achieves the ergodic rate-sum of the underlaying
multiple-access channel, hence it is throughput-wise optimal.

As for the SUD-based systems, we assume that users have the same SNR
 and transmit at the same rate R. The receiver has perfect CSI while the
transmitters have no CSI.

3.4.1 Results for G-non-optimized ALO with SIC-SUD

First we develop the analysis of ALO with SIC-SUD for a given number of
users K � 1 and a given probability of accessing the channel pt 2 [0; 1].
Then, following [87], we show that closed form throughput expressions can
be found for pt = 1 and K !1.
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With SIC-SUD, users are sorted in decreasing received SNR order and
the strongest is decoded �rst, by considering the others as noise. Its decoded
message is re-modulated and subtracted from the overall received signal.
Then, the second strongest users is decoded, re-modulated and subtracted,
and so on until it is possible to decode users reliably. Let J be the number
of active users on a given slot. J is a binomial distributed random variable

with probability mass function (pmf) Pr[J = j] =

�
K

j

�
pjt(1 � pt)K�j for

j = 0; � � � ; K.
Let (�1; �2; � � � ; �J) the permuted version of the fading power vector

(�1; �2; � � � ; �J) such that �1 � �2 � � � � � �J . The cumulative distribu-
tion function (cdf) of the k-th ranked fading power �k is given by [87]

F�k(x) =

Z x

0

K!

(K � k)!(k� 1)!
(1� F�(u))

k�1 F�(u)K�kdF�(u) (3.41)

where F�(x) is the cdf of the fading power �. In the limit for large K, the
cdf (3.41) becomes

F�k(x)
K�1
�! 1

�
1� F�(u) �

k � 1

K � 1

�
(3.42)

where 1fAg is the indicator function of the event A. Relation (3.42) means
that, for K ! 1, the fading powers of each user are a still i.i.d. random
variable but the � 's are deterministic. This phenomenon is referred to as
hardening e�ect in [87]. From (3.42), in the limit for large K, we have

�k
K�1
�! E[�k] = F�1�

�
1�

k � 1

K � 1

�
(3.43)

and

1

K

nX
k=`

�k
K�1
�!

Z n=K

`=K

F�1� (1� u) du
�
= �

�
`

K
;
n

K

�
(3.44)

for all k; ` � K.
Given J active users, de�ne for all m = 1; � � � ; J the event

Bm;J(R) =
n

log

 
1 +

�j

1 +
PJ

`=j+1 �`

!
> R 8j = 1; � � � ; m ;

log

 
1 +

�j

1 +
PJ

`=j+1 �`

!
� R 8j = m+ 1; � � � ; J

o
Bm;J(R) is the event the SIC-SUD receiver can decode at most m users each
transmitting at rate R, out of the J that were active. The throughput of
ALO with SIC-SUD is

� =
KX
j=1

Pr[J = j]

jX
m=1

mR Pr[Bm;j(R)] (3.45)
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For any �nite K and pt, the probabilities Pr[Bm;j(R)] are not easy to com-
pute. On the contrary, for pt = 1 and in�nite population of users, i.e.,
G = K ! 1, the fraction of users that can be decoded at rate R becomes
deterministic, what is random is the identity of the decoded users. Let
m0 2 f1; � � � ; Kg be the number of user that can be reliably decode, then
we can write

�
K�1
�! m0 inf

0<j�m0

log

0BBBBB@1 +
1

K
�j

1

K
+

1

K

KX
`=m0+1

�`

1CCCCCA (3.46)

where the logarithm to be minimized in (3.46) represents the most strin-
gent rate constraint of the event Bm0;K(R). Since the fraction inside the
logarithm in (3.46) vanishes as K increases, throughput (3.46) becomes

�
K�1
�! inf

0<j�m0

m0

K
�j

1

K
+

1

K

KX
`=m0+1

�`

(3.47)

Therefore, by recalling that (En=N0)(�=K) = , by de�ning y = m0=K (the
fraction of decoded users) and x = j=K, and by using (3.43) and (3.44), in
the limit for large K we have

� = y inf
x2]0;y]

F�1� (1� x)�
En
N0

��1
��1 + �(x; 1)

(3.48)

Notice that y is the probability that a randomly chosen user is in the set of
users that can be decoded reliably.

Fig. 3.6 shows the throughput � (optimized with respect to y 2 [0; 1])
versus En=N0 for the system with joint decoding, both SIC-SUD and JMUD.

Notice that, without fading, SIC-SUD is equivalent to CDMA with
SUMF, i.e.,

� = 1�

�
En
N0

��1
(3.49)

because the condition for successful decoding for the �rst user coincides with
that of CDMA with SUMF and, since all the users are received with identical
power, either all or none of them can be decoded.

For increasing En=N0, since � in non-decreasing in En=N0, either � con-
verges to a �nite value (in case of throughput-wise limited system) or it
grows unbounded. In both cases (En=N0)� ! 1. Hence, in the limit for
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Figure 3.6: Throughput versus En=N0 for a system with joint decoding.

En=N0 ! 1 the throughput (3.46) optimized with respect to y can be
written as

� = max
y2[0;1]

y inf
x2]0;y]

F�1� (1� x)

�(x; 1)
(3.50)

that for the Rayleigh fading case gives

� = sup
u�0

e�u inf
��u

�

1� e�(1 + �)
= 3:3509 (3.51)

From (3.51) we are tempted to conclude that SIC-SUD is throughput-wise
limited. Actually, this is due to the fact the the channel load G is not op-
timized but kept �x to G = K ! 1. In fact, a SIC-SUD system cannot
perform worth than unspread ALO (which is not throughput-wise limited)
since the condition for decoding the strongest user is the same in both sys-
tems but the all the other users in SIC-SUD are decoded at higher SINR
than in the unspread system, we conclude that G = K ! 1 is not opti-
mal in all range of En=N0. In particular, it is strongly suboptimal for high
En=N0. It is not clear how to de�ne a SIC-SUD receiver in presence of
packet combining and random user activity, hence we cannot optimize ALO
with SIC-SUD with respect to G.
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3.4.2 Results for a G-non-optimized ALO with JMUD

As for the SIC-SUD system, we �rst develop the analysis of ALO with JMUD
for a given number of users K � 1 and a given probability of accessing
the channel pt 2 [0; 1]. Then, following [87], we show that closed form
throughput expressions can be found for pt = 1 and K !1.

With JMUD, users are again sorted in decreasing received SNR order.
Let J be the number of active users on a given slot. The receiver attempts
to joint decode all J users. If the equal-rate point falls inside the capacity
region for the J users, then decoding is successful. If not, the weakest
user is treated as noise and the receiver considers the capacity region for
the remaining J � 1 users. If the equal-rate point is not inside it, the two
weakest users are treated as noise, and so on until it is possible to decode a
subset of the J users. For all m = 1; � � � ; J de�ne the event

Cm;J(R) =

(
8S � f1; 2; � � � ; mg

X
i2S

R < log

 
1 +

P
i2S �i

1 +
PJ

`=m+1 �`

!)

=

(
8` 2 f1; 2; � � � ; mg R <

1

`
log

 
1 +

Pm
i=m�`+1 �i

1 +
PJ

i=m+1 �i

!)

Cm;J(R) is the event the JMUD receiver decodes m users, out of the J that
were active, each transmitting at rate R, by treating the other J � m user
signals as noise. The receiver can successfully decode all the users if the
event CJ;J (R). If not (the event CJ;J (R) is true), it can decode J �1 users if

CJ�1;J (R) is true. If not (both the evnts CJ;J (R) and CJ�1;J (R) are true),
it can decode J � 2 users if CJ�2;J (R) is true, and so on and so forth. Then,
the throughput of ALO with JMUD is

� =
KX
j=1

Pr[J = j]

jX
m=1

mR Pr[Cj;j(R); � � � ;Cm+1;j(R);Cm;j(R)] (3.52)

In general the throughput can be upper bounded as

� �
KX
j=1

Pr[J = j]j R Pr[Cj;j(R)] (3.53)

achieved by a decoder that decodes either all the active users on none. We
shall use a similar \lower-bound" in the analysis of INR with JMUD.

Again, for any �nite K and pt, the joint probability of the events Cm;j(R)
are not easy to compute. On the contrary, for pt = 1 and in�nite population
of users, i.e., G = K ! 1, thanks to the hardening of the ordered fading
power vector [87], the number of user that can be decoded reliably at rate
R becomes a deterministic constant. Let m0 2 f1; � � � ; Kg be the number
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of user that can be reliably decoded, then we can write

�
K�1
�! m0 inf

0<`�m0

1

`
log

0BBBBB@1 +
1

K

m0X
i=m0�`+1

�i

1

K
+

1

K

KX
i=m0+1

�i

1CCCCCA (3.54)

By recalling that (En=N0)(�=K) = , by using (3.43) and (3.44), and
by de�ning x = `=m0 and y = m0=K, in the limit for large K we can
write (3.54) as

� = inf
x2]0;1]

1

x
log

0B@1 + �(y(1� x); y)�
En
N0

��1
��1 + �(y; 1)

1CA (3.55)

Intuitively the logarithm to be minimized in (3.54) represents the most strin-
gent constraint, in terms of aggregated rate, for which the equal rate point
falls inside the capacity region de�ned by the set of the best \Ky" users,
when treating the rest as noise.

Fig. 3.6 shows the throughput � (optimized with respect to y 2 [0; 1])
versus En=N0 for the system with joint decoding, both SIC-SUD and JMUD.

Without fading JMUD is equivalent to the unfaded single user system.
To show this, we consider �rst the case of �nite G = K and then we take
the limit for G = K ! 1. For a given K let R = 1

K log(1 + K) be the
information rate of the users. Since all the users transmit (and are received)
with identical power, the equal rate point is on the dominant face of the
capacity region for these K users, hence the throughput is

� = KR = log(1 +K) = log

�
1 +

En
N0

�

�
(3.56)

Being (3.56) valid for all �nite K, by continuity, it is valid for K ! 1.
Note that, without fading, all the users are always decoded, i.e., optimal y
is y = 1 for all En=N0 � (En=N0)min. Therefore, the optimal G is indeed
G ! 1. Throughput (3.56) is the maximum possible throughput for a
multiple-access system without power control.

With Rayleigh fading, the optimization of (3.54) cannot be carried out in
closed form and hence we used numerical evaluation. As pointed out in [87],
for high En=N0 the throughput (3.54) tends to

� ! log

 
1 +

En
N0
�

1 + �

!
(3.57)

for some � > 0 and outage probability vanishes as
p
�=(� En=N0). This

means that at high En=N0 ALO-JMUD approaches unfaded single user per-
formance, i.e., asymptotically there is no loss in performances with respect
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to the optimal system. An open question is whether G ! 1 is indeed
optimal for every �nite En=N0. It is interesting to note that, in Rayleigh
fading channel, also with JMUD (En=N0)min = e = 4:3429 dB as it is for
SUD-based systems.

3.4.3 Results for INR with JMUD

As a third, and last, case of MUD-based system, we analyze an INR with
JMUD where the decoder either decodes all the users or asks to all the
users to retransmit new redundancy. Since in principle this might not be
the optimal INR strategy with INR, our result is a lower bound to \clever"
INR systems with MUD. We shall prove that this scheme actually achieves
the ergodic rate-sum of the underlying block-fading channel, thus proving
its optimality.

In a system characterized by user random activity, a given user is ac-
tive on a sequence of slots that, in general, are not consecutive in time and
have di�erent set of active users. In this scenario, it is not clear how to
carry out joint decoding across the slots. In the two cases discussed above,
joint decoding across the slots is not needed since an ALO protocol was con-
sider. In general, for any protocol and any receiver structure the throughput
cannot exceed the ergodic rate-sum of the underlaying MAC block-fading
channel. For a system symmetric with respect to all the K users, the ergodic
throughput is given by

�(ergodic) = E

24log
0@1 + KX

j=1

�j

1A35
(a)
= E [log (1 + K�eq)]j�eq= 1

K

PK
j=1 �j

(b)

� log (1 + KE[�]) (3.58)

where (a) shows that the K-user ergodic throughput is the single-user INR
throughput with equivalent fading given by the arithmetic mean of the fad-
ing powers of the di�erent users; and (b) follows from Jensen inequality and
shows that the single-user AWGN capacity is an upperbound to all system
without power control at the transmitters. Since �(ergodic) is increasing in
K, the single-user unfaded performance is achieved by letting K !1. The
convergence to the RHS of (3.58) follows from the central limit theorem.

Any system with user random activity has throughput that satis�es � �
�(ergodic), hence also INR with JMUD (assuming we were able to de�ne
what INR with JMUD is!). A lower bound to this INR with JMUD can be
obtained by imposing the (possibly) sub-optimal decoding scheme \all or
none", i.e. either the decoder is able to decode all the users or asks to all
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the users to transmit a new \chunk" of their codeword. We can write
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m=1 p(m)
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log
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k=1

�k

!#
(3.59)

where p(m) is the probability that successful joint decoding does not occur
after m received blocks. From the de�nition of our decoding strategy we
have that, for every m � 1, p(m) is given by

p(m) = 1� Pr
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Since for any given set A and B we have: (a) Pr[A \ B] = Pr[A [ B] and
(b) Pr[A [B] = Pr[B] + Pr[A \B], we have that (3.60) is equivalent to

p(m) = Pr
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By using Pr[A [B] � Pr[A] + Pr[B] and the assumption of i.i.d. fading for
all the users, i.e., the probabilities in (3.61) depend only on the cardinality
of S and not on S itself, it follows
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Denote with �(K)
�
= E

h
log
�
1 +

PK
k=1 �k

�i
the ergodic throughput of a

fading multiple-access channel with K symmetric users. It easy to see that
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�(K) is increasing in K while �(K)=K is decreasing in K. At this point,
we can bound the probabilities in (3.62) as follows
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and
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where �i for i = 1; 2; 3 are positive constants guaranteed to exist by the
Large deviation Theorem [88, Sec.5.11]. With the bounds in (3.64), the sum
of the p(m) over m � 1 is bounded by
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and by taking the limit for R!1, and by recalling (3.59), we arrive at the
desired results

� = �(K) = E

"
log

 
1 +

KX
k=1
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!#
(3.66)

This proves that an optimal system \forces" the users to transmit all the
time, i.e. G = K and for every K, and decodes either all of them or no one.
While for SUD-based systems with in�nite population, optimal G ! 1 in
En=N0 2 [(En=N0)min; (En=N0)th] and G! 1 in En=N0 � 1, for this scheme
G = K !1 for all En=N0.
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Figure 3.7: Throughput versus En=N0 for ALO with Rayleigh fading.

3.5 Conclusions

To conclude the chapter, we put on the same chart the throughput of all the
systems analyzed so far, in order to compare them and draw some conclu-
sions. We claim that our comparison based on equal received energy per bit
is fair. However, it is worth reminding that from a practical point of view
there are other quantities of great interest, average delay and probability of
packet loss for example, that were not considered in this work. Furthermore,
comparison is made on total throughput versus En=N0, the choice of other
performance measures, like per-user rate or delay, etc, may lead to di�erent
conclusions from the one we are going to present here.

In the following we refer to Fig. 3.7,which shows the throughput curves
versus En=N0 of all the analyzed systems with ALO protocol in Rayleigh
fading (we did not reported the cases without fading to make the picture
more readable) and to Fig. 3.8, which shows the throughput curves versus
En=N0 of all the analyzed systems with INR without fading (again, the
curves referring to the Rayleigh fading case were not added to make the
picture more readable).

Minimum En=N0. We have identi�ed two values of (En=N0)min under
which the throughput is zero. One is (En=N0)min = e = 4:3429 dB for ALO
with Rayleigh fading, the other is (En=N0)min = 1 = 0 dB for ALO, RTD,
INR without fading and RTD and INR with Rayleigh fading. This shows
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Figure 3.8: Throughput versus En=N0 for INR without fading.

the bene�t of packet combining over discarding previous transmission in a
faded environment.

Low En=N0 regime. For low En=N0 all the protocols, regardless the
fading statistic, have the same throughput which corresponds to vanishing
information rate R and in�nite channel load G. This means that users
must be active all the time, in the unspread case, or be in�nitely more
than the spreading gain, in the CDMA system. Fading does not impair the
system performance, compared to the unfaded case, because the available
power is so little that fading uctuations do not matter. In this regime the
simplest system can be implemented without loosing in throughput, in fact
CDMA with SUMF does not loose in performance with respect to more
complicated schemes as CDMA with MMSE. For the ALO with Rayleigh
fading, the curves of Fig. 3.7 show that JMUD is superior to CDMA and
unspread system. In this regime SIC-SUD is equivalent to JMUD and again
the simpler systems have the same performance of the more complex ones.

High En=N0 regime. The di�erences in performance among systems and
protocols are visible at high En=N0. For all SUD-based systems but CDMA
with SUMF, the optimal information rate R grows with En=N0, the channel
load G! 1 and the throughput grows linearly with log(En=N0). This means
that when the available power is high, the best strategy consists of encoding
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at non vanishing rate and having, on average, only one user per slot, in the
unspread system, or one user per chip, in the CDMA system. This does
not hold for CDMA with SUMF for which optimal G is always G ! 1
and the throughput is limited to 1 in the case without fading and to e�1 in
the case with Rayleigh fading. The unspread system behaves always better
than CDMA with SUMF but is outperformed by CDMA with MMSE. At
En=N0 = 18 dB, for example, the di�erence between unspread system and
CDMA with MMSE is about 1 nat/dim.

Without fading JMUD is optimal, in the sense that it has the same
performance as unfaded single user case, while with Rayleigh fading it ap-
proaches the unfaded single user performance for En=N0 ! 1. SIC-SUD
with G!1 is highly suboptimal.

Performance in a faded environment. Fading does not improve the
throughput performance of the analyzed systems since CSI is not available
at the transmitter, i.e., no power control is possible. The single-user unfaded
case upperbounds all the systems. This bound is reached by ALO-JMUD
without fading, the INR-JMUD technique in Section 3.4.3 and approached
by ALO-JMUD with fading in an high En=N0 regime.

Performance-complexity trade-o�. The charts in Fig. 3.8 and Fig. 3.7
basically show that performance can be increased by augmenting the com-
plexity of the receiver. First of all, it is clear that SUMF-CDMA is not
worth the implementation since it is throughput-wise limited and it is out-
performed by the simple unspread system. Among the remaining systems,
the unspread system is the simplest of all and its implementation requires
the knowledge of the fading gains only; the simplicity is paid by a slower
growth of the throughput with En=N0 when compared to the other access
techniques. Just above the unspread system, we position MMSE-CDMA:
the system is still based on SUD decoding but the improved performance
are due to the joint detection step implemented with the MMSE �lter. The
construction of an MMSE �lter requires the knowledge of the spreading se-
quences, in addition to the fading power levels, and a matrix inversion that,
especially for large systems, can be computationally heavy. The best system
throughput-wise is obtained by INR protocols and JMUD decoder for load
equal to the number of users. The top performance are obtained by mean
of a complex decoding process whose practical realization in not clear. In
fact, in our setting characterized by outage, joint decoding cannot be imple-
mented with stripping as we showed that SIC-SUD (at least with ALO) is
not equivalent to JMUD.

Appendix
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3.A Throughput optimization for the single-user
like system

In a single-user like case, the SINR can be expressed as

� = A� (3.67)

where � is the (random) fading power and A is a system (deterministic)
constant. For an actual single user system, A coincides with the SNR, but
in general it depends on other system parameters, as for the case of CDMA
with random spreading. The probabilities of decoding failure p(m) at the
denominator of (3.1) are

p(m) =

8>><>>:
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�
eR�1
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�m
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Fm

�
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�
RTD

Pr[
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(3.68)

where we de�ne the cdf

Fm(x) = Pr
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j! e
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(3.69)

Note that F1(x)
�
= F�(x).

3.A.1 Result for ALO

In this case, the p(m)'s form a geometric series, hence

� = RG [1� p(1)] =

�
RG 1fx�1g without fading
RG e�x Rayleigh fading

����
x=(eR�1)=A

(3.70)

The maximization over R gives

� =

(
G log(1 +A) without fading

GA e�x�
ex�1
xex Rayleigh fading

�����
xex=A

(3.71)

3.A.2 Result for RTD

Without fading the denominator of (3.1) yields

1 +
X
m�1

p(m) =
X
m�0

1fm<xg = 1 + bxc (3.72)
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while with Rayleigh fading we get

1 +
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By substitution of (3.72) and (3.73) in (3.1) we obtain

� =

8<:
RG

1 + bxc
without fading

RG
1 + x Rayleigh fading

������
x=(eR�1)=A

(3.74)

The maximization over R gives

� =

�
G log(1 +A) without fading
GAe�x Rayleigh fading

����
1+(x�1)ex=A

(3.75)

3.A.3 Result for INR

The optimization over R yields R!1 (see [24]) and the throughput is

� = E[log(1 + �)] (3.76)

hence

� =

�
G log(1 + A) without fading

G e1=AEi(1=A) Rayleigh fading
(3.77)

where Ei(x)
�
=
R1
x e�t=t dt is the exponential integral function.

Remark on the optimization over G. For an actual single user system
A =  and G 2 [0; 1], hence the optimization over G is trivial and gives for
all the protocols with every fading statistics G = 1. In general, G can be
a function of the other system parameters, hence the maximization in more
involved and must be carried out case by case.

3.B The unspread system: ALO with Rayleigh
fading

Suppose the following implicit equation is given

H(x; y) = 0 (3.78)
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that in a neighborhood of the solution can be put in explicit form as

y = f(x) (3.79)

The derivative of f(�) can be obtained by solving the following system, which
involves the di�erential of (3.78) and (3.79),�

dxHx + dyHy = 0
dy = fxdx

(3.80)

where Hx
�
= @H

@x and fx
�
= df

dx , and get

fx =
dy

dx
= �

Hx

Hy
(3.81)

(for more details see [90], Sections 2.10 and 2.11).
In the case at hand, from Appendix 2.E, we have
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and in a neighborhood of the solution
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Applying (3.81) we obtain that the derivative of (3.83) with respect to G is
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By equating (3.84) to zero and solving with respect to G, we get

G =
1

eR � 1
En
N0
�

+ (1� e�R)
(3.85)

Equation (3.85) can be view as a parametric de�nition of G. By substitution
of (3.85) in (3.82) and writing explicitly � with respect to En=N0, we get

� =
e�1R

1� e�R
�

eR

En
N0

(3.86)

Note that (3.86) is positive 8R � 0 i� En=N0 > e. The optimization of (3.86)
with respect to R gives

En
N0

= e
eR(1� e�R)2

1� e�R(R+ 1)
(3.87)
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The limit of (3.87) for R ! 0 is En=N0 = 2e, in fact for En=N0 2 [e; 2e]
the function (3.86) in monotonic decreasing and has it maximum for R = 0.
Hence the �nal expression is( En

N0
2 [e; 2e]

� = e�1 �
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��1
8>>><>>>:
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(3.88)

Note that R! 0 in (3.85) means G!1.

3.C A numerical technique for throughput opti-
mization

In general, after the maximization of � with respect to R, we have(
� = f(G; )
En
N0

= G
f(G; )

(3.89)

where f(G; ) is a function that depends on the protocol and on the cdf of the
fading. Equations in (3.89) de�ne � as a function of En=N0 in a parametric
form that depends on two parameters: the channel load G and the average
SNR . In principle, we could let G and  vary in all R2

+, for every pair
(G; ) plot the corresponding point (�; En=N0) in a Cartesian plane and then
take the upper-envelope of the obtained set of points. Numerically this in
not a well de�ned problem, unless we are reasonably sure of taking enough
\good" pairs (G; ) that are on the upper-envelope of our set of points.

The procedure just discussed is equivalent to �xing a value of En=N0,
searching for the pairs (G; ) solving G

f(G;) = En=N0 and among all these
pairs take the point yielding the maximum �. In formulas, we de�ne

Ax =

�
(G; ) 2 R2

+ :
G

f(G; )
= x

�
(3.90)

then

� =
1

x
sup

(G;)2Ax
G (3.91)

Assuming we are able to compute Ax for every x, the formulation (3.91) is
much more appealing.
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Let apply (3.91) to the case of ALO without fading. The the throughput
formula is

� = log

�
1 +



1 +K

� KX
k=0

Ge�G
Gk

k!
(3.92)

(see (3.24)), i.e., every user encodes its messages with information rate R =
log (1 + =(1+K)), that allows for successful decoding with all sets of less
than K simultaneous interfering users. The optimization of (3.92) over K,
i.e. choosing the best information rate for a given pair (G; ), cannot be
carried out in closed form, but assuming known the best value of K we can
apply the method in (3.91) and write

� =
1

x
sup

(G;)2A(K)
x

G (3.93)

A
(K)
x =

(
(G; ) 2 R2

+ :
KX
k=0

e�G
Gk

k!

1


log

�
1 +



1 +K

�
=

1

x

)
(3.94)

We can solve (3.94) for K � 0 and plot curves of � indexed by K: for each
value of En=N0 we choose the point of the curve with attains maximum �
and that gives us also the optimum K. Fig. 3.9 shows the curves obtained
for di�erent values of K. It turns out that the best value of K is either zero
or in�nity. In the regime of low En=N0 the optimum K tends to K ! 1
and the optimum G tends to G!1 as  ! 0. This means that users must
encode their messages at vanishing rate and transmit all the time. The
resulting optimized throughput in this region is � = 1 � (En=N0)

�1. For
large En=N0, the throughput is maximum for K = 0 and G! 1 as  !1,
This means that users must encode their messages with non-vanishing rate,
which allows correct decoding only if there are no collisions, and transmit
very rarely so that on average there is one active user per slot. The resulting
parametric throughput expression in this region is � = Ge�G log(1+). Note
that � = Ge�G log(1 + ) is the standard slotted-Aloha throughput.

3.D The random spread CDMA system

In general, in the CDMA with random spreading, the throughput can be
written as

� =

g(A)�

�
En
N0

��1
f(A)

(3.95)

where f(A) is given in (3.32) and g(A) in (3.35) for the case without fading,
in (3.36), in (3.37) and in (3.38) for ALO, RTD and INR, respectively, for
the case with Rayleigh fading
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Figure 3.9: � as a function of En=N0 for di�erent values of K

For all the case above, but RTD with Rayleigh fading, the optimization
with respect to A is quite simple since � is either a decreasing function of A
or it has just one global maximum. In the former case, the optimal value is
A = 0, in the latter is some positive A. We can �nd the range of En=N0 for
which the optimum is achieved by A = 0 as the solution of

@�

@A

����
A=0

� 0 (3.96)

In the case without fading and INR with Rayleigh fading, this gives (En=N0) �
(En=N0)th = 2. In the case of ALO with Rayleigh fading, this gives (En=N0)th =
2e. In the case of RTD with Rayleigh fading, � is either decreasing function
of A or it has a maximum and a minimum. In the former case optimal A is
again A = 0, in the latter case the optimal A is A > 0 if and only if the local
maximum of � is actually the absolute maximum. In this case, numerically
we found (En=N0)th = 13:18 dB.

In all cases, in the range (En=N0) > (En=N0)th, the optimization over A
gives the following parametric equations8><>:

� =

�
dg(A)
dA

�
=

�
df(A)
dA

�
�
En
N0

��1
= g(A)� f(A)�

(3.97)

for A � 0, while in the range (En=N0)min � (En=N0) < (En=N0)th, the
throughput is given by � = 1� (En=N0)

�1.
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Chapter 4

Causal feedback and delay

constraint

We consider a wireless multi-access system where users must deliver a mes-
sage within a given maximum delay by spending a given �nite energy. If the
message is not transmitted within the required delay then it becomes useless
and the residual energy is wasted. The channel is block-fading, with indepen-
dent fades for each user and each slot. Users know the fading levels up to the
current slot but do not know the future fading levels. The receiver collects
the signal on all the slots of the frame and performs joint decoding of all
the messages. We characterize the region of long-term average achievable
rates and the long-term average capacity region per unit energy by �nding
the optimal power/rate allocation.

4.1 Introduction

The literature on the capacity of fading channels has followed two distinct
approaches to characterize power constraints: A) Power constraint on a
per-symbol basis (averaged over the codebook); B) Power constraint on
a per-codeword basis (averaged over the length of the codeword and the
codebook).

Basic information theory results [1] have shown that the laxer constraint
B o�ers no advantage in unfaded channels or in fading channels where the
transmitter does not know the channel. However, when the transmitter
has instantaneous knowledge of the channel fading coe�cients, constraint B
leads to strictly larger capacity than A because it enables the use of \power
control" which avoids wasting power at symbols where the channel undergoes

109
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deep fades. Under B, the optimum strategy as shown in [11] is water-�lling
in time. In this setting, the fading process is assumed to be stationary
and ergodic and the codewords are long enough for the fading distribution
to be revealed within the span of one codeword. If the fading dynamics
are slow, this leads to intolerably long blocklength, and consequently delay.
Furthermore, water�lling power control leads to very large peak-to-average
ratio of the transmitted waveform, in the low power (or \wideband") regime.

In the high power regime, constraints A and B, although leading to
di�erent optimum transmission strategies, achieve very similar single-user
capacity. Only in conjunction with multi-access and multiuser detection do
optimum power control strategies lead to noticeable advantages in the high
power regime [85]. On the other hand, in the low spectral e�ciency regime,
constraint B enables (for fading distributions with in�nite support) reliable
communication with energy per bit as small as desired, in stark contrast to
constraint A which requires a minimum transmitted energy per bit that is
bounded away from zero. Therefore, it is natural to focus on the wideband
regime when analyzing the impact of delay constraints on capacity.

Incorporating delay constraints in Shannon theoretic settings is a peren-
nial challenge. In fading channels, it is essential to specify the duration of
a codeword with respect to the fading process coherence time and the time
interval on which the average input power constraint is enforced. Although
vanishing error probability is unattainable unless the number of degrees of
freedom grows without bound, that number grows with the product of time
duration and bandwidth. Thus, in the wideband regime, an asymptotic
analysis is feasible even in a setting of �xed duration codebooks.

In [3] the concept of \delay-limited" capacity region for a multi-access
fading channel is introduced. In this setting, each codeword spans a single
fading state (i.e., the fading coherence time is much longer than the codeword
duration) but the input power constraint is even laxer than B given above:
it is imposed over an arbitrarily long sequence of codewords (we shall refer
to such constraint as long-term). The delay-limited capacity region is the set
of rates which can be achieved for all fading states (up to a set of measure
zero), subject to the long-term input constraint. In other words, the coding
rates are �xed while the transmit power uctuates.

In [2], the concept of \capacity versus outage" is introduced. In this
model, each codeword spans a �nite number of fading states and conse-
quently the accumulated mutual information at the end of transmission is
a random variable. An outage is de�ned as the event that the mutual in-
formation is below the transmission rate. In [91], the authors derived the
optimal power allocation policy that minimizes the outage for a given target
transmission rate. The optimal policy turns o� transmission if, with the
current fading realization, the transmission rate cannot be sustained with-
out violating the power constraint. Moreover, in the very low-power regime,
it has the characteristic to concentrate the available power on the slot with
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highest fading gain.
The derivation of the optimal power control law in [91] is based on the

assumption that the fading gains are known prior to transmission. This
assumption may not be realistic for transmission taking place over conse-
quent time slots, which the scheme we have considered so far in our thesis.
In [92, 93] the authors incorporated in their model the causal knowledge
of the channel together with a constraint on the maximum number of slots
a codeword is allowed to span. In this scenario, the accumulated mutual
information at the end of transmission is a random variable whose value is
known only when of whole codeword is received. Both the problem of max-
imizing the expected rate and of minimization of the outage probability are
considered. Notice that the problem is not trivial. The transmitter, in fact,
must trade-o� between waiting for good channel state and running the risk
of violating the delay constraint. Moreover, if the transmitter waits too long,
it may be forced to send data on poor channel or, in case a maximum power
constraint at each transmission attempt is also incorporated (as in [94]), it
may happen that the available power is not used up completely.

In this work we assume a block fading model where a codeword spans
a �nite number of slots N , with fading constant over each slot and varying
independently from slot to slot, and the power constraint is enforced on a
per-codeword basis (constraint B above). However, we allow variable rate
coding so that users can coordinate their rates in order to be always inside the
fading-dependent capacity region. Here, the transmit power is �xed while
the coding rates uctuate. Consequently, we de�ne the long-term average
capacity region as the set of all achievable rates averaged over an arbitrarily
long sequence of codewords. In this energy-limited setting, we characterize
also the \long-term average capacity region per unit energy". Finally, we
assume that the fading coe�cient a�ecting each slot, the so-called fading
state, is revealed causally to the transmitters [92, 93, 94], i.e., precisely at
the beginning of the slot. This is an idealized model of practical schemes
that use training symbols. The receiver performs coherent joint decoding
after having collected the user signals on all the slots of the frame.

We prove that long-term average capacity is achieved for N = 1 by
constant power allocation [10], while, as N increases, the optimal causal
policy tends to the optimal ergodic policy without delay constraint and non-
causal channel state information [13]. Our setting gives the correct trade-o�
between peak-to-average constrained systems (N = 1) and complete freedom
in the power allocation (N ! 1) and proves that past and future channel
knowledge are immaterial when the delay constraint is not too severe. On
the other hand, the optimal policy achieving long-term average capacity per
unit energy is \one-shot", i.e., transmission occurs in only one slot of the
frame whose selection depends on the fading on the channel. Furthermore,
with the \one-shot" policy, transmission occurs at minimum energy per bit
needed for reliable communication, which implies not only that the energy
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is used in the most e�cient way but also that interference to other users is
reduced to the minimum.

Our work is mainly inspired by Negi and Cio� [92, 93] who investigated
the optimal causal power control law and its implications on average capacity
and outage performance in a single user system. They identi�ed the \one-
shot" law as an approximation of the long-term average capacity achieving
policy in the low Signal-to-Noise-Ratio (SNR) regime. As a matter of fact,
their argument can be made rigorous by using the framework of capacity
per unit-cost as introduced by Verd�u in [14], which is the approach taken
in this work. Furthermore, in our work we do not just state a \capacity
formula", we give a coding theorem (achievable and converse part) to prove
that the quantity maximized in [92, 93] is the long-term average capacity of
the channel. We also give a limiting analysis as the delay constraint N is
relaxed and we prove the convergence of our long-term average quantities
to the corresponding ergodic capacities. Finally, we quantify the loss of the
optimal causal strategy with the optimal strategy with non-causal channel
knowledge of the channel [91].

The paper is organized as follows: in Section 4.2 we briey describe the
system model and de�ne our variable rate coding scheme; in Section 4.3 and
Section 4.4 we characterize the long-term average capacity region and the
long-term average capacity region per unit energy, respectively, for every
�nite delay N as well as their behavior for in�nitely large N ; in Section 4.5
we give some numerical examples and in Section 4.6 we conclude with some
practical implications of the optimal power allocation policy achieving ca-
pacity per unit energy and discuss its application to protocols for wireless
sensor networks [95, 96, 97]. All proofs are reported in the Appendices.

Our publications related to this chapter are:
[28] D.Tuninetti and G.Caire. \The long-term average capacity region per
unit energy", in the Proceedings of the Thirty-�fth Annual Asilomar Con-
ference on Signals Systems and Computers (Asilomar2001), Paci�c Grove
(USA), November 2001;
[29] D.Tuninetti and G.Caire. \The long-term average capacity region per
unit energy with application to protocols for wireless sensor networks", in
Proceedings of the 2002 European Wireless Conference (EW2002), Firenze
(Italy), February 2002. Winner of the Best Student paper Award.

4.2 System model and basic de�nitions

We consider a block-fading Gaussian Multi-Access Channel (MAC) where
K transmitters must deliver their message within N slots to the receiver
by spending a �xed maximum energy. The number of complex dimensions
per slot is L = bWTc, where T is the slot duration and W is the channel
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bandwidth. The baseband complex received vector in slot n is

yn =
KX
k=1

ck;nxk;n + zn (4.1)

where zn is a proper complex Gaussian random vector of dimension L with
i.i.d. (independent and identically distributed) components of zero mean
and normalized unit variance, xk;n is the complex signal of user k transmit-
ted in slot n, ck;n is the complex fading coe�cient for user k with instan-

taneous power �k;n
�
= jck;nj

2 with continuous cdf (cumulative distribution

function) F
(k)
� (x) i.i.d. for all n = 1; � � � ; N and mutually independent for

k = 1; � � � ; K.
The receiver has perfect Channel State Information (CSI) while the

transmitters have perfect causal CSI [92, 93], i.e., in slot n the transmit-
ters know the channel state up to time n, de�ned by

Sn
�
= fck;i : k = 1; � � � ; K; i = 1; � � � ; ng (4.2)

Each transmitter k is subject to the per-codeword input constraint B given
above

1

NL

NX
n=1

jxk;nj
2 � k (4.3)

where k is the transmitted energy per symbol, and because of the noise
variance normalization adopted here it has the meaning of transmit SNR.
In the following we will use the notation

�k;n
�
=

1

L
jxk;nj

2 (4.4)

for the instantaneous SNR of transmitter k in slot n.
For �nite N and L no positive rate is achievable. However, we can

consider a sequence of channels indexed by the slot length L and study the
achievable rates in the limit for L ! 1 and �xed N . This is a standard
mathematical abstraction in the study of the limit performance of block-
fading channels [2] and it is motivated by the fact that, in many practical
applications, the product WT is large and T is much smaller than the fading
coherence time. Even in the limit of large L, the rate K-tuple at which
reliable communication is possible over a frame of N slots is a random
vector, because only a �xed number N of fading coe�cients a�ect each
user codeword. We allow variable rate coding so that users can coordinate
their rates in order to be always inside the fading-dependent capacity region.

Variable-rate coding in our setting is essentially di�erent from variable-
rate coding in an ergodic setting, such as in [13, 11], where actually capac-
ity can be achieved with constant transmission rate and constant energy
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per codeword. Here, we assume that each transmitter has an in�nite \bit-
reservoir" and, depending on the fading instantaneous realization, trans-
mits a variable number of bits per frame. We model this setting by let-
ting the message set size depend on the fading state. Consider user k, let
Wk;n = fWk;n(Sn) : Sn 2 C

nKg be a collection of message sets indexed by
the channel state Sn and jWk;n(Sn)j = Mk;n(Sn) denote the cardinality of
the message set Wk;n(Sn).

De�nition 1. A variable-rate coding system is de�ned by:
a) An assignment of message sets to the fading states de�ned byWk;n given
above;
b) A sequence of encoding functions �k;n : Wk;n(Sn)� C

nK ! C
L such that

�k;n : (w; Sn) 7! xk;n, where w 2 Wk;n(Sn), and such that the resulting
codeword satis�es (4.3);
c) A decoding function  : C NL � C NK !

NK
k=1

NN
n=1 f[Wk;ng such that

 : (fyn : n = 1; � � � ; Ng; SN) 7! (w1; � � � ;wK), where f[Wk;ng is a short-
hand notation to indicate the union of all message sets Wk;n(Sn) 2 Wk;n,
and where wk = (wk;1; � � � ; wk;N) is a sequence of messages such that
wk;n 2 Wk;n(Sn). �

For given SN , the coding rate for user k of the above scheme is given by

Rk(SN) =
1

NL

NX
n=1

log (Mk;n(Sn)) (4.5)

for all k = 1; � � � ; K and the error probability is given by

Pe(SN) =
1QK

k=1

QN
n=1Mk;n(Sn)

�X
w1;��� ;wK

Pr ( (fyng; SN) 6= (w1; � � � ;wK)j(w1; � � � ;wK)) (4.6)

Consider a sequence of frames, where coding and decoding are performed
frame-by-frame according to a variable-rate coding scheme de�ned above,
and where the channel state sequence SN over each frame is generated ac-
cording to some ergodic and stationary process. By the law of large num-
bers, the long-term average coding rate and error probability are given by
Rk = E[Rk(SN)] for all k = 1; � � � ; K and by Pe = E[Pe(SN)], where expec-
tation is with respect to the joint statistics of the channel state SN .

A variable-rate coding scheme for frame length N , slot length L, with
average rate k-tuple R = (R1; � � � ; RK), with power constraint de�ned by
the K-tuple  = (1; � � � ; K) and average probability of error Pe � � is
said to be a (N;L;R;; �)-code. The operative de�nitions of long-term
average capacity region and of long-term average capacity region per unit-
energy mimic, respectively, the standard capacity region de�nition for input
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constrained channels [1] and de�nition of capacity region per unit cost given
in [14].

De�nition 2. A rate K-tuple R? 2 RK+ is long-term average �-achievable
if for all � > 0 there exist L such that for L � L variable-rate (N;L;R;; �)-
codes can be found with Rk > R?k � � for k = 1; � � � ; K. A rate K-tuple
is achievable if it is �-achievable for all 0 < � < 1. The long-term average
capacity region CK;N() is the closure of the convex hull of all long-term
achievable rate K-tuples. �

De�nition 3. A K-tuple r? 2 RK+ is a long-term average �-achievable rate
per unit energy if for all � > 0 there exist an energy vector �� = (��1; � � � ; ��K)
such that for � � �� 1 variable-rate (N;L;R; �=(NL); �)-codes can be found
with (LNRk)=�k > r?k � � for k = 1; � � � ; K. A rate K-tuple is achievable if
it is �-achievable for all 0 < � < 1. The long-term average capacity region
per unit-energy UK;N is the set of all long-term achievable rate K-tuples per
unit-energy. �

In this setting, it is meaningful to study the largest achievable long-term
average rate region, subject to the short-term power constraint (4.3). More-
over, in the energy-limited case investigated here, a meaningful system de-
sign criterion is to look for the largest achievable long-term average capacity
per unit energy (bit/joule). Next, in analogy with [13, 14], we characterize
the long-term average capacity region and the long-term average capacity
per unit energy for our system. We also give limiting theorems for large
delay N .

4.3 Long-term average capacity region

We have the following result:
Theorem 1. The long-term average capacity region is given by

CK;N() =
[

�2�K;N ()

�
R 2 RK+ : 8A � f1; � � � ; Kg

X
k2A

Rk � E

"
1

N

NX
n=1

log

 
1 +

X
k2A

�k;n�k;n(Sn)

!#)
(4.7)

where expectation is with respect to the channel state SN and where �K;N ()
is the set of feasible causal short-term power allocation policies � = f�k;n :

1For two vectors a and b, the notation a � b means that the di�erence a � b has
nonnegative components.
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k = 1; � � � ; K; n = 1; � � � ; Ng de�ned as

�K;N ()
�
=

(
� 2 RKN+ :

1

N

NX
n=1

�k;n(Sn) � k

)
(4.8)

where �k;n(Sn) indicates the causality constraint.
Proof. The achievable part easily follows by constructing random codes
with entries xk;n � N(0; �k;nI) such that the variances satisfy (4.8) and
the rates satisfy all the inequalities in (4.7). The converse part follows by
showing that the capacity of the N -slot extension channel is achieved by
Gaussian input distributions in the form of those used in the achievable
part of the theorem. For details see Appendix 4.A. �

Remark. The region CK;N() is convex in , in fact, by applying
Jensen's inequality it is straightforward to see that if R(a) 2 CK;N() and
R(b) 2 CK;N() then, for every � 2 [0; 1] we have �R(a) + (1 � �)R(b) 2
CK;N(). For this reason in Theorem 1 the convex-hull operation is not
needed.

For a given power policy � in �K;N (), let P(�) be the set of long-term
average rates achievable by applying �. Theorem 1 states that the long-term
average capacity region CK;N() is the union of all the polymatroids P(�)

CK;N() =
[

�2�K;N ()

P(�) (4.9)

Such formulation of CK;N() is not useful unless we can determine its clo-
sure set. We explicitly characterize the boundary surface of the CK;N(),
following the approach of [13], as the closure of the convex-hull all K-tuples
R 2 RK+ that solve

max
R2CK;N()

KX
k=1

�k Rk (4.10)

for some � = (�1; � � � ; �K) 2 R
K
+ . As in [13], the optimization in (4.10) can

be written as

max
�2�K;N ()

max
R2P(�)

KX
k=1

�k Rk (4.11)

Since P(�) is a polymatroid, the solution of the inner maximization in (4.11)
is attained by one of the (at most) K! vertices of P(�). Such vertex is uni-
vocally determined by the entries of the vector �: it is the one correspond-
ing to the decoding order �K ; �K�1; � � � ; �1 where � is the permutation
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of f1; 2; � � � ; Kg that orders � in decreasing order, i.e., ��1 > � � � > ��K .
Hence, for any policy � we have

max
R2P(�)

KX
k=1

�k Rk =
KX
k=1

��k E

"
1

N

NX
n=1

log

 
1 +

��k;n ��k;n
1 +

P
j<k ��j ;n ��j;n

!#
(4.12)

where � only depends on � and not on �. We have thus turned the maxi-
mization (4.10) into the maximization of the right hand side (RHS) of (4.12)
over the power policies � 2 �K;N (). Due to the causal nature of the chan-
nel state information, the maximization of (4.12) with respect to �, and
hence the solution of (4.10), is obtained by Dynamic Programming. We
have the following:
Theorem 2. De�ne for n = 1; � � � ; N the Dynamic Programming recursion

Sn(P1; � � � ; PK;�) = E

"
max

8k:pk2[0;Pk]

KX
k=1

��k log

 
1 +

��k p�k
1 +

P
j<k ��j p�j

!
+Sn�1(P1 � p1; � � � ; PK � pK ;�)] (4.13)

with initial condition S0(P1; � � � ; PK ;�) = 0, where the expectation is with
respect to� = (�1; � � � ; �K) and where � is the permutation that orders � in
decreasing order, i.e., ��1 > � � � > ��K . Let (bp1;n(�;�;P ); � � � ; bpK;n(�;�;P ))
the value of (p1; � � � ; pN) that achieves the maximum in (4.13) at step n.
Then, the boundary surface of CK;N() is the closure of

convex�hull

(bRN (�;) : � 2 RK+ ;
KX
k=1

�k = 1

)
(4.14)

where the rates bRN = [ bR1;N ; � � � ; bRK;N ] are given by

bRk;N (�;) = E

"
1

N

NX
n=1

log

 
1 +

�k;n b�k;n(Sn;�;)
1 +

P
j<��1(k) ��j ;n

b��j;n(Sn;�;)
!#
(4.15)

(��1(k) gives the position of index k in the permuted vector �) and where

the optimal power policy b� =
nb�k;n(Sn;�;) ; 8k ; 8no is given by

b�k;n(Sn;�;) = bpk;N�n+1
0@�n; N � n�1X

j=1

b�j(Sj;�;);�
1A (4.16)

for all n and k.
Proof. Recursion (4.13) and the optimal power policy (4.16) follow easily
from the general theory of Dynamic Programming [98] when the cost func-
tion to be maximized is given by the RHS of (4.12) and the system evolves,
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from slot n to slot n + 1, according to (�n;P ) ! (�n+1;P � bpn). Details
can be found in Appendix 4.B. �

Note that
KX
k=1

�k bRk;N(�;) = 1

N
SN(N1; � � � ; NK;�) (4.17)

In [92], the authors computed numerically the recursion (4.13) for K = 1 in
the Rayleigh fading case.

Remark. In contrast with [13], the convex-hull operation in (4.14) is
needed since the rates bRN(�;) might not be continuous functions of �.
Consider, as an example, the case of N = 1. The region CK;1() coincides
with the ergodic capacity region of a fading channel without CSI at the
transmitters, the dominant face of which is an hyper-plane in K dimensions.
Due to the polymatroid structure of CK;1(), the solution (4.15) is one of
the (at most) K! vertices of the dominant face. Hence, as � varies in RK+ ,

the set of bRN (�;) contains at most K! points. It is clear that the convex
hull operation is needed here.

From Theorem 2, by solving recursion (4.13) for n = 1, we see that
the optimal solution is bpk;1 = Pk for every � and for every �. Hence,

from (4.16) with N = 1, we have that b�k;1 = k for all k, i.e., the optimal
solution for N = 1 is constant power allocation. From (4.16), we also see
that b�k;N = Nk �

PN�1
j=1

b�k;j which means that, on the last available slot,
all the remaining energy is used regardless of the fading value, which is
sensible since the remaining energy cannot be used on the next frame.

Due to the heavy notation of Theorem 2, it might not be so straightfor-
ward to understand how to construct the optimal policy b� and the role of
the recursion (4.13). Hence, we give some explanation. To characterize the
boundary surface of CK;N(), �rst we need to solve the recursion (4.13) in or-
der to determine the optimal values fbpk;n(�;�;P ) 8k = 1 � � � ; Kg for n � 1.
Then, for a given delay N , we built up the optimal power policy (4.16) by
considering the \length-N window" of optimal values fbpk;n(�;�;P ) 8k =
1 � � � ; Kg for n = N;N � 1; � � � ; 1. On the �rst slot (n = 1), the optimal
policy b�1 = [b�1;1; � � � ; b�K;1] is derived from fbpk;N (�;�;P ) 8k = 1 � � � ; Kg
computed for � equal to the actual fading values �1 = [�1;1; � � � ; �K;1] and
for power P equal to the total available energies N = [N1; � � � ; NK],
i.e., for each user k = 1; � � � ; Kb�k;1(S1;�;) = bpk;N(�1; N;�)

On the second slot (n = 2), the optimal policy b�2 = [b�1;2; � � � ; b�K;2] is
derived from fbpk;N�1(�;�;P ) 8k = 1 � � � ; Kg. Given the fading realization

�2 = [�1;2; � � � ; �K;2] and the remaining energies N � b�1(S1;�;), the
optimal power allocation isb�k;2(S2;�;) = bpk;N�1(�2; N � b�1(S1;�;);�)
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On the third slot (n = 3), the optimal policy b�3 is derived from
fbpk;N�2(�;�;P ) 8 k = 1 � � � ; Kg. With fading realization �3 and

remaining available energies N � b�1(S1;�;) �
b�2(S2;�;), the optimal

policy is

b�k;3(S2;�;) = bpk;N�2(�3; N � b�1(S1;�;)� b�2(S2;�;);�)
for each user k = 1; � � � ; K. The procedure continues until n = N With the
optimal policy built in such a way, we can compute the rates (4.15).

Notice that, having determined the optimal values fbpk;n(�;�;P )g for
n = 1; � � � ; N , allows us to compute CK;n() for all n = 1; � � � ; N . In other
words, varying the delay from N1 to N2 > N1 only requires the computation
of other N2�N1 steps of the recursion (4.13), those for n = N1+1; � � � ; N2.

Although for �nite N a closed form solution of (4.13) seems infeasible, for
large N we can prove:
Theorem 3. In the limit for large N , the long-term average capacity region
CK;N() tends to the ergodic capacity region [13]

C
(erg)
K () =

[
�2�(erg)

K
()

�
R 2 RK+ : 8A � f1; � � � ; Kg

X
k2A

Rk � E

"
log

 
1 +

X
k2A

�k�k(�)

!#)
(4.18)

where expectation is with respect to the instantaneous channel state � =

(�1; � � � ; �K) and �
(erg)
K () is the set of feasible power allocation functions

� = f�k : k = 1; � � � ; Kg de�ned by

�
(erg)
K ()

�
=
�
� 2 RK+ : E[�k(�)] � k

	
(4.19)

Proof. The proof follows three steps: 1) we show that the ergodic capacity
of the underlying block-fading channel contains CK;N() for every N �
1; 2) for every N � 1 we construct an inner bound region by choosing
the following (possibly sub-optimal) feasible power policy: on every slot
allot power according to the optimal ergodic policy, if this does not violate
the energy constraint, otherwise waits for the next slot; 3) �nally, since in
the limit for large N the probability that the above policy in unable to
allocate power according to the ergodic law on all the N slots of the frame
is vanishing, we show that the inner-bound region coincides with the ergodic
capacity, hence proving the statement. See the details in Appendix 4.C. �

Remark. As the delay constraint is relaxed, i.e., N increases, the
penalty incurred by the use of a short-term causal power allocation policy
with respect to the ergodic power allocation policy decreases. This means
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that, when the delay is not too strict, the past information becomes irrel-
evant and the power policy tends to become memoryless in the sense that
the same law is applied on every slot in an \i.i.d. fashion".

Theorem 2 and Theorem 3 show that in out setting the parameter N
can be consider as a measure of the peak-to-average power ratio. In fact,
for N = 1, optimal power policy is constant power allocation (peak-to-
average ratio equal to one) while as N increases optimal power policy tends
to ergodic power allocation which allots power only on the \most" favorable
fading gains. In the low power regime, the ergodic policy concentrates power
only on those slots whose fading is close to the maximum possible fading
value.

4.4 Long-term average capacity region per unit
energy

A byproduct of the proof of Theorem 1 is that the long-term average capacity
region coincides with the standard \ergodic" capacity region of the N -slot
extension channel, which is frame-wise memoryless (since the power control
\correlates" only symbols inside the same frame). The following theorem is
an immediate consequence of this fact and of the general theory of capacity
per unit cost [14]:
Theorem 4. The long-term average capacity region per unit energy is

UK;N =
[

2RK

+

�
r 2 RK+ : (1 r1; � � � ; K rK) 2 CK;N()

	
(4.20)

Proof. The proof follows immediately from [14, Theorem 5]. �

In analogy with [14], it is easy to show:
Theorem 5. The long-term average capacity region per unit energy is the
hyper-rectangle

UK;N =
n
r 2 RK+ : rk � s

(k)
N

o
(4.21)

where s
(k)
N , given by

s
(k)
N = lim

k!0

1

k
sup

�2�1;N (k)

E

"
1

N

NX
n=1

�k;n�k;n(Sn)

#
(4.22)

is the k-th user single-user long-term average capacity per unit energy.
Proof. See Appendix 4.D. �
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The explicit solution of (4.22) was found in [92]. We report it here in our
notation for later use:
Theorem 6. The k-th user single-user long-term average capacity per unit

energy s
(k)
N is given by the Dynamic Programming recursion

s(k)n = E[maxfs
(k)
n�1; �kg] (4.23)

for n = 1; : : : ; N with initial condition s
(k)
0 = 0 and where expectation is

with respect to �k � F
(k)
� (x). Furthermore, s

(k)
N is achieved by the \one-

shot" power allocation policy de�ned by

�?k;n =

�
Nk if n = n?k
0 otherwise

(4.24)

where the random variable n?k , function of (�k;1; � � � ; �k;N), is de�ned as

n?k = min
n
n 2 f1; : : : ; Ng : �k;n � s

(k)
N�n

o
(4.25)

Proof. Expression (4.23) is the solution of the Dynamic Programming
algorithm when the cost function to be maximized is (4.22). For more
details, see the proof given in [92]. �

We have nicknamed the optimal policy �? \one-shot" because the whole
available energy Nk is spent all at once in a single slot. In fact, in each
slot n 2 f1; � � � ; Ng, the transmitter compares the instantaneous fading

gain �k;n with the time varying threshold s
(k)
N�n, if the fading is above the

threshold then it transmits on the current slot by using all the available
energy otherwise it waits for the next slot. Since the threshold to be used

on the last available slot is s
(k)
0 = 0, the available energy is used within the

required delay ofN slots with probability one. This feature of optimal policy
was already found out in [92], but in this work the authors did not realize
that what is the restricted context of an \approximation for low SNR" is
actually the general solution to long-term average capacity per unit energy
for every �nite delay N . Fig. 4.1 shows a fading realization over a window
of N = 10 slots. We can this that in this case transmission takes place in
slot n = 6.

From a practical implementation point of view, the \one-shot" policy is
appealing. It requires virtually no computation, just a comparison of the
instantaneous fading amplitude with a threshold. The threshold sequence

fs
(k)
n g1n=0 can be pre-computed and stored in memory since it only depends

on the fading statistic and not on the instantaneous fading values. Pol-
icy (4.24) is \memoryless" in the sense that the only information needed
about the past slots of the frame is whether transmission has already took
place and it is decentralized, i.e., n?k only depends on (�k;1; � � � ; �k;N). More-
over, when varying the delay requirements from N1 to N2, the threshold
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Figure 4.1: Fading realization over a frame of N = 10 slots.

sequence need not to be re-computed, only a di�erent \chunk" fs
(k)
n gN2�1

n=0 ,

instead of fs(k)n gN1�1
n=0 , has to be used. Notice also that the number of active

users K does not a�ect the value of the thresholds.

The behavior of s(k)N when N grows to in�nity is given by the following:
Theorem 7. For large N , the k-th user single-user long-term average ca-

pacity per unit energy s
(k)
N tends to the k-th user single-user ergodic capacity

per unit energy given explicitly by

lim
N!1

s
(k)
N = supf�kg (4.26)

where supf�kg
�
= inffx � 0 : F

(k)
� (x) = 1g.

Proof. See Appendix 4.E. �

Remark. Let C() be the capacity expressed in nat/dimension as a
function of , and let C(Eb=N0) denote the corresponding spectral e�ciency
in bit/s/Hz as a function of the energy per bit vs. noise power spectral
density, Eb=N0, given implicitly by( Eb

N0
=  log2

C()

C

�
Eb
N0

�
= C()

log2

(4.27)

The value (Eb=N0)min for which C(Eb=N0) > 0 , Eb=N0 > (Eb=N0)min

is given by [85]
�
Eb
N0

�
min

= log2
_C(0)

where _C(0) is the �rst derivative of the
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capacity function C() at  = 0. From the proof of Theorem 5, we see
immediately that the reciprocal of (Eb=N0)min for the k-th user is its capacity
per unit energy (expressed in bit/joule), of the channel, i.e.,�

Eb
N0

�
min

=
log 2

s
(k)
N

(4.28)

The \one-shot" policy not only makes the most e�cient use of the energy,
by maximizing the number of expected correctly received number of bits
per joule, but also reduces to the minimum the interference to other users
since all the users transmit at minimum Eb=N0. Notice that as the delay
constraint is relaxed, i.e., N grows, the minimum required Eb=N0 lowers
down. Of course nothing is for free: the fact that the system works at
the minimum Eb=N0 is because it uses of a large number of degree of free-
dom (L) per information bit, i.e., the system works in the so-called \in�nite
bandwidth regime". As shown recently in [99], information theoretic per-
formance in \wideband regime" is not only characterized by the minimum
energy per bit since minimum Eb=N0 alone is unable to give the correct
tradeo� bandwidth-power. Transmitting at minimum Eb=N0 implies us-
ing of an in�nitely large bandwidth (in�nite bandwidth regime) and hence
having zero spectral e�ciency while, by increasing a bit Eb=N0 from its min-
imum value, the required bandwidth for reliable communication is large but
�nite (wideband regime) as well as the spectral e�ciency. The analysis on
the wideband performance of our system, characterized by causal feedback
and delay constraint, will be the topic of next chapter.

The non-causal policy achieving long-term average capacity per
unit-energy. At this point is interesting to compare the optimal \one-
shot" (causal) policy with the optimal non-causal policy achieving long-term
average capacity per unit energy. We consider only the single user case, since
we saw that in the multi-user case the long-term average capacity region is
the Cartesian product of the single-user long-term average capacities. 2 If
we allow the input to depend on the whole CSI SN in a non-causal way, it
is immediate to show that the optimal policy is \maximum selection"

�
? (nc)
k;n =

(
Nk
jMkj if n 2Mk

0 otherwise
(4.29)

where

Mk = fn : �k;n = maxf�k;1; � � � ; �k;Ngg (4.30)

2The K-user capacity region per unit cost is equal to the Cartesian product of the K
single-user capacities per unit cost only if a) every user has an alphabet that contains a
symbol of zero cost and b) for a given user, the use of the zero-cost symbol by all the
other users corresponds to the most favorable single-user channel seen by the considered
user. Those two hypothesis are always satisfy by additive channels.
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and jMkj 2 f1; � � � ; Ng denotes the cardinality of the non-empty set Mk.
Power policy (4.29) equally divides the available energy among the slots
whose fading is equal to the maximum. Hence, the non-causal long-term
average capacity per unit energy is

s
(k;nc)
N = E[maxf�k;1; � � � ; �k;Ng] (4.31)

Notice that, with continuous fading distribution, Pr[jMkj > 1] = 0 and
interestingly, also in the non-causal setting, the optimal policy achieving
capacity per unit energy is \one-shot".

4.5 Numerical results

In this section we give numerical values of the long-term average capacity
per unit energy for two types of channel: discrete two states fading channel
and continuous Rayleigh fading channel. We also compare the long-term
average rates per unit energy achievable with causal feedback with those
achievable with non-causal feedback.

The two states fading channel. This fading statistics models a com-
munication system with a line of sight, as low orbit satellite communica-
tion systems. The fading can be either � = 0 (bad channel, i.e., no line
of sight) or � = 1 (good channel). The probability of the good state is
� = Pr[� = 1] = 1�Pr[� = 0] with � 2 [0; 1]. For this channel E[�] = � and
supf�g = 1. We have that long-term average capacity per unit energy (4.23)
is

sN = 1� (1� �)N (4.32)

Note that for this special channel sN = s
(nc)
N i.e. the non-causal knowledge of

the channels gains does not improve the performance of the system. Fig. 4.2
shows the value of sN as a function of N for the two states fading channel.
With delay N = 6 the performance are almost that of the ergodic system
(attainable for N !1).

The Rayleigh fading channel. The channels gain are i.i.d with cdf
F�(x) = 1�e�x for x � 0. For this channel E[�] = 1 and supf�g =1. The
long-term average capacity per unit energy (4.23) can be computed from the
recursion

sN = sN�1 + e�sN�1 (4.33)

with initial condition s0 = 0. With non-causal knowledge of the channels
gains the long-term average capacity per unit energy (4.31) is

s
(nc)
N =

NX
n=1

�
N
n

�
(�1)n+1

n
(4.34)
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strictly larger than sN for all N > 1. Fig. 4.3 shows the value of sN and

s
(nc)
N as a function of N for the Rayleigh fading channel. For example, with
delay N = 5 the system doubles its capacity per unit energy, i.e., s5 � 2s1,
which means that the required minimum transmit energy per bit (4.28) is
3dB lower than in the case N = 1.

The \one-shot" policy is only optimal in the low SNR regime.

Consider the single-user long-term average rate that can be achieved by
applying policy �?. In order to be always inside the instantaneous fading
dependent capacity region, the user must encode on the slot n at rate

r?n = log(1 + �nN 1fn
? = ng) (4.35)

where n? is given in (4.25). Hence, on a long-term average, the user acchieves
rate C?1;N() given by

C?1;N() =
1

N
E

"
NX
n=1

log(1 + �nN 1fn
? = ng)

#

=
1

N
S?N (N) (4.36)

where S?N(P ) is given by the Dynamic Programming recursion

S?N (P ) = Pr[�j < sN�1]S?N�1(P )

+

Z 1

sN�1

log (1 + Px) dF�(x) (4.37)

for n = 1; � � � ; N and with initial condition S?0(P ) = 0. Fig. 4.4 shows
C?1;N() for the Rayleigh fading case for di�erent value of N . Note that
for small , C?1;N() increases with N but for higher  it decreases, proving
that �? is optimal only in the energy limited (low SNR or wideband) regime.
As N increases the rate C?1;N() drops to zero. Fig. 4.5 shows the spectral
e�ciency for the Rayleigh fading case for di�erent value of N as function of
Eb=N0.

4.6 Conclusions

In this chapter we have analyzed an idealized fading model where each code-
word sees N independently drawn fading states, known to the transmitter
causally. The power control algorithm at the transmitter must decide what
portion of the available energy to allocate to each fading state based only
on the knowledge of current and past fading states. We have solved for the
optimal power control policy and capacity for �xed arbitrary N and for ar-
bitrary number of users. The optimal policy is to concentrate all the energy
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Figure 4.2: sN vs. N for the two states channel.
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in only one of the fading states. That state is chosen on the basis of not
only its strength, but also how likely it is that a more favorable fading state
will appear before the end of the codeword.

We insisted that the \one-shot" power policy is simple, decentralized
and we listed a number of \practical" advantages of this fact. Actually, in
order to achieve rate points on the closure of the long-term average capacity
CK;N() users not only must use their power on the most favorable channel
conditions but they also need to coordinate their transmission rate in order
to be always inside the instantaneous fading dependent capacity region. To
be more clear, let assume that there is only one user in the system and
that allocates power according to �? and rate according to (4.35), then
it achieves rate C?1;N() given in (4.37). Add to the system another user
that transmits with the same rate/power allocation policy. If the two users
happen to transmit on the same slot (n?1 = n?2) then the receiver can not
jointly decode them and the system is in outage. The probability of outage,

i.e., Pout(N)
�
= Pr[n?1 = n?2], can be computed with the following recursion

Pout(N) =
�
1� F (1)

� (s
(1)
N�1)

��
1� F (2)

� (s
(2)
N�1)

�
+F (1)

� (s
(1)
N�1)F

(2)
� (s

(2)
N�1) � Pout(N � 1) (4.38)

with initial condition Pout(0) = 0. Fig. 4.6 shows the probability of outage
in the Rayleigh fading case as a function of N . It can be can seen that at
N = 10 the two users are going to collide on 1 frame out of 10 (Pout(10) =
0:1). To avoid outage users must coordinate their rates.

Could rate coordination be avoided by using other strategies, like TDMA?
The question is legitimate since, from the proof of Theorem 5, the long-term
capacity per unit energy can be achieved either with superposition coding
and optimum joint decoding but also with TDMA inside each slot. Actually,
the analysis that lead to the derivation of the long-term capacity per unit
energy deals with the "in�nite bandwidth regime" and not with the \wide-
band regime". Recent works [30, 32] have shown that actually TDMA can
be heavily sub-optimal, in term of achievable rates, especially in a multiuser
faded environment which is intrinsically rich in diversity. In fact, when many
users are active in a faded environment, with high probability the best user
enjoys channel gain that is larger than its average, hence the performance
is dominated not by the average but by the maximum. We shall go deeply
into the subject in the next chapter.

What do we conclude? In order to fully exploit diversity we need joint
processing in the form of rate coordination and joint decoding at the receiver,
but this is \expensive" in complexity.

From this theoretical analysis we can draw some guidelines for the design
of practical systems. In wideband regime, in order to optimize the average
number of received bits per joule, sequential polling of the active users by
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Figure 4.6: Pout(N) vs. N for the Rayleigh channel.

the master is not needed. This analysis suggests that the master station
should send periodically a \probe" signal; if a user has a message to send,
then it starts a timeout and measures the attenuation of its own channel on
every slot of the frame: on the �rst slot where the channel gain is higher
than the time varying threshold s it sends its packet with all the available
energy, then it resets the timeout and waits for the next packet to send.
Note that an optimal system actually does not require the time windows of
the active users to be synchronous and the users can have di�erent delay
requirements, this allowing for extra exibility.

We close the section, and the chapter, by describing a practical system
where our results could be of importance. Although our model is admit-
tedly quite simpli�ed with respect to the reality, it �ts the characteristics of
a wireless sensor network. Briey, a WSN comprises many stationary nodes
and a very small number of mobile nodes. Unlike terminals in conventional
wireless networks, i.e., ad-hoc networks or cellular systems, the sensors nodes
in a WSN operate under very dynamic/di�erent conditions (take measure-
ments, elaborate the acquired data, discover other nodes to establish links,
act as relay for other nodes in case of lack of connectivity or unreachable
target, etc.) and work unattended. In order to guarantee network connec-
tion and long operational lifetime, energy must managed carefully, especially
because sensors run on batteries whose frequent substitution might be im-
possible and/or impractical. In terms of energy consumption, transmitting
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data on the air is of much higher cost than non-real time processing, hence
source and channel coding are of primary importance in order to lower down
the transmission rate. Mobile nodes periodically collect data from the sen-
sors. They send a reference signal that sensors use to detect their presence,
to synchronize and to measure their channels. Since the mobile moves, the
channel from the mobile to the sensors changes over time, hence sensors
must transmit at variable rate/quality in order to deliver in any case a use-
ful message. Transmission must take place within the time the mobile node
is reachable otherwise the data will be lost.

As an example, imagine sensors for tele-surveillance located over a large
geographical area and a non-geostationary satellite that periodically ies
above them so that the sensors are in the coverage of its spot beam antenna.
The sensors have solar cells to charge their batteries. At every passage of the
satellite, and within the time the satellite is reachable, the sensors send their
data, an image or a measurement, by using the energy that they have stored
in the batteries. Because of phenomena like tropospheric scattering, rain or
physical obstacles, the channel between each sensor and the satellite is slowly
time-varying and can be considered frequency at. Due to time variation of
atmospheric conditions, the rate at which reliable communication is possible
is a random variable. Since in this kind of application it is important to
deliver some measurement, even if not at the best quality, the sensors encode
the data by layered source coding and, depending on the instantaneous
channel conditions, transmit the fundamental coarse information and more
or less re�nement. Notice that source coding need not be in real time, so
it costs (virtually) no energy. On the contrary, transmission must be done
with the accumulated energy in the battery. A sensible criterion for this
setting is to maximize the expected number of transmitted bit per joule.

Appendix

4.A Proof of Theorem 1

Achievability is easily obtained by considering a particular variable-rate cod-
ing system that encodes and decodes independently over the N slots. For
each channel state 3 SN , the users construct a sequence of Gaussian code
books of length L with i.i.d. entries of zero mean and unit variance and
sizes Mk;n(Sn), satisfying the set of inequalities

1

L

X
k2A

log (Mk;n(Sn)) < log

 
1 +

X
k2A

�k;n�k;n(Sn)

!
(4.39)

3For a rigorous treatment in the case where the fading is a continuous random vector
we should use the argument of [13] based on the discretization of the fading state. For
the sake of brevity, we cut short and we assume that we can de�ne a code book for each

channel state.
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for all A � f1; � � � ; Kg, where � 2 �K;N(). Each transmitter k, dur-
ing slot n, after observing Sn, selects a message uniformly on Wk;n(Sn) =
f1; : : : ;Mk;n(Sn)g and independently of the other transmitters, and sends
the corresponding codeword ampli�ed by the transmit power level �k;n(Sn).
The receiver perform decoding on a slot-by-slot basis (even though it is al-
lowed to wait until the end of the frame of N slots). From the standard
Gaussian MAC [1], any rate K-tuple satisfying the set of inequalities (4.39)
is achievable, i.e., the conditional decoding error probability given the chan-
nel state Sn vanishes as L!1. By summing over N slots we get

1

NL

X
k2A

log

 
NY
n=1

Mk;n(Sn)

!
<

1

N

NX
n=1

log

 
1 +

X
k2A

�k;n�k;n(Sn)

!
(4.40)

with conditional (w.r.t. SN ) error probability not larger than N times the
maximum over the N slots of the conditional error probability in the n-th
slot. Finally, by taking expectation with respect to the channel state of both
sides in (4.40) and of the error probability and by applying De�nition 2, we
�nd that the set of rates de�ned in (4.7) are long-term average achievable.

For the converse part, we consider the N -slot extension of our chan-
nel, with input \blocks" Xk = fxk;n : n = 1; � � � ; Ng and output \block"
Y = fyn : n = 1; � � � ; Ng, where the input constraint is given \block-wise"
by (4.3). 4 One frame of the original channel corresponds to a channel use
of the new channel.

The new channel is (block-wise) memoryless. We consider a sequence
of such channels indexed by increasing L, and de�ne the capacity region
of the N -slot extension channel as the closure of the union of all regions
for L = 1; 2; � � � . Any error probability (averaged over an arbitrarily large
number of frames) achievable by a coding system constrained to perform
coding and decoding frame-by-frame can be also achieved by performing
coding and decoding over an arbitrarily long sequence of frames. Hence,
any long-term achievable rate K-tuple of the original channel is achievable
(in the usual ergodic sense) by theN -slot extension channel (rates are always
expressed in nat per dimension of the original channel). We conclude that
the capacity region of the N -slot extension channel is an outer bound to the
long-term average capacity region of the original channel.

Let X = fXk : k = 1; : : : ; Kg and, for any A � f1; : : : ; Kg, let X(A)
�
=

fXk : k 2 Ag and R(A)
�
=
P

k2ARk. From standard results on memoryless
MAC [6, 7, 36, 13, 1], the capacity region of the N -slot extension channel is
given by[
Pr(X;V;SN)

�
R 2 RK+ : R(A) �

1

LN
I
�
X(A);YjX(A); SN ; V

�
8A � f1; � � � ; Kg

�
(4.41)

4Similar \blocking" techniques have been used to prove coding theorems for channels
with ISI [15, 100].
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where the joint probability of (X; V;SN) satis�es

Pr(X; V; SN) =

 
KY
k=1

NY
n=1

Pr(xk;njSn; V;xk;1; � � � ;xk;n�1)

!
Pr(V jSN) Pr(SN)(4.42)

and each factor
QN
n=1 Pr(xk;njSn; V;xk;1; � � � ;xk;n�1) puts zero probability

outside the sphere 1
NL

PN
n=1 jxk;nj

2 � k. The input probability in the
form (4.42) expresses the fact that encoding is independent for all trans-
mitters, when conditioned with respect to the common CSI SN and the
time-sharing variable V , and that the common CSI is causal, i.e., that xk;n
depends only on Sn and not on the whole SN . Notice that we allow the
time-sharing variable V to depend on the whole CSI SN , even if the CSI is
only revealed causally to the transmitters (again, this can only increase the
capacity region).

Fix an input probability distribution P (X; V; SN) in the form (4.42) with
conditional component-wise second-order moments

�
(`)
k;n(Sn; V ) = E[jx

(`)
k;nj

2jSn; V ] (4.43)

where x
(`)
k;n denotes the `-th component of xk;n. Since the channel is additive

and the input second-order moment is constrained, the boundary of the re-
gion (4.41) is clearly achieved only if P (X; V; SN) satis�es E[XjSN ; V ] = 0.
Then, we shall restrict to this case. Let P (Y;X; SN; V ) be the joint input-
output probability corresponding to P (X; V; SN) and to the transition prob-
ability of the channel. Let �(Y;X; SN; V ) be the joint input-output proba-
bility for input X conditionally Gaussian with independent components of
zero conditional mean and conditional variance as in (4.43). Notice that
such input distribution is valid, in the sense that it is in the form (4.42).

For every subset A we have

I(X(A);YjX(A); SN ; V )

= D
�
Pr(YjX; SN; V )k�(YjX(A); SN ; V )jPr(X; SN; V )

�
�D

�
Pr(YjX(A); SN ; V )k�(YjX(A); SN ; V )jPr(X; SN ; V )

�
(a)

� D
�
Pr(YjX; SN; V )k�(YjX(A); SN ; V )jPr(X; SN; V )

�
= D

�
NC (�; I)kNC (�;�)jPr(X; SN ; V )

�
(4.44)

where (a) follows from the non-negativity of divergence [1] and where we
de�ned the conditional mean vectors of dimension NL� 1 as

� =

264
PK

k=1 ck;1xk;1
...PK

k=1 ck;Nxk;N

375 ; � =

264
P

k 62A ck;1xk;1
...P

k 62A ck;Nxk;N

375 (4.45)
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and the conditional covariance matrix of dimension NL�NL as

� = diag

 
1 +

X
k2A

�k;1�
(1)
k;1(S1; V ); : : : ; 1 +

X
k2A

�k;N�
(L)
k;N (SN ; V )

!
(4.46)

By applying the general formula for the divergence of two Gaussian complex
circularly symmetric distributions [99] we obtain

D
�
NC (�; I)kNC (�;�)jPr(X; SN ; V )

�
= E

"
log

NY
n=1

LY
`=1

 
1 +

X
k2A

�k;1�
(`)
k;n(Sn; V )

!

+
NX
n=1

LX
`=1

���Pk2A ck;nx
(`)
k;n

���2 �Pk2A �k;n�
(`)
k;n(Sn; V )

1 +
P

k2A �k;1�
(`)
k;n(Sn; V )

375
(a)
= E

"
E

"
NX
n=1

LX
`=1

log

 
1 +

X
k2A

�k;1�
(`)
k;n(Sn; V )

!����� SN
##

(b)
� E

"
E

"
NX
n=1

L log

 
1 +

X
k2A

�k;1�k;n(Sn; V )

!����� SN
##

(c)

� E

"
NX
n=1

L log

 
1 +

X
k2A

�k;1�k;n(Sn)

!#
(4.47)

where (a) follows by taking conditional expectation with respect to X,
given SN and V , and by using the fact that, from (4.42) the Xk are mu-

tually independent given SN and V , (b) follows by de�ning �k;n(Sn; V )
�
=

1
L

PL
`=1 �

(`)
k;n(Sn; V ) and from Jensen's inequality applied to the concave func-

tion log(1+ x), and (c) follows by de�ning �k;n(Sn)
�
= E[�k;n(Sn; V )jSn] and

again from Jensen's inequality.

From (4.44) and (4.47) we have that

1

NL
I(X(A);YjX(A); SN ; V ) � E

"
1

N

NX
n=1

log

 
1 +

X
k2A

�k;1�k;n(Sn)

!#
(4.48)

and that the LHS of (4.48) is achieved by degenerate V (i.e., a constant)

and P (XjSN ; V ) Gaussian with conditionally independent elements x(`)k;n �
NC (0; �k;n(Sn)). Since this holds for arbitrary A and input distribution
P (X; SN ; V ), we conclude that (4.41) coincides with (4.7), thus proving the
converse.
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4.B Dynamic Programming

Notation. A discrete time stochastic dynamic system is de�ned by the
following equations (following the notation of [98]):8>><>>:

yn = hn(xn; zn) measurement
un = fn(y0; y1; � � � ; yn; u0; u1; � � � ; un�1) control command
xn+1 = gn(xn; wn; un) state evolution
cn = cn(yn; un) cost/reward

(4.49)

where

� xn is the state of the system at time n;

� yn is the noisy measurement of the system state xn;

� un is the control command de�ned on a set Un;

� wn is an i.i.d. noise on the state;

� zn is an i.i.d. noise on the measurement;

� cn is the immediate cost/reward for being in \state" yn and having
applied a command un;

Indicate with x1 the initial state and with cN+1 = cN+1(yN+1) the �nal
cost/reward.

The Dynamic Programming Algorithm gives a recursive solution to the
problem of �nding the control policy fung

N
n=0 that maximizes the sum of

the rewards over a �nite horizon [98]

J? = max
fun2Ung

NX
n=1

cn(yn; un) + cN+1(yN+1) (4.50)

Assuming perfect knowledge of the state, i.e., yn = xn, the Dynamic Pro-
gramming Algorithm is: with initial condition VN+1(x) = cN+1(x) compute
for n = N; � � � ; 1 the functions

Vn(x) = sup
u2Un

fcn(x; u) + Ew [Vn+1(gn(x; w; u))]g (4.51)

u?n(x) = argsup
u2Un

fcn(x; u) + Ew [Vn+1(gn(x; w; u))]g (4.52)

then, the optimal value of the average cost is

J? = Ex1 [V1(x1)] (4.53)

and the optimal policy to be applied at step n with observed state (a random
variable) xn is

u?n = u?n(xn) (4.54)
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that depends only on the current system state xn and not on the whole
sequence of states fxjg

n
j=0 and control commands fujg

n�1
j=0 , i.e., the optimal

optimal policy is said to be \Markovian".
Notice that the \backward" recursion (4.51) can be written in form of a

\forward" recursion by de�ning Ew [Vn+1(gn(x; w; u))] = SN�n(x).

The single-user case. Without loss of generality and for the sake of

simplicity, we drop the user index k. Maximizing E
h
1
N

PN
n=1 �n�n(Sn)

i
or

E
h
1
N

PN
n=1 log(1 + �n�n(Sn))

i
, subject to 1

N �n(Sn) �  falls in the class

of optimal control of stochastic dynamical systems with an additive cost
function over a �nite horizon where the system state is measured without
error [98]. In fact, identify

� The state of the system at time n

xn =

�
�n
Pn

�
(4.55)

where Pn is the energy still available at time n and where the sequence
�1; � � � ; �N is independent with �n � F�(z), a given probability dis-
tribution. Note that � plays the role of w, the noise on the state.

� The initial state

x1 =

�
�1
N 

�
(4.56)

� The energy allocation function at time n

pn = fn(x1; � � � ; xn; p1; � � � ; pn�1) 2 [0; Pn] � Un (4.57)

that can depend on all the observed channels states fxjg
n
j=1 and on

the already allotted energies fpjg
n�1
j=1 . Note that the power to allocate

p plays the role of u, the control command.

� The system dynamics

xn+1 = g(xn; �n+1; pn) =

�
�n+1
Pn � pn

�
(4.58)

Note that the equation that de�nes the state evolution does not depend
on the time index n, i.e., gn(�) = g(�).

� The immediate reward/cost

cn(xn) = log(1 + �npn) (4.59)

or cn(xn) = �npn. Note that the equation that de�nes the reward
does not depend on the time index n, i.e., cn(�) = c(�).
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� The �nal reward/cost cN+1(xN+1) = 0.

With the above de�nitions, the problem at hands is equivalent to (4.50), a
part a factor 1=N , and is solved by (4.51) and (4.52). The optimal value is
given by (4.53) and the optimal policy by (4.54).

The multi-user case. The generalization to the multi-user case follows
straightforwardly when the additive total cost to be maximized is given
by (4.12) and the system evolves, from slot n to slot n + 1 according to
(�n;P )! (�n+1;P � bpn).
4.C Proof of Theorem 3

In order to �x ideas, we treat �rst the single-user case (K = 1). The proof
of Theorem 3 follows by applying the same technique in the slightly more
involved multiuser case.

For simplicity, we drop the user index k. With a slight abuse of notation,
we indicate the single-user ergodic capacity with

C
(erg)
1 () = max

�
E [log (1 + ��(�))]

subject to �(�) � 0 and E[�(�)] � 
(4.60)

the single-user long-term average capacity with causal CSI, delay N and
\short-term" power constraint with

C1;N() = max
�

E

"
1

N

NX
n=1

log (1 + �n�n(Sn))

#
subject to �n(Sn) � 0 and 1

N

PN
n=1 �n(Sn) � 

(4.61)

and the single-user long-term average capacity with non-causal CSI, delay
N and \long-term" power constraint with

C
(LT�nc)
1;N () = max

�
E

"
1

N

NX
n=1

log (1 + �n�n(SN))

#
subject to �n(SN) � 0 and E

h
1
N

PN
n=1 �n(SN)

i
� 

(4.62)

When user k is considered, the mean values in (4.60), (4.61) and (4.62) are

computed with respect to �n i.i.d. � F
(k)
� (x) and for  = k.

Problem (4.60) has solution [11]

C
(erg)
1 () = E

h
log
�
1 + ��(erg)(�; )

�i
= E

�
log
��
�

�+�
(4.63)
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where �(erg)(�; ) is the ergodic water�lling power allocation

�(erg)(�; ) =

�
1

�
�

1

�

�+
(4.64)

and the Lagrangian multiplier � satis�es

E
h
�(erg)(�; )

i
=  (4.65)

It is immediate to see that for every N

C1;N() � C
(LT�nc)
1;N () = C

(erg)
1 () (4.66)

where the inequality in (4.66) follows since the set of feasible \short-term"
causal power allocations is a subset of the set of feasible \long-term" non-
causal power allocations, and the equality in (4.66) follows straightforwardly.

It is also easy to see that, since C
(erg)
1 () is a non-decreasing continuous

function of , for every � > 0 it exist � > 0 such that

C
(erg)
1 () + � = C

(erg)
1 ( + �) (4.67)

Next, we �nd a lower bound on C1;N() by choosing a particular \short-
term" causal power allocation policy, and we show that, in the limit for
N ! 1, the lower bound can be made arbitrarily close to the upper bound

C
(erg)
1 (). For every N and for � 2 [0; ], consider the (sub-optimal) power

allocation e� 2 �1;N() de�ned by

e�n(Sn) = � �(erg)(�n;  � �) if
Pn

i=1
e�i(Si) � N

0 otherwise
(4.68)

Hence, the desired lower bound is given by

E

" 
1

N

NX
n=1

log
�
1 + �n�

(erg)(�n;  � �)
�!

1

(
1

N

NX
n=1

�(erg)(�n;  � �) � 

)#
(4.69)

Note that both flog
�
1 + �n�

(erg)(�n;  � �)
�
g and f�(erg)(�n;  � �)g are

i.i.d. random variables for all n. Since E[�(erg)(�n;  � �)] =  � � by def-
inition (4.65) and because of the law of large numbers, the indicator func-

tion 1
n

1
N

PN
n=1 �

(erg)(�n;  � �) � 
o
tends to the constant value 1 almost

surely. For the same reasons, 1
N

PN
n=1 log

�
1 + �n�

(erg)(�n;  � �)
�
tends to

E[log
�
1 + �n�

(erg)(�n;  � �)
�
] = C

(erg)
1 ( � �) almost surely. Hence, be-

cause of (4.67), we have that the RHS of (4.69) converges almost surely to

C
(erg)
1 ()� � for some � > 0. Finally, since

C
(erg)
1 ()� � � lim

N!1
C1;N() � C

(erg)
1 () (4.70)

holds for every � > 0, we have that

lim
N!1

C1;N() = C
(erg)
1 () (4.71)
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In order to extend this result to the multiuser case and prove the statement
of Theorem 3, we consider the explicit characterization of the boundary of

C
(erg)
K () given in [13]. A rateK-tupleR = (R1; : : : ; RK) is on the boundary

surface of C
(erg)
K () if it is the solution of

max
R2C(erg)

K
()

KX
k=1

�k Rk (4.72)

for some � = (�1; � � � ; �K) 2 R
K
+ . A point (R

(erg)
1 (�;); � � � ; R

(erg)
K (�;)) is

solution of the above problem if it exists a vector of Lagrangian multipliers
� = (�1; � � � ; �K) 2 R

K
+ such that

E[�
(erg)
k (�;�;)] = k (4.73)

E[r
(erg)
k (�;�;)] = R

(erg)
k (�;) (4.74)

where the average is with respect to � = (�1; � � � ; �K) and8>>>>>>><>>>>>>>:

uk(z)
�
=

�k
1 + z �

�k
�k

for z 2 R+

u?(z)
�
= max

k=1;��� ;K
�
[uk(z)]

+
	

�
(erg)
k (�;�;)

�
= 1

�k

Z
1fuk(z) = u?(z)gdz

r
(erg)
k (�;�;)

�
=

Z
1

1 + z
1fuk(z) = u?(z)gdz

(4.75)

Note that r
(erg)
k (�;�;) and �

(erg)
k (�;�;) are, respectively, the instanta-

neous rate and instantaneous power allocated to user k in fading state �.

It is clear that if 1 � 2 then C
(erg)
K (1) � C

(erg)
K (2) and for any � 2 RK+

max
R2CK;N (1)

KX
k=1

�k Rk � max
R2CK;N (2)

KX
k=1

�k Rk (4.76)

Conversely, if (4.76) holds for any direction vector �, then C
(erg)
K (1) �

C
(erg)
K (2) and 1 � 2.
With arguments analogous to the single-user case, we can show that the

upper bound CK;N() � C
(LT�nc)
K;N () � C

(erg)
K () holds for every delay N .

For an arbitrary direction � 2 RK+ , an inner bound to CK;N() is obtained

by �xing the allocation policy e� as follows: for given � 2 R
K
+ such that

 � � � 0, we de�ne

e�k;n(Sn) =
(
�
(erg)
k (�n;�; � �) if

Pn
j=1

e�k;j(Sj) � N k
0 otherwise

(4.77)
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The inner bound implies that

E

" 
KX
k=1

�k
1

N

NX
n=1

r
(erg)
k (�n;�; � �)

!
KY
k=1

1

(
1

N

NX
n=1

�
(erg)
k (�n;�; � �) � k

)#

�
KX
k=1

�k bRk;N(�;) (4.78)

where bRk;N(�;) are the rates on the boundary surface of CK;N(), given

in (4.15). Now, since both f
PK

k=1 �k r
(erg)
k (�n;�;��)g and f�

(erg)
k (�n;�;�

�)g are i.i.d. random variables for all n, the indicator functions in the RHS
of (4.78) tend to the constant value 1 almost surely and the sum of instan-

taneous rates tends to
PK

k=1 �k R
(erg)
k (�; � �) almost surely. Again, the

RHS of (4.78) converges almost surely to
PK

k=1 �kR
(erg)
k (�;��) and hence

KX
k=1

�kR
(erg)
k (�; � �) � lim

N!1

KX
k=1

�k bRk;N(�;) � KX
k=1

�kR
(erg)
k (�;)(4.79)

Since � is arbitrary and (4.79) holds for any �, we conclude that

lim
N!1

CK;N() � C
(erg)
K () (4.80)

4.D Proof of Theorem 5

In the following we indicate with C
(k)
1;N() the single-user long-term average

capacity for user k as de�ned in (4.61), where the extra superscript \(k)"

stresses the fact that the mean value is computed using cdf F
(k)
� (x). Note

that C
(k)
1;N() =

bRk;N(1k;) for bRk;N(�;) de�ned in (4.15) and where 1k
is the vector of length K of all zeros but a \1" in position k.

Consider the following inner and outer bounds for CK;N()�
R 2 RK+ : Rk �

1

K
C
(k)
1;N(Kk)

�
� CK;N() �

n
R 2 RK+ : Rk � C

(k)
1;N(k)

o
(4.81)

where the inner bound is clearly achievable by TDMA, i.e., by letting each
user transmit for a fraction 1=K of the slot time, and the outer bound is
the Cartesian product of the single user long-term average capacity regions.
Theorem 4 implies the following inner and outer bounds for UK;N�
r 2 RK+ : rk � sup

k>0

1

Kk
C
(k)
1;N(Kk)

�
� UK;N �

�
r 2 RK+ : rk � sup

k>0

1

k
C
(k)
1;N(k)

�
(4.82)

De�ne the feasible power allocation policy

(�?k;1; � � � ; �
?
k;N) = arg sup

�2�1;N (k)

E

"
1

N

NX
n=1

�k;n�k;n(Sn)

#
(4.83)
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and indicate with (b�k;1; � � � ; b�k;N) the k-th user single-user long-term average
capacity achieving policy. The boundary surface of the outer region in (4.82)
is given by

sup
k>0

1

k
C
(k)
1;N(k) = sup

k>0

E

"
1

N

NX
n=1

log
�
1 + �k;n b�k;n�#
k

(a)
= lim

k!0

E

"
1

N

NX
n=1

log
�
1 + �k;n b�k;n�

#
k

(b)
= lim

k!0

E

"
1

N

NX
n=1

�k;n�
?
k;n

#
k

�
= s

(k)
N (4.84)

where: (a) follows since C
(k)
1;N(k) is concave in k (see the Corollary to

Lemma 1 at the end of this section) and (b) follows for Lemma 2 at the end
of this section.

With similar steps, we �nd that the boundary surface of the inner region
in (4.82) is also given by (4.84). We conclude that the K-user long-term
average capacity region per unit energy is the hyper-rectangle

UK;N =
n
r 2 RK+ : rk � s

(k)
N

o
: (4.85)

for s
(k)
N given in (4.84) and that �? = f�?k;n : k = 1; � � � ; K; n = 1; � � � ; Ng

is the optimal K-user long-term average capacity region per unit energy
achieving policy. �

In the following we will drop the superscript \(k)" since no confusion
can arise.

Lemma 1. C1;N() given in (4.61) is a concave function of .
Proof. Consider the single-user long-term average capacity achieving power
allocation, that for notation convenience we re-write as follow

�b�1(S1; ); � � � ; b�N(SN ; )� = arg sup
�2�1;N ()

E

"
1

N

NX
n=1

log (1 + �n�n(Sn))

#
(4.86)
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to explicitly denote the dependency on the constraint . For every � 2 [0; 1]
and for every a; b � 0 consider the convex combination

�C1;N(a) + (1� �)C1;N(b)

= �E

"
1

N

NX
n=1

log
�
1 + �n b�n(Sn; a)�#

+(1� �) E

"
1

N

NX
n=1

log
�
1 + �n b�n(Sn; b)�

#
(a)
�

1

N

NX
n=1

E
h
log
�
1 + �n�b�n(Sn; a) + �n(1� �)b�n(Sn; b)�i

(b)
�

1

N

NX
n=1

E
h
log
�
1 + �n b�n(Sn;�a + (1� �)b)

�i
= C1;N(�a+ (1� �)b) (4.87)

where: (a) follows from Jensen's inequality and (b) because the feasible
power policy �b�(�; a)+ (1��)b�(�; b) does not coincide in general with the
optimal power allocation (4.86) for  = �a + (1� �)b. �

Corollary. Since C1;N() is nonnegative and concave we have

sup
>0

C1;N()


= _C1;N(0) (4.88)

where _C1;N(0) denotes the �rst derivative of C1;N() at  = 0.
In fact, since C1;N() is concave, its second derivative is non-positive, i.e.,
�C1;N() � 0, and hence its �rst derivative is non-increasing, i.e. _C1;N() �
_C1;N(0). Since C1;N() is nonnegative, by integrating both sides of the
inequality _C1;N() � _C1;N(0) and imposing the initial condition C1;N(0) = 0
we get

0 � C1;N() �  _C1;N(0) (4.89)

hence (4.88) follows. �

Lemma 2. Let b� = argmaxE
h
1
N

PN
n=1 log (1 + �n�n(Sn))

i
and �? =

argmaxE
h
1
N

PN
n=1 �n�n(Sn)

i
, where in both case � 2 �1;N(), then the

following relation holds

E

"
1

N

NX
n=1

log (1 + �n�
?
n)

#
(a)
� E

"
1

N

NX
n=1

log
�
1 + �nb�n�

#
(b)
� E

"
1

N

NX
n=1

�n b�n
#

(c)
� E

"
1

N

NX
n=1

�n�
?
n

#
(4.90)
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where (a) and (c) follow by de�nition and (b) follows since log(1 + x) � x

for x � 0. By recalling the de�nition of �?, relation (4.90) implies

E

"
1

N

NX
n=1

log (1 +N�n1fn
? = ng)

#
� E

"
1

N

NX
n=1

log
�
1 + �n b�n�

#

� E

"
NX
n=1

�n1fn
? = ng

#
(4.91)

and by letting  ! 0, equality (4.84) follows.

4.E Proof of Theorem 7

Relation (4.88) and de�nition (4.84) imply _C
(k)
1;N(0) = s

(k)
N for every delay

N , while in the limit for large N equation (4.71) holds for every  � 0. By
putting together those facts, we have

lim
N!1

s
(k)
N = lim

N!1
_C
(k)
1;N(0) =

_C
(erg)
1 (0) (4.92)

The single-user ergodic capacity is given by the water�lling formula (4.63)
parameterized by the Langangian multiplier � satisfying (4.65). Hence, we
have

lim
!0

dC
(erg)
1 ()

d
= lim

!0

dE
h�
log �

�

�+i
d�

dE
h�

1
� �

1
�

�+i
d�

����������
=E[(1=��1=�)+]

= lim
�!supf�g

� 1f� � supf�gg = supf�g (4.93)

which concludes the proof. �



Chapter 5

Wideband performance

We analyze the performance of the system introduced in the previous chapter
(a multi-user block-fading channel with causal feedback and delay constraint)
in a regime where the number of transmitted data bits per received dimen-
sion is small, commonly referred to as \wideband" or \low-power" regime.
We use two analysis tools: the minimum transmit energy per bit required
for reliable communication and the wideband slope of the spectral e�ciency
curve vs. energy per bit. We show that the \one-shot" policy, derived in
the previous chapter in the contest of capacity per unit energy, is wideband
optimal for every number of users and every delay, i.e., it achieves both the
minimum energy per bit and the wideband slope.

5.1 Introduction

In the previous chapter we characterized the long-term average capacity re-
gion and long-term average capacity region per unit energy of a Gaussian
block-fading multi-user channel where users know the channel causally and
are constraint to send a codeword within a fame of N slots. We showed
that for N = 1 the optimal policy coincides with constant power alloca-
tion [10], while, as N increases, it tends to the ergodic policy found by Tse
and Hanly [13]. In particular, the policy achieving long-term average ca-
pacity per unit energy is \one-shot": all the energy is concentrated on one
slot of the available N whose selection is fading-dependent. Since such slot
must be chosen on the basis of causal feedback, the transmitter cannot sim-
ply choose the most favorable slot in the frame (optimal non-causal policy).
Rather, the solution is obtained through Dynamic Programming and has
the structure of a comparison of the instantaneous fading amplitude with a
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decreasing threshold [92]. Moreover, since capacity per unit energy is the
inverse of the minimum transmit energy required for reliable communica-
tion, we have concluded that the \one-shot" policy is optimal in the in�nite
bandwidth regime [14, 85, 99].

As shown recently in [85, 99], the minimum energy per bit, on which tra-
ditionally information theoretic analysis of wideband regime have focused,
fails to capture the fundamental power-bandwidth tradeo�. To study that
tradeo� is necessary to analyze not only the minimum energy per bit but
also the \wideband slope" of the spectral e�ciency curve vs. energy per
bit at the point of minimum energy per bit. In the multi-user setting, ev-
ery user rate must be characterized in terms of its wideband slope, hence
the notion of wideband slope region emerges to replace the simple wideband
slope notion used in the single-user case. The analysis of the wideband slope
region can be done by extending of the single-user approach of [85, 99], as
we showed in [30]. As an application of the methodology developed in [30] to
case of fading multiuser channel with delay and energy constraint, we show
that a \one-shot" power policy is optimal in terms of minimum energy per
bit (see Theorem 5 in Chapter 4) as well as of the wideband slope. More-
over, we show that TDMA is not as good as superposition with optimum
joint decoding in the wideband regime, thus disproving the common believe
that \the penalty TDMA su�ers with respect to an optimal system vanishes
in the low-power/wideband regime".

The paper is organized as follows: Section 5.2 briey revises the notions
of optimality in the in�nity bandwidth regime and in the wideband regime
for the single-user case [99] and extends those results to the multi-user case;
Section 5.3 deals with the wideband analysis of the causal multi-user sys-
tem and Section 5.4 of the multi-user non-causal system; Section 5.5 gives
numerical examples and Section 5.6 concludes the chapter with some �nal
practical remarks. All proofs are collected in the Appendices.

Our publications related to this chapter are:
[30] S.Verd�u and G.Caire and D.Tuninetti, \Is TDMA optimal in the low
power regime?", in Proceedings of the 2002 IEEE International Symposium
on Information Theory (ISIT2002), Lausanne (CH), June 2002;
[31] D.Tuninetti and G.Caire and S.Verd�u, \Fading multi-access channels
in the wideband regime: the impact of delay constraint", in Proceedings of
the 2002 IEEE International Symposium on Information Theory (ISIT2002),
Lausanne (CH), June 2002;
[32] D.Tuninetti and G.Caire and S.Verd�u, \The impact of delay constraint
and causal feedback on the wideband performance of block-fading multiple-
access channels", submitted to IEEE Transactions on Information Theory,
February 2002.
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5.2 Wideband analysis

The single-user case. In [14], Verd�u formulates the problem of �nding
the capacity per unit cost for the class of memoryless stationary channels.
Given a nonnegative cost function b(�) de�ned on the channel input alphabet
X and given a maximum cost �, then the Shannon capacity is given by

C(�) = sup
pX :E[b(X)]��

I(X ; Y ) (5.1)

where the supremum of the mutual information I(X ; Y ) is over all the prob-
ability distribution functions pX that satisfy the average cost constraint

E[b(X)] � �. The capacity C(�) represents the number of bits per channel
use that can be reliably transmitted through the channel with average cost
�. Hence, the minimum of �=C(�) is the minimum cost incurred for the re-
liable transmission of one bit and its reciprocal has the meaning of capacity
per unit cost. Therefore, the capacity per unit cost U is given by

U = sup
�>0

C(�)

�
=

d

d�
fC(�)g

����
�=0

(5.2)

where the last equality follows since C(�) is a non-decreasing concave func-
tion for � � 0. 1 In order to achieve (5.2) the use of optimal input distri-
bution pX achieving the supremum in (5.1) is not mandatory. In [14], it is
proved that it is enough to restrict attention to \binary" codes, i.e., codes
that use only one non-zero-cost symbol in addition to the zero-cost symbol.
Based on this observation, we say that an input distribution is optimal in
terms of capacity per unit cost if the �rst derivative of the corresponding
mutual information at � = 0 achieves the �rst derivative of capacity at
� = 0.

From a practical point of view, it is sensible to consider as cost the energy
at the transmitter. In this case the capacity per unit cost is the maximum
number of bits transmitted per unit joule and its inverse is the minimum
transmit energy per bit required for reliable communication.

To �x ideas, consider a single-user AWGN channel of bandwidth W and
noise power spectral density N0. This channel is used to transmit codewords
of duration T made up of L complex symbols, in the assumption L = WT �
1. Given an average transmit energy per channel symbol Es, the capacity,
measured in bits per channel use, is C = log (1 + ) where  = Es=N0 is the
SNR. The minimum transmit energy per bit, normalized with respect to the
noise power spectral density N0, is easily obtainable as the inverse of the

1Actually, the main contribution of [14] resides in an alternate way to compute U for
channels whose input alphabets contain a symbol of zero cost. The alternate expression
involves the maximization over the input alphabet of the Kullback-Leibler divergence
between conditional probabilities. That formulation has the advantage that does not
require the computation/knowledge of the Shannon capacity function C(�).
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�rst derivative of the capacity at  = 0 and is given by (Eb=N0)min = log(2).
In general, the average transmit energy per bit Eb is related to the average
transmit energy per channel symbol Es by Es = C Eb, assuming that the
transmitter uses a capacity achieving code of rate C. Then, the system of
equations (

Es
N0

= C
Eb
N0

C = log2

�
1 + Es

N0

� (5.3)

de�ne implicitly the so-called spectral e�ciency function C(Eb=N0). Note
that the function C(Eb=N0) is positive only for Eb=N0 > (Eb=N0)min, while
C() is de�ned for all  � 0. In a right interval of (Eb=N0)min the spectral
e�ciency function can be approximated as follows

C

�
Eb
N0

�
= S0 �

0@ Eb
N0�

Eb
N0

�
min

� 1

1A+ o

�
Eb
N0

�
(5.4)

as Eb=N0 ! (Eb=N0)min. In our example, S0 = 2. The constant S0 is
called in [99] the wideband slope of the spectral e�ciency curve. Notice that
capacity C() can also be achieved by binary antipodal signaling if  � 1.
The equivalence between the two input distribution is proved by showing
that the ratio of mutual information to capacity approaches one for  ! 0 or,
in other words, that mutual information with binary input attains the �rst
derivative of capacity at  = 0, i.e., the binary input distribution achieves
(Eb=N0)min. Fig 5.1 reports the capacity curve C() vs.  in linear scale,
while Fig. 5.2 reports the spectral e�ciency curve C(Eb=N0) vs. Eb=N0 in
dB scale, for Gaussian input and binary input. From Fig. 5.2 we see that the
spectral e�ciency curve with binary input achieves (Eb=N0)min = �1:59dB
but has a wideband slope of just S0 = 1. This very simple example shows
that the comparison of systems on the basis of their (Eb=N0)min may lead
to conclusions that are not longer valid when S0 is considered.

In [99], the optimality of a coding scheme in the wideband regime (in
terms of S0) is de�ned and studied for several input-constrained additive
noise channels. Following the terminology introduced in [99], we say that
(Eb=N0)min is the performance measure of the channel in the in�nite band-
width regime while S0 is the performance measure in the wideband regime.
The terminology \in�nite bandwidth regime" refers to a system operating
with in�nite bandwidth, with zero power, and hence achieving zero spectral
e�ciency. \Wideband regime" refers to the case with low but �nite power,
large but not in�nite bandwidth and hence small but non-zero spectral ef-
�ciency. It is precisely the wideband regime that is of practical importance
since the 3G and 4G wireless systems, as well as ad-hoc networks and sensor
networks, will be operating in that regime.
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In general, let C() be the capacity expressed in nat/dimension (or
nat/s/Hz) as a function of the (transmit) SNR  and let Eb=N0 be the
transmit energy per bit, then the spectral e�ciency C expressed as a func-
tion of Eb=N0 is given implicitly by the parametric equation(

Eb
N0

= 
C() log 2

C = C() 1
log2

(5.5)

The value (Eb=N0)min, for which C(Eb=N0) > 0, Eb=N0 > (Eb=N0)min, is
given by [99] �

Eb
N0

�
min

=
log 2
_C(0)

(5.6)

where _C(0) indicates the �rst derivative of C() at  = 0. In [99] it is show
that _C(0) essentially is the channel gain and depends on the transmitter
channel state information only. In the wideband regime, the behavior of
spectral e�ciency in a (right) neighborhood of (Eb=N0)min is captured by
the slope of spectral e�ciency at (Eb=N0)min, given by (see [99, Theorem 6])

S0 =
2
�
_C(0)

�2
� �C(0)

(5.7)

where �C(0) indicates the second derivative of C() at  = 0. The de�nition
of S0 as in (5.4) has two advantages: �rst it is invariant to the channel gain
(see the detailed discussion in [99]) and second it can be given the meaning
of \slope per 3dB" [99, 85], in fact

10 log10

�
Eb
N0

�
= 10 log10

�
Eb
N0

�
min

+
C

S0
10 log10(2) + o(C)

as C ! 0.
The wideband slope S0 quanti�es the bandwidth requirement for a given

desired data rate. In fact, the data rate Rb (bit/s), the channel bandwidth
W (Hz) and the energy per bit (Eb=N0) are related via the spectral e�ciency
C(Eb=N0) (bit/s/Hz) as follow

Rb = WC

�
Eb
N0

�
(5.8)

For any � > 0 and (Eb=N0) = (Eb=N0)min(1 + �) we have

Rb ' W S0 � (5.9)

for small �, which means that the system with higher wideband slope S0
requires less bandwidth for �x � and Rb.
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Following [99] we have:
De�nition 1. A signaling strategy in a single-user system is said to be
�rst-order optimal if it achieves (Eb=N0)min (ful�ll the criterion of the �rst
derivative at  = 0) and second-order optimal if it achieves both (Eb=N0)min

and S0 (ful�ll the criterion of both the �rst and second derivative at  = 0).
�

The multi-user case. Also for the multi-user case, the analysis of in�nite-
bandwidth regime may lead to conclusion that are not valid in the wideband
regime. In a multiple-access channel, the individual user energy per bit over

the noise power N0 are de�ned by Ek=N0
�
= log(2) k=Rk, where k is the

transmit SNR and Rk is the rate in nat/s/Hz of user k. In general, Rk =
Rk(1; � � � ; K) such that the point (R1; � � � ; RK) is achievable. Without loss
of generality we can consider only rate K-tuples on the boundary surface

of the K-user capacity region. We indicate by S
(k)
0 the k-th user single-user

slope and by Sk the slope of user k in the multi-user case. Since the presence

of an interferer can not increase the rate, we have that Sk 2 [0; S
(k)
0 ].

In order to �x ideas, consider the 2-user AWGN system. The capacity
region is the polymatroid [6, 7]8<:

R1 � log(1 + 1)
R2 � log(1 + 2)
R1 +R2 � log(1 + 1 + 2)

(5.10)

As well known, the points of the boundary surface (often called \dominant
face" [67]) of (5.10) are achieved by superposition and optimum joint decod-
ing at the receiver. In contrast, TDMA achieves

[
�2[0;1]

(
R1 � � log

�
1 + 1

�

�
R2 � (1� �) log

�
1 + 2

1��
� (5.11)

Figs. 5.3 and 5.4 show the capacity region and the TDMA region for 1 =
10dB and 2 = 13dB and 1 = �10dB and 2 = �7dB respectively. We
see that the boundary of the TDMA region touches the boundary of the
capacity region for � = 0 (only user 2 active), � = 1

1+2
and � = 1 (only

user 1 active). If we lower down the values of the SNR's we see that both
regions shrink and that the TDMA region occupies an increasing larger
fraction of the capacity region. This can be formalized by showing that the
TDMA region converges to the Cartesian product of the single-user capacity
regions in the following sense

lim
i!0

� log
�
1 +

1
�

�
log(1 + 1)

+

(1� �) log

�
1 +

2
1� �

�
log(1 + 2)

= 2 (5.12)
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We are now interested in evaluating the minimum energy per bit and
the slope region for the 2-user channel. By applying (5.6) and (5.7) to the
per-user-rate of the TDMA system (5.11) and by considering � 2 [0; 1] a �x
parameter (non dependent on (1; 2)) we get�

E1

N0

�
min

=

�
E2

N0

�
min

= log(2) (5.13)

since the �rst derivatives at zero SNR are

d

d1

n
� log

�
1 +

1
�

�o����
1=0

=
d

d2

�
(1� �) log

�
1 +

2
1� �

������
2=0

= 1 (5.14)

Since the convergence of the limits (5.14) is uniform over � , we conclude that
the result holds even for � dependent on (1; 2). Since TDMA achieves a
subset of the capacity region and in the low-power regime achieves the same
minimum energy per bit of the interference-free channel, we are tempted
to assert that the advantages of superposition over TDMA vanish in the
low-power regime. In that case, the increase in receiver complexity required
to achieve rate in the capacity region outside the TDMA region would be
hardly justi�able unless other factors come into the play.

As for the single-user case, the minimum energy per bit on its own is
not \su�cient" to compare di�erent signaling strategies in the wideband
regime. Whereas the capacity region supplies the tradeo� of rates for �xed
powers, we can de�ne a corresponding \slope region" that gives the tradeo�
of individual user slopes for a �xed ratio at which the individual rates vanish.
Although formula (5.7) applies to the single-user channel, it turns out to be
su�cient for the analysis of the multi-user case.

For the TDMA system we have S1 = 2� and S1 = 2(1 � �) since the
second-order derivatives, to be used in (5.7), of the per-user-rates are

d2

d21

n
� log

�
1 +

1
�

�o����
1=0

=
1

�

d2

d22

�
(1� �) log

�
1 +

2
1� �

������
2=0

=
1

1� �

By letting � varying in [0; 1] and by recalling that S0 = 2, we get that the
slope region for TDMA is

f(S1; S2) : 0 � S1 + S2 � S0g (5.15)

The analysis of the system with superposition is more involved. Without loss
of generality we consider rate-couples on the dominant face of the capacity
region (since those are the only points in the capacity region for which is not
possible to further increase the rate of one user without having to decrease
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the rate of the other users in order to be inside the capacity region). Let
� 2 [0; 1] and � = 1=2. Every point of the dominant face of (5.10) can be
written as

R1 = R1(1) = � log (1 + 1) + (1� �) log

�
1 +

1
1 + 1=�

�
(5.16)

R2 = R1(2) = � log

�
1 +

2
1 + 2 �

�
+ (1� �) log (1 + 2) (5.17)

By taking the �rst and second derivative at zero SNR and by applying (5.7),
we get 8<: S1 = 2 1

1 + 2(1� �)=�

S2 = 2 1
1 + 2��

(5.18)

By solving (5.18) for � by recalling that S0 = 2, we obtain

1

�

�
1

S1
�

1

S0

�
+ �

�
1

S2
�

1

S0

�
= 1 (5.19)

this curve, for a given �, is what we call the slope trade-o� boundary. The
slope region is

[
��0

�
(S1; S2) : 0 � Sk � S0;

1

�

�
1

S1
�

1

S0

�
+ �

�
1

S2
�

1

S0

�
= 1

�
(5.20)

were the condition Sk � S0 follows from the fact that the existence of an
interferer cannot improve the rate. Fig. 5.5 shows the slope region, for � = 1
and � = 10, and the achievable slope region with TDMA. It is clear that
TDMA is suboptimal with respect to superposition when slopes are consid-
ered, thus dispelling the longstanding misconception that TDMA is optimal
in the wideband regime. Note that both users can achieve slope arbitrarily
close to the single-user slope provided that they use superposition, opti-
mum decoding and their powers are su�ciently unbalanced (either � � 1 or
� � 1). In our paper [30] we did the same kind of analysis for the broad-
cast channel and we got to the same conclusions: TDMA is not wideband
optimal.

In general for the K-user channel, we �x a vector � = (�1; � � � ; �K) 2 R
K
+

and we let the user SNR's vanish with �xed ratio k=j = �k=�j , for all
i; j 2 f1; � � � ; Kg. The fact that, from the general theory of capacity per
unit cost of additive channels, the capacity region per unit energy is an
hyper-rectangle implies that for vanishing SNR the user rates are directly
proportional, through the capacity per unit energy, to their SNR's. Hence,
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imposing SNR ratios is equivalent to �x rate ratios. For the channel model

introduced in Chapter 4, since Rk � s
(k)
N k, we have

k
j

=
�k
�j

)
Rk
Rj

=
s
(k)
N �k

s
(j)
N �j

(5.21)

The rate for user k as function of k, and of the parameter �, is given by

Rk = Rk(k) = Rk

�
�1
�k
k; � � � ;

�K
�k
k

�
(5.22)

Hence by taking the �rst and second derivative of (5.22) with respect to k
and by applying (5.7), we express the wideband slope of the k-th user as

Sk =
2
�PK

j=1 �j � @jRk(0; � � � ; 0)
�2

�
PK

j=1

PK
m=1 �j�m � @j;mRk(0; � � � ; 0)

(5.23)

where @jRk(0; � � � ; 0) is the shorthand notation for

@jRk(0; � � � ; 0) = lim
!0

@Rk(1; � � � ; K)

@j
(5.24)

and @j;mRk(0; � � � ; 0) for

@j;mRk(0; � � � ; 0) = lim
!0

@2Rk(1; � � � ; K)

@j @m
(5.25)
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Notice that the wideband slope of user k is completely characterized by the
gradient and the Hessian matrix of the rate function Rk = Rk(1; � � � ; K)
computed for  = 0. By letting the rate vector (R1; � � � ; RK) span the whole
boundary of the capacity region for a �x �, the corresponding slopes (5.23)
de�ne a curve in the K-dimensional space we shall refer to as slope tradeo�
boundary.

De�nition 2. We say that a signaling strategy in a K-user system is
�rst-order optimal if it achieves (Ek=N0)min for all the users and second-order
optimal if it achieves both (Ek=N0)min and the slope tradeo� boundary for
every �. �

In the following, we characterize the slope region corresponding to the long
term average capacity region CK;N() and determine whether the policy �?

(which is �rst order optimal) is also second order optimal, i.e., for every �
it achieves the slope tradeo� boundary.

5.3 Second-order optimality of �? in the causal
system

The single-user case. We deal �rst with the single user case, i.e., K = 1.
For simplicity we drop the user index.

We indicate the single-user long-term average capacity given in Theo-
rem 2, with a slight abuse of notation, as

C1;N() =
SN(N)

N
(5.26)

where, for simplicity we re-write recursion (4.13) omitting the irrelevant
parameter � as follow

Sn(P ) = E

�
max
p2[0;P ]

log (1 + � p) + Sn�1(P � p)

�
(5.27)

for n = 1; � � � ; N with initial condition S0(P ) = 0. When user k is consid-

ered, the mean value in (5.27) is computed with respect to � � F
(k)
� (x) and

the SNR in (5.26) is  = k.

Even if we cannot give a closed form expression for SN(P ) and b�, the
wideband characterization of the single-user long-term average capacity and
the second-order optimality of the one-shot policy �? are given by the fol-
lowing:
Theorem 8. (Eb=N0)min and S0 for the single-user block fading channel
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with causal transmitter CSI and delay N are given by�
Eb
N0

�
min

=
log 2
_SN(0)

(5.28)

S0 =
2
�
_SN(0)

�2
�N �SN (0)

(5.29)

where _SN(0) and �SN(0) are, respectively, the �rst and the second derivative
of SN (P ) in (5.27) at P = 0. The �rst derivative is given by

_SN (0) = sN (5.30)

where sN is given (for the k-th user) by the recursion (4.23), i.e., sn =

E[maxfsn�1; �g], and the second derivative is given by the recursion

� �Sn(0) = E
�
�2j� � sn�1

�
Pr(� � sn�1)

� �Sn�1(0) Pr(� < sn�1) (5.31)

for n = 1; : : : ; N , with �Sn(0) = 0.
Furthermore, the one-shot power allocation policy �? achieves (Eb=N0)min

and slope S0, i.e., it is �rst and second-order optimal.
Proof. Expressions (5.28) and (5.29) follow by using (5.26) in (5.6) and (5.7).
Statement (5.30) follows immediately for Theorem 5 and Theorem 6, i.e.,
_C1;N(0) = _SN (0) from (5.26) and sN = _C1;N(0) from the proof of Theo-
rem 5. The proof of statement (5.31) and of the second-order optimality of
�? can be found in Appendix 5.A. �

TDMA achievable slope region. Before carrying on the characteriza-
tion of the slope region for the multi-user case, we investigate the achievable
slope region of TDMA in conjunction with power policy �?. In Section 4.4
we have shown that the one-shot power allocation �? (in conjunction with
Gaussian variable-rate coding) achieves the capacity region per unit energy,
i.e., achieves (Ek=N0)min for all users. Then, we conclude that the one-shot
policy is �rst-order optimal for any number of users K. From the proof of
Theorem 5 it follows that �rst-order optimality can be obtained either by
using superposition coding or by using TDMA inside each slot. Because of
the second-order optimality of �? in the single user we have:
Theorem 9. For any arbitrary ratios k=j, as the rates vanish, the largest
achievable slope region under TDMA is(

Sk;tdma � 0 8k = 1; � � � ; K :
KX
k=1

Sk;tdma

S
(k)
0

� 1

)
(5.32)

and this region is achieved by �?.
Proof. For � = (�1; � � � ; �K) 2 R

K
+ such that

PK
k=1 �k = 1 the maximum
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achievable rates under TDMA are Rk = (�k=N) �SN(kN=�k). By straight-

forward application of (5.23), we have Sk;tdma = �k S
(k)
0 hence, by considering

the union over all possible choice of � , we get (5.32). �

The multi-user case. The optimal slope region under the causal power
constraint is given by the following:
Theorem 10. Fix a vector � 2 RK+ . For vanishing user rates while keeping
�xed the ratios k=j = �k=�j , the optimal slope region is given by the
parametric form

[
�

8<:Sk � 0 8k = 1; � � � ; K : Sk �
S
(k)
0

1 +
P
� ��

P
j<��1(k)

��j
�k
Kk;�j

9=;(5.33)
for

Kk;j =
2
PN

n=1 E[�k;n1fn
?
k = ng] E[�j;n1fn?j = ng]PN

n=1 E
h
�2k;n1fn

?
k = ng

i (5.34)

where
P
� denotes the sum over all permutations of f1; : : : ; Kg, where

� = f��g are K! nonnegative \time-sharing" coe�cients (indexed by the
permutations �) such that

P
� �� = 1 and where n?k is given in (4.25).

Furthermore, the one-shot policy �? achieves the slope tradeo� bound-
ary, i.e., it is second-order optimal in the multi-user case.
Proof. See Appendix 5.B. �

5.4 Second-order optimality of �? in the non-causal
system

The single-user case. If we allow the input to depend on the whole CSI
SN in a non-causal way the optimal allocation policy is given in (4.29) and
the corresponding capacity per unit energy in (4.31). It follow easily that:

Theorem 11. (Eb=N0)
(nc)
min and S

(nc)
0 for the single-user block fading channel

with non-causal transmitter CSI, delay N and continuous fading distribu-
tion 2 are given by�

Eb
N0

�(nc)

min

=
log 2

E[maxf�1; � � � ; �Ng]

S
(nc)
0 =

2 (E[maxf�1; � � � ; �Ng])
2

N E[(maxf�1; � � � ; �Ng)2]
(5.35)

2In case the fading distribution is not-continuous, the second derivative of capacity at
 = 0 is given by

�
1

N
�C(nc)
1;N (0) = E

"
(maxf�1; � � � ; �Ng)

2PM

`=1 1f�` = maxf�1; � � � ; �Ngg

#
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Furthermore, the one-shot power allocation policy �? (nc) achieves both (Eb=N0)
(nc)
min

and S
(nc)
0 .

Proof. See Appendix 5.C. �

TDMA achievable slope region. In a multiuser scenario, as TDMA is
concerned, because of second-order optimality of �? (nc) in the single-user
case, we have:
Theorem 12. For any arbitrary SNR ratios k=j , as the rates vanish, the
largest achievable slope region under TDMA is given by8<:S(nc)k;tdma � 0 8k = 1; � � � ; K :

KX
k=1

S
(nc)
k;tdma

S
(k) (nc)
0

� 1

9=; (5.36)

and this region is achieved by �? (nc).
Proof. As for Theorem 9. �

The multi-user case. The optimal slope region is given by the following:
Theorem 13. The non-causal one-shot policy �? (nc) in conjunction with
joint decoding achieves the slope tradeo� boundary given by the expression
in (5.33) but where

Kk;j =
2

N

E[maxf�k;1; � � � ; �k;Ng] E[maxf�j;1; � � � ; �j;Ng]

E[(maxf�k;1; � � � ; �k;Ng)
2]

(5.37)

i.e., �? (nc) is �rst and second-order optimal for any number of users K and
any delay N .
Proof. See Appendix 5.D. �

5.5 Numerical examples

In order to illustrate the results of previous sections we consider the case of
i.i.d. Rayleigh fading, i.e., the channel gain law is F�(x) = 1�e�x for x � 0
for all the users.

Comparison between causal and non-causal power policy. The one-
shot policy �? is completely determined by the thresholds given by the
recursion

sn = sn�1 + e�sn�1 (5.38)

for n = 1; 2; � � � with s0 = 0. The �rst-order derivative of the long-term
average capacity region C1;N() satis�es _C1;N(0) = sN , while the recursion
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for the second-order derivative satis�es �C1;N(0) = N �SN(0) with �Sn(0) given
by the recursion

� �Sn(0) = e�sn�1 (2 + 2sn�1 + s2n�1)� �Sn�1(0)(1� e�sn�1); (5.39)

for n = 1; 2; � � � with �S0(0) = 0. When the input is allowed to depend on
the whole CSI SN , we have

E[maxf�1; � � � ; �Ng] =
NX
n=1

�
N

n

�
(�1)n+1

1

n
(5.40)

E[maxf�1; � � � ; �Ng
2] =

NX
n=1

�
N
n

�
(�1)n+1

2!

n2
(5.41)

The �rst-order and the second-order derivative at  = 0 determine the value
of (Eb=N0)min and S0 according to (5.6) and (5.7). Figs. 5.6 and 5.7 show
(Eb=N0)min and S0 versus the delayN and for both the causal and non-causal
knowledge of the channel.

For a given delay N , the spectral e�ciency curves as function of Eb=N0 of
the causal system and of the non-causal system start at di�erent (Eb=N0)min,
smaller for the non-causal system, with an almost equal slope. The gain due
to the causal vs. non-causal transmit channel state information is large
and increasing with N , as far as (Eb=N0)min is concerned while it is almost
negligible in terms of wideband slope.

Comparison between TDMA and superposition coding. For a de-
sired user rate Rb (in bit/s) common to all users, and assuming that all
users transmit with equal power, i.e., they have the same Eb=N0 such that
(Eb=N0)dB � ((Eb=N0)min)dB = �, the system bandwidth is given approxi-
mately by [99]

W �
Rb

mink S
(k)
0 �

(5.42)

We quantize the bandwidth expansion required by TDMA w.r.t. superpo-
sition coding for a given delay N .

Since (5.42) is determined by the minimum slope, in order to minimize
the system bandwidth we maximize the minimum slope. By the use The-
orems 9 and 10 we determine the max-min slope of an equal-rate system.
For equal rates �j=�k = 1 for all k; j, the denominator of (5.33) becomes

1 +K0

X
�
��

X
j<��1(k)

1 = 1 +K0

X
�

�
���

�1(k)� 1
�

= 1�K0 +K0

X
�
���

�1(k) (5.43)
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Figure 5.6: (Eb=N0)min in dB vs. N for the Rayleigh fading channel.
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Figure 5.7: S0 vs. N for the Rayleigh fading channel.
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where, for i.i.d. fading, Kk;j in (5.34) are all equal to K0 for every k; j =
1; � � � ; K and given by

K0 = 2

PN
n=1 (E [�n1fn

? = ng])2PN
n=1 E [�2n1fn

? = ng]
(5.44)

As � varies over all K! permutations, ��1(k) takes on each value 1; : : : ; K
exactly (K � 1)! times. Because of symmetry, maximizing the minimum

slope is achieved by letting S
(k)
0 = const:, i.e., �� = 1=K! for all �. This

yields to the max-min slope

maxmin
k
Sk =

S0

1 +K0(K � 1)=2
(5.45)

For TDMA, the max-min slope is obtained by letting �k = 1=K, we have

maxmin
k
Sk;tdma = S0=K (5.46)

Therefore, the bandwidth expansion factor of TDMA with respect to super-
position coding is given by

� =
K

1 +K0(K � 1)=2
<

2

K0
(5.47)

From (5.44) we have immediately that K0 < 2, i.e., TDMA is strictly
wideband-suboptimal, for any non-degenerate fading distribution. Notice
also that the case of equal Eb=N0 for all users is the most favorable for
TDMA [30]. As already noticed, for a very imbalanced system the band-
width expansion factor can be much larger than (5.47).

Fig. 5.8 shows the asymptotic expansion factor 2=K0 versus the delay N
for di�erent fading statistics and Fig. 5.9 shows the bandwidth expansion
factor � versus the number of users K and di�erent delays for the Rayleigh
fading case. For example, at delay N = 2 and K = 4 users in the Rayleigh
fading case, the TDMA requires more than twice the bandwidth necessary
for reliable communications by a system with superposition coding (Fig. 5.9)
and asymptotically for a large population of users the TDMA requires more
than three times the bandwidth (Fig. 5.8).

Notice, form Fig. 5.8 and Fig. 5.9, that by increasing either the delay N
and/or the population size K the TDMA gets more and more suboptimal,
since � is increasing in both N and K. In the wideband regime, we can
tradeo� system complexity versus bandwidth: if the complexity is the key
issue, then TDMA is better that superposition coding but more bandwidth
than the strictly necessary has to be used; on the contrary, if bandwidth is
the critical parameter then superposition coding is better than TDMA, but
the system complexity increases due to joint decoding and rate coordination
among users.
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Figure 5.8: Limiting bandwidth expansion factor of TDMA over superposi-
tion coding vs. N for di�erent fading distributions.
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Figure 5.9: Bandwidth expansion factor of TDMA over superposition coding
vs. the number of users K for the Rayleigh fading channel.
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Slope region for the two user case. Next, we study in more detail the
case K = 2. For superposition coding, by letting � = �1=�2, we have(

S1 � S0

1+K0(1��) 1�
S2 � S0

1+K0��

(5.48)

By eliminating the time-sharing parameter � we obtain the slope region
boundary as[

��0

��
S0

S1
� 1

�
� +

�
S0

S2
� 1

�
1

�
� K0; 0 � Sk � S0

�
(5.49)

With TDMA we obtain the boundary S1;tdma+ S2;tdma = S0.
We might wonder if for some � TDMA achieves the same slope trade-

o� of superposition coding, i.e., if the two boundaries of the slope regions
intersects at some point (S1; S2). By substituting in (5.49) S1 = �S0 and
S2 = (1� �)S0 for � 2 [0; 1], we �nd�

1

�
� 1

�
� +

�
1

1� �
� 1

�
1

�
= K0 (5.50)

which yields

� =
�

2

2� +K0 �
p
K2
0 � 4

�2 +K0� + 1
(5.51)

Again, for K0 < 2 (non-constant fading), TDMA is strictly suboptimal, for
any choice of the rate ratio �.

Fig. 5.10 shows the 2-user optimal slope region for di�erent rate ratios.
The optimal region achievable by TDMA is shown for comparison. This
�gure clearly illustrates that even though TDMA achieves the capacity per
unit energy, it is actually very suboptimal in the wideband regime, especially
in a fading scenario.

For example, for � = 1 and S1 = S2, form Fig. 5.10 we see that TDMA
achieves only Sk

S0
= 1

2 = 50% of the single user slope, while the optimal

system with superposition coding achieves Sk
S0

= (1 +K0=2)
�1 = 87% of the

single user slope.

5.6 Conclusions

In this last part of our thesis work, we have focused the analysis of the delay
constraint system with causal feedback, introduced in Chapter 4, in the low
spectral e�ciency regime, which is where the major bene�ts of transmitter
feedback occur. We have analyzed not only the rates achievable in the
absence of bandwidth constraints (minimum energy per bit), but also the



5.A Proof of Theorem 8 163

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
1

S
2

TDMA                    
Superposition θ=1  
Superposition θ=10 

Delay N=5 

Figure 5.10: Slope region for the 2-user Rayleigh fading channel with delay
N = 5.

bandwidth required to provide a given rate with given power in the low power
regime (wideband slope). As a result of this analysis we have quanti�ed the
bandwidth expansion required by using the suboptimal TDMA strategy.
The TDMA bandwidth penalty, which can be rather substantial, depends
on the fading distribution, and grows with both the number of fading states
N and the number of users K.

Appendix

5.A Proof of Theorem 8

Let

Sn(P ) = E

�
max
u2[0;P ]

log (1 + �u) + Sn�1(P � u)

�
(5.52)

and

bun(�; P ) = arg max
u2[0;P ]

log (1 + �u) + Sn�1(P � u) (5.53)

for n = 1; � � � ; N and initial condition S0(P ) = 0. In Theorem 2 we showed
that C1;N() = SN(N)=N and in Theorem 5 that _C1;N(0) = sN , these
together imply _SN (0) = sN which proves statement (5.30).
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In order to prove statement (5.31) we need to analyze in detail expres-
sion (5.52). Because of the concavity of Sn(P ) (from Lemma 1 in Ap-
pendix 4.D since Sn(P ) = nC1;n(P=n) from Theorem 2), bun(�; P ) in (5.53)
can be written as

bun(�; P ) =
8><>:

0 if � < _Sn�1(P )
P if �

1 + �P � _Sn�1(0)
u�n elsewhere

(5.54)

with u�n the unique solution of

�

1 + �u�n
= _Sn�1(P � u�n) (5.55)

The �rst and second derivative of Sn(P ) are given by

_Sn(P ) = E
h
_Sn�1(P ) 1fbun(�; P ) = 0g

i
+E

�
�

1 + �P
1fbun(�; P ) = Pg

�
+E

�
�

1 + �u�n
1fbun(�; P ) = u�ng

�
(5.56)

and by

� �Sn(P ) = E
h�
� �Sn�1(P )

�
1fbun(�; P ) = 0g

i
+E

"�
�

1 + �P

�2

1fbun(�; P ) = Pg

#

+E

"�
�

1 + �u�n

�2 @u�n
@P

1fbun(�; P ) = u�ng

#
(5.57)

Now, as P ! 0 we have

bun(�; P ) =
8>><>>:

0 if � < _Sn�1(0)� (� �Sn�1(0))P + o(P )

P if � � _Sn�1(0) + ( _Sn�1(0))2P + o(P )

P
@u�n
@P

����
P=0

elsewhere

(5.58)

Hence, by substituting (5.58) in (5.57) and by letting P ! 0 we obtain

� �Sn(0) = E
h
�2 1f� � _Sn�1(0)g

i
� �Sn�1(0) E

h
1f� < _Sn�1(0)g

i
(5.59)

which coincides with (5.31).
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Next, in order to prove the second-order optimality of the policy �?, we
show that the rate function C?1;N(), de�ned as

C?1;N() = E

"
1

N

NX
n=1

log (1 +N�n 1fn
? = ng)

#
(5.60)

obtained by applying �?, has the �rst and second derivative at  = 0 equal
to those of C1;N().

It follows immediately that the �rst and second derivative of (5.60) w.r.t.
 computed for  = 0 are

_C?1;N(0) = E

"
NX
n=1

�n1fn
? = ng

#
(5.61)

�
1

N
�C?1;N(0) = E

"
NX
n=1

�2n1fn
? = ng

#
(5.62)

From the proof of Theorem 5 it follows that _C?1;N(0) = _C1;N(0), i.e., �
?

achieves (Eb=N0)min. Next we show that (5.62) is equal to � �SN (0) which
implies �C?1;N(0) =

�C1;N(0). To actually show the identity of the second order
derivatives we show that the recursion to compute (5.62) is (5.59).

The probability that transmission occurs in slot n is

Pr(n? = n) = Pr (�n � sN�n)
n�1Y
j=1

Pr (�j < sN�j) (5.63)

Obviously,
PN

n=1 Pr(n
? = n) = 1. For every n = 1; � � � ; N , the cdf of

�n1fn
? = ng is given by

Pr(�n1fn
? = ng � x)

= Pr(�n1fn
? = ng � xjn? = n) Pr(n? = n)

+Pr(�n1fn
? = ng � xjn? 6= n) Pr(n? 6= n)

= Pr(�n � xjn? = n) Pr(n? = n) + Pr(0 � xjn? 6= n) Pr(n? 6= n)

= Pr(�n � xjn? = n) Pr(n? = n) + Pr(n? 6= n) for x � 0 (5.64)

By recalling the expression of Pr(n? = n) in (5.63) we �nally get

Pr(�n1fn
? = ng � x) =

n�1Y
j=1

Pr(�j < sN�j) Pr(�n � x; �n � sN�n)

+

0@1� Pr(�n � sN�n)
n�1Y
j=1

Pr(�j < sN�j)

1A (5.65)
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and hence, for every value r, we have

E [�rn1fn
? = ng] =

n�1Y
j=1

F�(sN�j)
Z 1

sN�n

xrdF�(x) (5.66)

By summing the terms in (5.66) over n = 1; � � � ; N for r = 1 and r = 2

we get respectively (5.61) and (5.62). Let �N (r)
�
=
PN

n=1 E [�rn1fn
? = ng],

then by using (5.66) we have

�N (r) =
NX
n=1

n�1Y
j=1

F�(sN�j)
Z 1

sN�n

xr dF�(x)

=

Z 1

sN�1

xr dF�(x) +
NX
n=2

n�1Y
j=1

F�(sN�j)
Z 1

sN�n

xr dF�(x)

=

Z 1

sN�1

xr dF�(x) + F�(sN�1)�N�1(r)

= E [�rN 1f�N � sN�1g] + E [1f� < sN�1g] �N�1(r) (5.67)

Since _Sn(0) = sn for all n and that � �SN (0) and �N (2) satisfy the same
recursion and have the same initial condition for N = 0, they coincide for
all N . This concludes the proof.

Remark. The cdf (5.64) can be used to compute C?1;N() as de�ned
in (5.60) for all . In fact, with initial condition S?0(P ) = 0, we have

S?N(P )
�
= E

"
NX
n=1

log (1 + P�n 1fn
? = ng)

#

=
NX
n=1

n�1Y
j=1

Pr[�j < sN�j ]
Z 1

sN�n

log (1 + Px) dF�(x)

=

Z 1

sN�1

log (1 + Px) dF�(x) + Pr[�j < sN�1]S?N�1(P )(5.68)

and C?1;N() =
1
NS

?
N (N).

5.B Proof of Theorem 10

Consider the following inner and outer bound to the long-term average ca-
pacity region8<:R 2 RK+ : 8A

X
j2A

Rj � g(A)

9=; � CK;N() �

8<:R 2 RK+ : 8A
X
j2A

Rj � f (A)

9=;(5.69)
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where we de�ne the set functions

f (A)
�
= E

24 1

N

NX
n=1

log

0@1 +X
j2A

�j;n�
(A)
j;n

1A35 (5.70)

where

f�
(A)
j;n : j 2 A; n = 1; � � � ; Ng

�
= arg max

�2�K;N()
E

24 1

N

NX
n=1

log

0@1 +X
j2A

�j;n�j;n

1A35(5.71)
and

g(A)
�
= E

24 1

N

NX
n=1

log

0@1 +X
j2A

�j;n�
?
j;n

1A35 (5.72)

for all A � f1; � � � ; Kg. The inner bound in (5.69) is the long-term average
capacity region when users apply the one-shot policy �? and the outer bound
in (5.69) is obtained by applying the the \max-ow-min-cut" theorem for
multi-terminal networks [1, Theorem 14.10.1] to our system.

Before proceeding, we point out some characteristics of the set func-
tions g(A) and f (A). First, they do not depend on the whole SNR vector
 = (1; � � � ; K) but only on fjgj2A. Second, by recalling that �?j;n =
N j 1fn

?
j = ng for n?j de�ned in (4.25), it easy to see that, in the limit for

 ! 0, the �rst-order partial derivative of g(A)(fjgj2A) w.r.t. ` for all
` 2 A is given by

@`g
(A)(0) =

NX
n=1

E [�`;n1fn
?
` = ng] (5.73)

and that the second-order partial derivative of g(A)(fjgj2A) w.r.t. ` and
m for all `;m 2 A is given by

@`;mg
(A)(0) = �N

NX
n=1

E [�`;n1fn
?
` = ng�m;n1fn

?
m = ng] (5.74)

Notice that, since n?` only depends on the fading sequence of user `, in
equation (5.74) the mean value factorizes when ` 6= m. From Theorem 8 we
have

@`g
(A)(0) = s

(`)
N = _C

(`)
1;N(0) (5.75)

@`;`g
(A)(0) = �C

(`)
1;N(0) (5.76)

where C
(`)
1;N(`) is the `-th user single-user long-term average capacity. Hence,

we can write the single user wideband slope as S
(`)
0 = �2(@`g

(A)(0))2=@`;`g
(A)(0).
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Now we derive an achievable slope region based on the inner bound
in (5.69). For a given permutation � = (�1 � � � ; �K) of f1; : : : ; Kg, cor-
responding to the decoding order �K ; �K�1; � � � ; �1, we have the following
vertex of the inner bound region

R�k(�) = gf�1��� ;�kg � gf�1��� ;�k�1g (5.77)

Every point on the dominant face of the inner bound region can be expressed
as a convex combination of the K! vertices, of coordinates (5.77), as follow

Rk =
X
�
��R�

��1(k)
(�) (5.78)

where ��1(k) gives the position of the integer k in the permuted vector �,
where

P
� denotes the sum over the K! permutations of f1; : : : ; Kg and

where � = f��g are nonnegative \time-sharing" coe�cients (indexed by
the permutations �) such that

P
� �� = 1.

For �xed (�1; � � � ; �K) 2 R
K
+ we let k=j = �k=�j for all i; j 2 f1; � � � ; Kg

and we compute the derivatives of R�k(�) in (5.77), expressed as a function
of �k , that for simplicity we indicate with x. The rate is given by

R�k(�) = gf�1��� ;�kg
�
��1
��k

x; � � � ;
��k�1

��k
x; x

�
� gf�1��� ;�k�1g

�
��1
��k

x; � � � ;
��k�1

��k
x

�
(5.79)

Its �rst derivative is

_R�k(�) =
k�1X
j=1

��j
��k

@�j

h
gf�1��� ;�kg � gf�1��� ;�k�1g

i
+ @�kg

f�1��� ;�kg (5.80)

and its second derivative is

�R�k(�) =
k�1X
j=1

k�1X
`=1

��j
��k

��`
��k

@�j ;�`

h
gf�1��� ;�kg � gf�1��� ;�k�1g

i

+2
k�1X
j=1

��j
��k

@�j ;�kg
f�1��� ;�kg + @�k ;�kg

f�1��� ;�kg (5.81)

In the limit for x! 0 we get

lim
x!0

_R�k(�) = @�kg
f�1��� ;�kg(0) (5.82)

lim
x!0

�R�k(�) = @�k;�kg
f�1��� ;�kg(0) + 2

k�1X
j=1

��j
��k

@�j ;�kg
f�1��� ;�kg(0)(5.83)

Note that the summation in (5.83) accounts for the users not decoded yet
according to the decoding order �K ; � � � ; �1. Finally, by substituting (5.82)
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and (5.83) in (5.78) we get

lim
x!0

_Rk =
X
�
��@�kg

f�1��� ;�kg(0)

= @kg
f�1��� ;�kg(0) (5.84)

lim
x!0

�Rk =
X
�
��

0@@�k;�kgf�1��� ;�kg(0) + 2
k�1X
j=1

��j
��k

@�j ;�kg
f�1��� ;�kg(0)

1A
= @k;kg

f�1��� ;�kg(0) + 2
X
�
��

X
j<��1(k)

��j
�k
@�j ;kg

f�1��� ;�kg(0)(5.85)

By recalling (5.75) and (5.76), and from expression (5.74), we get

Sk =
S
(k)
0

1 + 2
X
�
��

X
j<��1(k)

��j
�k

PN
n=1 E[��j ;n1fn

?
�j = ng] E[�k;n1fn

?
k = ng]PN

n=1 E[�
2
k;n1fn

?
k = ng]

(5.86)

Since �? is a suboptimal policy, the slope region obtained as union over
all � of (5.86) for all k is in general an inner bound to the optimal slope re-
gion. Similarly, the slope region obtained considering the outer bound (5.69)
is in general an outer bound to the optimal slope region. Next we prove that
those two bounds coincide, thus proving that policy �? in conjunction with
superposition-coding is second-order optimal for any number of users K and
any delay N .

In order to express a general point on the dominant face of the outer
bound in (5.69) we follow the same steps that led to (5.86). In particular
we need the gradient and Hessian matrix of f (A), computed in  = 0, for all
subsets A. The proof that the the outer bound yields the same slope region of
the inner bound is hence complete if we show that @`;mg

(A)(0) = @`;mf
(A)(0)

for all `;m 2 A and ` 6= m and for all subsets A. In fact it is obvious that
@`g

(A)(0) = @`f
(A)(0), otherwise the points on the outer-bound region would

achieve higher minimum energy per bit than the points on the inner-bound
region, and that @`;`g(A)(0) = @`;`f

(A)(0), otherwise the numerator of the
equivalent of (5.86) for the outer bound region would be di�erent from the

optimal `-th single-user wideband slope S
(`)
0 .

For every subset A, for all n = 1; � � � ; N let

Sn
�
fPjgj2A;A

�
= E

24 max
8j2A:uj2[0;Pj]

log
�
1 +

X
j2A

�j uj

�
+ Sn�1

�
fPj � ujgj2A;A

�35(5.87)
with initial condition S0 (0;A) = 0, then

f (A)(fjgj2A) =
1

N
SN
�
fN jgj2A;A

�
(5.88)
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Let b 2 f0; 1gjAj, then a necessary condition for fuj = Pj bjgj2A to be
solution of (5.87) is

�`
1 +

P
j2A �j Pj bj

� @`Sn�1
�
fPj(1� bj)gj2A;A

�� < 0 if b` = 0
� 0 if b` = 1

(5.89)

Then it follows easily that in the limit for small fPjgj2A we have u` = 0 if
�` < @`Sn�1 (0;A) and u` = P` if �` � @`Sn�1 (0;A). Then we can write

Sn
�
fPjgj2A;A

�
=

X
b

E

240@log�1 +X
j2A

�j Pj bj

�
+ Sn�1

�
fPj(1� bj)gj2A;A

�1A �
�
Y
j2A

1fuj = Pj bjg

35+ vanishing terms with fPjgj2A (5.90)

Finally, in the limit for vanishing fPjgj2A the second-order partial derivative
of Sn

�
fPjgj2A;A

�
w.r.t. P` and Pm is

@`;mSn (0;A) =
X
b

E
h
(�b`bm�`�m + (1� b`)(1� bm)@`;mSn�1(0;A)) �

�
Y

j2A:bj=0
1f�j < @`Sn�1 (0;A)g

Y
j2A:bj=1

1f�j � @`Sn�1 (0;A)g
i

= E
h
� �`�m1f�` � @`Sn�1 (0;A)g1f�m � @mSn�1 (0;A)g

+@`;mSn�1(0;A)1f�` < @`Sn�1 (0;A)g1f�m < @mSn�1 (0;A)g
i

=
1

N
@`;mf

(A)(0) (5.91)

In order to prove that N@`;mSN (0;A) indeed coincides with (5.74) we must
show that (5.91) is the recursion to compute (5.74). In fact, by recall-
ing (5.66), we can write

�N (`;m)
�
=

NX
n=1

E [�`;n1fn
?
` = ng] E [�m;n1fn

?
m = ng] (5.92)

=
NX
n=1

n�1Y
j=1

F (`)
� (s

(`)
N�j)

Z 1

s
(`)
N�n

xdF (`)
� (x) �

n�1Y
j=1

F (m)
� (s

(m)
N�j)

Z 1

s
(m)
N�n

xdF (m)
� (x)
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now, by separating the term for n = 1 in the summation, we can write

�N (`;m) =

Z 1

s
(`)
N�1

xdF (`)
� (x) �

Z 1

s
(m)
N�1

xdF (m)
� (x)

+
NX
n=2

n�1Y
j=1

F (`)
� (s

(`)
N�j)

Z 1

s
(`)
N�n

xdF (`)
� (x) �

n�1Y
j=1

F (m)
� (s

(m)
N�j)

Z 1

s
(m)
N�n

xdF (m)
� (x)

= E
h
�`1f�` � s

(`)
N�1g

i
�E
h
�m1f�m � s

(m)
N�1g

i
+E

h
1f�` < s

(`)
N�1g

i
� E
h
1f�m < s

(m)
N�1g

i
� �N�1(`;m) (5.93)

which, by recalling @`Sn(0;A) = s
(`)
n for all n = 1; 2; � � � and all ` 2

f1; � � � ; Kg, coincides with (5.91) for n = N . This concludes the proof
that @`;mg(A)(0) = @`;mf

(A)(0) for all `;m 2 A and for all subsets A, thus
proving that the optimal slope region, parameterized by � can be written
as in (5.33)[

�

n
Sk � 0 8k = 1; � � � ; K (5.94)

Sk �
S
(k)
0

1 + 2
X
�
��

X
j<��1(k)

��j
�k

PN
n=1 E[��j;n1fn

?
�j

= ng] E[�k;n1fn?k = ng]PN
n=1 E[�

2
k;n1fn

?
k = ng]

9>>>>>=>>>>>;
and that the one-shot policy �? is second-order optimal.

Remark. With a technique similar to that that lead to (5.93) it can be
shown, for all A, that

g(A)(fjgj2A) =
1

N
S?N
�
fN jgj2A;A

�
(5.95)

where

S?N
�
fPjgj2A;A

�
= E

24log
0@1 +X

j2A
�jPj

1AY
j2A

1f�j � s
(j)
N�1g

35
+
Y
j2A

Pr[�j < s
(j)
N�1]S

?
N�1

�
fPjgj2A;A

�
with initial condition S?0

�
fPjgj2A;A

�
= 0.

5.C Proof of Theorem 11

The proof follows the same steps of the proof of Theorem 8 in Appendix 5.A.
First compute the �rst and second derivative at  = 0 of the long-term aver-
age rate achieved by applying the suboptimal \maximum selection" policy
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�? (nc). Then, compute the �rst and second derivative at  = 0 of the
long-term average capacity obtained by applying the optimal \water�lling"

policy b�(nc). It is easy to show that the derivatives coincide by writing the
long-term average capacity as

C
(nc)
1;N () = E

�
1

N
log (1 +N�max) � 1

�
�max

1 + �maxN
� �n 8�n 6= �max

��
+o() as  ! 0 (5.96)

where �max = maxf�1; � � � ; �Ng and where the only event that \counts" in
the limit for  ! 0 is the event in the indicator function in (5.96) since

lim
!0

Pr

�
�max

1 + �maxN
� �n 8�n 6= �max

�
= 1 (5.97)

5.D Proof of Theorem 13

The proof follows the same steps of the proof of Theorem 10 in Appendix 5.B.

As in (5.69), the long-term average capacity region C
(nc)
K;N() contains the

the inner bound region obtained by applying �? (nc) and is contained in the
outer bound region obtained by mean of the \max-ow-min-cut" theorem
for multi-terminal networks [1, Theorem 14.10.1]. We must prove that, for
any subset A � f1; � � � ; Kg, the gradient and the Hessian matrix at  = 0 of
the partial rate-sums that de�ne the inner and outer bound regions coincide.

By construction �? (nc) is �rst-order optimal, hence the gradients of the
partial rate-sums of inner and outer bound regions coincide for any subset
A � f1; � � � ; Kg.

In order to prove that the Hessian matrix of the partial sum-rates of the
inner and outer bound coincide, it is enough to write the partial rate-sums
of the outer bound region as follow

max
�(nc)

E

24 1

N

NX
n=1

log

0@1 +X
j2A

�j;n�j;n

1A35
=

X
b2f1;��� ;NgjAj

E

24 1

N

NX
n=1

log

0@1 +X
j2A

�j;nNj 1fn = bjg

1A �

�
Y
k2A

1

8>>><>>>:
�k;bk

1 +
X
j2A

�j;bkNj 1fbk = bjg
�

�k;`

1 +
X
j2A

�j;`Nj 1f` = bjg
8` 6= bk

9>>>=>>>;
37775

+vanishing terms with  (5.98)

where we have obtained (5.98) by imposing the (necessary) Khun-Taker
conditions for f�j;n = Nj 1fn = bjg n = 1; � � � ; N j 2 A to be the optimal
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solution. Only those type of solutions \count" in the limit for  ! 0 since
the argument of indicator functions in (5.98) tends to f�k;bk � �k;` 8` 6= bkg
which is clearly a partition of the whole fading space.

The expression forKk;j in (5.37) comes form (5.64) with n?k = maxf�k;1; � � � ; �k;Ng,
i.e.,

Pr[�k;n1fn
?
k = ng � x] =

N � 1

N
+

1

N

�
F (k)
� (x)

�N
(5.99)
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Chapter 6

Conclusions

In this report we have addressed the problem of multi-access for wireless
fading channels subject to delay constraint, where the maximum delay is as-
sumed to be a �xed design parameter. We have taken two \complementary"
point of view.

Part I. In one case, we have considered user random activity in a system
without channel state information at the transmitters, i.e., constant-rate
transmission with constant per-symbol energy, and where erroneously re-
ceived packets are retransmitted and combined to improve decoding reliabil-
ity.

� In Chapter 2 we presented an information-theoretic throughput anal-
ysis of some Hybrid-ARQ protocols under idealized but fairly general
conditions. We showed that typical set decoding has very desirable
properties for Hybrid-ARQ, in the limit for large slot dimension. From
a renewal-reward theory approach, we obtained closed-form through-
put formulas for three simple protocols: a generalization of slotted
Aloha (ALO), a repetition time diversity scheme with maximal-ratio
packet combining (RTD) and an incremental redundancy scheme based
on progressively punctured codes (INR). We analyzed the e�ect of
delay and rate constraints on the throughput, as well as the limit-
ing behavior with respect to the slot spectral e�ciency, the channel
load and the transmit SNR. Interestingly, all three protocols are not
interference-limited, and achieve arbitrarily large throughput by sim-
ply increasing the transmit power of all users. Publications related to
this chapter are [24, 25].
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� Chapter 3 presented a comparison between three di�erent multi-access
strategies in a scenario characterized by random activity of an in�nite
population of uncoordinated users. Di�erent retransmission protocols
and combing techniques are considered in presence of block fading and
additive noise. To make the comparison fair, the system throughput is
optimized with respect to all the system parameters and expressed as
function of the individual Eb=N0. The best performance is obtained
by joint decoding even without packet combing. Among SUD-based
systems, MMSE-CDMA outperforms the system without spreading,
while the SUMF-CDMA is heavily suboptimal and interference lim-
ited. We showed that at low Eb=N0 all SUD-based system are equiva-
lent to CDMA with SUMF, suggesting that practical system operating
in this region do not need to be complex and that users must transmit
continuously with vanishing rate. At high Eb=N0 the best strategy,
for SUD-based system, is having on the average one active user per
degree of freedom transmitting at non-vanishing rate, this makes the
system not interference limited. In practice, a call admission control
scheme should keep the channel load G close to its optimum value, de-
pending on the operating Eb=N0. Publications related to this chapter
are [26, 27].

We have concluded that repetition together with code combining is a
simple and viable strategy to overcome fading and multiuser interference in
a system where user coordination (rate/power allocation) seems problematic
due to user random activity. The simplicity of the system is paid in term of
total throughput with respect to more complex systems that implement joint
detection, like MMSE-CDMA, or joint decoding. Our repetition strategy is
not interference limited and outperforms \naive" SUMF-CDMA.

Part II. In the second case, we have assumed that users transmit con-
tinuously, have causal channel state information, hence allowing for rate
and power to vary according to channel conditions, and are subject to a
per-codeword power constraint due to transmitters energy limitation.

� In Chapter 4 we analyzed an idealized fading model where each code-
word sees N independently drawn fading states, known to the trans-
mitter causally. The power control algorithm at the transmitter must
decide what portion of the available energy to allocate to each fading
state based only on the knowledge of current and past fading states.
We have solved for the optimal power control policy and capacity for
�xed arbitrary N and for arbitrary number of users. The optimal pol-
icy is to concentrate all the energy in only one of the fading states.
That state is chosen on the basis of not only its strength, but also how
likely it is that a more favorable fading state will appear before the end
of the codeword. Our publications related to this chapter are [28, 29].
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� Then, in Chapter 5, we focused on the low spectral e�ciency regime,
which is where the major bene�ts of transmitter feedback occur. We
have analyzed not only the rates achievable in the absence of band-
width constraints (minimum energy per bit), but also the bandwidth
required to provide a given rate with given power in the low power
regime (wideband slope). As a result of this analysis we have quanti-
�ed the bandwidth expansion required by using the suboptimal TDMA
strategy. The TDMA bandwidth penalty, which can be rather sub-
stantial, depends on the fading distribution, and grows with both the
number of fading states N and the number of users K. Our publica-
tions related to this chapter are [30, 31, 32].

We have concluded that the penalty incurred by causal feedback in an
energy limited system becomes negligible, with respect to the optimal er-
godic system, when the delay constraint is not too strict. We have identi�ed
a rate/power allocation strategy the is optimal in the wideband regime with
respect to both the minimum energy per bit and the wideband slope. In
performing the wideband analysis, we have also shown that TDMA (with
optimal power and rate allocation within each sub-slot) is heavily subopti-
mal in a fading multi-user system thus disproving the common belief that
\TDMA is optimal in the low-power/wideband regime".
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