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Abstract—Massive access for Internet-of-Things (IoT) in be-
yond 5G networks represents a daunting challenge for con-
ventional bandwidth-limited technologies. Millimeter-wave tech-
nologies (mmWave)—which provide large chunks of bandwidth
at the cost of more complex wireless processors in harsher
radio environments—is a promising alternative to accommodate
massive IoT but its cost and power requirements are an obstacle
for wide adoption in practice. In this context, meta-materials
arise as a key innovation enabler to address this challenge by
Re-configurable Intelligent Surfaces (RISs).

In this paper we take on the challenge and study a beyond 5G
scenario consisting of a multi-antenna base station (BS) serving
a large set of single-antenna user equipments (UEs) with the
aid of RISs to cope with non-line-of-sight paths. Specifically,
we build a mathematical framework to jointly optimize the
precoding strategy of the BS and the RIS parameters in order
to minimize the system sum mean squared error (SMSE). This
novel approach reveals convenient properties used to design two
algorithms, RISMA and Lo-RISMA, which are able to either
find simple and efficient solutions to our problem (the former) or
accommodate practical constraints with low-resolution RISs (the
latter). Numerical results show that our algorithms outperform
conventional benchmarks that do not employ RIS (even with
low-resolution meta-surfaces) with gains that span from 20% to
120% in sum rate performance.

Index Terms—Massive access, RISs, mmWave, Re-configurable
intelligent surfaces, Beamforming, IoT, Beyond-5G, 6G.

I. INTRODUCTION

Spurred by economic and environmental concerns, the de-
sign of energy-efficient high-bandwidth wireless technologies
is becoming paramount—even small improvements matter
at the scale of next-generation Internet-of-Things (IoT) sys-
tems [1]. We argue in this paper that a joint exploitation
of millimeter-wave spectrum (mmWave), which can provide
multi-GHz bandwidth, and Re-configurable Intelligent Sur-
faces (RISs),1 which can alleviate the energy toll attained to
the former, has the potential to achieve this goal.
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1Note that the term Intelligent Reflecting Surface (IRS) is alternatively used
in other related work. The acronyms IRS and RIS can be used interchangeably
as they refer to the same physical device, i.e., a reflecting surface that can
be controlled by some network entity. To avoid ambiguity we have chosen to
use the term RIS.

RISs: aiding and abetting Massive IoT access based on
mmWave technology. The hunt for wider radio bands has
led network practitioners to study, with success, the use of
mmWave as a means to accommodate broadband connectivity.
In fact, mmWave is doubtlessly one of the key building
stones of 5G and will continue to be so in future-generation
systems. However, the low-power low-throughput nature of
conventionally-deployed IoT devices have caused such high-
frequency bands, with considerably harsher propagation prop-
erties, to be largely ignored when building IoT environments.
Nevertheless, the advent of massive IoT applications spawning
a huge volume of devices puts a strain on low-bandwidth sub-
6GHz technologies and poses mmWave as a candidate solution
for quasi-nomadic scenarios such as smart grids, smart cities
and smart industries [2]. The main challenge in this case is
that mmWave transceivers usually employ digital or hybrid
beamforming, with multiple RF chains and a large number
of antenna arrays that allow focusing electromagnetic energy
into certain angles (i.e., irradiate beams), in order to combat
mmWave’s aquaphobia and high attenuation. This strategy is
however doomed for energy-constrained IoT devices, as inte-
grating multiple active components draining energy becomes
infeasible [3]. Faced with such a challenge, RISs may hold
the key to properly exploiting the use of mmWave with its
vast bandwidth resources while enabling advanced massive
IoT scenarios with a significantly-low service disruption prob-
ability [4].

Indeed, RISs, which apply controllable transformations into
impinging radio waves without leveraging on power am-
plifiers, create a host of opportunities for the optimization
of wireless systems at a low cost and with a low energy
footprint [5]. They are in fact gaining a lot of momentum [6]–
[21] because of their ability to turn the stochastic nature
of the wireless environment—fundamentally passive—into a
programmable channel that plays an active role on the way
in which signals propagate. RISs have been recently proposed
for a variety of applications, ranging from secure communica-
tions [15], [16], non-orthogonal multiple access [17], over-the-
air-computation [18] or energy-efficient cellular networks [19],
[20]. A RIS is essentially a continuous meta-surface that
can be modeled as a grid of discrete unit cells spaced at
sub-wavelength distance that can alter their electromagnetic
response, such as phase, amplitude, polarization and frequency
in a programmable manner. For instance, they can be tuned
such that signals bouncing off a RIS are combined construc-
tively to increase signal quality at the intended receiver or
destructively to avoid leaking signals to undesired receivers.
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RISs vs. relaying and MIMO. Conceptually, a RIS may re-
mind some of the challenges behind conventional Amplify-and-
Forward (AF) relaying methods [22] and the beamforming
methods used in (massive) MIMO [23]. There exists a marked
difference between conventional AF relays and RISs [24], [25].
Indeed, the former rely on active (energy-consuming) low-
noise power amplifiers and other active electronic components,
such as digital-to-analog (DAC) or analog-to-digital (ADC)
converters, mixers and filters. In contrast, RISs have very low
hardware footprint, consisting on a single or just a few layers
of planar structures that can be built using lithography or nano-
printing methods. Consequently, RISs result to be particularly
attractive for seamless integration into walls, ceilings, object
cases, building glasses or even clothing [26].

On the other hand, (massive) MIMO employs a large
number of antennas to attain large beamforming gains. In
fact, upon similar conditions, both massive MIMO and RIS
technology can produce similar signal-to-noise-ratio (SNR)
gains.2 However, a RIS achieves such beamforming gains
passively—with a negligible power supply—exhibiting high
energy efficiency. We claim in this paper that active beam-
forming via an antenna array at the transmitter side and passive
beamforming in the channel via a RIS can complement each
other and provide even larger gains when they both are jointly
optimized, which is precisely the goal of this paper. To this
aim—and in marked contrast to earlier works [27]–[33]—
we use the received sum mean squared error (SMSE) as
optimization objective, which let us find simple and efficient
solutions for the problem at hand.

While the theoretical modelling of RIS-aided wireless
networks is well studied, many challenges are still open
to be tackled such as building testbeds for experimental
validation [34]–[37], the task of estimating the combined
channel from the BS to the RIS and on to the UE [30],
[38] and the joint optimization of the multi-antenna BS and
the RIS parameters [27]–[33]. Particularly relevant for this
paper is the latter category, concerning the joint optimization
of active beamforming at the BS and passive beamforming
at the RIS. In [27] the authors analyze a single-UE case
and propose to maximize the rate. The resulting non-convex
optimization problem is solved via both fixed point iteration
and manifold optimization. A similar setting is analyzed in
[30], where the authors propose a heuristic solution to the
non-convex maximization of the received signal power with
similar performance to conventional semidefinite relaxation
(SDR). The single-UE setting is also studied in [32], where the
authors propose to encode information both in the transmitted
signal and in the RIS configuration. A multiuser setting is
analyzed in [28] where the authors propose to maximize the
minimum receive SNR among all UEs in the large system
regime. While this approach guarantees fairness among UEs, it
might not maximize the system sum rate. In [29], the authors

2Although it has been shown that the SNR scales linearly with the number
of antennas M when using massive MIMO and proportional to the square of
the number of equivalent antenna elements N2 with RIS technology, the lack
of power amplification in the latter determines a performance loss such that,
overall, both technologies produce very similar SNR gains given the same
conditions [23].

design jointly the beamforming at the BS side and the RIS
parameters by minimizing the total transmit power at the
BS, given a minimum receive signal-to-interference-plus-noise
ratio (SINR) requirement. This framework was later extended
to consider low resolution RISs in a single UE setting [31].

A. Novelty and contributions

The main novelty of this paper stems from exploiting
the SMSE as an optimization objective. The choice of an
objective function is of paramount importance, especially for
massive access scenarios. Our objective function is purposely
chosen such that we can derive a mechanism that provides
high-performing solutions while guaranteeing efficiency and
scalability. Interestingly, such metric—which has not been
studied so far in the context of RIS-aided networks—reveals a
convex structure in the two optimization variables separately,
namely the precoding strategy at the transmitter and the RIS
parameters. This gives us an edge over prior work because it
allows to design very efficient iterative algorithms for RIS con-
trol. Specifically, we present RISMA, a RIS-aided Multiuser
Alternating optimization algorithm that jointly optimizes the
beamforming strategy at the transmitter (a BS) and the RIS
parameters to provide high-bandwidth low-cost connectivity
in massive IoT scenarios. In marked contrast with prior work,
RISMA exploits the convex nature of the problem at hand in
the two optimization variables separately to ensure scalability,
efficiency and provable convergence in the design without the
need of setting any system parameter.

Moreover, we adapt RISMA, which provides a solution from
a theoretical perspective, to accommodate practical constraints
when using low-resolution RISs that are comprised of antenna
elements that can be activated in a binary fashion. In this way,
these are meta-surfaces that only support phase shift values
from a discrete set, rather than any real value from a range,
and further compound our problem [39], [40]. To address this
scenario, we propose Lo-RISMA, which decouples the opti-
mization of the binary activation coefficients and the quantized
phase shits. The former are optimized via SDR while the
latter are projected onto the quantized space. Differently than
other prior work considering low-resolution RISs [31], [41],
Lo-RISMA benefits from the key properties of the chosen
SMSE metric. Specifically, for each iteration of the proposed
algorithm for a fixed RIS configuration the precoding strategy
is found via a simple closed form solution. Whereas once the
precoding strategy is fixed the problem of finding the RIS
parameters can be efficiently solved via SDR.

Our numerical results show that a joint optimization of both
the precoder of the transmitter and the RIS parameters in terms
of induced phase shifts and amplitude attenuation produce
substantial gains in sum rate performance. Specifically, our
joint optimization approach leads to ∼40% gain compared to
using only a minimum mean squared error (MMSE) precoder
over a broad range of network area radii, and gains that scale
linearly with the network-area’s radius compared to a zero-
forcing (ZF) precoder, e.g., ∼20% and ∼120% improvement
for radii equal to 100 and 150 meters, respectively.

To summarize, the contributions of this paper are:



3

• We introduce a novel mathematical framework to min-
imize the SMSE of RIS-aided beamforming commu-
nication systems that make them suitable for massive
IoT wireless access. This approach, which to the best
of our knowledge has not been explored before, allows
us to build efficient algorithms that maximize sum rate
performance.

• We design RISMA, a low-complexity scheme with prov-
able convergence that finds a simple and efficient solution
to the aforementioned problem.

• We introduce Lo-RISMA, an efficient algorithm for real-
istic scenarios with low-resolution meta-surfaces.

• We present a thorough numerical evaluation that shows
substantial gains in terms of sum rate performance.
Specifically, we present scenarios where our approach
achieves around 40% gain over an MMSE precoder, and
gains that span between 20% and over 120% with respect
to a ZF precoder, depending on the network radius.

The remaining of this paper is structured as follows. Sec-
tion II introduces the system model and the problem formula-
tion to optimize the considered metric. In Section III we tackle
the solution of the considered problem in the simple case of
a single UE. In Section IV the aforementioned problem is
solved through the proposed RISMA algorithm in a general
multiuser setting. Moreover, we propose Lo-RISMA which
provides a practical implementation of RISMA in the case of
low-resolution RIS. Section V presents numerical results to
evaluate the performance of the proposed algorithms. Lastly,
Section VI concludes the paper.

B. Notation

Throughout the paper, we use italic letters to denote scalars,
whereas vectors and matrices are denoted by bold-face lower-
case and upper-case letters, respectively. We let C, R and
Z denote the set of complex, real and integer numbers,
respectively. We use Cn and Cn×m to represent the sets of
n-dimensional complex vectors and m×n complex matrices,
respectively. Vectors are denoted by default as column vectors.
Subscripts represent an element in a vector and superscripts
elements in a sequence. For instance, X(t) = [x

(t)
1 , . . . , x

(t)
n ]T

is a vector from Cn and x(t)
i is its ith component. Operation

(·)T represents the transpose operator, ⊗ stands for Kronecker
product while (·)H denotes the Hermitian transpose operation.
Finally, ‖ · ‖ and ‖ · ‖F denote the L2-norm of a vector and
Frobenius norm of a matrix, respectively.

II. MODEL DESIGN

A. System model

Let us consider the scenario described in Fig. 1 in which a
BS equipped with M antennas serves a set of K single-antenna
user equipment nodes (UEs). However, note that the proposed
method is not limited to such a case. When considering
multiple-antenna UEs, our model can be readily applied by
letting each UE activate the antenna with the highest average
channel power gain. The connection is established with the
aid of a set of RISs installed on the building glasses each of

Reconfigurable Intelligent 
Surfaces (RISs)

eNB (1 antenna)
gNB (M antennas)

kth UE

d1,k

φD

d2,k

φA φk

dk

Figure 1. Radio massive access scenario overcoming NLOS issues by means
of RISs installed on the building glasses. It might support different use cases,
such as AR-glasses, e-health, video-survelliance, Industrial-IoT.

which consists of N equivalent antenna elements. Focusing
on the downlink data transmission, the BS communicates to
each UE k via a direct link denoted by hd,k ∈ CM×1 which
comprises of a line-of-sight (LoS) path of length dk and angle
of departure (AoD) θk when the latter exists, in addition to a
multipath non-line-of-sight (NloS) link. Additionally, the BS
can exploit a combined link from the BS to the RIS denoted
by G ∈ CN×M , which in turns reflects the incoming signal
towards the UE through the channel hk ∈ CN×1. The latter
is decomposed into the LoS BS-RIS path of length d1,k and
with AoD from the BS and angle of arrival (AoA) at the RIS
denoted by ψD and ψA, respectively plus a set of scarreted
NLos paths and the RIS-UE k link which comprises of a
LoS path of length d2,k and AoD ψk when available, plus a
multipath NLoS link. Lastly, due to high path loss we neglect
all signals reflected two times or more by the RIS as in [14],
[29], [30].

All channels follow a quasi-static flat-fading model and thus
remain constant over the transmission time of a codeword. We
further assume that perfect channel state information (CSI) is
available at the BS, i.e., the latter knows {hd,k}Kk=1, G and
{hk}Kk=1. The BS operates in time-division duplexing mode,
such that the uplink and downlink channels are reciprocal. The
downlink physical channel can thus be estimated through the
uplink training from the UEs via a separate control channel 3.

While we focus on the downlink data transmission, our
proposed framework might be straightforwardly extended to
the uplink direction considering multiple UEs and one single
BS. Each UE k receives the sum of two contributions, namely
a direct path from the BS and a suitably reflected path upon

3When dealing with biased channel information, a channel estimation
process is required. However, such a challenge in RIS-aided networks has
been already explored in [30], [38] and thus is out of the scope of this work.
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the RIS. Hence, the receive signal at UE k is given by

yk =
(
hH
k ΦG + hH

d,k

)
Ws + nk ∈ C (1)

=
(
hH
k ΦG + hH

d,k

)
wksk

+
∑
j 6=k

(
hH
k ΦG + hH

d,k

)
wjsj + nk, (2)

where Φ = diag[α1e
jφ1 , . . . , αNe

jφN ] with φi ∈ [0, 2π)
and |αi|2 ≤ 1, ∀i represents the phase shifts and amplitude
attenuation introduced by the RIS ( [9], [11], [29], [42]),
W = [w1, . . . ,wK ] ∈ CM×K is the transmit precoder,
s = [s1, . . . , sK ]T ∈ CK×1 is the transmit symbol vector
with E[|sk|2] = 1, ∀k, and nk is the noise term distributed as
CN (0, σ2

n).
Hence, assuming single-user decoding at the receiver side

the system sum rate can be defined as follows

R,
∑
k

log2

(
1+

|(hH
k ΦG + hH

d,k)wk|2∑
j 6=k |(hH

k ΦG + hH
d,k)wj |2 + σ2

n

)
. (3)

B. Problem Formulation

Our objective is to optimize the overall system performance
of the considered RIS-aided network in terms of the system
sum rate, as defined in Eq. (3). In particular, given the
complexity of treating such an expression, we propose to
jointly optimize the precoding strategy at the BS and the
reflections (as a tunable parameter) introduced by the RIS
by minimizing the SMSE over all connected UEs, which is
known to relate to the sum rate [43]. In particular, for a
given configuration of the RIS the considered system in the
downlink is a broadcast channel and duality between broadcast
and uplink multiple access channel holds. In the dual multiple
access channel the classical relation between minimum mean
squared error (MSE) of UE k and maximum SINR of UE k
holds for linear filters [44]. Hence, this motivates us to study
the SMSE as a means to optimize the system sum rate in the
downlink.

The receive MSE of UE k is given by

MSEk = E[|yk − sk|2] (4)

= |(hH
k ΦG + hH

d,k)wk − 1|2+∑
j 6=k

|(hH
k ΦG + hH

d,k)wj |2 + σ2
n (5)

=
∑
j

|(hH
k ΦG + hH

d,k)wj |2

− 2 Re{(hH
k ΦG + hH

d,k)wk}+ 1 + σ2
n. (6)

The receive SMSE over all UEs is thus expressed as

SMSE =
∑
k

MSEk (7)

=
∑
k

∑
j

|(hH
k ΦG + hH

d,k)wj |2

− 2
∑
k

Re{(hH
k ΦG + hH

d,k)wk}+K(1 + σ2
n).

(8)

For ease of presentation, let us define

v = [α1e
−jφ1 , . . . , αNe

−jφN , 1]T ∈ CN+1×1, (9)

and

H̄k ,

[
diag(hH

k )G
hH

d,k

]
∈ CN+1×M , (10)

such that Φ = diag(v[1 : N ]H) and 4

(hH
k ΦG + hH

d,k)wj = vHH̄kwj ∀k, j. (11)

Hence, our optimization problem can be formulated as follows

Problem 1 (P_SMSE).

minimize
v,W

∑
k

∑
j

|vHH̄kwj |2 − 2
∑
k

Re{vHH̄kwk}

subject to |vi|2 ≤ 1, i = 1, . . . , N ;

vN+1 = 1;

‖W‖2F ≤ P ;

with v defined in Eq. (9) and P the available transmit power
at the BS. Note that the constraint |vi|2 ≤ 1 ensures that
the i-th RIS element does not amplify the incoming signal,
thus guaranteeing a passive structure overall. We remark that
contrarily to previous works on beamforming optimization in
RIS-aided networks [27]–[32], our proposed framework has
the key advantage of being convex in the two optimization
variables v and W separately. This allows us to find simple
and efficient solutions to the problem at hand. Moreover,
thanks to this aforementioned key property the use of alternat-
ing optimization between the two optimization variables v and
W allows us to guarantee convergence to a critical point of
Problem 11, i.e., a point that satisfies the Karush-Kuhn-Tucker
(KKT) conditions of Problem 1 ( [45], [46]). Note that given
the non convex nature of Problem 1, the KKT conditions are
necessary but not sufficient conditions for optimality. We now
deeply examine our problem for two main use cases: i) single
UE receiver and ii) multiuser receiver.

III. SINGLE USER CASE

We firstly focus on the case of K = 1 to better highlight
the key feature of the proposed RISMA method. In order to
separately exploit the convexity in v and W of our objective
function in Problem 1, let the RIS parameters in v be fixed
such that we can firstly focus on finding the precoding strategy
W. Since perfect CSI is available at the BS, when v is fixed
the optimal linear transmit precoding vector is known to be
the one matched to the (here, effective) channel between the
BS and the UE maximizing the receive SNR, which is given
by maximum-ratio transmission (MRT), i.e.,

wMRT =
√
P

GHΦHh + hd

‖GHΦHh + hd‖
. (12)

4Note that the last element of v is introduced to obtain a more compact
expression of our optimization problems.
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Thus, once the precoding strategy is obtained the problem
reduces to the optimization of the RIS setting parameters in
Φ. Consider the receive MSE after MRT precoding

MSEMRT = E[|y − s|2], (13)

where the expectation is over the symbol s and the noise n,
which are assumed to be independent. Hence, we have that

MSEMRT = E[|[(hHΦG + hH
d )wMRT − 1]s+ n|2] (14)

= P‖hHΦG + hH
d ‖2 − 2

√
P‖hHΦG + hH

d ‖
+ 1 + σ2

n. (15)

We thus formulate the following optimization problem

minimize
Φ

‖hHΦG + hH
d ‖2 − 2

√
P

P
‖hHΦG + hH

d ‖
subject to |[Φ]ii|2 ≤ 1 ∀i

[Φ]ij = 0 ∀i 6= j.
(16)

By substituting Eq. (9) and Eq. (10) into Eq. (16), we recast
the latter into the following optimization problem

Problem 2 (P2).

minimize
v

‖vHH̄‖2 − 2

√
P

P
‖vHH̄‖

subject to |vi|2 ≤ 1, i = 1, . . . , N ;

vN+1 = 1.

Note that Problem 2 is non-convex in v but it can be solved
efficiently by standard convex-concave programming as it is a
summation of a convex function, i.e., the squared norm term,
minus a second convex function, i.e., the norm term [47].

An alternative yet simpler approach defines V = vvH and
solve the following optimization problem

Problem 3 (P3).

minimize
v,V�0

tr(H̄H̄HV)− 2

√
P

P

√
tr(H̄H̄HV)

subject to [V]ii ≤ 1, i = 1, . . . , N ;

[V]N+1,N+1 = 1, vN+1 = 1;[
V v
vH 1

]
� 0,

rank(V) = 1.

Note that Problem 3 is non-convex in V due to the rank con-
straint. However, by employing SDR the latter can be turned
into a convex problem by relaxing the rank constraint. The
resulting problem can be then solved via standard semidefinite
programming as, e.g., CVX. An approximate solution of
Problem 3 can be obtained from the relaxed convex problem
via Gaussian randomization [48]. While the optimality of
Gaussian Randomization is only proven for a small well-
defined family of optimization problems, it guarantees an π

4 -
approximation of the optimal objective value of the original
problem for a sufficiently large number of randomizations, as
shown in [49].

Lastly, note that the RIS parameters {αi}Ni=1 and {φi}Ni=1

can be obtained by setting

αi = |vi|, and (17)
φi = arg(v∗i ), i = 1, . . . , N. (18)

A. Practical systems: low-resolution RIS

In practical systems, it is difficult to control exactly the
state of each reflecting element as this control is implemented
through sensible variations of the equivalent impedance of
each reflecting cell. It is thus not practical to allow any
possible state for the absorption coefficients {αi}Ni=1 and phase
reflection {φi}Ni=1 of the i-th reflecting element [19], [35]. In
this respect, we propose an extension of the method proposed
in Section III, dubbed as Lo-RISMA, which decouples the
optimization of {αi}Ni=1 and {φi}Ni=1 to include practical
implementation constraints, namely, each reflecting element
is activated in a binary fashion and each phase shift can vary
on a given set of discrete values.

Binary activation. We start by treating the binary activation
assumption, namely each reflecting element can have only one
of two states, i.e., αi ∈ {0, 1} ∀i. Hence, we solve Problem (2)
or Eq. (3) in order to obtain the values of {φ}Ni=1 as per
Eq. (18).

In the considered single-UE scenario, the maximization of
the sum rate is equivalent to the minimization of the receive
MSE or maximization of the receive SNR. Let us define the
effective channel as the following

H̃ =

[
diag(hH)Φ̄G

hH
d

]
∈ CN+1×M , (19)

with Φ̄ , diag[ejφ1 , . . . , ejφN ] and the binary vector b ∈
{0, 1}N+1, where each bi indicates whether the corresponding
reflecting element is active or not. Hence, we have that
αi = bi i = 1, . . . , N and Φ = diag(b1e

jφ1 , . . . , bNe
jφN ).

The receive SNR after MRT precoding is given by

SNRMRT =
‖bTH̃‖2

σ2
n

, (20)

which is clearly maximed when b = 1.
Quantized phase shifts. Consider now the case where the

phases {φi}Ni=1 are quantized with a given number of bits b
as in explained in [19], [31], [41], [50]. The ideal feasible
set [0, 2π) is thus quantized into 2b uniformly spaced discrete
points as

φi ∈ Q ,

{
2π

2b
m

}2b−1

m=0

m ∈ Z, i = 1, . . . , N. (21)

To achieve such quantization, we simply project the phase
shifts obtained by solving Problem 2 or 3 onto the closest
point within the constellation in Q.

IV. MULTIUSER CASE

Hereafter, we consider the multiuser scenario described
in Section II. Differently than the single UE case, here the
optimal transmit precoder is not know a priori and needs
to be optimized. In particular, we show how the chosen
optimization metric—which has not been analyzed so far in
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RIS-aided communication systems—yields simple expressions
for both the optimized precoding strategy at the BS and
the RIS parameters when employing alternating optimization
between the two. Specifically, we solve the problem of jointly
optimizing the precoding strategy and the RIS parameters
by fixing in turn one of the two optimization variables and
analyzing the resulting partial problems. It is interesting to
see that such partial problems allow simple empirical closed-
form solutions. The resulting algorithm provides an effective
solution to the original joint optimization which can be proven
to be a stationary point of the Lagrangian of the latter.

A. Alternating Optimization

Let us consider Problem 1 (P_SMSE), which is not jointly
convex in v and W whereas, differently than prior work, is
convex in the two optimization variables, separately. We can
thus solve Problem 1 efficiently via alternating optimization.
If W is fixed, then Problem 1 (P_SMSE) reduces as follows

Problem 4 (P_SMSE_v).

minimize
v

∑
k

‖vHH̄kW‖2 − 2
∑
k

Re{vHH̄kwk}

subject to |vi|2 ≤ 1 i = 1, . . . , N ;

vN+1 = 1.

Problem 4 admits the following solution

v =

(∑
k

H̄kWWHH̄H
k + Diag(µ)

)−1

×
(∑

k

H̄kwk − ν eN+1

)
, (22)

where eN+1 is the (N + 1)-th column of the identity matrix
of size N + 1 and µ ≥ 0 is a vector of non-negative variables
to be determined in the following way

µi = 0 and |vi|2 ≤ 1,

µi ≥ 0 and |vi|2 = 1, ∀i = 1, . . . , N. (23)

To alleviate the task of finding µ in Eq. (23) we set µ = σ2
n1

following the results in [51]. Let

v̄ =

(∑
k

H̄kWWHH̄H
k + σ2

nIN+1

)−1

×
(∑

k

H̄kwk − ν eN+1

)
(24)

where IN+1 is the identity matrix of size N + 1. Hence we
have that

v =
v̄

‖v̄‖
. (25)

Lastly, ν is found by letting vN+1 = 1 as

ν =
eT
N+1B z− 1

eT
N+1B eN+1

. (26)

where

B =

(∑
k

H̄kWWHH̄H
k + σ2

nIN+1

)−1

, (27)

z =
∑
k H̄kwk and eN+1 is the (N + 1)-th column of the

identity matrix of size N + 1.
Proof: The solution of Problem 4 is analytically derived

in Appendix A by solving the Karush–Kuhn–Tucker (KKT)
conditions.

When v is fixed, Problem 1(P_SMSE) reduces to the
following

Problem 5 (P_SMSE_w).

minimize
W

∑
k

‖h̄H
k W‖2 − 2

∑
k

Re{h̄H
k Wek}

subject to ‖W‖2F ≤ P ;

where we define h̄k , H̄H
k v and ek is the k-th column of

the identity matrix of size K. Again, given the convexity of
Problem 5, the KKT conditions are necessary and sufficient
for the solution of the problem and yield the following

W =
(
H̄H̄H + µIM

)−1
H̄, (28)

with H̄ = [h̄1, . . . , h̄K ] and µ ≥ 0 such that ‖W‖2F = P is
satisfied5. Leveraging the results in [51] we set µ = Kσ2

n/P
which is proven to maximize the UEs SINRs in the limit
of large K, while proving to be tight for even small values
of K. Hence we obtain the following empirical closed-form
expression for the precoding matrix W

W =
√
P

W̄

‖W̄‖F
(29)

where W̄ =
(
H̄H̄H +

Kσ2
n

P IM
)−1

H̄.
Proof: We derive Eq. (28) in Appendix B by solving the

KKT conditions.
Due to the convex nature of Problem 4 and 5, we propose

an efficient algorithm, namely RISMA, which alternates the
optimization of both the precoding strategy at the BS W
and the RIS setting parameters in v. Thanks to the convex
nature of the two partial problems for which we have found
an optimal solution, it can be proven that RISMA converges to
a critical point of Problem 1, i.e., a point that satisfies the KKT
conditions of Problem 1 ( [45], [46]). The proposed algorithm
is formally described in Algorithm 1 where step 5 implements
Eq. (26).

B. Practical systems: low resolution RIS

As described in Section III-A, in practical conditions it
is difficult to control the state of each reflecting element
perfectly. In the following, we reformulate the problem in
Section IV-A to cope with the limits of practical hardware
implementations and we assume that each reflecting element
can be activated in a binary fashion and introduces only
quantized phase shifts. The proposed algorithm dubbed Lo-
RISMA is formally described in Algorithm 2.

5In order to determine µ we can apply a bisection method.
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Algorithm 1 RISMA: RIS-aided Multiuser Alternating opti-
mization

1: Initialize W(0), SMSE(0) and ε
2: n← 1
3: while |

(
SMSE(n) − SMSE(n−1)

)
/SMSE(n)| > ε do

4: µ = σ2
n1

5: ν ← Force v(n)
N+1 = 1

6:

v̄ =

(∑
k

H̄kWWHH̄H
k + Diag(µ)

)−1

×
(∑

k

H̄kwk − ν eN+1

)
7:

v(n) =
v̄

‖v̄‖

8: H̄ = [H̄H
1 v(n), . . . , H̄H

Kv(n)]
9:

µ =
Kσ2

n

P

10: W̄ =
(
H̄H̄H + µIM

)−1
H̄

11:

W(n) =
√
P

W̄

‖W̄‖F
12:

SMSE(n) =
∑
k

∑
j

|(v(n))HH̄kw
(n)
j |

2

−2
∑
k

Re{(v(n))HH̄kw
(n)
k }+K(1 + σ2

n)

13: end while
14: v = v(n)

15: W = W(n)

If W is fixed then Problem 4 (P_SMSE_v) stated in
Section IV-A is modified as follows

Problem 6 (P_SMSE_Lo).

minimize
v

∑
k

‖vHH̄kW‖2 − 2
∑
k

Re{vHH̄kwk}

subject to vi ∈ Q̄ i = 1, . . . , N ;

vN+1 = 1,

where we have defined the constellation of discrete points Q̄
as

Q̄ ,

{
0, ej

2π

2b
m

}2b−1

m=0

m ∈ Z, i = 1, . . . , N ; (30)

to include the deactivated RIS antenna elements and the
quantized phase shifts. Let the effective channel matrix of the
k-th UE be defined as follows

H̃k =

[
H̄kWWHH̄H

k −H̄kwk

−wH
k H̄H

k 0

]
∈ CN+2×N+2. (31)

Lastly, let us define v̄ , [vT c]T and V̄ = v̄v̄T with
|c|2 = 1. Hence, Problem (6) (P_SMSE_Lo) is equivalent to
the following homogeneous quadratic problem

Algorithm 2 Lo-RISMA: Low-Resolution RISMA Algorithm

1: Initialize W(0), SMSE(0) and ε
2: n← 1
3: while |

(
SMSE(n) − SMSE(n−1)

)
/SMSE(n)| > ε do

4: H̃k =

[
H̄kWWHH̄H

k −H̄kwk

−wH
k H̄H

k 0

]
, k = 1, . . . ,K

5:
v̂(n) = argmin

v̄

∑
k

v̄HH̃kv̄

s.t. v̄ ∈ Q̄N+1

v̄ = [v c], |c|2 = 1

6: v(n) = (c(n))∗v̂(n)

7: H̄ = [H̄H
1 v(n), . . . , H̄H

Kv(n)]
8:

µ =
Kσ2

n

P

9: W̄ =
(
H̄H̄H + µIM

)−1
H̄

10:

W(n) =
√
P

W̄

‖W̄‖F
11:

SMSE(n) =
∑
k

∑
j

|(v(n))HH̄kw
(n)
j |

2

−2
∑
k

Re{(v(n))HH̄kw
(n)
k }+K(1 + σ2

n)

12: end while
13: v = v(n)

14: W = W(n)

Problem 7 (P_SMSE_LoE).

minimize
v̄,V̄

∑
k

tr(H̃kV̄)

subject to diag(V̄) ∈ {0, 1};
V̄N+1,N+1 = V̄N+2,N+2 = 1;[

V̄ v̄
v̄T 1

]
� 0;

rank(V̄) = 1.

Following the results in [52], [53], we relax Problem 7
(P_SMSE_LoE) by removing the rank constraint and substi-
tuting the binary constraint on the diagonal of V̄ with the
convex constraint 0 ≤ diag(V̄) ≤ 1. Let V̄∗ denote the so-
lution of Problem 7. By applying the Gaussian randomization
method in [48], we use V̄∗ to generate L random vectors
wl ∼ CN (0, V̄∗). Such vectors are then quantized into the
nearest point within the constellation Q̄, thus obtaining the set
of L vectors {w̄l}. We then obtain an approximate solution
of Problem 7 as follows

w̄? = argmin
l=1,...,L

∑
k

w̄T
l H̃kw̄l. (32)

Let us obtain ŵ? from w̄? = [(ŵ?)H c?]H. A suboptimal
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Figure 2. Single-BS scenario where multiple obstacles and RISs are placed
while UEs are normally distributed within a RN-radius area.

solution to Problem 6 (P_SMSE_Lo) is thus given by

v = c?ŵ?. (33)

Lastly, note that such optimization framework can be readily
extended to any discrete set of phase shifts by simply changing
the definition of Q̄ in Eq. (30) and modifying accordingly the
quantization operation on the random vectors {wl}.

V. NUMERICAL RESULTS AND DISCUSSION

We present numerical results to analyze the benefits of
the proposed algorithms both in the single UE case as
per Section III and in a general multiuser setting as per
Section IV. Moreover, we show that our proposed scheme
provides substantial gains compared to conventional massive
MIMO schemes such as zero-forcing (ZF) or minimum mean
squared error (MMSE) precoding (without the aid of RIS) as
the transmit power P , the number of BS antennas M and
the network area radius vary on a broad range of values.
Finally, we show that similar outstanding gains can be attained
even when considering RIS as a low-resolution surface whose
antenna elements are activated in a binary fashion thereby
introducing only uniformly spaced discrete phase shifts.

A. Channel model

The channel model used for our numerical results is defined
as follows. Let hd denote the direct channel between the BS
and UE k defined as follows

hd,k,

√
KR,d,k

KR,d,k + 1
hLoS

d,k +

√
1

1 +KR,d,k
hNLoS

d,k ∈C
M×1,

(34)

where KR,d,k is the Rician factor of UE k associated with
the direct path from the BS to UE k while hLoS

d,k and hNLoS
d,k

denote LoS and NLoS components, respectively. The former
is defined as

hLoS
d,k ,

√
γd,k a(θk) ∈ CM×1, (35)

where γd,k = d
−βd,k

k is the large-scale fading coefficient with
βd,k the pathloss exponent and a(θk) is the uniform linear

array (ULA) response vector at the BS for the given steering
angle θk defined as

a(θk) , [1, ej2πδ cos(θk), . . . , ej2πδ(M−1) cos(θk)]T ∈ CM×1.
(36)

Here, δ is the antenna spacing-wavelength ratio. Similarly, we
define the NLoS component as the following

hNLoS
d,k ,

√
γd,k

Pd,k

Pd,k∑
p=1

ηd,k,p a(θk,p) ∈ CM×1, (37)

where ηd,k,p ∼ CN (0, 1), Pd,k and θk,p are the small-scale
fading coefficient, the number of scattered paths and the
steering angle of the p-th scattered path between the BS and
UE k, respectively. We denote the channel between the BS
and the RIS as follows

G ,

√
KR

1 +KR
GLoS +

√
1

1 +KR
GNLoS ∈ CN×M , (38)

where KR is the Rician factor, whereas GLoS and GNLoS rep-
resent the deterministic LoS and Rayleigh fading components,
respectively. The latter component is defined as

GLoS ,
√
γG b(ψA)a(ψD)H ∈ CN×M , (39)

where γG = d−β1 is the large-scale fading coefficient with β
the pathloss exponent and b(ψA) is the planar linear array
(PLA) response vector, which models the RIS response for
the steering angle ψA. We assume that the RIS is a two
dimensional structure with N = NxNy elements where Nx
and Ny are the number of elements along the x and y axis,
respectively. The PLA response is defined as

b(ψA) , bz(ψA,z, ψA,x)⊗ bx(ψA,z, ψA,x) (40)

= [1, e−j2πδ sin(ψA,z) cos(ψA,x), . . . ,

e−j2πδ(Ny−1) sin(ψA,z) cos(ψA,x)]T⊗
[1, e−j2πδ cos(ψA,x) cos(ψA,z), . . . ,

e−j2πδ(Nx−1) cos(ψA,x) cos(ψA,z)]T, (41)

with ψA,z and ψA,x the azimuth and longitudinal AoA, rep-
sectively. The NLoS component of the BS-RIS link is defined
as

GNLoS,

√
γG
PG

PG∑
p=1

G(w)
p ◦

(
b(ψA,p)a(ψD,p)

H
)
∈CN×M (42)

where PG is the total number of scattered paths, G(w) repre-
sents the small-scale fading coefficients of the p-th path with
vec(G

(w)
p ) ∼ CN (0, INM ), ◦ stands for element-wise product

and ψA,p and ψD,p are the AoA and AoD of the p-th path,
respectively. Lastly, hk denotes the channel between the RIS
and UE k defined as follows

hk,

√
KR,k

KR,k + 1
hLoS
k +

√
1

1 +KR,k
hNLoS
k ∈CN×1, (43)

where KR,k is the Rician factor of UE k while hLoS
k and

hNLoS
k denote the LoS and NLoS components, respectively.
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The LoS component of the RIS-UE k link is defined as

hLoS
k =

√
γk b(ψk) ∈ CN×1, (44)

where γk = d−βk2,k is the large-scale fading coefficient and βk
the pathloss exponent. The NLoS component of the RIS-UE k
link is defined as the following

hNLoS
k ,

√
γk
Pk

Pk∑
p=1

ηk,p b(ψk,p) ∈ CN×1, (45)

where ηk,p ∼ CN (0, 1), Pk and ψk,p denote the small-
scale fading coefficient, the number of scattered paths and the
steering angle of the p-th scattered path related to the RIS-
UE k link, respectively.

B. Power scaling law

We derive the power scaling law of the channel model
proposed in Section V-A. For the sake of clarity, we focus
on a single UE and single BS antenna case, i.e., M = 1 and
hence G ≡ g and wMRT ≡ wMRT. Moreover, we assume that
h ∼ CN (0, γIN ), g ∼ CN (0, γGIN ) and hd ∼ CN (0, γd).
The average receive power at the UE is given by

PUE = E[|(hHΦg + hH
d )wMRT|2] (46)

= P (E[|hHΦg|2] + E[|hd|2])

= P

(
E
[∣∣∣∣ N∑

i=1

|hi||gi|ej(φi−arg(hi)+arg(gi))

∣∣∣∣2]+ γd

)
≤ P

(
π2

16
d−β1

2 d−β1 N2 + d−βd

)
. (47)

In Eq. (46) we assume that h, g and hd are statistically
independent and Eq. (47) follows by assuming optimal choice
of the RIS phase shifts as φi = arg(hi) − arg(gi), ∀i and
the fact that E[|hi|2|gi|2] = π2γ γG/16. The receive power
thus scales as the inverse of the product of the distance of the
individual paths from the BS to the RIS and from the RIS to
the UE. Additionally, it scales as the square of the number
of the RIS reflecting elements N (in accordance with recent
works on pathloss modelling [11], [12], [23], [25]). Hence,
by increasing the number of RIS antenna elements, we can
counteract the decrease in receive power due to the distance
of the combined path from the BS to RIS and from the RIS to
the UE. This notably suggests that RISs can be used smartly
to effectively increase the coverage area of wireless networks.

C. Scenario and setting parameters

We consider a circular single-cell network of radius RN
with a central BS as depicted in Fig. 2. Here, our goal is to
evaluate the performance of the proposed scheme in terms of
the sum rate defined in Eq. (3) while increasing the radius
of the network area to prove how the considered RIS-aided
network is effective in increasing the coverage area of cellular
networks. Indeed, we vary RN for a fixed number of UEs K.

For each value of RN we average our simulations over
1000 different realizations of the UEs’ positions, according to
a uniform distribution over the considered circular area. There
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Figure 3. Average sum rate in the single-UE case obtained with the proposed
RISMA algorithm (bottom plot) and with conventional MRT precoding (upper
plot) versus the transmit power P at the BS for different values of BS-UE
distance d.

are four circular obstacles, which determine whether each UE
is in LoS with the BS or not. To maintain consistency, we
fix the radii of such obstacles to RN/4 and the distance from
the BS to the centers of said obstacles to RN/4 + RN/5.
Moreover, we assume that there are four different RISs in
LoS with the BS, each one with Nx = Ny =

√
N antenna

elements, positioned at distance RN from the BS and angles 0,
π/2, π and 3π/2, respectively. Hence, for each RIS d1 = RN ,
ψA,x = π, 3π/2, 0 and π/2 with ψA,z = 0, respectively.
Furthermore, the AoD are ψD = 0, π/2, π and 3π/2, respec-
tively. Each UE k is served by a single RIS, according to the
highest average channel power gain δk of the corresponding
link, defined as the following

δk = E[‖hk‖2]

=
KR,k

1 +KR,k
γkN +

1

1 +KR,k
γkN

= d−βk2,k N. (48)

We assume that βk = β̄, ∀k such that each UE k is served by
the closest RIS in terms of distance 6. For simplicity we let
KR,k = K̄R, Pk = P̄ , Pd,k = Pd, Kd,k = Kd and βd,k =
βd, ∀k. We set β̄ = β̄LoS, K̄R = K̄R,LoS, Kd = Kd,LoS

and βd = βd,LoS for LoS UEs while we let β̄ = β̄NLoS,
K̄R = K̄R,NLoS, Kd = Kd,NLoS and βd = βd,NLoS for NLoS
UEs. All simulations parameters are set as per Table I, unless
otherwise stated.

Table I
SIMULATION PARAMETERS

Param. Val. Param. Val. Param. Val. Param. Val.
N 100 β 2 KR 2.5 PG 2NM

β̄LoS 2 β̄NLoS 4 K̄R,LoS 2.5 K̄R,NLoS 0

P̄ 2N Kd,LoS 2 Kd,NLoS 0 βd,LoS 2

βd,NLoS 4 M 8 Pd 2M σ2
n −80 dBm

D. Single user case

In the single UE case, we set Nx = Ny = 5, Kd = 0,
K̄R = 2.5, βd = 4, β̄ = 2 and θ = 0. In addition, we assume
that a single RIS is at distance d1 = 25m from the BS with

6Note that when (unlikely) more than one RIS is at the same distance from
UE k, we solve the conflict by simply flipping a coin.
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Figure 4. Average sum rate in the single-UE case obtained with the proposed
RISMA algorithm (red lines) and with conventional MRT precoding (black
lines) versus the number of RIS elements N with P = 24 dBm and for
different values of the distance between the BS and the UE d.

AoD ψD = π/4 and AoA ψA = 5π/4 while we vary d as the
distance from the BS to the UE. The distance from the RIS
to the UE and the AoD ψ are thus calculated based on the
aforementioned parameters.

Fig. 3 shows the average sum rate R obtained with the
proposed RIS-aided optimization in Problem 3 (bottom plot)
versus conventional MRT precoding (upper plot) without the
aid of a RIS, defined as in Eq. (12) with Φ = 0 versus
the transmit power P at the BS and for different values
of distance d from the BS to the UE. While both schemes
exhibit an increasing sum rate with the transmit power P ,
our proposed scheme consistently outperforms a conventional
network with no RIS. Moreover, the gain further increases with
d demonstrating how the effectiveness of a RIS in increasing
the coverage area of wireless networks. For example RISMA
can support up to d = 90 m with a target sum rate of 20
bps/Hz, thus increasing the coverage area of about 350% with
respect to conventional MRT precoding with no RIS. Indeed,
as the UE moves far away from the BS, conventional MRT
suffers from the diminishing power in the channel hd. On the
contrary the RIS-aided scheme is able to counteract this effect
by steering the transmitted signal upon the RIS and towards
the UE.

In Fig. 4 we show the average sum rate R obtained
with the proposed RIS-aided optimization (red lines) versus
conventional MRT (black lines) with P = 24 dBm versus
the number of RIS elements N and for different values
of the BS-UE distance d. While the benefits introduced by
adding antenna elements on the RIS are clear, interestingly the
conventional MRT scheme without the aid of the RIS attains
similar performance to the proposed RIS-aided scheme only
for small values of N and d. This further supports our claim
that RISs can be effectively used to increase the coverage area
of wireless networks at low expenses, i.e., limited number of
antenna elements.

E. Multiuser case

In the multi-UE case we fix K = 12 unless otherwise
stated while other simulation parameters are set as per Table I.
The values of {dk}Kk=1, {θk}Kk=1, {d2,k}Kk=1 and {ψk}Kk=1
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Figure 5. Average sum rate in the multi-UE case obtained with the proposed
RISMA algorithm (red curves), with conventional MMSE precoding (black
curves) and with conventional ZF precoding (red green curves) versus the
radius of the network area RN and for different values of the transmit power
P .

are calculated based on the UE positions of each random
realization. We compare our proposed algorithms against two
benchmark schemes, namely MMSE precoding defined as
per [51]:

WMMSE =
√
P

(
HdHH

d +
Mσ2

n

P IM

)−1

Hd∥∥∥∥(HdHH
d +

Mσ2
n

P IM

)−1

Hd

∥∥∥∥
F

, (49)

with Hd = [hd,1, . . . ,hd,K ] and ZF precoding defined as

WZF =
√
P

Hd

(
HH

d Hd

)−1

‖Hd

(
HH

d Hd

)−1‖F
. (50)

Fig. 5 shows the avegage sum rate R in the multi-UE case
obtained with the proposed RISMA algorithm (solid red line),
with conventional MMSE precoding (dashed black line) and
ZF precoding (dashed green line) versus the radius of the
network area RN and for different values of the transmit power
P . While the ZF scheme obtains the best results for small
cells and high transmit power, the proposed RISMA algorithm
achieves higher throughput for cells larger than say 75m or a
low-to-moderate transmit power. This is because as the radius
of the network area increases, it becomes infeasible to design
orthogonal beamformers with ZF precoding if multiple UEs
are close to each other and far from the BS. Indeed, according
to the proposed model, the channel response hd,k depends
essentially on the AoD θk and distance dk, plus the NLoS
components, which carry significantly less power. Hence,
UEs who are close to each other exhibit statistically similar
channels, thus limiting the performance of ZF precoding due
to interference among neighboring UEs. In contrast, the use of
the RIS greatly alleviates interference even for closely spaced
UEs in large networks thanks to steering operated by the RIS.
Additionally, RISMA outperforms MMSE precoding over all
the considered range of network radii and transmit powers due
to the coherent sum of both the contribution of the direct path
from the BS to the UE and the contribution steered by the RIS
towards the intended UE.

In Fig. 6, for a fixed network area radius RN = 150 m
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Figure 6. Average sum rate in the multi-UE case obtained with the proposed RISMA algorithm (red line), with conventional MMSE precoding (black line)
and with conventional ZF precoding (blue line) versus the number of BS antennas M , for fixed network area radius RN = 150 m, transmit power P = 24
dBm and for different values of the number of UEs K.
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Figure 8. Average sum rate in the multi-UE case obtained with the new
Lo-RISMA algorithm (green line), with the novel RISMA algorithm (red
line), with conventional MMSE precoding (black line) and with conventional
ZF precoding (blue line) versus the number of quantization bits b, for fixed
network area radius RN = 100 m and transmit power P = 24 dBm.

and transmit power P = 24 dBm, we vary the number of
BS antennas M and compare the proposed RISMA algorithm
against both MMSE and ZF precoding in terms of sum rate.
We evaluate three different scenarios by increasing the number
of simultaneous UEs up to K = 100, which reasonably unveils
a classical IoT environment. Note that the gain brought by
adding BS antennas is larger in RISMA algorithm than the two
considered benchmarks since they are limited by interference
due to neighboring UEs. In addition, the proposed method
benefits in terms of sum rate from an increase in the number
of UEs while maintaining a simple and scalable optimization

routine, demonstrating its relevance in IoT scenarios. More-
over, RISMA is considerably more energy-efficient. This is
made evident in Fig. 7 that shows the number of equivalent
antennas needed by either our MMSE and ZF benchmarks to
achieve the same sum gain performance than our approach
with M = {8, 12, 16, 20, 24, 28} antennas. For instance, given
a target sum rate equal to 100 bps/HZ, RISMA requires a
number of BS antennas that is ∼ 67% lower.

Lastly, Fig. 8 shows the average sum rate R obtained
with the proposed Lo-RISMA, i.e., when the RIS is a low
resolution metasurface, the proposed RISMA algorithm, i.e.,
with an ideal RIS, conventional MMSE and ZF precoding
versus the number of quantization bits b for fixed network
area radius RN = 100 m and transmit power P = 24 dBm.
As the number of quantization bits increases, the Lo-RISMA
algorithm approaches the performance of the ideal RISMA
algorithm. Moreover, even for a single bit quantization our
proposed methods achieves better performance than the con-
sidered benchmark schemes thus demonstrating the feasibility
of RIS-aided networks.

Remarkably, both the proposed RISMA and Lo-RISMA al-
gorithms converge within few iterations, specifically, between
3 to 10 iterations. Note that the observed lower limit in the
number of iterations is due to the random initialization of
the optimization variables W and v in both the proposed
algorithms.

VI. CONCLUSIONS

In this work RIS-aided beamforming solutions have been
proposed, RISMA and Lo-RISMA, for addressing massive
IoT access challenges in beyond 5G networks. In particular,
we have analyzed RISs benefits to cope with NLOS issues in
dense urban environments where massive IoT deployments are
expected in the near future.

Our contributions are: i) a novel mathematical framework
to minimize the SMSE of RIS-aided beamforming commu-
nication systems, ii) RISMA, a low-complexity scheme that
finds a simple and effective solution for such systems, iii)
Lo-RISMA, an efficient algorithm for deployments with low-
resolution meta-surfaces, and iv) a numerical evaluation that
shows substantial gains in terms of sum rate performance, i.e.
40% gain over an MMSE precoder and 20% to 120% with
respect to a ZF precoder, depending on the network radius.



12

APPENDIX

A. Proof of Eq. (22)

Problem 4 is convex and thus the optimal solution solves
the KKT conditions. Let the Lagrangian and its gradient as

L(v,µ, ν) =
∑
k

‖vHH̄kW‖2 − 2
∑
k

Re{vHH̄kwk}

+

N∑
i=1

µi(|vi|2 − 1) + ν (vN+1 − 1) (51)

∇L(v,µ, ν) =
∑
k

H̄kWWHH̄H
k v −

∑
k

H̄kwk

+

N∑
i=1

µieie
T
i v + ν eN+1 (52)

respectively. Note that to find the derivative of the real part
of vHĤkek we have used again the property in Eq. (63). The
KKT conditions of Problem 4 can be written as(∑

k

H̄kWWHH̄H
k + diag(µ)

)
v=

(∑
k

H̄kwk − ν eN+1

)
(53)

|vi|2 ≤ 1 i = 1, . . . , N ; vN+1 = 1; µ ≥ 0;

µi(|vi|2 − 1) = 0 i = 1, . . . , N (54)

whose solution is given by

v =

(∑
k

H̄kWWHH̄H
k + diag(µ)

)−1

×
(∑

k

H̄kwk − ν eN+1

)
, (55)

with µ ≥ 0 found in the following way

µi = 0 and |vi|2 ≤ 1,

µi ≥ 0 and |vi|2 = 1, ∀i = 1, . . . , N. (56)

Lastly, ν is determined by forcing vN+1 = 1. Note that

vN+1 = eT
N+1v (57)

= eT
N+1B z− ν eT

N+1B eN+1 (58)

where we have defined

B =

(∑
k

H̄kWWHH̄H
k + diag(µ)

)−1

, (59)

and z =
∑
k H̄kwk. Hence we have that

ν =
eT
N+1B z− 1

eT
N+1B eN+1

. (60)

B. Proof of Eq. (28)

Problem 5 is convex and thus the optimal solution solves
the KKT conditions. Let the Lagrangian and its gradient as

L(W, µ)=‖H̄HW‖2F−2 tr(Re{H̄HW})+µ(‖W‖2F − P )
(61)

∇L(W, µ) = H̄H̄HW − H̄ + µW (62)

respectively. Note that to find the derivative of the real part of
tr(H̄HW) we have used the following property, valid for any
given scalar function f(z) of complex variable z

df(z)

dz
=

1

2

(
∂f(z)

∂Re{z}
− j ∂f(z)

∂Im{z}

)
. (63)

The KKT conditions of Problem 5 can be written as the
following

(H̄H̄H + µIM )W = H̄; ‖W‖2F ≤ P ; µ ≥ 0;

µ(‖W‖2F − P ) = 0; (64)

whose solution is given by W = (H̄H̄H + µIM )−1H̄, with
µ ≥ 0 chosen such that ‖W‖2F = P (e.g., by bisection).

ACKNOWLEDGMENT

The work of P. Mursia is supported by Marie Skłodowska-
Curie actions (MSCA-ITN-ETN 722788 SPOTLIGHT). The
work of V. Sciancalepore, A. Garcia-Saavedra and X. Costa-
Perez has been partially funded by the EU H2020 project
5GROWTH (grant agreement no. 856709).

REFERENCES

[1] S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone,
“A survey of energy-efficient techniques for 5G networks and challenges
ahead,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697–709, Apr.
2016.

[2] B. P. S. Sahoo, C. Chou, C. Weng, and H. Wei, “Enabling millimeter-
wave 5G networks for massive IoT applications: A closer look at the
issues impacting millimeter-waves in consumer devices under the 5G
framework,” IEEE Consumer Electronics Magazine, vol. 8, no. 1, pp.
49–54, Jan. 2019.

[3] O. Y. Kolawole, S. Biswas, K. Singh, and T. Ratnarajah, “Transceiver
design for energy-efficiency maximization in mmWave MIMO IoT net-
works,” IEEE Transactions on Green Communications and Networking,
vol. 4, no. 1, pp. 109–123, 2020.

[4] M. di Renzo et al., “Smart Radio Environments Empowered
by Reconfigurable Intelligent Surfaces : How it Works, State
of Research, and Road Ahead,” 2020. [Online]. Available: https:
//arxiv.org/abs/2004.09352

[5] M. di Renzo et al., “Smart radio environments empowered by reconfig-
urable AI meta-surfaces: an idea whose time has come,” Eurasip Journal
on Wireless Communications and Networking, vol. 1, no. 1, May 2019.

[6] L. Subrt and P. Pechac, “Controlling Propagation Environments Using
Intelligent Walls,” in Proceedings of IEEE European Conference on
Antennas and Propagation, (EuCAP), Prague, Czech Republic, Mar.
2012.

[7] X. Tan, Z. Sun, J. M. Jornet, and D. Pados, “Increasing indoor spectrum
sharing capacity using smart reflect-array,” in Proc. IEEE Int. Conf.
Commun. (ICC), Kuala Lumpur, Malaysia, May 2016.

[8] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and
D. J. Love, “Multiple Antenna Technologies for Beyond 5G,” 2019.
[Online]. Available: http://arxiv.org/abs/1910.00092

[9] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

[10] E. Basar, “Transmission Through Large Intelligent Surfaces: A New
Frontier in Wireless Communications,” in "Proc. IEEE European Con-
ference on Networks and Communications (EuCNC)", Valencia, Spain,
June 2019.

[11] Ö. Özdogan, E. Björnson, and E. G. Larsson, “Intelligent reflecting
surfaces: Physics, propagation, and pathloss modeling,” IEEE Wireless
Communications Letters, vol. 9, no. 5, pp. 581–585, 2020.

[12] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di
Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless
Communications with Reconfigurable Intelligent Surface: Path Loss
Modeling and Experimental Measurement,” 2019. [Online]. Available:
http://arxiv.org/abs/1911.05326



13

[13] S. Hu, F. Rusek, and O. Edfors, “Beyond Massive MIMO: The Potential
of Positioning with Large Intelligent Surfaces,” IEEE Trans. Signal
Process., vol. 66, no. 7, pp. 1761–1774, Apr. 2018.

[14] S. Zhang and R. Zhang, “Capacity Characterization for Intelligent
Reflecting Surface Aided MIMO Communication,” 2019. [Online].
Available: http://arxiv.org/abs/1910.01573

[15] M. Cui, G. Zhang, and R. Zhang, “Secure wireless communication via
intelligent reflecting surface,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Waikoloa, HI, USA, Dec. 2019.

[16] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and
Secure Wireless Communications via Intelligent Reflecting Surfaces,”
2019. [Online]. Available: http://arxiv.org/abs/1912.01497

[17] M. Fu, Y. Zhou, and Y. Shi, “Intelligent reflecting surface for downlink
non-orthogonal multiple access networks,” in IEEE Globecom Work-
shops (GC Wkshps), 2019, pp. 1–6.

[18] T. Jiang and Y. Shi, “Over-the-air computation via intelligent reflecting
surfaces,” in IEEE Global Communications Conference (GLOBECOM),
2019, pp. 1–6.

[19] C. Huang et al., “Energy Efficient Multi-User MISO Communication
Using Low Resolution Large Intelligent Surfaces,” in Proc. IEEE Globe-
com Workshops, (GC WKSHPS), Abu Dhabi, United Arab Emirates,
Dec. 2018.

[20] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Transactions on Wireless Communica-
tions, vol. 18, pp. 4157–4170, 2019.

[21] C. Huang et al., “Holographic MIMO Surfaces for 6G Wireless
Networks: Opportunities, Challenges, and Trends,” 2019. [Online].
Available: http://arxiv.org/abs/1911.12296

[22] K. Ntontin et al., “Reconfigurable Intelligent Surfaces vs. Relaying:
Differences, Similarities, and Performance Comparison,” 2019. [Online].
Available: http://arxiv.org/abs/1908.08747

[23] E. Björnson and L. Sanguinetti, “Demystifying the power scaling
law of intelligent reflecting surfaces and metasurfaces,” in IEEE 8th
International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2019.

[24] K. Ntontin, J. Song, M. D. Renzo, and S. Member, “Multi-
Antenna Relaying and Reconfigurable Intelligent Surfaces : End-
to-End SNR and Achievable Rate,” 2019. [Online]. Available:
http://arxiv.org/abs/1908.07967

[25] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Intelligent Reflecting
Surface vs. Decode-and-Forward: How Large Surfaces Are Needed to
Beat Relaying?” 2019. [Online]. Available: http://arxiv.org/abs/1906.
03949

[26] O. P. Falade et al., “Design and characterisation of a screen-printed
millimetre-wave flexible metasurface using copper ink for communica-
tion applications,” Flexible and Printed Electronics, vol. 3, no. 4, p.
045005, Dec. 2018.

[27] X. Yu, D. Xu, and R. Schober, “MISO wireless communication systems
via intelligent reflecting surfaces: (Invited paper),” in Proc. IEEE Int.
Conf. Commun. (ICC), Shanghai, China, May 2019.

[28] Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S.
Alouini, “Asymptotic Max-Min SINR Analysis of Reconfigurable
Intelligent Surface Assisted MISO Systems,” 2019. [Online]. Available:
http://arxiv.org/abs/1903.08127

[29] Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless
Network: Joint Active and Passive Beamforming Design,” IEEE Trans-
actions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409,
2019.

[30] D. Mishra and H. Johansson, “Channel Estimation and Low-complexity
Beamforming Design for Passive Intelligent Surface Assisted MISO
Wireless Energy Transfer,” in Proc. IEEE Int. Conf. Acoust., Speech,
and Signal Process. (ICASSP), Brighton, UK, May 2019.

[31] Q. Wu and R. Zhang, “Beamforming Optimization for Intelligent
Reflecting Surface with Discrete Phase Shifts,” in Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Process. (ICASSP), Brighton, UK, May
2019.

[32] R. Karasik, O. Simeone, M. Di Renzo, and S. Shamai, “Beyond
Max-SNR: Joint Encoding for Reconfigurable Intelligent Surfaces,”
2019. [Online]. Available: http://arxiv.org/abs/1911.09443

[33] C. Huang, R. Mo, and C. Yuen, “Reconfigurable Intelligent Surface
Assisted Multiuser MISO Systems Exploiting Deep Reinforcement
Learning,” 2020. [Online]. Available: http://arxiv.org/abs/2002.10072

[34] W. Tang, J. Y. Dai, M. Chen, X. Li, Q. Cheng, S. Jin, K. K. Wong,
and T. J. Cui, “Programmable metasurface-based RF chain-free 8PSK
wireless transmitter,” Electronics Letters, vol. 55, no. 7, pp. 417–420,
Feb. 2019.

[35] V. Arun and H. Balakrishnan, “RFocus: Practical Beamforming for
Small Devices,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020.

[36] F. Liu et al., “Intelligent Metasurfaces with Continuously Tunable Local
Surface Impedance for Multiple Reconfigurable Functions,” Physical
Review Applied, vol. 11, no. 4, pp. 1–10, Apr. 2019.

[37] L. Dai et al., “Reconfigurable intelligent surface-based wireless commu-
nications: Antenna design, prototyping, and experimental results,” IEEE
Access, vol. 8, pp. 45 913–45 923, 2020.

[38] Z.-Q. He and X. Yuan, “Cascaded Channel Estimation for Large Intel-
ligent Metasurface Assisted Massive MIMO,” IEEE Wireless Commun.
Lett., Oct. 2019.

[39] S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and
array lenses for dynamic antenna beam control: A review,” IEEE Trans.
Antennas Propag., vol. 62, no. 1, pp. 183–198, Jan. 2014.

[40] R. Mendez-Rial, C. Rusu, N. Gonzalez-Prelcic, A. Alkhateeb, and R. W.
Heath, “Hybrid MIMO Architectures for Millimeter Wave Communica-
tions: Phase Shifters or Switches?” IEEE Access, vol. 4, pp. 247–267,
Jan. 2016.

[41] B. Di, H. Zhang, L. Li, L. Song, Y. Li, and Z. Han, “Practical Hybrid
Beamforming With Finite-Resolution Phase Shifters for Reconfigurable
Intelligent Surface Based Multi-User Communications,” IEEE Trans.
Veh. Technol., vol. 69, no. 4, pp. 4565–4570, Apr. 2020.

[42] C. Huang, A. Zappone, M. Debbah, and C. Yuen, “Achievable Rate
Maximization by Passive Intelligent Mirrors,” in Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Process. (ICASSP), Calgary, Canada, Apr.
2018.

[43] S. Christensen, R. Agarwal, E. Carvalho, and J. Cioffi, “Weighted sum-
rate maximization using weighted MMSE for MIMO-BC beamforming
design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799,
Dec. 2008.

[44] R. Hunger, M. Joham, and W. Utschick, “On the MSE-duality of the
broadcast channel and the multiple access channel,” IEEE Trans. Signal
Process., vol. 57, no. 2, pp. 698–713, Feb. 2009.

[45] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear Gauss-Seidel method under convex constraints,” Operations
Research Letters, vol. 26, no. 3, pp. 127–136, Apr. 2000.

[46] D. Xu, X. Yu, and R. Schober, “Resource Allocation for Intelligent
Reflecting Surface-Assisted Cognitive Radio Networks,” 2020. [Online].
Available: http://arxiv.org/abs/2001.11729

[47] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave
programming,” in IEEE 55th Conference on Decision and Control,
(CDC), Las Vegas, NV, USA, Dec. 2016.

[48] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Processing Magazine,
vol. 27, no. 3, pp. 20–34, 2010.

[49] A. M. C. So, J. Zhang, and Y. Ye, On approximating complex quadratic
optimization problems via semidefinite programming relaxations. Math.
Program., 2007.

[50] Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large Intelligent
Surface-Assisted Wireless Communication Exploiting Statistical CSI,”
IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8238–8242, June 2019.

[51] C. B. Peel et al., “A Vector-Perturbation Technique for Near-Capacity
Multiantenna Multiuser Communication - Part I: Channel Inversion and
Regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202,
Jan. 2005.

[52] W. K. Ma, P. C. Ching, and Z. Ding, “Semidefinite Relaxation Based
Multiuser Detection for M-Ary PSK Multiuser Systems,” IEEE Trans.
Signal Process., vol. 52, no. 10, pp. 2862–2872, Oct. 2004.

[53] N. D. Sidiropoulos and Z. Q. Luo, “A semidefinite relaxation approach
to MIMO detection for high-order QAM constellations,” IEEE Signal
Process. Lett., vol. 13, no. 9, pp. 525–528, Sep. 2006.



14

Placido Mursia (S’18) received his B.Sc. degree in
"Telecommunication Engineering" from Politecnico
of Turin in 2015. He received the M.Sc. degree with
honors in 2018 in "Communications and Computer
Networks Engineering" and "Mobile Communica-
tions" in the context of a Double Degree pro-
gram between Politecnico of Turin and EURECOM
(Telecom ParisTech), respectively. He is currently
pursuing his Ph.D with Sorbonne University of
Paris, at the Communication systems department of
EURECOM. His research interests lie in convex

optimization, signal processing and wireless communication.

Vincenzo Sciancalepore (S’11–M’15–SM’19) re-
ceived his M.Sc. degree in Telecommunications En-
gineering and Telematics Engineering in 2011 and
2012, respectively, whereas in 2015, he received a
double Ph.D. degree. Currently, he is a senior 5G
researcher at NEC Laboratories Europe GmbH in
Heidelberg, focusing his activity on network virtu-
alization and network slicing challenges. He is cur-
rently involved in the IEEE Emerging Technologies
Committee leading the initiatives on SDN and NFV.
He was also the recipient of the national award for

the best Ph.D. thesis in the area of communication technologies (Wireless and
Networking) issued by GTTI in 2015.

Andres Garcia-Saavedra received the MSc and
PhD degrees from the University Carlos III of
Madrid (UC3M), in 2010 and 2013, respectively.
He then joined the Hamilton Institute, Ireland, as a
research fellow till the end of 2014 when he moved
to Trinity College Dublin (TCD). Since July 2015,
he is a senior researcher with NEC Laboratories
Europe. His research interests lie in the application
of fundamental mathematics to real-life communi-
cations systems and the design and prototype of
wireless systems and protocols.

Laura Cottatellucci (S’01–M’07) received the Mas-
ter’s degree from La Sapienza University, Rome,
Italy, the Ph.D. degree from the Technical University
of Vienna, Austria, in 2006, and the Habilitation
degree from the University of Nice-Sophia Antipolis,
France. From December 2017, she is Professor for
Digital Communications at the Institute of Digi-
tal Communications of Friedrich Alexander Univer-
sität (FAU) of Erlangen-Nürnberg (Germany). She
worked in Telecom Italia (1995–2000) as responsible
of industrial projects and as a Senior Research in

ftw Austria (Apr. 2000–Sep. 2005). She was a Research Fellow in INRIA,
France, (Oct.–Dec. 2005) and at the University of South Australia (2006). She
was Assistant Professor (Dec. 2006–Nov. 2017) and subsequently Adjunct
Professor (Mar. 2006–Aug. 2017) in EURECOM, France. Her research
interests lie in the field of communications theory and signal processing for
wireless communications, satellite and complex networks. She is an associate
editor for the IEEE TRANSACTIONS ON COMMUNICATIONS (since Sep.
2015) and the IEEE TRANSACTIONS ON SIGNAL PROCESSING (Feb
2016-2020). She is an elected member of the IEEE Technical Committee on
Signal Processing for Communications and Networking.

Xavier Costa-Pérez (M’06–SM’18) is Head of
Beyond 5G Networks R&D at NEC Laboratories
Europe, Scientific Director at the i2Cat R&D Center
and Research Professor at ICREA. His team con-
tributes to products roadmap evolution as well as to
European Commission R&D collaborative projects
and received several awards for successful technol-
ogy transfers. In addition, the team contributes to
related standardization bodies: 3GPP, ETSI NFV,
ETSI MEC and IETF. Xavier has been a 5GPPP
Technology Board member, served on the Program

Committee of several conferences (including IEEE Greencom, WCNC, and
INFOCOM), published at top research venues and holds several patents.
He also serves as Editor of IEEE Transactions on Mobile Computing and
Transactions on Communications journals. He received both his M.Sc. and
Ph.D. degrees in Telecommunications from the Polytechnic University of
Catalonia (UPC) in Barcelona and was the recipient of a national award for
his Ph.D. thesis.

David Gesbert (F’10) received the Ph.D. degree
from Ecole Nationale Superieure des Telecommuni-
cations, France, in 1997. From 1997 to 1999, he was
with the Information Systems Laboratory, Stanford
University. He was then a Founding Engineer of
Iospan Wireless Inc., a Stanford spinoff pioneering
MIMO-OFDM (now Intel). Before joining EURE-
COM in 2004, he was with the Department of Infor-
matics, University of Oslo, as an Adjunct Professor.
He is currently a Professor and the Head of the
Communication Systems Department, EURECOM.

He has published about 300 articles and 25 patents, some of them winning
the 2019 ICC Best Paper Award, the 2015 IEEE Best Tutorial Paper Award
(Communications Society), the 2012 SPS Signal Processing Magazine Best
Paper Award, the 2004 IEEE Best Tutorial Paper Award (Communications
Society), the 2005 Young Author Best Paper Award for Signal Processing
Society journals, and paper awards at conferences 2011 IEEE SPAWC and
2004 ACM MSWiM. He was the Technical Program Co-Chair of ICC2017.
He was named a Thomson-Reuters Highly Cited Researchers in Computer
Science. Since 2015, he has held the ERC Advanced grant PERFUME on the
topic of smart device communications in future wireless networks. He is a
Board Member of the OpenAirInterface (OAI) Software Alliance. Since 2019,
he has been heading the Huawei-funded Chair on Advanced Wireless Systems
Towards 6G Networks. He sits on the Advisory Board of the HUAWEI
European Research Institute. He held visiting professor positions in KTH
in 2014 and TU Munich in 2016. Since 2017, he has also been a visiting
Academic Master within the Program 111 with the Beijing University of Posts
and Telecommunications as well as a member of the Joint BUPT-EURECOM
Open5G Lab.


