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Abstract—The growing complexity of Systems-on-Chip chal-
lenges our ability to ensure their correct operation, on which
we rely for more and more sensitive activities. Many security
vulnerabilities appear in subtle and unexpected ways in the
interaction among blocks and across layers, where current
verification tools fail at catching them or do not scale. For this
reason, security evaluation still heavily relies on manual review.
Inspired by the Hack@DAC19 contest, we present our reflections
on this topic from a software and system security perspective.
We outline an approach that extends the dynamic analysis of
firmware to the hardware.

Index Terms—security evaluation, System-on-Chip, dynamic
analysis, HardFails

I. INTRODUCTION

One of the driving factors for the growth of the electronics
industry is its pervasiveness in other sectors. Embedded and
connected devices are largely present in physical systems, such
as cars and industrial plants, where they have a huge impact on
safety. In addition, more and more sensitive activities, such as
payments and voting, are carried out with digital equipment.

In this context, a major challenge is ensuring the correct
operation of an System-on-Chip (SoC) and its software, while
satisfying strict requirements in terms of functionality, cost,
and time to market. Abstraction and separation of layers,
in particular, hardware and software, are effective ways to
cope with complexity and make the design and verification of
such systems possible. However, many security vulnerabilities
originate precisely from unexpected interaction between layers
and components.

On the one side, traditional techniques fail at catching these
cross-layer problems, or do not scale to real-world designs.
On the other side, identifying novel methodologies is hard
because researchers often do not have enough access to all
the parts of the system. This is particularly true for proprietary
hardware micro-architectures. Hack@DAC is a security con-
test designed to overcome this problem and stimulate research
on the automation of security analysis. The contestants have to
find software-controllable hardware vulnerabilities in an open-
source design, in which the organizers have also injected real-
world security bugs.

Based on our experience at Hack@DAC19, in this paper
we present our thoughts on SoC security testing from the
point of view of software and system security. We first review
the typical goals as well as the constraints of a security
analysis (Section II). Then we describe our methodology,
as applied to the two rounds of the Hack@DAC19 contest
(Section III). Finally, we explore research opportunities to
reduce or eliminate manual aspects in SoC security analysis

and to benefit from synergies between the hardware and the
software testing communities (Section IV). We believe that
our background in software and system security gives us an
interesting perspective on the problem of hardware/software
co-design.

II. BACKGROUND

In this section, we describe the setup and the objectives of
the security evaluation before discussing our methodology in
the next section.

A. Security evaluation of SoCs and their firmware

The goal of any security evaluation is to establish a system’s
conformance to a specification of security properties.1 In the
context of SoCs, both hardware and software play an important
role.

Software typically abstracts from the low-level details of the
hardware it is running on. However, the validation of software
against functional and security specifications needs to violate
this abstraction for several reasons. First, an increasing number
of security features rely on the interaction with complex hard-
ware mechanisms, which cannot be blindly trusted. Even small
hardware bugs may undermine the security of the software
layers above. Second, embedded software is often intimately
connected with hardware components such as the peripherals,
and cannot be easily analyzed without taking this relation into
account.

On the hardware side, designers need to take software
concerns into account. While the traditional verification and
testing flow is mature and guarantees a high level of functional
correctness at the hardware level, conventional techniques
fail to capture the cross-component, cross-layer interactions
that may transform small hardware problems into catastrophic
security flaws.

Bugs in the blocks that compose the memory interconnect
are a typical scenario. For example, unprivileged code may
gain access to an encryption key if a secure register is
erroneously mapped to unprotected memory. Similar problems
can occur when address ranges overlap, or when a peripheral
with access to protected memory can be manipulated [1].

In this paper, we focus on a methodology that is targeted
at finding precisely those bugs that arise from cross-layer
interplay between software and hardware.

1In this paper, we use the terms security analysis and security evaluation
to refer to the general process of investigating the level of security of a
system, independently of the techniques and specifications used (e.g., formal
verification, simulation, FGPA emulation, validation, dynamic analysis).
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B. Analysis context

Security analysis may take place in different scenarios.
Literature on embedded software security tends to focus on
the black-box case, in which only the binary firmware (or
the source at best) and the silicon device are available, but the
internals of the hardware are unknown. On the other hand, chip
manufacturers have access to the RTL code of the hardware
design (provided that they do not use black-box IPs) but may
not know the software that will run on it. Vendors providing
integrated solutions have access to both firmware source code
and hardware internals.

Likewise, the security specification of the system under test
may or may not be available. Its level of detail can vary
greatly, and security properties may be expressed in a formal or
informal way. Ideally, system designers have access to models
of the system and its required properties at a high level of
abstraction. Finally, the goal of the analysis can vary from
finding individual violations of security properties (e.g., in an
adversarial context where a single vulnerability is sufficient
to compromise a system) to the quest of full validation, i.e.,
proving the absence of violations under all circumstances.

In this paper, we take the point of view of third party
security analysts who have access to an RTL description of
the hardware, C source code developed for it, and informal
specifications of the expected security properties. The goal of
the analysis is to find as many security issues as possible in
a limited amount of time, but the specification is not precise
enough (and the time is not sufficient) to allow for formal
verification. Hack@DAC provides an example of this setting
for public research, as we explain in the following.

C. SoC and firmware at Hack@DAC19

Hack@DAC is a security contest that simulates the task of
security analysts at a chip manufacturer under pressure to ship
the product. Participants have to find security vulnerabilities
in an SoC, with a focus on bugs that can be exploited from
software, called HardFails [1]. The 2019 edition was based on
Ariane, a 64-bit RISC-V processor that is able to boot Linux.
The design has been extended with additional features, such as
a password-protected JTAG debug port, an AES cryptographic
engine, a secure ROM with secure registers, a peripheral
to select encryption keys, and access control for mapped
memory. The contestants had access to the RTL Verilog code,
a toolchain and a testbench to simulate the execution of C pro-
grams, and a brief natural-language description of the security
features of the system. For the finals, the firmware with the
APIs to access the peripherals in the intended way was also
available. In addition to any vulnerabilities that may already
have been present in the system, the organizers injected several
real-world vulnerabilities “donated” by hardware vendors.

III. SECURITY EVALUATION METHODOLOGY

In the following, we give a detailed description of the
methodology we followed to to find bugs on the Hack@DAC
platform.

Tool C&RTL
support

Sufficiently
expressive

Analysis
Com-
plexity

Set-Up
Time

FPGA Y Y Low Long
Verilator Y Y Low Short
Model Checking Y Y High Long
Theorem Prover N N High Very Long
KLEE N Y High Short

TABLE I
NON-EXHAUSTIVE COMPARISON OF STATE-OF-THE-ART ANALYSIS

TECHNIQUES FOR SOC TESTING.

A. Requirements on tooling

The preliminary step of any security analysis consists in
choosing the right tools for the investigation. In the given
context, we formulated the following requirements:

1) Tools must support RTL, C and hand-written assembly
code (e.g., Ariane SoC boot ROM). The system under
test is composed of different blocks of hardware and
software that interact with each other. These interactions
are sometimes complex and may lead to security issues
that expose the entire SoC. The trigger conditions as-
sociated to these kinds of bugs require putting multiple
components of the system in a specific state, potentially
involving firmware and various hardware blocks. There-
fore, analysis tools need to support both RTL analysis
and firmware execution.

2) We need an easy way to express security properties.
Time constraints and the vague specification forbid
elaborate formulations of expected behavior in a formal
language.

3) Time is of the essence, so that we need to find bugs
quickly. Given a security property and the platform
under test, the tool should determine in a relatively
short time and with high confidence whether the prop-
erty holds. Due to time constraints, we cannot ask for
stronger guarantees.

4) For the same reason, we need tools that are fast to set
up. It is very difficult to estimate the efficiency of any
single tool on a given design and security specification.
Therefore, we chose to avoid tools that require a signif-
icant set-up time and rather allow for combinations of
several tools.

B. Available tools

With these goals in mind, we compared available tech-
niques; see Table I. It is important to remember that, due to
time pressure, our goal is to show the presence of security
violations, not to prove their absence. The latter is much
more difficult because it needs to exhaustively reason about all
possible states of the system. Discovering individual vulner-
abilities, in contrast, is less time-consuming as we only need
to find a single execution state in which a security property
is violated. The intuition is that by iterating the process we
approach a state that is indistinguishable from a fully validated
system.
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We quickly excluded theorem provers and model checking
for several reasons. Both techniques generally assume deep
knowledge of the system, require significant time to set up
and, most importantly, they make it hard to express correctness
properties over complex states, such as interactions between
multiple hardware blocks. Furthermore, model checking is
affected by the state-explosion problem, which we consider
a severe obstacle when reasoning about a system as complex
as an SoC in limited time.

We like to use software as a means of describing behavior at
a high level of abstraction, which makes it easier to test secu-
rity properties and push the system in a specific state: instead
of considering low-level interactions in the electronic circuits,
we focus on communication between logic blocks (e.g., AES
engine, DMA, access control system) and use custom firmware
to find cases where specific security properties fail. We settled
on a software-centric workflow built around quick experiments
with component interaction, driven by software.

C. Methodology

Our methodology for analyzing the security of an SoC
comprises three main steps:

1) Security properties. A common challenge for all analysis
techniques is the need to describe the desired security
properties. Ideally, testers receive a specification con-
taining a precise description of the security properties
that the implementation should respect. But in reality,
the specification is usually an ambiguous document mix-
ing functionality and security requirements. Therefore,
testers typically need to employ intuition, experience and
a good amount of skepticism in order to develop hy-
potheses of potential failures. This step requires studying
the literature, documentation, and the implementation
(RTL and firmware) to identify suspicious control or
data flows that could result in bugs. We complement this
manual work with static analysis (Verilator sanity checks
and symbolic execution of the firmware with predefined
sanity checks). However, while firmware analysis tools
can efficiently find memory corruption in firmware, they
encounter limitations when searching bugs related to
digital hardware components.

2) Writing a Proof of Concept (PoC). Once we have an
hypothesis on a potential violation of a security property,
we test this hypothesis in a two step process. First, a
block of C code drives the hardware to reach the specific
state that is assumed to be vulnerable. At this level of ab-
straction, it is easy to drive all hardware components as
needed. Then our program checks whether the security
property in question has indeed been violated. Again,
the higher level of abstraction in software tests lets us
conveniently express cross-component constraints.

3) Running the PoC on a dynamic analysis platform. To
evaluate our PoC against the system under test, we use
a cycle-accurate simulation of the RTL code with the
goal of executing C code on the Ariane SoC.

Fig. 1 illustrates the methodology. While this methodology
is by no means a way of guaranteeing the absence of bugs,
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Fig. 1. Overview of the security evaluation methodology based on dynamic
analysis. Manual work and human expertise from different fields are marked
in italic.

we believe that it mirrors the reality in many cases where full
verification is too costly to make sense economically.

D. Results from Hack@DAC19
We applied the presented methodology at the Hack@DAC19

competition and provide insights about the awarded scores
and achieved results in the following. The competition had
two different phases: the qualification (10 weeks) and the
final (3 days). The design for the qualification has 44975
lines of SystemVerilog code, while the design for the final
has 47282 lines of code. We participated as the academic
team NOPS and lead the qualification phase for the first 5
weeks, concluding second (240 points) after the team Hackin’
Aggies (300 points), and before the other 13 teams (less
than 200 points). During the finals, we achieved the first
place in the academic bracket with 330 points, just after the
academic/industrial team Hackin’ Aggies (465 points), and
before the other 11 teams (less than 290 points).

The 2018 edition presented similar classes of bugs on a
different platform. To the best of our knowledge, we found all
those that were based on similar problems. A detailed list of
the bugs can be found in [1], together with a description of the
techniques used to find them. The authors observe that classic
techniques often fail to capture cross-module cross-layer bugs,
and that formal properties are often hard if not impossible to
write, even when already knowing the bug. On the contrary,
our test vectors in software were often straightforward to write,
as this is a good layer to stress several blocks at the same time
and to bring the system in the desired overall state. In total,
we found 29 bugs not listed in [1] out of 32 reported bugs.

Not requiring neither complex tools nor a detailed knowl-
edge of the hardware design, our methodology was well suited
for a fast-paced competition, which mimics strict deadlines
typically encountered in industrial settings. Our focus on
system/software aspects was useful to find a variety of bugs
on system level (e.g., wrongly configured access permissions),
cryptographic engines (e.g., broken AES mode), and even
vulnerabilities in the included firmware (e.g., privilege esca-
lation via system calls). Given the structured approach of our
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methodology, we could quickly write test-vectors and create
bug reports and fixes. Our approach tends to abstract the core
(code execution) and focus on the peripherals (accesses to
memory mapped registers), therefore we missed most bugs
in the core.

IV. RESEARCH DIRECTIONS

Our approach to SoC security analysis centers around
formulating hypotheses of potential weaknesses and verifying
them with software. We believe that the use of software as
a means of high-level expression facilitates cross-component
and cross-layer evaluation, allowing us to try out different
attacks on the system in short iterations. Generating hardware
stimulus from from the software abstraction levels is efficient
to detect software-exploitable hardware vulnerabilities, at the
price of loosing granularity and level of control on specific
hardware blocks. Indeed, from software we do not have the
freedom to stimulate all the inputs of a block, but only those
that are exposed. On the other hand, software can easily drive
multiple interconnected blocks at the same time. Visibility is
instead preserved if using cycle-accurate simulation of the
RTL code. While this approach does not cover all types of
hardware bugs, it can be used by security experts without
deep knowledge of the design, to overcome the limitations
of conventional techniques [1]. However, the process still
requires significant amounts of manual work and a high degree
of security expertise. Moreover, the cycle-accurate simulation
of the full system is very slow and it limits the potential
application of more complex software-based approaches. In
this section, we discuss how future research could alleviate
some of the burden on the analyst and facilitate the execution
of the tests, in particular by combining established approaches
from the hardware-design community with ideas from software
security testing.

A. On abstraction

During a security analysis, especially when searching for
cross-component bugs, analysts attempt to regard the system
as a whole where components can be verified together. We
believe that flaws that affect the security of an SoC via cross-
component interaction can best be discovered when the system
is viewed from as abstract a perspective as possible, even
if the implementation error that introduced the vulnerability
is restricted to a single component: a block may function
correctly when tested individually while still compromising the
entire system’s security in the interplay with other components.

We therefore think that software is the right layer for
checking the security of the system as a whole. Software-based
tests should enhance, not replace, the tests at the hardware
layer that are already customarily performed during SoC
development. In the following, we illustrate approaches that
can potentially simplify software-based testing.

B. Generating tests

One task that currently requires manual effort is the creation
of test software. Analysts need to read the security specifi-
cation (if available), then often interpret it to obtain a more

precise formulation of the desired security properties. Only
then can they formulate hypotheses where the system may
fail to meet the requirements, and finally devise corresponding
test software. Note that, in the context of cross-component
vulnerabilities, the security specification should remain at the
high level of abstraction that includes all components of the
system. Refining it to the level of individual components
and their implementation is useful for component testing but
undesirable for the purpose of assessing the security of the
system as a whole.

In general, the more precise the specification of the expected
properties of the system, the easier it is to derive meaningful
tests from it. At the extreme, a machine-readable specification
could automatically be translated to test cases [2]. Less precise
descriptions leave room for interpretation and thus require
expert knowledge to be used in security testing.

Once an actionable formulation of the security properties is
available, it can be used to assess whether the implementation
meets the requirements. Manually designed test programs, as
used in our methodology, are only one option. In this context,
it is worth mentioning symbolic execution and fuzz testing [3],
both of which are popular approaches in software testing:
they check software by automatically exploring many possible
paths through a program. However, while it is relatively easy to
express security requirements in a software-only scenario, the
same is not true when possibly faulty hardware components
enter the picture [4]. We believe that a good specification could
be used to drive the analysis carried out by such tools, helping
with the difficulty of defining expected behavior. For example,
symbolic execution could explore various interactions with the
hardware, all the while checking that the security assertions
put forth by the specification hold true in each tested case ([5],
[6]).

C. Executing tests efficiently and effectively
Software-based tests have to be executed on some represen-

tation of the underlying hardware. Recent approaches for hard-
ware simulation face the difficulty of scaling to increasingly
complex designs [7]. In general, partitioning the system and
describing blocks at different layers of abstraction help to find
good trade-offs among execution speed, the ability to catch
low-level flaws, and simplicity of introspection and debugging.
Partitioning and abstraction of hardware has been especially
prominent in recent advances in dynamic binary firmware
analysis. In the following, we show how these concepts map
to the conventional hardware approach, and we discuss how
SoC analysis can benefit from them.

To manage complexity, the traditional design and validation
flow of electronic systems follows a top-down approach. Ab-
stract specifications are iteratively refined, gradually introduc-
ing partitioning into separate components and implementation
details [8]. At each iteration and layer, extensive validation
is performed to ensure the correctness of the implementation.
Partitioning allows testing a detailed component against blocks
described at higher levels of abstraction. At the end, the
components are integrated into a final product.

In contrast, many approaches developed for dynamic
firmware analysis take the point of view of a security expert



IEEE DESIGN & TEST 5

who analyses an already finalized commercial product, where
part of the system may be unknown to the analyst. As a result,
recent methodologies often use a bottom-up approach that
reintroduces partitioning and abstraction. In this context, the
CPU of an SoC is commonly emulated or completely replaced
by a more abstract virtual machine, and the executed code is
often translated into an intermediate representation at a desired
level of abstraction [9]. However, other parts of the SoC under
test (e.g., peripherals) are typically opaque to the analyst in
this scenario and thus cannot be emulated. To overcome this
issue, modern tooling allows either to specify models for the
behavior of unknown parts of the hardware [10], [11], or
deploys near real-time forwarding mechanisms between the
emulator and the real silicon for hardware accesses [12].

We believe that SoC testing and validation can greatly ben-
efit from these two approaches—abstracting hardware compo-
nents and selectively forwarding to real hardware while using
an emulator—as shown in [6]. Additionally, the capabilities of
existing tools (e.g., [11] or [12]) could be easily extended to
cooperate with peripherals or other blocks at the RTL level.
Such extended tools would then serve as a natural platform for
software-based security testing of SoCs. They were already
designed with a focus on security and include a number of
automated security checks (e.g., checks for memory corrup-
tions). Moreover, they allow for more automated exploration
techniques such as symbolic execution and fuzzing.

V. CONCLUSION

We have outlined how software-based tests are an effective
approach for the security evaluation of an SoC. The software
abstraction is very convenient, as it bridges the gap between
the high-level security properties of the system and the low-
level interactions across hardware components, as well as
the gap between system and software security and hardware
design and validation. Software-based approaches and tools
are well known to software experts, and they are generally
easy to set up starting from the final product, even without
in-depth knowledge of the underlying hardware and without
expensive simulation tools. Therefore, they could lower the
entry barrier for analyzing the hardware components of an
SoC, and facilitate the dissemination of knowledge across
research communities.

Future work could address the optimization of software-
based methods to the hardware case, in particular regarding
test generation and automated design exploration, but also with
the goal of efficient execution. Software security tools often
take into account that analysts may not have full access to
the design, as the hardware platforms running the software
to be tested are often proprietary. However, these tools could
greatly benefit from the availability of RTL code and models
of the hardware components. The security and hardware
communities could work together to create more and more
accessible SoC platforms with representative vulnerabilities,
to lower the barrier for developing new approaches and tools.
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