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3D Map-based Trajectory Design in UAV-aided
Wireless Localization Systems

Omid Esrafilian, Rajeev Gangula, and David Gesbert

Abstract—This paper considers the problem of localizing
outdoor ground radio users with the help of an unmanned
aerial vehicle (UAV) on the basis of received signal strength
(RSS) measurements in an urban environment. We assume that
the propagation model parameters are not known a priori, and
depending on the UAV location, the UAV-user link can experience
either line-of-sight (LoS) or non-line-of-sight (NLoS) propagation
condition. We assume that a 3D map of the environment is
available which the UAV can exploit in the localization process.
Based on the proposed map-aided estimator, we devise an
optimal UAV trajectory to accelerate the learning process under
a limited mission time. To do so, we borrow tools such as
Fisher information from the theory of optimal experiment design.
Our map-aided estimator achieves superior localization accuracy
compared to the map-unaware methods, and our simulations
show that optimized UAV trajectory achieves superior learning
performance compared to random trajectories.

Index Terms—UAV, drone, trajectory design, learning, local-
ization, 3D map.

I. INTRODUCTION

F INDING geographic location of user devices or nodes
from the radio signals emitted by them has found many

applications in wireless sensor networks [1], navigation and
tracking [2], location based services [3], etc. In a typical
wireless network, nodes with perfectly known positions, called
anchor nodes, which can be stationary or mobile, are used to
collect measurements from the users whose location need to be
estimated. Different types of measurements such as received
signal strength (RSS), time-of-arrival (TOA), angle of arrival
(AOA), etc., can be obtained by the anchor nodes for user
localization [4], [5].

While elements of the terrestrial network such as access
points and base stations (BSs) are often used as anchor
nodes, recent advancements in wireless communication and
robotic technologies have made it possible to have flying
radio infrastructure where commercial grade unmanned aerial
vehicles (UAVs) can be integrated with small BSs or relays [6]
and access points (WiFi, Bluetooth, etc.) [7]. Such UAVs can
also be used as anchor nodes, thanks to their inherent advan-
tages in terms of 3D mobility and ultra-flexible deployment.
Using UAVs as aerial anchors to localize the ground users
has gained interest recently [8]–[13]. Further, the UAV can
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localize radio nodes on-the-go, while attending other missions
where positioning and tracking are beneficial, for example
precision delivery, emergency response systems, optimizing
the trajectories of UAV BSs or relays in flying radio access
networks (FRANs) [14]–[16], wild life tracking [17], etc.

When it comes to the type of measurements exploited for
localization, RSS measurements offers an attractive option as
they are easy to obtain in many wireless networks. Unlike
the timing based methods, they do not require tight synchro-
nization and calibration of the transceivers. The problem of
network localization based on RSS measurements obtained by
static anchor nodes with unknown propagation pathloss model
parameters has been studied before [18]–[20]. The work in
[18] uses a pathloss model that does not differentiate between
line-of-sight (LoS) and non-line-of-sight (NLoS) conditions.
Since this paper is targeting localization with the help of
UAV in arbitrary environments including challenging urban
scenarios, the air-to-ground propagation between the UAV
and ground users is expected to follow a segmented model
where the pathloss condition will rapidly switch between
LoS and NLoS depending on the UAV location [21], [22].
The authors in [19], [20] extended the work of [18] to the
above segmented pathloss model with [19] modelling the
collected RSS measurements as mixture of two Gaussian
distributions with weights representing the probability of the
measurement obtained from LoS or NLoS segment, and the
work in [20] tries to do hard classify measurements into LoS
and NLoS categories. The problem of joint user localization
and pathloss parameter estimation is then solved iteratively
using an expectation and maximization (EM) criterion in [19],
and by an iterative classification and least square approach in
[20]. In this work, we however point out that, if a 3D city
map containing the building structure information is available
(map can be obtained offline for example Google map or it can
be constructed online using photogrammetry techniques [23]
or from the radio measurements [24]), it can be leveraged
to enhance the LoS/NLoS classification of a measurement.
Exploiting such information may lead to better classification
of measurements into LoS and NLoS segments unlike the
pure statistical approaches in [19], [20] which ignore the
map information. In different contexts, fingerprinting-based
localization systems that implicitly exploits the map [25] and
building map-aware statistical models [26] have shown to
improve the localization performance. However, the methods
in [25], [26] require an extensive prior measurement campaign
in the area where the network is deployed.

When using UAV as a mobile anchor in a network for
localization, a central challenge lies in the ability to localize
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the radio nodes with enough accuracy within the limited flying
time constrained by the on-board limited energy capacity
battery. This in turn raises the question of where should the
UAV fly so as to collect the most informative measurements
from a user localization perspective. This problem has also
received some attention in the literature. In [8], the UAV
altitude is optimized to minimize the localization accuracy
of outdoor users in an urban environment by considering
both LoS and NLoS RSS measurements. The authors in [9]
studied the problem of single-user localization from the RSS
measurements by assuming that the collected measurements by
the UAV fall into the LoS category. An online trajectory for the
UAV is also designed that keeps the UAV heading towards the
estimated user position. The authors in [10], focused on the
experimental exploration of static trajectories applied to the
localization of wireless nodes using UAVs. They investigated
different types of trajectories (so-called Triangle and Circle
trajectories) and compared the performance of localization by
following these trajectories in their indoor-outdoor settings.
In [11]–[13] the problem of trajectory design of multiple
flying anchors (UAVs) for RSS-based node localization is
investigated. Authors in [11]–[13] assumed that the UAVs
fly high enough so that they can establish LoS links to any
nodes in the network at all times, and the effect of NLoS
measurements is ignored in the localization process which is
not very realistic for mid-altitude UAVs.

In this work, we devise a UAV trajectory that optimizes
the learning performance in user localization under a given
mission time. To the best of our knowledge, UAV-based user
localization exploiting a realistic segmented pathloss model
fed from a 3D map, and optimizing learning trajectories in
such context has not been studied before. Specifically, our
contributions are as follows:

• We formulate and solve the problem of map-based joint
pathloss parameter estimation and user localization from
the RSS measurements collected by the UAV from ground
users in both LoS and NLoS conditions1. The proposed
algorithm is based on particle swarm optimization (PSO)
aided with the 3D map of the environment. We also prove
the convergence of the proposed algorithm.

• We then proceed to design a trajectory for the UAV
to optimize the performance of localization and channel
learning under a maximum mission duration constraint.
To achieve this, we propose an on-line algorithm to
find the optimal trajectory where we borrow tools from
optimal experiment design where metrics like Fisher in-
formation is used to find most informative measurements
from a user localization perspective.

The rest of the paper is organized as follows: Section II
introduces the system model. In Section III, we formulate
and solve the problem of learning the channel parameters
and localizing the users on the basis of an arbitrary (non
optimized) trajectory. In Section IV, we formulate and solve
the trajectory optimization problem. Numerical results are

1This work can be extended to fuse different measurements such as RSS,
TOA, etc.

Fig. 1: UAV-aided ground user localization system.

presented in Section V to validate the performance of the
proposed algorithms. Finally, Section VI concludes the paper.

Notation: Matrices are represented by uppercase bold
letters, vectors are represented by lowercase bold letters. Sets
are indicated by calligraphic uppercase letters. The transpose
of matrix A is denoted by AT. The trace of matrix A are
denoted by tr(A). The expectation operator is denoted by E[.].
The set of integers from m to n, m < n, is represented by
[m, n]. The Euclidean norm of vector a is denoted by ‖a‖,
and |a| denotes the absolute value of scalar a. Note that the
cardinality of set A is also denoted by |A|.

II. SYSTEM MODEL

We consider a scenario similar to the one depicted in Fig.
1, where a UAV-mounted access point or base station that is
connected to K ground level users in an urban area consisting
of a number of city buildings. The users are scattered all
over the city and uk = [xk, yk]

T ∈ R2, k ∈ [1,K] denotes
the k-th user’s location. The users are considered static and
their locations are unknown. The UAV’s localization mission
lasts for a duration T , during which the aim of the UAV
is to estimate the unknown user locations based on RSS
measurements from them. Note that a constraint on flying
time reflects the limited on-board battery capacity of the UAV.
However, a more advanced power consumption models of the
UAV that takes into account parameters such as acceleration,
hovering etc. as in [27] can also be considered in trajectory
design which is left for the future work. A 3D map of the
environment where the UAV and users are located is assumed
to be available.

We assume that the time period [0, T ] is discretized into N
equal length intervals, each of duration δ = T/N , indexed by
n = 1, . . . , N . The value of δ is chosen to be sufficiently small
such that UAV’s location, velocity, and heading angles can be
considered constant in one interval. In the n-th interval, the
UAV/drone position is denoted by v[n] = [x[n], y[n], z[n]]T ∈
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R3. We assume that the drone is equipped with a GPS receiver,
hence v[n],∀n is known. During the mission, drone’s position
evolves according to

v[n+ 1] =v[n] +

 cos (φ[n]) cos (ψ[n])
sin (φ[n]) cos (ψ[n])

sin (ψ[n])

 ρ[n] , (1a)

0 ≤ ρ[n] ≤ ρmax, n ∈ [1, N − 1], (1b)
0 ≤ φ[n] ≤ 2π, n ∈ [1, N − 1], (1c)

− π

2
≤ ψ[n] ≤ π

2
, n ∈ [1, N − 1], (1d)

hmin ≤ z[n] ≤ hmax, n ∈ [1, N − 1], (1e)

where in the n-th time slot, ρ[n] represents the distance
traveled by the drone, φ[n] and ψ[n] represent the heading and
elevation angles, respectively. The maximum distance traveled
in a time slot is denoted by ρmax and it depends on the
maximum velocity. The constraint (1e) reflects the fact that
the drone always flies at an altitude higher than hmin and
lower than hmax, with hmin being the height of the tallest
building in the city.

III. USER LOCALIZATION WITH AN ARBITRARY
TRAJECTORY

In this section, we propose a map-based algorithm to esti-
mate the user locations from the channel gain measurements
collected by the UAV. Here UAV follows an arbitrary trajectory
for collecting the measurements, while the problem of trajec-
tory optimization is deferred to section IV. The measurement
collection process from the users is described next followed
by the estimation problem.

Let us denote an arbitrary trajectory taken by the UAV
during the mission by a sequence χ = {v[n], n ∈ [1, N ]},
where v[n] represents the UAV’s position in the n-th time
interval. We assume that the UAV flies over N different
locations during the mission. From each of these locations, the
UAV collects radio measurements form all K users. Let gn,k
represent the channel gain or RSS measurement (in dB scale)
obtained from the k-th user by the UAV in the n-th interval.
Using the segmented pathloss model that is suitable for air-to-
ground channels in urban environments with buildings [21],
[22], we have

gn,k =

{
λn(θLoS,uk) + ηn,k,LoS if LoS
λn(θNLoS,uk) + ηn,k,NLoS if NLoS

, (2)

where

λn(θs,uk) = βs − αs10 log10(‖uk − v[n]‖), (3)

θs = [αs, βs]
T, s ∈ {LoS,NLoS}, αs is the pathloss exponent,

βs is the channel gain offset, and ηn,k,s represents shadowing
effect 2 with zero-mean Gaussian distribution with variance
σ2
s . We assume that NLoS measurements have a higher

shadowing affect i.e, σNLoS ≥ σLoS [28], and the values of

2The shadowing component can also be used to incorporate the additional
noise terms such as UAV’s GPS error, etc.

σ2
s , s ∈ {LoS,NLoS} are known. The probability distribution

of the measurement in (2) can be modeled as

p(gn,k) = (fn,k,LoS)
wn,k(fn,k,NLoS)

(1−wn,k), (4)

where

fn,k,s =
1√
2πσ2

s

exp

(
− (gn,k − λn(θs,uk))

2

2σ2
s

)
,

and ωn,k ∈ {0, 1} is the classifier binary variable (yet
unknown) indicating whether a measurement falls into the LoS
or NLoS category.

Assuming that collected measurements conditioned on
channel parameters 3 and user positions are independent and
identically distributed (i.i.d), using (4), the maximum likeli-
hood estimation (MLE) of θs and uk leads to minimizing

L = log

(
σ2

LoS

σ2
NLoS

) K∑
k=1

N∑
n=1

ωn,k+

K∑
k=1

N∑
n=1

ωn,k
σ2

LoS
|gn,k − λn(θLoS,uk)|2 +

K∑
k=1

N∑
n=1

(1− ωn,k)
σ2

NLoS
|gn,k − λn(θNLoS,uk)|2 ,

(5)

The estimate of θs and uk can then be obtained by solving

min
ωn,k,uk,∀n,∀k

θLoS, θNLoS

L
(6a)

s.t. ωn,k ∈ {0, 1},∀n, ∀k. (6b)

Since the objective function in (6) comprises of binary
variables ωn,k, and the fact that (3) is a non-linear and non-
convex function of the user location uk, it is challenging to
solve the simultaneous classification, localization and channel
learning problem in (6) optimally. To tackle this problem, we
use a PSO algorithm. As will be clear later, the PSO algorithm
is enhanced to exploit the side information stemming from the
3D map of the environment. Before presenting the solution to
(6), we give a brief introduction to the PSO algorithm.

A. Particle Swarm Optimization

PSO [29] is a computational method that tries to find the
solution to an optimization problem by iteratively trying to
improve a candidate solution with regard to a given measure
of quality, so called fitness value. Initially, a population of
random candidate solutions, called particles, are generated
and then in each iteration these particles are moved around
their neighborhood across the search-space based on a simple
mathematical formulae capturing each particle’s position and
so-called velocity, as shown later in (7). After each iteration,
each particle is evaluated by the objective function, deter-
mining the fitness of that particle. Particles are generated in
a swarm of size C, where the j-th particle is denoted as

3This amounts to assuming the shadowing coefficients are independent over
successive UAV locations, which is a classical simplifying assumption, see for
e.g. [22]
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cj ∈ RD, j = [1, C], and the particle’s dimension D is equal
to the number of unknown parameters to be estimated. The
fitness and the velocity of each particle need to be stored.
Critically, each particle remembers the best fitness value it
has achieved so far during the operation of the algorithm,
referred to as the individual best fitness, as well as the
candidate solution that achieved this fitness, referred to as the
individual best candidate solution. Finally, the PSO algorithm
maintains the best fitness value achieved among all particles
in the population, called the global best fitness, as well as the
candidate solution that achieved this fitness, called the global
best candidate solution.

At each iteration, the velocity of each particle in the swarm
is updated using the following equation:

ċ
(i+1)
j = ν ċ

(i)
j + ε1r1(c

b
j − c

(i)
j ) + ε2r2(c

∗ − c
(i)
j ), (7)

where c
(i)
j , ċ

(i)
j are the j-th particle’s position and its velocity

at the i-th iteration of PSO, respectively. The individual best
candidate solution for particle j at each iteration is denoted
by cb

j , and c∗ represents the swarm’s global best candidate
solution. The parameters ν, ε1 and ε2 are user-supplied coef-
ficients. ν is an inertial coefficient which can either dampen
the particle’s inertia or accelerate the particle in its original
direction. The cognitive coefficient ε1, affects the size of the
step the particle takes toward its individual best candidate
solution, and ε2 is the social coefficient which modulates the
step the particle takes toward the global best candidate solution
so far. The values r1, r2 (0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1) are
random values regenerated from a uniform distribution for
each velocity update. Once the velocity for each particle is
calculated, each particle’s position is updated by applying the
new velocity to the particle’s previous position:

c
(i+1)
j = c

(i)
j + ċ

(i+1)
j . (8)

This process is repeated until some stopping condition is met
(e.g. a preset number of iterations of the PSO algorithm, a
predefined target fitness value, etc.). Since PSO algorithm
works by jointly maintaining several candidate solutions in the
search area, it is less likely to be trapped into a local minimum
which often arises in non-convex optimization as opposed to
the gradient-based optimization methods.

B. Single User Case

As explained in Section III-A, PSO method can be useful
in solving variety of non-convex optimization problems and
is especially appropriate here due to the non-linear and non-
convex structure of problem (6). Moreover, using PSO allows
us to exploit the 3D map information to obtain a more precise
estimate of the user location, which is explained later in this
section. If we blindly apply the PSO method to solve (6), the
particle needs to be defined as

cj = [w1,1, · · · , wN,K ,uT
1, · · · ,uT

K ,θ
T
LoS,θ

T
NLoS]

T, j ∈ [1, C],
(9)

where C denotes the number of particles, and each particle
consists of K ×N classification variables, 2K user locations
variables (in two dimensions), and four unknown variables

αs, βs, s ∈ {LoS,NLoS}. However, with the number of mea-
surements being very large, applying PSO with such particles
defined in (9) incurs very high complexity in the algorithm
as we need to maintain and update several particles of very
large dimensions during the run time. To solve this difficulty,
we propose to exploit the 3D map to reduce the complexity
of PSO algorithm by replacing the particle cj as defined in
(9) which is of very large dimension with the particle now
defined as

cj = [uT
1, · · · ,uT

K ]T ∈ R2K ,∀j. (10)

The motivation for the above is that, propagation segment
classification variables wn,k can in fact be directly inferred
from the UAV and user locations (particle) from a trivial
geometry argument: For a given UAV position, the user is
considered in LoS to the UAV if the straight line passing
through the UAV’s and the user position lies higher than
any buildings in between. In turn, having classified each
measurement into LoS or NLoS, the channel parameters αs
and βs can be learned easily as well from the measurements
by resorting to a standard least square (LS) technique. As a
result, the pathloss parameters estimates can be removed from
the particles. We now describe the map-aided PSO algorithm
in a more detailed manner, we start with a single user scenario
and later extend it to the multi-user case.

In a single user case (K = 1), each particle has a dimension
of cj := u1 ∈ R2 (i.e. each particle is a potential candidate
for the user location). Therefore, the likelihood (5) for a given
particle, which is an estimate of the user location, is given by

L(c(i)j ) = log

(
σ2

LoS

σ2
NLoS

)
|MLoS,1,j |+∑

s∈{LoS,NLoS}

∑
n∈Ms,1,j

1

σ2
s

∣∣∣gn,1 − λn(θs, c(i)j )
∣∣∣2 ,
(11)

where c
(i)
j is the j-th particle at the i-th iteration of the PSO

algorithm, andMs,1,j is a set of time indices of measurements
collected from user 1 which are in segment s by assuming that
the user 1 location is same as particle j. To formMs,1,j , a 3D
map of the city is utilized. For example, measurement gn,1 is
considered LoS, if the straight line passing through c

(i)
j and the

drone location v[n] lies higher than any buildings in between.
An illustration of the map-aided classification by considering
merely two particles is shown in Fig. 2.

Having formed Ms,1,j , for the given particle c
(i)
j , (11) is

minimized just by optimizing over the channel parameters
θLoS,θNLoS as follows

L∗(c(i)j ) := min
θLoS,θNLoS

L(c(i)j ). (12)

The problem in (12) is a standard LS problem and can be
easily solved by using well known methods [30].

We denote the index of the best particle minimizing (11) as

j∗ := arg min
j∈[1,C]

L∗(c(i)j ). (13)

Consequently, the individual best fitness and global best fitness
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Fig. 2: Map-aided LoS/NLoS classification of two particles.

values are, respectively, updated as follows

zj :=min
(
L∗(c(i)j ), zj

)
, j ∈ [1, C],

z∗ :=min
(
L∗(c(i)j∗ ), z

∗
)
.

(14)

The individual best candidate solution for particle j at each
iteration (cb

j), and the swarm’s global best candidate so-
lution (c∗) are also updated accordingly. In addition, we
denote the learned channel parameters corresponding to c∗

by θ∗LoS,θ
∗
NLoS. The PSO algorithm then proceeds to the next

iteration by updating the particles following (7) and (8). We
assume that the PSO terminates after I iterations.

In accordance with (14), z∗ is non-increasing at each
iteration, therefore the original problem (6) can be upper-
bounded as:

L∗ ≤ z∗, (15)

where L∗ is the global minimum value of (6). By assuming
a large number of particles, L∗ can be approximated by the
upper-bound as follows

L∗ ≈ z∗. (16)

Finally, c∗, θ∗LoS,θ
∗
NLoS are considered as the user location

and channel parameters estimates, respectively, for problem
(6). The different steps of this algorithm is summarized in
Algorithm 1.

Algorithm 1: Map-aided single user localization using
PSO algorithm

1: Initialize C(0) = {c(0)1 , · · · , c(0)C }, i = 0.
2: while i < I do
3: for c

(i)
j ∈ C(i) do

4: Classify measurements into LoS/NLoS categories
using the 3D map

5: Solve (12) for classified measurements
6: Update (14)
7: Update cb

j , c
∗,θ∗LoS,θ

∗
NLoS

8: Update particle’s velocity and position
9: end for

10: i := i+ 1
11: end while

Solve for 
User 1

Solve for 
User 2

Solve for 
User 3

….

Solve for 
User K

u1
∗ , ΘLoS

∗ , ΘNLoS
∗

u2
∗ , ΘLoS

∗ , ΘNLoS
∗

u3
∗ , ΘLoS

∗ , ΘNLoS
∗

u𝐾
∗ , ΘLoS

∗ , ΘNLoS
∗

u𝐾−1
∗ , ΘLoS

∗ , ΘNLoS
∗

Fig. 3: Map-aided multi user localization procedure in one
iteration.

C. Multi User Case

Now we proceed to the multi user case. Solving problem
(6) with PSO algorithm for more than one user, even by
exploiting the 3D map information is challenging, since for
any possible combination of particles, an LS problem needs
to be solved for finding channel parameters estimates, which is
computationally complex (i.e. the complexity of the problem
exponentially increases with the number of users). To tackle
this difficulty, we employ a block coordinate descent technique
[31] which tries to solve the original problem iteratively.
Hence at each iteration, only one set of variables is updated
(while fixing all the other variables), rather than updating
all the variables together. More precisely, at each iteration
we fix all users location estimates except one, and then
we solve problem (6) for that particular user. The channel
parameters are also estimated. Note that, at each iteration of
the algorithm, the problem boils down to a single user case
which has been addressed earlier. Doing so, the complexity
of the algorithm only linearly increases with the number of
users. It can be shown that, in each iteration of the proposed
algorithm, the objective value defined in (5) decreases, hence
the convergence is guaranteed. The proof of convergence and
details of the iterative algorithm is provided in Appendix A.
The procedure of multi user localization algorithm for one
iteration is illustrated in Fig. 3.

IV. TRAJECTORY DESIGN FOR ACCELERATED LEARNING

When it comes to the user localization using a mobile
anchor (UAV in our scenario) in a network, a natural question
that arises is then as how to design its trajectory to optimally
gather measurements from the users, i.e. measurements that are
maximally informative about the parameters that we seek to
estimate. In control and learning, such optimization framework
is often termed as optimal design of experiments [32]. The
relevance of this problem to our localization scenario can
be understood as follows: The measurements collected from
NLoS links usually lead to a degradation of the localization
accuracy due to the higher shadowing effect in NLoS channels.
However, designing a trajectory for the drone to establish
LoS links to all users at all times is not a viable solution
because there may not exist a continuous trajectory which
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fulfills this constraints and because of the limited mission time.
Therefore, having an autonomous trajectory design algorithm
that strikes a balance between collecting LoS measurements
from the users and the mission time is of the essence here.

In this section, we investigate the problem of trajectory
optimization of a UAV that aims to minimize the user localiza-
tion error under a limited flying time constraint. Our approach
relies on the notion of Fisher information matrix (FIM) [33].
This metric helps in measuring the amount of information
that observed measurements carries about an unknown user
locations and channel parameters. Our goal is to exploit struc-
tural properties of the FIM, so as to design an optimal policy
for the drone to collect the best possible measurements from
users. Note that the works in [13], [34] have also used FIM
based metric in optimizing the UAV trajectory for localization
using RSS measurements, however, in those works the channel
model doesn’t differentiate between LoS and NLoS conditions
and 3D map of the city is not exploited. In the following, we
first elaborate on the FIM and its properties and then optimize
the UAV’s trajectory.

A. Fisher Information Matrix

For a set of channel gain measurements obtained from
segment s ∈ {LoS,NLoS}, the FIM of the measurements with
respect to the variables we seek to estimate is given by

Fs = E

[
∂Ls
∂ξs

∂Ls
∂ξs

T
]
, (17)

where ξs = [αs, βs, x1, y1, · · · , xK , yK ]T, and Ls is the log-
likelihood of the measurements collected from segment s and
is defined as

Ls ,
N∑
n=1

∑
k∈Kn,s

log fn,k,s, (18)

where fn,k,s is the probability density function (PDF) of
the n-th measurement from user k which is defined in (2)
conditioned on belonging to segment s, and Kn,s is a set of
user indices that are in segment s at time step n. Then the
FIM for all measurements in segment s ∈ {LoS,NLoS} up to
time step N is given by

FN,s =

N∑
n=1

∑
k∈Kn,s

Hn,k,s

=FN−1,s +
∑

k∈Kn,s

HN,k,s,

(19)

where Hn,k,s is derived in Appendix B. Note that, (19) implies
that the FIM is cumulative over time.

B. Cramér-Rao Bound Analysis

According to the Cramér-Rao bound (CRB) [35], the mean
square error (MSE) of the estimated parameters ξ̂s for an
unbiased estimator is lower bounded by

MSE(ξ̂s) ≥ tr(F−1N,s). (20)

Lemma 1. For a set of measurements collected in segment
s ∈ {LoS,NLoS}, F−1N,s follows a recursive relation given by

F−1N,s = F−11,s −
N∑
n=2

Rn,s, (21)

where Rn,s is defined as the amount of improvement in the
estimate within time slot n.

Proof. Considering the cumulative property of FN,s, we can
write

F−1N,s =

FN−1,s + ∑
k∈Kn,s

HN,k,s

−1
(a)
= F−1N−1,s −RN,s

(b)
= F−11,s −

N∑
n=2

Rn,s,

(22)

where (a) follows from the matrix inversion lemma, and (b)
follows from the recursive relation. Rn,s is given by

Rn,s = F−1n−1,s

 ∑
k∈Kn,s

H−1n,k,s + F−1n−1,s

−1 F−1n−1,s. (23)

C. Trajectory Optimization

We are interested to find a trajectory for the drone in
limited flight mission time during which the drone starts
from the base point vI and ends up at the terminal point vF
while minimizes the estimation error of parameters ξs. Such
optimization problem can be formulated as

min
{v[n]}Nn=1

MSE(ξ̂LoS) + MSE(ξ̂NLoS) (24a)

s.t. (1),v[1] = vI, v[N ] = vF, (24b)

where {v[n]}Nn = {v[n],v[n + 1], · · · ,v[N ]}, MSE(ξ̂s) is
the MSE of the estimated parameters ξ̂s, s ∈ {LoS,NLoS}
by using the map-aided estimator proposed earlier in Section
III-C, and constraints in (1) captures the UAV dynamics.

The optimization problem (24) is challenging to solve since
a closed form expression for MSE(ξ̂s), s ∈ {LoS,NLoS} for
the map-based estimator using PSO is not available. Therefore,
instead of solving (24), we find a trajectory to minimize the
CRB. Note that even though CRB in (20) only applies for
unbiased estimators, in this case it nonetheless provides a good
metric for finding favorable measurements in our trajectory
optimization.

Using the CRB in (20), we can approximate (24) as

min
{v[n]}Nn=1

tr(F−1N,LoS + F−1N,NLoS) (25a)

s.t. (24b). (25b)

Even after this approximation of the original problem, (25) is
still not easy to solve. The non-linearity nature of the channel
gain measurement on channel parameters and user locations
makes F−1N,s a function of the unknown parameters ξs (that
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need to be estimated), hence can not be computed exactly.
To avoid this, we take a sequential approach where at time
step n, we use an estimate of F−1N,s, denoted by F̂−1N,s|n, as
the objective to minimize. This estimate is obtained from
using ξ̂s,n, which represents an estimate of ξs obtained from
measurements collected up to the time slot n. So essentially,
(25) becomes as an online learning and trajectory design
problem in which at each time step during the mission after
obtaining new measurements, unknown parameter estimates
are updated, and accordingly, a new trajectory from that point
is generated. The steps in the algorithm is summarized in
Algorithm 2.

Algorithm 2: On-line trajectory design algorithm
1: Initialize n = 1, v[n] = vI.
2: Collect new measurements from K users
3: Estimate ξ̂s,n from measurements [g1,1, g1,2, . . . , gn,K ]
4: Solve (26)
5: UAV moves to location v∗[n+ 1]
6: n := n+ 1
7: Repeat Step 2, until n < N .

In Algorithm 2, the trajectory design problem in the n-th
time step is given by

min
{v[n]}Nn

tr(F̂−1N,LoS|n + F̂−1N,NLoS|n) (26a)

s.t. (1),v[n] = xn, v[N ] = vF, (26b)

where
xn =

{
vI, n = 1

v[n], n > 1
.

To solve (26), by using the recursive property of F−1N,s
explained in Lemma 1, dynamic programming (DP) [36] can
be applied by discretizing the search space comprising discrete
states (i.e. each state is a feasible discrete location in the 3D
space where the drone can travel to). We denote the trajectory
generated by solving (26) as {v∗[n]}Nn .

When using DP the number of computations needed to find
the trajectory for Algorithm 2 equals to

V2N(N − 1)

2
, (27)

where V is the number of discrete states in the search space.
Since we are interested to find a 3D trajectory, V is not
small. To deal with this problem, in the following we elaborate
on a low-complexity greedy algorithm to find a sub-optimal
trajectory.

D. Greedy Trajectory Design

As mentioned in Algorithm 2, at each time step the future
trajectory needs to be updated and then the drone takes the
next step based on the solution obtained. Instead of designing
the entire trajectory at each step, which incurs a very high
complexity, we propose a greedy or myopic approach where
the trajectory is designed locally and piece by piece. At each
time step, the UAV seeks to find the best location for the

r

V[n]

Fig. 4: An example of the possible actions in the greedy
trajectory design at the n-th time step.

next step to go and collect measurements that can potentially
offer the maximum improvement in the estimation error. Let
us define the objective function in the greedy algorithm at time
step n as

L(v[n]) =

{
tr(R̂n,LoS|n−1 + R̂n,NLoS|n−1), ‖v[n]− vF‖ ≤ τ

−∞, otherwise
,

(28)
where R̂n,s|n−1 is the estimation of Rn,s given ξ̂s,n−1, and
τ = ρmax(N − n). Note that the relation between R̂n,s|n−1
and F̂N,s|n−1 can be inferred from (22). The definition in (28)
imposes the drone to reach the terminal point vF within the
total flying time constraint.

Finally, the next optimal drone position at any time step
n ∈ [1, N − 1] can be obtained by solving

max
φ[n],ψ[n],ρ[n]

L(v[n+ 1])

s.t. (1),v[1] = vI.
(29)

To solve problem (29), we initialize n = 1 and the drone
starts flying from base point v[1] = vI. To find the best drone
position in the next time step (v[n + 1], n ∈ [1, N − 1]),
we discretize the search space around the current drone
location and we calculate (28) for all adjacent points. Then
the neighbor point with the maximum value is chosen as the
drone location in the next step. If the value of all the adjacent
point are calculated as infinity, then the drone moves towards
the terminal location vF by ‖v[n]−vF‖

N−n meters, where n is the
current time step. In Fig. 4, an example of the greedy trajectory
design at the n-th time step is shown. In this example, the set
of feasible drone positions comprises eight adjacent points of
current drone location by selecting the input actions as follows

φ[n] ∈
{
0,
π

4
,
π

2
,
3π

4
, π,

5π

4
,
3π

2
,
7π

4

}
,

ψ[n] = 0, ρ[n] ∈ {r} , (30)

where r denotes the discretization unit. To find the best
position for the drone, in the next time step, all eight drone’s
adjacent positions at time step n need to be evaluated.

V. NUMERICAL RESULTS

In this section, we provide numerical results to show the
performance of the proposed algorithms. We consider a dense
urban city neighborhood of size 600 × 600m2, comprising
buildings and regular streets. The height of the buildings is
Rayleigh distributed in the range of 5 to 40 m [21]. During
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Fig. 5: Localization error performance of different algorithms
(single user case) for various trajectory lengths.

the simulations, in both the cases of random and optimized
trajectories, the drone starts flying from the starting point
vI = [0, 0, 50]T m and ends up at the terminal points vF =
[300, 300, 50]T m. The propagation parameters are chosen as
αLoS = 2.5, αNLoS = 3.04, βLoS = −30 dB, βNLoS = −35 dB
according to an urban micro scenario in [28]. The variances
of the shadowing component in LoS and NLoS scenarios are
σ2

LoS = 5 dB and σ2
NLoS = 10 dB, respectively.
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Proposed Alg. (Random Trajectories)
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Ref. [20] (Optimized Trajectories)

Fig. 6: Localization error (single user case) for different
trajectory lengths.

In Fig. 5, we compare the performance for the localization
algorithm proposed in this paper with that of [19] and [20]
over random Monte-Carlo iterations in a single user case. The
difference between existing methods in [19], [20], and our
method is as follows: In [19] and [20], a set of arbitrary
RSS measurements is used for the purpose of user local-
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Fig. 7: CDF of single user localization accuracy.

ization and channel estimation (no trajectory optimization is
considered) by assuming a two-segment radio channel model
without exploiting the 3D map information. In [19], an EM
algorithm is utilized for RSS measurements classification task
and estimating the radio channel parameters and user locations,
while in [20], an unsupervised learning method is introduced
to jointly classify the RSS measurements and learn the channel
model parameters and users location. The root mean square
error (RMSE) of the user localization for our proposed map-
based algorithm is superior to the map-unaware algorithms
in [19], [20]. To have a fair comparison, a set of random
trajectories was generated and then used for all algorithms.
As intuited, the 3D map bring substantial improvement to the
localization accuracy.

In Fig. 6, we evaluate the effect of the trajectory op-
timization on the localization accuracy for the map-based
algorithm versus different trajectory lengths. We can see that
by following the optimal trajectory, the localization error is
smaller, since the UAV tries to collect the most informative
measurements from the ground users.

For further comparison, we also proposed an algorithm to
generate an optimized trajectory for the localization method in
[20] by using the global LoS probability [37]. In this approach,
we consider the same trajectory design algorithm as proposed
in Algorithm 2 with the difference that instead of using the 3D
map information, we assign a LoS probability for each user.
Then the LoS probability of a link between k-th user and the
drone at time step n is given by

pk[n] =
1

1 + exp (−a θk[n] + b)
, (31)

where θk[n] = arctan(z[n]/rk[n]) denotes the elevation angle
and rk[n] is the ground projected distance between the drone
and the k-th node located at uk in the time slot n. Param-
eters {a, b} are the model coefficients which are computed
according to [37] and based on the characteristics of the city.
We then assume that the k-th user is in LoS condition to the
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drone at time step n if its LoS probability is greater than 0.5.
The localization RMSE pertaining to this method is shown by
the red dashed-line marked with squares in the figure below. It
is clear that the map-based methods (both for the random and
the optimized trajectories) outperform the other approaches.

In Fig. 7, the cumulative distribution function (CDF) vs.
localization RMSE for different approaches in a single user
scenario is shown. To localize the user using our purposed
algorithm the UAV follows the optimized trajectory. Note that
for all approaches, the length of the trajectory is fixed and
equals to 1000 m. It can be seen that using the 3D map, the
user can be localized accurately with a high probability. For
example, it is almost guaranteed to localize the user with 30
meter accuracy by using the map-based approach.

In Fig. 8, we investigate the effect of increasing the number
of users on the performance of the map-based localization
algorithm while the drone takes a random trajectory with a
fixed length of 900 m for different Monte-Carlo iterations. It
is observed that the estimation error improves by increasing
the number of users despite the fact that by increasing the
number of users the number of unknown parameters also
increases. This is because by increasing the number of users
the number of gathered measurements linearly increases while
the unknown parameters regarding learning the channel are
fixed. Consequently, the algorithm can learn the channel more
accurate which improves the localization performance as well.
An example of the optimized trajectory which is generated
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15
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35
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Fig. 8: Localization error when increasing the number of users.

according to Algorithm 2 for localizing 3 ground users is
shown in Fig. 9. It can be seen that the users are localized
accurately.

VI. CONCLUSION

In this work, we considered a UAV-aided localization system
where a UAV is used as a mobile anchor to estimate the
location of ground users which are randomly scattered in an
urban environment. The UAV estimates the user locations from
the collected RSS measurements by capitalizing on the 3D

(a)

(b)

Fig. 9: (a) Top view of the generated trajectory using the sub-
optimal approach. (b) Drone altitude along the trajectory.

map information of the city. Moreover, we proposed an online
algorithm to design an optimized trajectory for the UAV to
improve the performance of the localization under a given
mission duration. The simulations show a considerable gain
brought by exploiting the 3D map in the performance of the
node localization compared to the conventional RSS-based
localization methods. The proposed method can be advantages
for the scenarios in which the GPS fails to works in the
challenging environments such as dense cities where the GPS
signals are obstructed by the presence of the tall buildings.

APPENDIX

A. Proof of convergence for multi-user localization

As mentioned in Section III-C, for the multi-user case
we use the block coordinate descent method which is an
iterative algorithm. In each iteration we fix all the user location
estimates except one. Therefore, in each iteration of this
algorithm the problem is recast as a single user case. For ease
of exposition we merely assume one iteration for the PSO
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algorithm I = 1. For this, to avoid notation overload, we drop
the superscript indicating the PSO algorithm iteration for each
particle.

Assuming we are at q-th iteration of the block coordinate
descent, for the first user it can be written

L∗(q)1 := min
j∈[1,C]

L∗1(cj),

u∗1 := arg min
cj∈C

L∗1(cj),
(32)

where L∗(q)1 is the minimum cost at iteration q and is solved
just for the first user, and u∗1 is the corresponding user location
estimate. L∗1(cj) is defined as follows

L∗1(cj) = min
θLoS,θNLoS

L1(cj), (33)

where L1(cj) is the cost function for particle j by fixing all
the users’ location except the first user which equals to

L1(cj) = log

(
σ2

LoS

σ2
NLoS

)
|MLoS,1,j |+∑

s∈{LoS,NLoS}

∑
n∈Ms,1,j

1

σ2
s

∣∣∣gn,1 − λn(θs, c(i)j )
∣∣∣2 +

K∑
k=2

log

(
σ2

LoS

σ2
NLoS

) ∣∣∣M̂LoS,k

∣∣∣+
∑

s∈{LoS,NLoS}

∑
n∈M̂s,k

1

σ2
s

|gn,k − λn(θs,u∗k)|
2
,

(34)

where u∗k is the k-th user location estimate available from the
last iteration (q − 1), and M̂s,k is a set of time indices of
measurements collected from user k which are at segment s
by assuming that user k is located at u∗k. In general, Lk(cj)
has the form in (35).

Lk(cj) = log

(
σ2

LoS

σ2
NLoS

)
|MLoS,k,j |+∑

s∈{LoS,NLoS}

∑
n∈Ms,k,j

1

σ2
s

∣∣∣gn,k − λn(θs, c(i)j )
∣∣∣2 +

K∑
m=1
m 6=k

log

(
σ2

LoS

σ2
NLoS

) ∣∣∣M̂LoS,m

∣∣∣+
∑

s∈{LoS,NLoS}

∑
n∈M̂s,m

1

σ2
s

|gn,m − λn(θs,u∗m)|2 .

(35)

Now by having estimated the first user location, we then
proceed to find the second user position as follows

L∗(q)2 := min
j∈[1,C]

L∗2(cj), (36)

and u∗2 is computed similar to (32). It can be written now

L∗(q)1 ≥L∗(q)2 . (37)

Inequality (37) holds since the PSO algorithm guarantees
improvement in the cost function. In a similar manner, for
all the users it can be shown that

L∗(q)1 ≥ L∗(q)2 ≥ L∗(q)3 ≥ · · · ≥ L∗(q)K . (38)

Then by proceeding to the next iteration (q + 1) we have

L∗(q)1 ≥ L∗(q+1)
1 . (39)

And due to the fact that the MLE is lower bounded by zero
then the convergence is proved.

B. Derivation of FIM

For ease of exposition, we derive FIM for the single-
user case (K = 1). Following (2), the channel gain mea-
surement is modeled as a Gaussian random variable with
N (λn(θs,uk), σ

2
s), s ∈ {LoS,NLoS}. Then the PDF of each

measurement equals to

fn,k,s =
1√
2πσ2

s

exp

(
− (hn,k,s − λn(θs,uk))

2

2σ2
s

)
, (40)

where hn,k,s is the random variable assigned to the measure-
ment collected from user k at the n-th time step given segment
s. Now we compute the derivative of log-likelihood as follows

∂Ls
∂ξs

=

N∑
n=1

∑
k∈Kn,s

∂ log fn,k,s
∂ξs

, (41)

where

∂ log fn,k,s
∂ξs

=
1

σ2
s


−2 log10 ‖v[n]− uk‖

1
−αs(xk−x[n])
‖v[n]−uk‖2 log 10
−αs(yk−y[n])
‖v[n]−uk‖2 log 10


× (hn,k,s − λn(θs,uk))

,
(hn,k,s − λn(θs,uk))

σ2
s


`αn,k,s
1

`xn,k,s
`yn,k,s

 .
(42)

Then the FIM is given by

FN,s =E

[
∂Ls
∂ξs

∂Ls
∂ξs

T
]
=

N∑
n=1

∑
k∈Kn,s

Hn,k,s, (43)

where

Hn,k,s =
1

σ2
s


(`αn,k,s)

2 `αn,k,s `αn,k,s`
x
n,k,s `αn,k,s`

y
n,k,s

(`αn,k,s) 1 `xn,k,s `yn,k,s
`xn,k,s`

α
n,k,s `xn,k,s (`xn,k,s)

2 `xn,k,s`
y
n,k,s

`yn,k,s`
α
n,k,s `yn,k,s `yn,k,s`

x
n,k,s (`yn,k,s)

2


(44)

Note that, to calculate (43) the following results are useful

E[hn,k,s] = λn(θs,uk), E
[
(hn,k,s − λn(θs,uk))

2
]
= σ2

s .
(45)
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