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Abstract

Software defined networking (SDN) has emerged as the integral part of cloud services since it provides
flexible management capabilities to monitor and to analyze the network traffic with the help of programmable
entities. Although, such functionalities play a significant role in terms of protecting the availability of cloud
services against the security threats, SDN still has some vulnerabilities such as the distributed denial of
service (DDoS) attacks. The DDoS attackers use spurious packets similar to normal ones and endanger
the service continuity of SDN. Although conventional packet-based intrusion detection systems have broad
databases to detect DDoS attacks, they are impotent of detection when the attack traffic is sheltered by
the normal network traffic. The idea is therefore, to come up with a new countermeasure by observing and
distinguishing the instant changes in network. In this work, we propose a DDoS attack detection and defense
scheme using time-series analysis for SDN. The proposed scheme employs a model based on the upcoming
traffic feature forecasting and the chaos theory together with the exponential filter and the dynamic threshold
method to detect instant changes in the network. The experimental result shows that our algorithm has
high detection rate and low false alarm.

Keywords: Distributed Denial of Service (DDoS), Software Defined Network (SDN), ARIMA, Chaos
Theory, Exponential Smoothing

1. Introduction

Software-defined networking (SDN) separates the
control and data planes to diminish the burden on
conventional networks caused by lack of a central con-
trol mechanism [1]. This separation between the two
planes increases the flexibility of network administra-
tion during troubleshooting and monitoring. In addi-
tion to data and control planes, SDN also comprises
an application plane for software programs to pro-
vide efficient solutions for basic network functionali-
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ties such as load-balancing, intrusion detection, traf-
fic monitoring, etc [2].

Although the centralization of the controller de-
creases the deployment cost, it makes the controller
more vulnerable to various types of attacks such as
distributed denial of service (DDoS) attack, network
manipulation and data leakage [3]. The separation
between the control and data planes also exposes the
network to congestion, which potentially occurs after
DDoS attacks. In addition, the attackers can target
different elements of SDN, particularly southbound
and northbound interfaces, switch hardware, and the
controller, in order to attack the availability of the
network [4].

Available DDoS attack detection mechanisms for
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SDNs are generally based on statistical and machine
learning approaches. Statistical methods employ a
threshold to discriminate attacks from normal traf-
fic. On the other hand, machine learning techniques
use model training to generalize normal patterns [5].
Compared to machine learning, statistical algorithms
are simpler; however, defining optimal thresholds is
challenging. To address this problem, in this work,
we propose a DDoS attack detection and defense
scheme based on statistics and time-series analysis
which is integrated into the SDN controller. The con-
tributions of the paper are as follows:

(i) First, we extract key features from the flow ta-
ble of OpenFlow switches to analyze their time-
series representation. Therefore, the controller
monitors each switch separately and applies the
proposed algorithm to detect anomalies due to
the DDoS attack event in particular switches.
Such anomaly can be detected using the number
of unique source IP addresses (USIP) feature,
since during the attack phase this value increases
significantly compared to the normal traffic.

(ii) In addition, when an attack occurs, it is possible
to observe changes in the number of unique des-
tination IP addresses (UDIP) feature; however,
this change is not as significant as the change in
the USIP feature. By considering the dramatic
growth in the total number of packets (TPACK)
in the flow table during the attack, the number
of UDIP value substantially reduces when it is
normalized by the TPACK values. Therefore,
we employ normalized UDIP as the second fea-
ture to detect DDoS attacks.

(iii) The upcoming value of the USIP time-series is
estimated by using an auto regressive integrated
moving average (ARIMA) model and the er-
ror of estimation is examined for chaotic be-
haviour. Finally, according to the aforemen-
tioned method, a binary anomaly score is as-
signed to the traffic instance.

(iv) Another binary anomaly score is obtained by us-
ing the dynamic threshold method based on the
exponential filter and the NUDIP time-series.

The product of two mentioned binary scores is
used to identify DDoS attack in each switch. Af-
ter detecting the attack samples, the scheme ac-
tivates the countermeasure mechanism.

(v) The chaotic behaviour and the dynamic thresh-
old method resolve the problem of constant
threshold in the previous works. Moreover, by
monitoring each switch, the source of the attack
can be identified and prompt countermeasure
would be applied by modifying the packet for-
warding policy at that switch. In order to eval-
uate system performance in successful detecting
of DDoS, we implement our scheme on an exam-
ple SDN network via using Mininet environment
[6].

The rest of the paper is organized as follows. In
the next section, we overview the existing studies in
the literature. The background knowledge of related
technologies is discussed in Section 3. Details of our
DDoS attack detection and defense scheme are given
in Section 4. Section 5 presents the performance eval-
uation of our scheme. Finally, Section 6 concludes the
paper.

2. Related Work

In general, DDoS attack detection algorithms in
the literature can be categorized as intrinsic and ex-
trinsic [7]. While the former is related to the struc-
tural changes in SDN, the latter corresponds to the
flow-based analysis. Since they provide better de-
tection accuracy as far as the SDN environment is
concerned, we focus on flow-based solutions in this
work. Such solutions are also classified as either the
statistical-based or the machine learning-based. Most
of the works related to the statistical approach, are
based on entropy concept. Entropy is the measure
of randomness of an attribute within a specific pe-
riod of time. For instance, a random variable with
a high spread probability distribution has high en-
tropy. On the other hand, in order to differentiate
the attack traffic from the normal one, a machine
learning method needs to be fed by a set of training
samples. Each sample consists of a set of features
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obtained from the network traffic data to generalize
the discriminating model.

Due to the promising results of entropy-based
methods in detecting anomalies in traditional net-
works [8, 9, 10], they have also been adopted by de-
tection algorithms for SDN. In [11], a threshold is
obtained by using the entropy of the destination IP
addresses. Later, this threshold is used to determine
whether there is an attack or not. Particularly, if
the entropy of the test sample is less than the de-
fined threshold, it is labeled as an attack. In [7],
an entropy-based method [12] is proposed for DDoS
attack detection and mitigation. Different features
from payload are extracted and used for the detec-
tion of the attack. The algorithm has three stages of
nominal, preparatory and active mitigation. While
the normal pattern baseline is obtained in an attack
free scenario at nominal stage, the attack samples are
identified at the preparatory stage. Later, the coun-
termeasure against the attack traffic is carried out
at the active mitigation stage. A combination of en-
tropy and information distance is used in [13] to check
the traffic for the DDoS attack detection. Although
entropy-based methods are employed in DDoS attack
detection, they suffer from some limitations. Entropy
maps the probability distribution into a single num-
ber; therefore, the information of the distribution is
discarded. Furthermore, two distributions with the
same amount of uncertainty result in the same en-
tropy value. The last but not the least, finding the
optimal threshold for the generalized entropy is diffi-
cult. These limitations may yield high false positive
rates during the detection process.

SDN-based DDoS attack detection methods also
use machine learning algorithms for the detection
procedure. Some features from the network flow are
extracted and used by a machine learning model to
differentiate malicious traffics from benign ones. In
[14], six features including, average of packets per
flow (APF), average of bytes per flow (ABF), aver-
age of duration per flow (ADF), percentage of pair-
flow (PPF), grows of single-flow (GSF) and grows
of different port (GDP) are extracted from the net-
work traffic and introduced into a self-organizing map
(SOM) [15] to create a selective model for separating
attacks from normal traffic. In [16], a DDoS detection

algorithm based on entropy and machine learning ap-
proaches is proposed. In the first phase, lightweight,
a method based on entropy is used to detect attack
traffics. In the second phase, heavyweight, different
machine learning approaches are employed to clas-
sify abnormal traffics. In [17], authors use different
machine learning methods to detect DDoS attack in
SDN. According to the result, support vector ma-
chine (SVM) [18] algorithm has the best performance.
In [19], a set of five features consisting of entropy of
source IP (etsSrcIP), entropy of source port (etsS-
rcP), entropy of destination port (etsDstP), entropy
of packet protocol (etsProtocol) and total number of
packets (totalPacket) is fed into an SOM to classify
the traffic as normal or attack. In [20], SVM and idle
time out adjustment (IA) are used to detect DDoS
attacks and to classify the traffic. The entropy of
source and destination IP addresses are used as the
vector for the SVM algorithm to generalize a spe-
cific DDoS attack detection model in [21]. Four dif-
ferent features including byte rate (BR), symmetric
flows percentage (SFP), variation rate of asymmetric
flow (VAFR) and flows percentage with small amount
packets (FPSA) are extracted in [22]. The features
are used as a four-tuple feature by a back propaga-
tion neural network (BPNN) to discriminate attack
from normal traffics. In [23], different features are
collected from the SDN and used in machine learn-
ing algorithm to detect the DDoS attack. Four dif-
ferent machine learning algorithms including SVM,
K-nearest neighbor (KNN) [24], artificial neural net-
work (ANN) [25] and naive Bayes (NB) [26], are em-
ployed. KNN and NB outperform with respect to
success rates. In [27], a stack auto-encoder based
on deep learning model is employed to classify the
data obtained from the OpenFlow switch. A deep
learning-based DDoS detection and defense architec-
ture is proposed in [28]. The detection part consists
of multiple deep learning layers such as CNN, LSTM
and bidirectional RNN [29]. In [30], a deep learning
model is proposed to detect DDoS attack in SDN.
The statistics during the attack are analyzed and em-
ployed by the deep learning approach to classify the
traffic into two classes, i.e., malicious and legitimate.
In [31], different ensemble models including ensemble
CNN, ensemble RNN, ensemble LSTM, and hybrid
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RL are used for DDoS detection in SDNs. The result
shows that the ensemble CNN outperforms.

While machine learning-based methods produce
heavy computational load on system and require
complex data demands, statistical-based methods
seem more favorable. In this work, we propose a
DDoS attack detection and defense scheme based on
the time-series analysis. The USIP and NUDIP are
extracted from the OpenFlow switches as the key fea-
tures. In order to detect DDoS traffic, each feature
is processed separately and simultaneously. While
ARIMA model and chaos theory are applied on USIP
to label the traffic samples as normal or abnormal, ex-
ponential filter and the dynamic threshold algorithm
are carried out on NUDIP. The proposed scheme can
identify the switches involved in the attack and sets
a defense protocol against such attacks.

3. Background

In this section, we explain the theory part of dif-
ferent concepts utilized in this paper. We begin by
discussing the OpenFlow1 which is the key protocol
of SDN. Having provided a brief introduction related
to the protocol, we dive into the ARIMA model fol-
lowed by chaos theory and exponential filter. These
ideas play important roles in DDoS attack detection
in this paper.

3.1. OpenFlow

The OpenFlow protocol was first proposed in 2008.
The main idea is to divide the network into two sep-
arate parts of control plane and data plane, which
communicate with each other through a secure chan-
nel. Figure 1 displays the OpenFlow architecture.

Packets are always handled as ”flows” in an Open-
Flow switch. When a new packet arrives at a switch,
it is compared with the packets which are recorded
as the entries inside the flow table of the switch. If
it is matched with an instance in the flow table, the
associated action is executed and the counter of the
flow entry increments; otherwise, the new unknown

1https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

Figure 1: OpenFlow Architecture.

packet is encapsulated into Packet-In massage and
sent to the controller. A flow entry mainly includes
three parts of header, counter and action. Header
consists of different segments of a packet, such as IP
addresses, ports, type of protocol, and etc. When
the new packet arrives, its field is compared against
the header of the flow entry to find a match. The
counter stores the information of the packets match-
ing this flow entry. The action part determines the
type of action if a match is found.

3.2. Auto Regressive Integrated Moving Average
(ARIMA)

The Auto Regressive Integrated Moving Average
(ARIMA) model is used to forecast a time-series
which can be made stationary by differnecing if neces-
sary. A stationary time-series data has the property
that its statistical characteristics such as the mean
and variance are constant over the time [32]. ARIMA
is characterized by a three-tuple 〈p, d, q〉, where p is
the number of auto-regressive (AR) terms, d is the
number of differences required for stationarity, and
q is the number of moving average (MA) or lagged
forecast errors terms. Let Z = {z1, z2, . . . , zn} be a
stationary time-series, the general forecasting equa-
tion in terms of z is represented as:

ẑt = θ0+φ1zt−1+. . .+φpzt−p+εt−θ1εt−1−. . .−θqεt−q,
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where φi (i = 1, ..., p) and θj (j = 1, ..., q) are AR and
MA items, respectively. εk (k = t, t− 1, ..., t− q) are
named as error terms which are generally assumed
to be independent, identically distributed variables
sampled from a normal distribution with zero mean.
It is worth to note that, depending on the charac-
teristic of the series, each p, d, and q can be equal
to zero; therefore, the model may be simplified. For
instance, ARIMA〈p, 0, 0〉, ARIMA 〈0, d, 0〉, ARIMA
〈0, 0, q〉 and ARIMA 〈p, 0, q〉 are pure AR 〈p〉, random
walk, MA 〈q〉 and ARMA 〈p, q〉 respectively.

3.3. Chaos Theorem

The error between the actual value and the esti-
mated one is the key factor to detect DDoS attack
samples. To assign anomaly score to the potential
DDoS attack candidates in the network traffic, we
analyze the chaotic behavior of the estimated error.
Therefore, we employ the local Lyapunov exponent
[33] as below:

λt =
1

t
ln(| et

e0
|), (1)

where e0, et and λt are the first prediction error, the
tth prediction error and the lyapunov exponent at tth

time instance, respectively. A Positive λt may corre-
spond to the prediction error which could be caused
by DDoS attack or by some legitimate traffics [34].
On the other hand, the negative λt refers to the nor-
mal behavior. We use these values to distinguish the
DDoS attack candidates from the normal ones.

3.4. Exponential filter

The exponential filter is a weighted combination
of the previous estimate (output) with the newest
input data, with the sum of the weights equal to 1, so
that the output matches the input at a steady state.
This weight assignment is accomplished by using a
smoothing constant α (0 ≤ α ≤ 1) to calculate the
smoothed value vt at time t as follows:

vt = α · vt−1 + (1− α) · zt. (2)

where α controls the closeness of this new value using
the recent observation. The function of α is defined

as below:

f(n) =

{
vt ∼= zt α→ 0

vt ∼= vt−1 α→ 1
. (3)

4. DDoS Attack Detection and Defense

In this section, we introduce the DDoS attack
detection and defence scheme for SDN. The over-
all view of the scheme is as illustrated in Figure 2.
The proposed method consists of four main mod-
ules, namely Feature Extraction, Anomaly Detection
for USIP, Anomaly Detection for NUDIP and DDoS
Detection. The proposed detection algorithm is illus-
trated in Algorithms 1 to 4. The controller uses the
proposed scheme and monitors each switch separately
to detect any anomalies related to DDoS attack traf-
fic. First, Feature Extraction module extracts cor-
responding statistical features including USIP and
NUDIP from the flow tables of the OpenFlow switch.
while the USIP feature is used by the Anomaly De-
tection for USIP module to assign an anomaly score
to the sample, the NUDIP feature is employed by
Anomaly Detection for NUDIP module to release an-
other anomaly score. The Detection module decides
whether there is an anomaly or not with respect to
anomaly scores. In the case of any abnormal condi-
tions, this module raises anomaly alarm and activates
the countermeasure part. The symbols used in this
work are listed in Table 1

4.1. Feature Extraction

Due to the spoofed IP addresses and random gen-
eration of source IP addresses, the number of flow
entries with the unique source IP addresses increases
during the DDoS attack. Although the number of
unique destination IP addresses may not change sig-
nificantly during the attack compared to the normal
condition, the normalized value of this variable with
respect to the total number of packets in the flow
table decreases [35]. Therefore, in this work, we con-
sider the number of unique source IP addresses and
the normalized unique destination IP addresses as the
key features for DDoS detection.
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Table 1: Definitions of Symbols

Symbol Definition Symbol Definition

HS , HD Hash tables for extracting USIP
and UDIP

counter The hash table counter variable

r Number of flow entries in the
flow table

k Number of samples for training
the normal models

Model X, Model Y Training flags for USIP and
NUDIP

X = {x1, . . . , xk} Time-series of the number of
unique source IP addresses

Y = {y1, . . . , yk} Time series of the number of nor-
malized unique destination IP
addresses

〈xt, yt〉 USIP and UDIP instances at
time interval t

〈p, d, q〉 The order of ARIMA, Number of
AR ,Differencing and MA terms

et The prediction error of ARIMA
at time interval t

λt Lyapunov exponent at time in-
terval t

0 ≤ α ≤ 1 Smoothing constant of the expo-
nential filter

f(α) Function of α EXP f1(α1), EXP f2(α2) Exponential filters, α1 close to 1,
α2 much less than 1

Df Time-series of the distance be-
tween the outputs of two expo-
nential filters

M Time-series of the Rolling me-
dian for Df

w Window size of the rolling me-
dian

min dist Minimum distance between each
element and other elements inM

µm Mean value of min dist σm Standard deviation of min dist

q The number of standard devia-
tion, σm to define the threshold

th The threshold value

score1,t, score2,t Anomaly score for xt and yt DestIPmax The destination IP adddress
with the maximum occurrence

In the feature extraction module, for each specific
time interval t, we obtain statistics from the flow
tables of each switch to extract aforementioned fea-
tures. The value of time interval t may be chosen
according to the corresponding network infrastruc-
ture and the traffic volume in the network. As shown
in the Algorithm 1, two hash tables2 namely HS and
HD are used to find USIP and UDIP, respectively. If
a source IP address is not listed in HS , it is added
to the table and the corresponding counter is set to
1. On the other hand, if the IP already exists in
the table, the counter is incremented by one. The
same procedure is applied for the destination IP ad-
dresses and the corresponding hash table HD. Once
all entries of the flow table are processed, the USIP
feature of the sample, xt, is obtained by counting the
total number of non-empty elements of the HS ; Also,
the total number of non-empty elements of HD are

2A data structure that uniquely maps keys for each values.

counted as UDIP and then it is divided by the total
number of packets in the flow table to obtain nor-
malized UDIP (NUDIP), denoted as yt. These two
features are treated as time-series and employed in
DDoS detection process independently to inspect the
possible instances of DDoS attack.

4.2. Anomaly Detection for USIP

As described in the Algorithm 2, by applying
ARIMA and chaos theory on the xt feature, a bi-
nary anomaly score (score1,t) is obtained for each
time interval t.

ARIMA 〈p, d, q〉 model is employed to predict xt
as x̂t [36]. In order to estimate the value of xt, the
ARIMA model is generated in advance; therefore, the
Model X flag is initially set to ’True’ in Algorithm 2.
Then, k samples of the USIP are stored in X to train
the model. If X is a non-stationary time-series, dif-
ferencing with d ≥ 1 is applied. If necessary, to stabi-
lize the variance of X , Box-Cox transformation [37]
can be used. Akaike’s information criterion (AIC),
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Figure 2: Proposed DDoS Detection and Defense Model for SDN.

corrected AIC(AICc) and Bayesian information cri-
terion (BIC) may be used for choosing the order of
the model. Minimizing such criteria results in ob-
taining optimal model [38]. We use ARIMA model
to generate the normal pattern of USIP; therefore,
during the model generation X should not contain
any attack instances [39].

Once the model is generated, the flag, Model X,
is set to ’False’ and the training phase is completed.
For each upcoming traffic sample, xt, the estimated
value, x̂t, is obtained by using the normal model.
Then, an anomaly score is given by analyzing the
chaotic behaviour of the estimation error. The abso-
lute value of the prediction error, et is calculated by:

et = |xt − x̂t|. (4)

In some time intervals, the prediction errors differ.
Such heterogeneous outcomes might be raised by the
anomaly of the USIP instance, xt. Thus, in order
to assign anomaly score, Lyapunov exponent, λt of
the error, et, is calculated and the positive value of
the λt may correspond to anomaly. If the λt is nega-

tive, the denominator error term in Lyapunov equa-
tion (Equation 1), e0, is replaced by et and the in-
stance is labeled as normal (score1,t = 0); otherwise,
it is labeled as anomaly (score1,t = 1). However, due
to the similarity of USIP pattern, some normal traffic
samples (i.e., flash crowd events) may be classified as
attack candidates that also yields high false positive
rate. Therefore, as introduced in the next section, we
use NUDIP feature to increase the accuracy.

4.3. Anomaly Detection for NUDIP

The adaptive thresholding method is used to assign
another anomaly score (score2,t) for each sample. As
described in the Algorithm 3, the method uses the
yt feature of the sample. In order to generate the
model, k samples of NUDIP are stored in Y as a
time-series. Y is processed by two exponential fil-
ters namely EXP f1 and EXP f2. The corresponding
smoothing constant of EXP f1 filter, α1, is chosen as
close as possible to 1; hence, the output of this fil-
ter follows the trend in the Y. On the other hand,
EXP f2 filter has α2 much less than 1; thus, the out-
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Algorithm 1 Extract Statistic Features (USIP and
NUDIP) from the Flow Table

1: function Feature Extraction(t)
2: HD(DesIP , counter)← 0
3: HS(SrcIP , counter)← 0
4: for ∀(SrcIP , DesIP ) ∈ Flow T do
5: if SrcIP 6∈ HS then
6: HS(SrcIP , counter)← 1
7: else
8: HS(SrcIP , counter)← counter + 1
9: end if

10: if DesIP 6∈ HD then
11: HD(DesIP , counter)← 1
12: else
13: HD(DesIP , counter)← counter + 1
14: end if
15: end for
16: xt ← Number of non-empty elements in HS

/*USIP sample*/
17: yt ← Number of non-empty elements in HD

/*UDIP sample*/
18: pt /*# of packets */
19: yt ← yt/pt /* NUDIP sample*/
20: return HD(DesIP , occurrence), xt, yt
21: end function

put of the filter follows the change in Y. The abso-
lute difference between outputs of these two filters,
Df is used for extracting the discriminative feature.
The difference is independent from the trend change;
therefore, it almost fluctuates around zero, which re-
flects the dynamic change of the Y. By applying
rolling median with the window size of w on the Df ,
a median time-series, M, is generated. The mini-
mum distance of each instance inM from the rest of
samples in M are calculated and recorded in a new
set, denoted as min dist. The mean value, µm, and
standard deviation, σm, of min dist are calculated.
Once the aforementioned parameters are calculated,
the Model Y is set to ’False’ and anomaly scoring
part is activated. For each yt feature of upcoming
traffic sample, using EXP f1 and EXP f2, the corre-
sponding absolute difference, Dft is calculated. The
median of {Dft−w

, . . . , Dft} is calculated and stored

Algorithm 2 Anomaly Score Computation for
Unique Source IP Addresses

1: Model X ← True
2: x count← 0
3: X ← []
4: for each time interval t do
5: if Model X then
6: X||xt, where || stands for concatenation
7: x count+ +
8: if x count > k then
9: Estimate ARIMA〈p,d,q〉 using X

10: Model X ← False
11: end if
12: else
13: x̂t ← ARIMA〈p,d,q〉({xt−p−d, . . . , xt−1})
14: et ← |xt − x̂t| /*Prediction error*/
15: λt ← 1

t ln(| ete0 |) /*Lyapunov Exponent*/
16: if λt < 0 then
17: et is normal /*Normal traffic*/
18: score1,t ← 0
19: e0 ← et /*Update e0*/
20: else
21: et is chaotic /*DDoS candidate*/
22: score1,t ← 1
23: end if
24: end if
25: end for

in mt. The distances between mt and each element
in M is calculated and the minimum distance is ob-
tained as distt. If distt is less than the threshold
value µm + q × σm, the instance is labeled as nor-
mal (score2,t = 0), otherwise, it is labeled as the
abnormal point (score2,t = 1). Moreover, if the sam-
ple is normal, the first elements of M and min dist
are discarded and then mt and distt are appended re-
spectively. As the result, µm, σm and th are updated.

4.4. DDoS Detection, Alert and Countermeasure

After binary scores for USIP, score1,t and NUDIP,
score2,t are computed, these values are used by the
DDoS attack detection module. For each traffic sam-
ple, if score1,t AND score2,t is equal to 0, then there
is no anomaly; Otherwise, the sample is abnormal
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and there is a DDoS attack to the system. Then the
controller raises an attack alarm.

The countermeasure module uses the hash table
HD to identify the destination IP address with the
maximum occurrence, so called DestIPmax. This IP
and the corresponding switch ID are added to a dis-
card list. Then controller updates the flow table(s) of
the corresponding switch by setting the drop action
for each flow entry with DestIPmax as the destina-
tion IP address.

Although the defense mechanism discards the flow
from the DDoS attacker and alleviates the burden

Algorithm 3 Anomaly Score Computation for Nor-
malized Unique Destination IP Addresses

1: Model Y ← True
2: y count← 0
3: Y ← []
4: for each time interval t do
5: if Model Y then
6: Y||yt
7: y count+ +
8: if y count > k then
9: Df ← [0]

10: M← []
11: min dist← []
12: l1 ← Y[1]
13: h1 ← Y[1]
14: for ∀yi ∈ Y[2 :] do
15: li ← α1 · li−1 + (1− α1) · yi
16: hi ← α2 · hi−1 + (1− α2) · yi
17: Df |||hi − li|
18: end for
19: for ∀i ∈ 1, 2, . . . , k − w do
20: M||Med(Dfi , . . . , Dfi+w

)
21: end for
22: for ∀mi ∈M do
23: min dist||min(|mi −mj | /* where

j ∈ 1, . . . , k − w) and j 6= i*/
24: end for
25: µm ←Mean(min dist)
26: σm ← StdDev(min dist)
27: th← µm + q × σm
28: Model Y ← False
29: end if

30: else
31: lt ← α1 · lt−1 + (1− α1) · yt
32: ht ← α2 · hi−t + (1− α2) · yt
33: Dft ← |ht − lt|
34: mt ←Med({Df(t−w)

, . . . , Dft})
35: distt ← min(|mt −mi|), for all mj ∈M
36: if distt < th then
37: score2,t ← 0 /*Normal*/ /*Discard

the first element of M and min dist, then add
the corresponding new values*/

38: M←Mk−w
2 ||mt

39: min dist← min distk−w2 ||distt
40: µm ←Mean(min dist)
41: σm ← StdDev(min dist)
42: else
43: score2,t ← 1 /*Attack*/
44: end if
45: end if
46: end for

Algorithm 4 DDoS Detection

1: for each time interval t do
2: if ¬Model X & ¬Model Y then
3: if score1,t × score2,t == 1 then
4: DDoS attack is detected
5: else
6: Normal traffic is detected
7: end if
8: end if
9: end for

on both controller and the switch, it also filters out
all packets to the victim’s IP address routed through
that switch. Therefore, the controller should update
the action of the flow entries as soon as the attack is
over.

Although the countermeasure module takes the
discard action for particular flow rules during the
attack, it does not delete those flows from the flow
table. Therefore, the statistic features remains un-
changed. Since the detection module continues to
monitor the switch, if score1,t AND score2,t re-
turns from 1 to 0, the attack alarm is cleared. The
DestIPmax and the corresponding switch ID are re-
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moved from the discard list and the action section
of the flow entries returns back to the normal state.
Furthermore, there would be always some normal
samples that are labeled as attack incorrectly. Be-
cause the detection module continuously monitors
both USIP and NUDIP features, the state of the net-
work will return to its normal in a few intervals.

5. Performance Evaluation

In this section, first, we evaluate the performance
of the proposed scheme using the complexity analysis
and then, we evaluate the detection and countermea-
sure performance using simulations.

5.1. Algorithm Complexity Analysis

The computational complexity analysis of the pro-
posed algorithms can be divided into two phases,
namely normal model generation phase and DDoS
attack detection phase.

The feature extraction, Algorithm 1, is applied
prior to both the model generation and attack de-
tection phases. For a given flow table with r entries,
the statistics features USIP (xt) and NUDIP (yt) are
obtained using hash table indexing. Therefore, the
complexity of this process is O(r).

The normal model generation phase consists of the
training phase for ARIMA, Algorithm 2 and adaptive
thresholding method, Algorithm 3, where the former
uses X and the latter uses Y as the training data
that corresponds r flow entries. The complexity of
generating each time-series with k elements is O(r ×
k).

The training phase of ARIMA contains X time-
series generation and ARIMA modeling. The com-
plexity of ARIMA which deals with the identification
of its parameters and model estimation is O(k2) [40].
As a result, the overall complexity is O(k2 + r × k).

Different time-series including Y, Df , M and
min dist are employed in the training phase of the
adaptive thresholding method. The Df has the
complexity of O(k). In order to calculate M and
min dist, the method of ”quicksort” proposed by
Tony Hoare is employed [41]. While the M compu-
tation has the average complexity of O((k−w)×w),

with the worst case of O((k−w)×w2), the min dist
has the average complexity of O((k − w)2) with the
worst case of O((k−w)3). Moreover, both the mean
value and standard deviation computation parts have
the complexity of O(k−w). The total complexity of
the phase is O(k + (k − w) × w + (k − w)2) in the
best case and O(k + (k −w)×w2 + (k −w)3) in the
worst case. The final complexity of the training part
is O(k2 + r× k+ (k−w)×w+ (k−w)2) in the best
case and O(k2 + r × k + (k − w) × w2 + (k − w)3)
in the worst case. Let assume w << k then, we can
consider (k−w) ≈ k; therefore, the worst complexity
is simplified to O(r × k + k3).

Finally, the score1 computation has the complexity
of O(k+r). Since computation of score2 includes the
median, minimum, mean and standard deviation cal-
culations, the worst case computational complexity
is O(w2 + (k − w)2). Let assume w << k, the worst
complexity is O(k2). The complexity of the DDoS de-
tection, Algorithm 4, is O((k+r)+k2) ≈ O((r+k2).

5.2. Dataset

In order to feed the network with real data, we
use real network traffic dataset from MAWI Working
Group Traffic Archive [42]. Since 2002, MAWILab
has been collecting traffic measurement analysis on
the Internet. We use this dataset to generate the nor-
mal traffic in our simulation network. We use the Jan
12, 2012 part of the MAWI dataset with the traffic
data size of 1.1 GB. The MAWI traffic is regenerated
using TcpReplay tool [43] and fed to the network.
The IP addresses in MAWI dataset are also refash-
ioned according to the host IPs in the experimental
network. Therefore, each host in the network con-
tributes to the traffic. In total, almost twelve hours
normal and background traffic is regenerated by us-
ing TcpReplay. 255-minute (more than four hours)
length attack traffic is injected into the normal traffic.
The attack starts after 320 minutes that the normal
traffic is started.

5.3. Simulation Environment

In order to simulate the network, Mininet emula-
tion environment [6] is used to simulate the network.
Due to its design and capabilities, it is appropriate for
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Figure 3: Experimental Topology.

experimenting with SDN. POX controller [44] is run
on a PC with 8 GB RAM and Intel Core i7 processor
as the SDN controller .

The network topology for the experiment is as
shown in Figure 3. There are eight OpenFlow en-
abled switches, namely S1, S2, . . . , S8, in the net-
work. Each switches Sk is connected to eight hosts,
hkj . We assume that, one of the host of S4, h46, is
infected by a malicious user who is generating attack
on a victim which is the host, h72 connected to the
switch, S7. We assume that the attacker uses dif-
ferent compromised hosts on the Internet and then
tries to enter to the network through S4 to attack
the victim [7, 11, 13].

5.4. Performance Metrics

In this work, we deal with the problem of the sep-
aration attack traffics from normal ones. There are
some parameters that should be taken into account
while evaluating the performance of detection includ-
ing true positive (TP ), true negative (TN), false pos-
itive (FP ) and false negative (FN). TP and TN are
two metrics that reflect the success rate of true detec-
tion. While TP shows the number of attack samples
detected by the algorithm, TN on the other hand,
represents the number of benign samples which are
correctly labeled as normal instances. FP and FN ,

in contrast, are used to show the failure of the method
in correct detection. FP is related to the number
of normal samples incorrectly classified as malicious
samples and FN is the number of attack samples that
are misplaced as normal.

Using the four previously mentioned parameters,
we utilize four metrics including true positive rate
(TPr), false positive rate (FPr), F1 score and to-
tal accuracy (ACC). While F1 score gives a better
measure of the incorrectly classified cases, ACC rep-
resents the ability of the system in true detection of
both normal and DDoS attack. TPr, FPr, F1 score
and ACC are defined as:

TPr =
TP

TP + FN
, (5)

FPr =
FP

FP + TN
, (6)

F1 score =
2TP

2TP + FP + TN
, (7)

ACC =
TP + TN

TP + TN + FP + FN
. (8)

Furthermore, we employ receiver operating char-
acteristic, ROC, curve to observe the performance
of the scheme in separating attack from the normal
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traffic. The area under the curve of ROC, AUC, rep-
resents the degree of separability. The ROC curve is
plotted with TPr against the FPr where TPr is on
y-axis and FPr is on the x-axis.

5.5. Experimental Results

In this section, we evaluate the performance of
the proposed detection and countermeasure scheme
via simulation. We present our experimental results
with respect to detection and countermeasure perfor-
mances.

5.5.1. Detection Performance

In this section, we discuss the detection perfor-
mance of the proposed scheme, by applying the
method on the simulation environment. The con-
troller organizes the network traffic passing through
switches. At that point, the feature extraction mod-
ule collects statistics from flow tables for each switch
in every minute and extracts their features. Then,
the USIP feature is processed by the first anomaly
detection algorithm (Algorithm 2), which employs a
time-series approach based on ARIMA and chaos the-
ory to assign an anomaly score to the sample. On
the other hand, the NUDIP feature is processed by
another anomaly detection algorithm (Algorithm 3)
which assigns another anomaly score to the same
sample by applying the proposed adaptive threshold-
ing method. Finally, our detection algorithm (Al-
gorithm 4) decides whether the sample is an attack
instance or a normal traffic instance. The time inter-
val t = 1 minute is selected empirically and by con-
sidering the infrastructure of the experimental setup
network.

Our scenario is illustrated in Figure 3. The attack
is originated from the switch, S4; therefore, the fol-
lowing result are based on the analysis applied on the
data extracted from S4. Totally, we obtain 729 traffic
samples in our simulations. First 218 points are used
in initializing the normal behavior of the network and
the remaining 511 samples are left for test purposes.

Training and test phases of USIP are shown in Fig-
ure 4. The trained model is employed to predict the
upcoming value for xt. Figure 5 displays the original
and the predicted value for the USIP. Because the

Figure 4: The Number of Unique Source IPs.

ARIMA model is trained based on the normal traf-
fic data, the estimated value diverges from the actual
value during the attack. Thus, the prediction error
which is shown in Figure 6, is different from the nor-
mal condition. The chaotic behaviour of the error
is used to differ attack samples from normal traffic.
Therefore, the Lyapunov exponent of the error is es-
timated. The positive value of the Lyapunov value
may correspond to attack samples. In order to con-
vert the negative and positive Lyapunov values to
scores, we map negative and positive values as 0 and
1, respectively. The Lyapunov values and the corre-
sponding scores are depicted in the Figure 7. The
actual DDoS attack instances are labeled by the red
small triangles in the figure.

Figure 8 shows the NUDIP time-series, the output
of two exponential filters, EXP f1 and EXP f2, and
their difference. By applying rolling median with the
window size of w = 10 on the difference,M is gener-
ated and used as the new feature to distinguish be-
tween normal and attack traffic. The threshold value,
4× σm, is empirically selected from the data and by
considering Chebyshev’s theorem which describes the
minimum proportion of the measurements that must
lie within one, two, or more standard deviations of
the mean [45].

Figure 9 displays the median of difference and the
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Figure 6: ARIMA Prediction Error.

corresponding score for the test part of the NUDIP.
During the attack, the median is higher than the nor-
mal one. The detection algorithm decides whether
the sample is anomaly or not. The final score of the
detection algorithm is shown in Figure 10.

The proposed algorithm is applied on each switch
Si in the network and corresponding scores, score1
and score2 are obtained. Figure 11 displays the fi-
nal anomaly score for all switches in the network,
obtained by multiplying the corresponding score1
and score2. As shown in the Figure 10 and Figure
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11, the controller immediately identifies two engaged
switches in the DDoS attack scenario once the attack
starts.

Table 2 shows the TPr, FPr, F1 score and ACC of
the proposed method for each switch in the network.
We just concentrate on the accuracy of S4 and S7.
The detection algorithm performance on both switch
S4 and S7 is the same and equals to 98.82%. Other
switches are almost insensitive to the attack. Figure
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12 displays the ROC curves for both switches S4 and
S7. The AUC values for both switches are equal to
0.99.

Because both thresholds are chosen dynamically,
the detection performance is better compared to
entropy-based detection algorithms which operates
with a constant threshold. Furthermore, most of the
referenced methods (see Section 2) have been carried
out by topologies with just one switch, but in this
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Figure 11: Final Anomaly Scores for All Switches.

Table 2: The Result of DDoS Attack Detection for Different
switches

Switch TPr(%) FPr(%) F1 score ACC(%)

S1 1.92 1.60 — —
S2 0 0 — —

S3 0.38 0 — —

S4 97.70 0 0.988 98.82
S5 0 0 — —

S6 0.38 0 — —
S7 98.46 0.8 0.988 98.82

S8 0 0 — —

work, the capability of DDoS detection and counter-
measure for multiple switches is also discussed.

5.5.2. Countermeasure Performance

In order to observe the effectiveness of the defense
algorithm, we run another simulation on the same
experiment. The countermeasure part of the detec-
tion module is activated after a while that the attack
starts. The activation delay is intentionally added to
see the effect of the DDoS attack on the USIP and
NUDIP features. The attack is originated from the
Switch, S4, and the victim resides in the Switch, S7.
As the attack begins, the anomaly alarms for both
mentioned switches are raised. The rules in the flow
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Figure 12: The Receiver Operating Characteristic (ROC).

tables of both switches are updated to drop all pack-
ets with the destination IP addresses as the same as
the most occurrence IP address in the corresponding
hash tables.

Figure 13 shows the USIP and NUDIP features for
both switches. As the attack starts, both features are
changed accordingly. Because the attack is originated
from S4, when the countermeasure is activated, the
pattern of both features revert to their normal con-
dition in Switch S7. As a result, the anomaly alarm
of the switch, S7 is cleared. The anomaly patterns
in S4 does not change until the end of the attack.
Once the attack is finished, the controller clears the
alarm for the S4 and routing process of the switch is
returned to its normal state.

The result shows that the proposed countermea-
sure scheme can be considered as an effective mecha-
nism to mitigate DDoS attacks. Therefore, when an
attack occurs, as soon as the involved switches are
detected by the controller, the rules of the flow table
entries are updated. As a result, the attack traf-
fic that threatens involved switches in the network is
isolated to protect the availability of the network.

6. Conclusion

In this paper, we propose a DDoS attack de-
tection and countermeasure scheme based on time-
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Figure 13: USIP and NUDIP for Switch #4 and Switch #7

series analysis for SDN. The proposed scheme mon-
itors each OpenFlow switch individually to find any
anomalies caused by DDoS attacks. For this purpose,
four modules including Feature Extraction, Anomaly
Detection for USIP, Anomaly Detection for NUDIP
and DDoS Detection, are added to the SDN con-
troller. In this work, our scheme monitors the traffic
features to distinguish DDoS attack instances. For
this purpose, we consider both the number of unique
source IP addresses and the normalized unique des-
tination IP addresses. In Anomaly Score Computa-
tion for USIP algorithm, we employ the ARIMA fore-
casting error and chaos theory. For Anomaly Score
Computation for NUDIP algorithm, we adopt the dy-
namic threshold method. Then, the results obtained
from these two algorithms are used for labeling each
traffic sample as normal or DDoS traffic. Moreover, if
any DDoS attack instances are detected in a switch,
the DDoS attack alarm is raised for that switch and
the countermeasure module updates the flow table of
the switch accordingly to prevent the DDoS attack.
In order to assess the performance of DDoS detec-
tion, we implement our scheme on an example SDN
network by using Mininet environment [6]. The sim-
ulation results show that our scheme detects anoma-
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lies and affected switches in the network with a high
accuracy (98.82%).
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