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Abstract

Thermal imaging has substantially evolved, during the
recent years, to be established as a complement, or even
occasionally as an alternative to conventional visible light
imaging, particularly for face analysis applications. Facial
landmark detection is a crucial prerequisite for facial im-
age processing. Given the upswing of deep learning based
approaches, the performance of facial landmark detection
has been significantly improved. However, this uprise is
merely limited to visible spectrum based face analysis tasks,
as there are only few research works on facial landmark
detection in thermal spectrum. This limitation is mainly
due to the lack of available thermal face databases pro-
vided with full facial landmark annotations. In this paper,
we propose to tackle this data shortage by converting exist-
ing face databases, designed for facial landmark detection
task, from visible to thermal spectrum that will share the
same provided facial landmark annotations. Using the syn-
thesized thermal databases along with the facial landmark
annotations, two different models are trained using active
appearance models and deep alignment network. Evaluat-
ing the models trained on synthesized thermal data on real
thermal data, we obtained facial landmark detection accu-
racy of 94.59% when tested on low quality thermal data
and 95.63% when tested on high quality thermal data with
a detection threshold of 0.15×IOD.

1. Introduction

Facial landmark detection (FLD) consists in locating
predefined landmarks, such as eye contours, eye brows,
nose, lips. These detectors provide a shape representation
of the face that captures transformations due to facial ex-
pressions and/or head movement. FLD has drawn a lot
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of attention recently as it became an essential requirement
to perform facial image processing, e.g. face alignment
and frontalization [20, 34], 3D face reconstruction [21, 20],
emotion recognition [25] and lip reading [5]. Facial im-
age processing itself has evolved to explore different spec-
tra other than visible light given the additional information
that they can provide, notably near-infrared [9, 35] and ther-
mal spectrum [14, 15, 27]. Particularly, thermal spectrum
has been proved beneficial for many applications such as
face recognition in darkness [23, 22], facial medical imag-
ing [29], and emotional state analysis [27]. However, FLD
on thermal data has not been extensively explored yet, and
to our knowledge there are no public facial landmark de-
tectors available that are designed for thermal spectrum.
Thermal imagery provides data with lower spatial resolu-
tion and contrast when compared with visible imagery, and
it also lacks textural and geometrical information. There-
fore, applying the advances of FLD designed for visible
data to thermal spectrum may be challenging. Also, the
lack of public thermal face databases available with facial
landmark annotations prevents thermal spectrum from ben-
efiting from the recent advances in deep learning that have
yielded to remarkable improvements in FLD performance,
including when tested in-the-wild.

In this paper, we present a novel concept that aims to
tackle the lack of annotated data in spectra that are less
studied than visible spectrum through inter-spectral conver-
sion, particularly in thermal spectrum for FLD task. This
proposed concept will enable broader exploration of ther-
mal image processing. Thereby, we provide thermal face
databases with full facial landmark annotation through ar-
tificial visible-to-thermal data synthesis using existing visi-
ble face databases designed for FLD, notably LFPW [2] and
Helen [19] databases. We explore the possibility of training
different FLD models on the synthesized thermal face data
to be robust when tested on real thermal data. In particular,
we used active appearance models [6] and deep alignment



network [18] to train our facial landmark detectors.
The remainder of this paper is organised as follows. Sec-

tion 2 presents the previous work in FLD mainly focused
on thermal spectrum. Section 3 describes the databases we
selected to synthesize thermal face databases and the em-
ployed landmark annotation standard, followed by a pre-
sentation of the proposed approach to perform visible-to-
thermal face synthesis. Section 4 introduces the two se-
lected approaches that are used for FLD. Section 5 reports
the experimental setup and the evaluation protocol followed
by results and discussion. Conclusions are presented in Sec-
tion 6.

2. Related work
FLD in visible spectrum has been extensively studied

during the few last decades and it had witnessed great
progress. Early works, based on classic parameterized ap-
proaches, include active appearance models [6] and con-
strained local models [7]. Later on, FLD approaches based
on cascaded shape regression [4, 33] were introduced. Re-
cently, approaches based on deep learning have achieved
impressive results, notably Deep Alignment Network [18]
and Style Aggregated Network [8]. A thorough survey of
existing techniques of FLD on visible images and videos
can be found in [32].

Very few works have focused on FLD on thermal data
despite the attention that is being drawn to the usage of ther-
mal imagery in face analysis tasks. First attempts were aim-
ing to perform single landmark detection. Tzeng et al. [30]
used video frames to detect nostrils through tracking the
temperature variation due to respiration. Wang et al. [31]
trained a SVM to perform binary classification of the eye
region based on Haar-like features. Alkali et al. [1] located
the temperature maxima as it is commonly situated in the
inner corner of the eyes.

More recent works focused on the face region as a
whole and aimed to detect multiple facial landmark points.
Kopaczka et al. [14] trained an active appearance model
using HOG and SIFT features to perform face tracking in
thermal videos. This work has been extended [15] by in-
corporating the active appearance model into a deep convo-
lutional network to provide it with a prior shape informa-
tion. These two approaches were trained on a fully anno-
tated thermal face database [16] collected by University of
Aachen. This database provides high spatial resolution data
at 1024×768 pixels, with high contrast and noise equivalent
temperature difference (NETD) lower than 30mK, meaning
that the sensor with which the data is acquired is able to
identify very small differences of temperature as 30mK or
lower. These data specifications result in extremely high
quality thermal data much higher than the data provided by
the currently available thermal databases and the affordable
thermal sensors available on the market. The high quality of

the training data of the FLD model mentioned above yields
to a drastic decrease of landmark detection accuracy when
tested on low or medium quality thermal data that is being
used nowadays for research and commercial purposes.

3. Thermal face database synthesis

In this section, we describe the selected visible face
databases provided with landmark annotation that are used
in this paper. Then, we detail our method to perform visible-
to-thermal data synthesis in order to obtain a synthesized
thermal face database with full facial landmark annotations.
Finally, we present some samples of the generated thermal
faces.

3.1. Face Databases with full facial landmark anno-
tation

We present, here, the selected databases and the land-
mark annotation used in this paper.

Helen [19]: Helen database contains 2330 face images
collected from Flickr. The database includes a large set of
variations including pose, lighting, expression, occlusion,
and individual differences. The facial landmarks were an-
notated manually using Amazon Mechanical Turk after an
initialisation performed using STASM algorithm.

LFPW [2]: The Labeled Face Parts in-the-wild database
contains 1035 images collected from the web (Flickr,
Google, Yahoo...). LFPW database covers the same vari-
ations as Helen database. The Labeling and facial landmark
annotation were performed by three Amazon Mechanical
Turk members.

Facial landmark annotations, used in this work for these
databases, were obtained from those released in the con-
text of the 300 Faces in-the-Wild Challenge: the first facial
landmark localization Challenge [26], which attempted
to mitigate the mismatched original annotation criterions
present in the Helen and LFPW databases, with 194 and 29
selected landmark points, respectively. This mismatch in
dimensionality motivated the application of a shared semi-
supervised approach to FLD followed by manual correc-
tion, resulting in a common, consistent 68 facial points an-
notation. These annotations, which have been widely used
as the de facto benchmark for landmark detection, were thus
used as reference in the work presented here.

3.2. Visible-to-thermal data synthesis

Data synthesis from visible to thermal spectrum was car-
ried out using cascaded refinement networks (CRN) trained
using contextual loss, enabling it to be inherently scale and
rotation invariant. Choosing CRN as the basic block for
our image synthesis model was motivated by the fact that
it considers multi-scale information and requires training a
limited number of parameters resulting in high resolution



image generation. CRN is a convolutional neural network
that consists of inter-connected refinement modules, each
module consists of only three layers. The first module con-
siders the lowest resolution space (4×4 in our case). This
resolution is duplicated in the successor modules until the
last module (128×128 in our case), matching the target im-
age resolution.

During the training phase of our CRN network, we used
contextual loss CX that aims to compare regions with sim-
ilar semantic details while preserving the context of the en-
tire image. Our loss function can be modeled as a combi-
nation of two losses: style loss and content loss, as defined
by Gatys et al. [10]. The style loss is computed between the
generated thermal image and the ground truth thermal im-
age. Minimizing the style loss yields to generate artificial
images with the same properties as the target thermal im-
age. The content loss is computed between the input visible
image and the generated thermal image. The content loss
aims at preserving details as facial attributes, while toler-
ating some local deformations that are required to perform
the visible to thermal style conversion. Both losses are com-
puted at embedding level, extracted using VGG19 [28]. The
total loss can be formulated as follow:

L(G, IV is, ITh) = α1LCX(Φls(G(IV is)),Φls(ITh))+

α2LCX(Φlc(G(IV is)),Φlc(IV is))
(1)

Where IV is, ITh and G denote the input visible image,
the ground truth thermal image and the generator (i.e. vis-
ible to thermal synthesis model), respectively. Φlc and Φls

refer to the VGG19 embeddings extracted at content layers
level and style layers level, respectively. α1 and α2 were
adjusted using Grid Search.

To train the visible-to-thermal data synthesis model, we
used the VIS-TH database [24] that contains paired face im-
ages acquired simultaneously in visible and thermal spec-
trum collected from 50 subjects. This database provides
images of 160×120 spatial resolution and NETD<100mK.
VIS-TH database contains 21 variations including expres-
sion, pose, occlusion and illumination variations. During
training, we excluded one variation as it was acquired in to-
tal darkness, which yields to 1000 pairs of face images. The
training was run for 40 epochs with a learning rate of 1e-4.

To obtain the synthesized databases from visible to ther-
mal, we fed the images of HELEN and LFPW databases to
our trained model, that returns the thermal version of the
input image. We illustrate, in figure 1, some samples of the
synthesized thermal face images and their original counter-
part. We note that the synthesized thermal images present
a realistic pattern of thermal signature. Some details, such
as hair, eye brows and teeth, are converted into high pixel
values reflecting regions with lower temperature compared
to the face region. In addition, nose region is generated
slightly darker as the nose is usually colder than the rest

of the face because it is mainly composed of cartilage tis-
sue. Also, eyes contours are generated lighter than the rest
of the face, which reflects realistic thermal signature as the
high temperatures are situated around the eye region. The
synthesized images also present some artifacts as we can
observe, in few samples, dark patterns at arbitrary regions
of the face.

4. Facial landmark detection

In this section, we describe the two selected methods of
FLD that will be trained on the synthesized thermal face
databases.

4.1. Active appearance model

The first approach, used in this work, is based on Ac-
tive Appearance Model [6] as it is the baseline approach
for landmark detection. Active appearance models (AAM)
were introduced by Cootes et al. [6] for facial image pro-
cessing. AAM is a statistical appearance method aiming to
model the shape of the face and its appearance as probabilis-
tic distributions that can be generalized nearly to any face.
To train the FLD model, AAM requires a set of face images
with annotation points defining the facial landmarks. In the
training phase, Procrustes analysis is applied to align the set
of landmarks and the statistical shape and appearance model
variations are extracted using principal component analysis.
Unseen faces can be represented by a linear combination of
the mean shape and the appearance from the training data
with weighted shape and appearance vector.

As to faithfully replicate the AAM approach used to train
the FLD model provided by Aachen University [14], we
have trained a dense HOG feature-based AAM model fit-
ted using the Inverse-Compositional algorithm.

4.2. Deep alignment network

The second selected approach is deep alignment network
(DAN) [18] as it is the state-of-the-art in FLD for visible im-
ages and it has been evaluated on thermal data in [15]. DAN
is based on multi stage neural network that performs an it-
erative process of refinement of landmark positions. Each
stage of the DAN network is a feedforward neural network
that provides a prediction of the refined facial landmark lo-
cation. Each stage is trained until the validation error sta-
bilises. We have used a two stage DAN, between the two
stages a similarity transform is applied to re-align the im-
age to the average face shape. A learning rate of 1e-3 is
used with Adam optimizer on mini batch sizes of 64.

5. Experimental setup and results

In this section, we present firstly our two baseline FLD
models. Then, we detail our experimental setup. Finally, we



Figure 1: Samples of synthesized thermal images from HELEN and LFPW databases.

introduce our evaluation protocol followed by the reported
results.

5.1. Baseline models

We consider as baseline models the facial landmark
detectors, described in section 4, trained on high quality
database provided by Kopaczka et al. [14] from Univer-
sity of Aachen. We will refer, in this paper, to active ap-
pearance model and deep alignment network, both trained
on Aachen database, as ’AAM-Aachen’ and ’DAN-Aachen’,
respectively. The Aachen database includes high resolu-
tion thermal face images that are manually annotated [16].
Video sequences were acquired using a thermal camera with
a NETD<30mK and spatial resolution of 1024×768 pixels.
695 frames were extracted and manually annotated with 68
point landmarks. To train the AAM model described in sec-
tion 4.1, the face images were mirrored and 1272 images
were selected for the training phase, as described in [14].

5.2. Experimental setup

The two selected approaches for FLD, described in sec-
tion 4, are trained on the synthesized thermal face databases
Helen and LFPW separately. We refer to AAM models
trained on the synthesized thermal data from Helen and
LFPW as ’AAM-Helen’ and ’AAM-LFPW’ and to DAN
models as ’DAN-Helen’ and ’DAN-LFPW’, respectively.

Following the protocol defined in the context of 300
Faces in-the-Wild Challenge: the first facial landmark lo-
calization Challenge [26], we have used 2000 face images
of Helen database and their corresponding facial landmark
annotation files for training. Whereas for LFPW database,
we have used 811 face images for training our models.

5.3. Evaluation protocol and results

The evaluation of FLD performance is assessed by com-
paring the estimated landmark coordinates to the ground
truth. The normalized root mean square error (NRMSE), is
computed, point-to-point, to assess the average localization
error. NRMSE is considered as a standard metric to evaluate
FLD performance [11] and it consists of the euclidean dis-
tance between the predicted landmarks and the ground truth
landmarks normalized by a predefined distance. Conven-
tionally, the normalization is performed with regards to the
Inter-Ocular Distance (IOD), as stated in [11], which is the
distance between the two eye outer corners. The normaliza-
tion process is essential to obtain performance measurement
independent of the face size or the image resolution.

The NRMSE, referred to as E, is obtained as follow:

Ek =

√
((x, y)k − (x̄, ȳ)k)2

dnorm
(2)

where (x, y)k denote the ground truth coordinates and



(x̄, ȳ)k the estimated coordinates of the kth landmark point.
dnorm indicate the normalization distance.

The FLD performances can also be expressed in terms of
detection rate as follow:

D =

∑K
k=1

∑N
i=1[δ : Ei

k ≤ threshold]

N ×K

where δ =

{
1 if Ei

k ≤ threshold

0 otherwise

(3)

where K denotes the total number of the facial land-
marks, and N the number of test images. The threshold
indicates the NRMSE value under which a landmark point
is considered correctly localized.

5.3.1 Evaluation on low quality thermal face data

To evaluate the FLD model on low quality thermal data,
CSMAD database [3] is chosen since it provides aligned
images in visible and thermal spectrum acquired simultane-
ously. CSMAD database provides thermal images of spatial
resolution of 320×240 and NETD<70mK. This database is
designed for face presentation attack, however, it is possi-
ble to select, for our evaluation, only the bona fide samples
resulting in 423 images. The choice of this database is mo-
tivated by the fact that this database can simplify the anno-
tation of the thermal images. The annotation process was
performed automatically using DLIB [13] facial landmark
detector on the visible set of the database and then corrected
manually. Since the visible and thermal sets are aligned, the
landmarks detected on the visible set are considered as the
ground truth landmark points for the thermal set.

Given that this database also provides samples in visible
spectrum, we trained the FLD approaches on the original
visible face databases Helen and LFPW. FLD performance
on the original visible database will be considered as a ref-
erence. The comparison of the performance obtained us-
ing thermal based model with the visible based model will
quantify the discrepancy between the two spectra in terms
of FLD.

Results, in table 1, show the average and the standard
deviation of the localization error in terms of NRMSE ob-
tained by evaluating the different FLD models on the CS-
MAD database. The first column of the table corresponds to
AAM approach trained on different databases: where ’TH’,
’SynTH’ and ’VIS’ refer to thermal data, synthesized ther-
mal data and visible data, respectively. The second column
reports the same results for DAN approach. The localiza-
tion errors reported by the FLD models trained and tested
on thermal face data is relatively higher than the errors re-
ported by the model trained and tested on the original visi-
ble images. This is mainly due to the conversion of the face

images from highly informative domain, the visible spec-
trum, to low informative domain as the thermal spectrum,
resulting in loss of information relevant for accurate FLD.
We also observe that the detection models trained on syn-
thesized thermal data exhibit considerably lower errors than
the models trained on Aachen database, which demonstrates
the efficiency of our proposed solution.

AAM DAN
Aachen (TH) 0.14349 (±0.105) 0.14595 (±0.052)

LFPW (SynTH) 0.11779 (±0.062) 0.08265 (±0.026)
Helen (SynTH) 0.13200 (±0.057) 0.07309 (±0.022)

LFPW (VIS) 0.04020 (±0.015) 0.04299 (±0.012)
Helen (VIS) 0.04568 (±0.031) 0.03146 (±0.011)

Table 1: Average NRMSE (± standard deviation) reported
on CSMAD database.

The plots, presented in Figure 2, illustrate the detection
rate that corresponds to a defined threshold value for FLD
models trained on different databases. We swiped the de-
tection threshold from 0.0 to 1.0 with a step of 0.05. We
observe that the two facial landmark detectors trained on
Aachen database, represented by the blue curve, yield to
significantly low detection rates compared to the detectors
trained on the synthesized thermal data. This can be justi-
fied by the fact that Aachen models have been trained on
very high resolution, high contrast images captured with
very high thermal sensitivity. These images are very differ-
ent from the images provided by the existing thermal face
databases, as it is the case for CSMAD database. In addi-
tion, the detection rates obtained using DAN approach are
considerably higher than the detection rates obtained using
AAM. This confirms the efficacy of deep learning solutions
in FLD task.

Additional qualitative results, presented in figure 3, de-
pict the performance of each model of FLD on thermal face
images with some facial variations. We note that the facial
landmark detectors trained on Aachen database [14], shown
in column (c) and (f), fail to accurately localize most of
the facial traits even under the least challenging variation.
However, all the four models trained on the synthesized
thermal data provide more accurate landmark localization.
Furthermore, we observe that deep learning based detectors
(columns (f), (g) and (h)) yield to a more meticulous fa-
cial landmark localization compared to statistical modelling
based detector. Besides, deep learning models seem to be
very robust against challenging facial variation such as oc-
clusion by glasses (lines 2 and 4), as they managed to pre-
dict the facial landmark coordinates that are closer to the
ground truth whereas the AAM based models tend to fail
once it is tested on challenging face variations.



(a) (b)
Figure 2: Detection rate variation of facial landmark detection models evaluated on CSMAD database: (a) Active Appearance
Model (b) Deep Alignment Network.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Qualitative results of the different facial landmark detection models on samples of CSMAD database.(a): thermal
reference, (b): ground truth, (c):AAM-Aachen, (d): AAM-LFPW, (e): AAM-Helen, (f): DAN-Aachen, (g) DAN-LFPW, (g):
DAN-Helen.

5.3.2 Evaluation on high quality thermal face data

For fair comparison, the FLD models are also evaluated on
high quality thermal data. Aachen database [16] was ex-
tended to include thermal face images depicting facial ex-
pression variations providing 68 points landmark annotation
as well. The expression variation subset of Aachen database
is used for our evaluation. We recall that the data provided
by Aachen database is characterized by spatial resolution of
1024×768 pixels and NETD<30mK.

Table 2 presents the average and the standard devia-

tion of the localization error of different FLD models when
tested on the expression subset of Aachen database. The
detection models trained on Aachen database report lower,
but with slight difference, localization errors than the detec-
tion models trained on synthesized thermal data. These re-
sults are somehow expected as the detection models trained
on Aachen database are evaluated on data of same thermal
quality acquired with the same thermal sensor.

Detection rates of the different FLD models are illus-
trated in figure 4. For AAM approach, the detection rate re-
ported by the model trained on Aachen data is considerably



(a) (b)
Figure 4: Detection rate variation of facial landmark detection models evaluated on the expression subset of Aachen database:
(a) Active Appearance Model (b) Deep Alignment Network.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5: Qualitative results of the different facial landmark detection models on samples of the expression subset of Aachen
database. (a): thermal reference, (b): ground truth , (c):AAM-Aachen, (d): AAM-LFPW, (e): AAM-Helen, (f): DAN-
Aachen, (g) DAN-LFPW, (g): DAN-Helen.

AAM DAN
Aachen (TH) 0.07267 (±0.031) 0.06061 (±0.020)

LFPW (SynTH) 0.09534 (±0.034) 0.07827 (±0.015)
Helen (SynTH) 0.10700 (±0.039) 0.06409 (±0.014)

Table 2: Average NRMSE (± standard deviation) reported
on the expression subset of Aachen database.

higher compared to the models trained on synthesized ther-
mal data. However for DAN, we notice that the curve corre-

sponding to the model trained on Aachen database overlaps
with the curve obtained using the model trained on synthe-
sized thermal data from Helen, attesting that the two models
perform similarly.

Figure 5 presents some samples of the expression sub-
set of Aachen database portraying the performance of each
FLD model. Overall, FLD was less challenging when ap-
plied on high quality than on low quality thermal data, as
revealed when we compare figure 3 and figure 5. For AAM
approach, facial landmark detectors trained on synthesized
data perform slightly poorer than the detector trained on



Aachen database. Nevertheless, when using DAN, the three
different facial landmark detectors achieve similar perfor-
mances as they all succeeded to meticulously locate the fa-
cial landmarks. For some face variations, we can observe
that the model trained on synthesize thermal Helen database
(column (h)) detected adequately some challenging land-
marks, as the bottom lip (row 1) and closed eyes (row 2),
whereas the facial landmark detector trained on Aachen did
not manage to correctly predict the localization of these
landmarks (column (f)).

5.3.3 Qualitative evaluation on thermal samples of dif-
ferent quality

Given that there are no public thermal face databases, other
than Aachen’s [16], provided with full facial landmark an-
notation, further quantitative performance assessment can-
not be performed on more data. Therefore, some qualitative
results are illustrated in figure 6 to demonstrate that the fa-
cial landmark detector trained on synthesized thermal data
can operate accurately on thermal data of different qual-
ity. Results obtained using the DAN approach trained on
Aachen database ’DAN-Aachen’ are shown in row 2 of the
figure 6. We have presented, in row 3, results obtained us-
ing the DAN model trained on the synthesized thermal data
from Helen database ’DAN-Helen’, as it is the best perform-
ing model.

(b) (c)(a)

Figure 6: Qualitative results of facial landmark detection
on samples of different thermal face databases, using DAN-
Aachen in row 2 and DAN-Helen in row 3. (a): UND-X1
database [12], (b): thermal database of Military University
of Technology in Warsaw [17] (c): samples collected in our
lab.

The presented samples are randomly selected from 3 dif-
ferent databases: UND-X1 database [12] of spatial resolu-
tion of 312×239 pixels and NETD<100mK, thermal face
database provided by the Military University of Technol-
ogy in Warsaw [17] of spatial resolution of 640×480 and
NETD<50mK, and some samples we acquired in our lab
using a thermal sensor of spatial resolution of 620×512

and NETD<50mK. We can observe that for all the sam-
ples presented, the model trained on the synthesized ther-
mal data ’DAN-Helen’ has succeeded to correctly localize
the facial landmarks, outperforming the model trained on
Aachen database ’DAN-Aachen’.

Given all the results and observations presented above,
one may conclude that our proposed concept has yielded to
obtain a facial landmark detector that can be suitable to a
wide range of thermal data quality.

6. Conclusion

In this paper, we addressed the lack of public thermal
face databases provided with full annotation for face anal-
ysis applications. We introduced an unexplored concept
consisting of converting data from one domain to another
to tackle this shortage of annotated data. Particularly, we
proposed to synthesize artificially a thermal face database
with full landmark annotation by converting existing face
databases in visible spectrum that have been designed for
facial landmark detection task to thermal spectrum. Two
different facial landmark approaches were trained on the
synthesized thermal face data and tested on low quality and
then on high quality thermal data, proving the robustness of
the trained models. Our approach was evaluated and com-
pared with two facial landmark detection baseline models
provided by Kopazcka et al. [14, 15]. These models were
trained on high quality thermal data that yielded to a consid-
erable decrease in performance when tested on thermal face
databases that are publicly available. Conclusively, the fa-
cial landmark detection models trained on synthesized ther-
mal data had significantly outperformed the baseline mod-
els trained on Aachen database when evaluated on lower
quality thermal data. Whereas, when tested on high quality
thermal data, our proposed models perform similarly to the
baseline models that is more adapted for thermal images of
such quality.

The best performing model trained on the synthesized
thermal face data has achieved an average localization error
NRMSE of 0.07 and 94.59% of detection rate at threshold
value of 0.15×IOD when evaluated on low quality thermal
data. This facial landmark detection model will be shortly
made available, as facial landmark detection is an essential
step for many face analysis tasks and that to our knowledge
there are no public facial landmark detection tools that are
available for thermal spectrum. Inter-spectral data synthesis
is also reproducible to tackle any lack of available data for
tasks that requires extensive annotation.
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[17] M. Kowalski and A. Grudzień. High-resolution thermal face
dataset for face and expression recognition. Metrology and
Measurement Systems, 25(2), 2018.

[18] M. Kowalski, J. Naruniec, and T. Trzcinski. Deep align-
ment network: A convolutional neural network for robust
face alignment. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages
88–97, 2017.

[19] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. Inter-
active facial feature localization. In European conference on
computer vision, pages 679–692. Springer, 2012.

[20] F. Liu, Q. Zhao, D. Zeng, et al. Joint face alignment and
3d face reconstruction with application to face recognition.
IEEE transactions on pattern analysis and machine intelli-
gence, 2018.

[21] P. Liu, Y. Yu, Y. Zhou, and S. Du. Single view 3d face re-
construction with landmark updating. In 2019 IEEE Confer-
ence on Multimedia Information Processing and Retrieval
(MIPR), pages 403–408. IEEE, 2019.

[22] K. Mallat, N. Damer, F. Boutros, and J.-L. Dugelay. Ro-
bust face authentication based on dynamic quality-weighted
comparison of visible and thermal-to-visible images to visi-
ble enrollments. In 2019 22th International Conference on
Information Fusion (FUSION), pages 1–8. IEEE, 2019.

[23] K. Mallat, N. Damer, F. Boutros, A. Kuijper, and J.-L. Duge-
lay. In 2019 International Conference on Biometrics (ICB),
pages 1–8. IEEE, 2019.

[24] K. Mallat and J.-L. Dugelay. A benchmark database of vis-
ible and thermal paired face images across multiple varia-
tions. In 2018 International Conference of the Biometrics
Special Interest Group (BIOSIG), pages 1–5. IEEE, 2018.

[25] M. I. N. P. Munasinghe. Facial expression recognition us-
ing facial landmarks and random forest classifier. In 2018
IEEE/ACIS 17th International Conference on Computer and
Information Science (ICIS), pages 423–427, 2018.

[26] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.
300 faces in-the-wild challenge: The first facial landmark
localization challenge. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops, pages
397–403, 2013.

[27] P. Shen, S. Wang, and Z. Liu. Facial expression recogni-
tion from infrared thermal videos. In S. Lee, H. Cho, K.-
J. Yoon, and J. Lee, editors, Intelligent Autonomous Sys-
tems 12, pages 323–333, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[28] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, 2014.

[29] S. Sonkusare, D. Ahmedt-Aristizabal, M. J. Aburn, V. T.
Nguyen, T. Pang, S. Frydman, S. Denman, C. Fookes,
M. Breakspear, and C. C. Guo. Detecting changes in facial
temperature induced by a sudden auditory stimulus based on
deep learning-assisted face tracking. In Scientific Reports,
2019.

[30] H.-W. Tzeng, H.-C. Lee, and M.-Y. Chen. The design of
isotherm face recognition technique based on nostril local-
ization. In Proceedings 2011 International Conference on
System Science and Engineering, pages 82–86. IEEE, 2011.

[31] S. Wang, Z. Liu, P. Shen, and Q. Ji. Eye localization from
thermal infrared images. Pattern Recognition, 46(10):2613–
2621, 2013.



[32] Y. Wu and Q. Ji. Facial landmark detection: A literature sur-
vey. International Journal of Computer Vision, 127(2):115–
142, 2019.

[33] X. Xiong and F. De la Torre. Supervised descent method
and its applications to face alignment. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 532–539, 2013.

[34] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker. Towards
large-pose face frontalization in the wild. pages 3990–3999,
2017.

[35] G. Zhao, X. Huang, M. Taini, S. Z. Li, and M. Pietikäinen.
Facial expression recognition from near-infrared videos. Im-
age and Vision Computing, 29(9):607 – 619, 2011.


