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Tomi Kinnunen, Member, IEEE, Héctor Delgado, Member, IEEE, Nicholas Evans Member, IEEE,
Kong Aik Lee, Senior Member, IEEE, Ville Vestman, Andreas Nautsch, Member, IEEE,

Massimiliano Todisco, Member, IEEE, Xin Wang, Member, IEEE, Md Sahidullah Member, IEEE,
Junichi Yamagishi, Senior Member, IEEE, and Douglas A. Reynolds, Fellow, IEEE,

Abstract—Recent years have seen growing efforts to develop
spoofing countermeasures (CMs) to protect automatic speaker
verification (ASV) systems from being deceived by manipulated
or artificial inputs. The reliability of spoofing CMs is typically
gauged using the equal error rate (EER) metric. The primitive
EER fails to reflect application requirements and the impact of
spoofing and CMs upon ASV and its use as a primary metric in
traditional ASV research has long been abandoned in favour
of risk-based approaches to assessment. This paper presents
several new extensions to the tandem detection cost function
(t-DCF), a recent risk-based approach to assess the reliability
of spoofing CMs deployed in tandem with an ASV system.
Extensions include a simplified version of the t-DCF with fewer
parameters, an analysis of a special case for a fixed ASV system,
simulations which give original insights into its interpretation
and new analyses using the ASVspoof 2019 database. It is hoped
that adoption of the t-DCF for the CM assessment will help to
foster closer collaboration between the anti-spoofing and ASV
research communities.

Index Terms—automatic speaker verification, spoofing counter-
measures, presentation attack detection, detection cost function.

I. INTRODUCTION

B INARY classifiers (or detectors) are prone to two differ-
ent types of errors, misses and false alarms. For biometric

recognition systems such as automatic speaker verification
(ASV) used for authentication, miss and false alarm rates
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Fig. 1. A tandem system consisting of automatic speaker verification (ASV)
and spoofing countermeasure (CM) modules is evaluated using three types of
trials: targets, nontargets and spoofing attacks. Tandem detection cost function
(t-DCF) is the average cost of erroneous decisions by the tandem system.

are proxies for user convenience and security, respectively.
User convenience and security are competing requirements.
The compromise between them will depend upon the appli-
cation; whereas an online banking application might call for
high security, user convenience might be key to a successful
smarthome application. The approach to assessment must
hence reflect application considerations. One such approach to
assessment, used for the standard ASV evaluation benchmarks
run by the National Institute of Standards and Technology
(NIST) in the US since 1996 [1], is the detection cost
function (DCF) [2].

The DCF reflects the cost of decisions in a Bayes risk
sense [3], [4] and was designed for the assessment of ASV
systems with a protocol involving a mix of target and non-
target trials. The latter are casual impostors who make no
effort to fool the ASV system. This paper concerns the assess-
ment of ASV systems in the face of fake, falsified or spoofed
inputs, also referred to as presentation attacks [5]. These are
specially crafted inputs that are used by a fraudster to deceive
an ASV system and hence to provoke false alarms. Just like
all other biometrics systems, ASV systems can be vulnerable
to spoofing [6]. The usual means to defend against such
attacks involves the coupling of ASV systems with spoofing
countermeasures (CMs) [7], namely sub-systems designed
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to distinguish not between target and non-target trials, but
between genuine, human or bona fide speech and artificially
generated or manipulated inputs.

Since 2013, research in anti-spoofing for ASV has been
spearheaded through the community-led ASVspoof initiative.
It has produced three, well-supported competitive challenges.
The first two editions held in 2015 and 2017 used an equal
error rate (EER) metric to assess the performance of isolated
spoofing CMs. Just like ASV systems, CMs are binary classi-
fiers and; they make two types of errors that also have different
consequences, depending on the application. The approach
to assessment should hence reflect differences in the cost of
each type of error. Furthermore, CMs are always used in
combination with ASV. Previous work has shown the potential
to combine the action of ASV and CM systems in the form
of a single, integrated system [8], by the back-end fusion of
independently trained ASV and CM systems [9], [10], or via
the tandem detection framework illustrated in Fig. 1. Each
approach shares the common goal of protecting ASV systems
from being deceived by spoofed inputs. Since CMs are never
used alone, the use of EER to assess the performance of
spoofing CMs is hence questionable. We need better approches
to assess CM performance, specifically approaches which
reflect application requirements.

In order to preserve trust, ASV systems used for authenti-
cation in sensitive applications should have the capacity to de-
fend against spoofing. In this sense, research in ASV and anti-
spoofing is inextricably intertwined. Unfortunately, though,
the two communities are today somewhat disjointed. One
explanation for this situation might stem from the disparity
between the metrics used in each field. It is difficult to argue,
though, that the two communities should not work together, for
they share the same goal to develop ever-more reliable ASV
technology. In trying to foster closer collaboration, the work
presented in this paper explores how the infrastructure and
metrics developed for the assessment of ASV can be adopted
for the joint assessment of ASV and spoofing CMs. It presents
the tandem detection cost function (t-DCF) approach to assess
the performance of tandem CM and ASV systems of the form
illustrated in Fig. 1.

A preliminary version of this work was presented in [11].
The current work extends it in a number of respects. First,
we revisit the t-DCF considering a reduced set of five evalu-
ation parameters (rather than seven). Second, in contrast to
the unconstrained t-DCF formulation for which both ASV
and CM system thresholds can be varied, we present the
ASV-constrained t-DCF which shows how a CM should be
optimised for a given, fixed ASV system with known miss,
false alarm and spoof false alarm (SFAR) rates. Third, we
present a numerical simulation of the t-DCF which sheds
light upon its behaviour and helps to interpret results. Fourth,
whereas [11] presented results for ASVspoof 2015 and 2017
datasets, the current work presents new results and analysis for
the most recent ASVspoof 2019 datasets. Finally, the paper
contains several new clarifications and further examples not
presented in [11]. The material is intended as a self-contained
and accessible introduction for both experts and non-experts.
While the paper relates to ASV, it should be of interest to the

broader biometrics community, where work in anti-spoofing
evaluation remains characterised by the use of ad-hoc bases
rather than an application-targeted metric.

II. THE TWO SYSTEMS AND THEIR TANDEM COMBINATION

Both automatic speaker verification (ASV) and spoofing
countermeasure (CM) systems are binary classifiers. An ASV
trial consists of an enrollment-test utterance pair (Xe,Xt)
where Xe is collected at the enrollment stage and Xt at
the verification stage. A pair (Xe,Xt) with matched speaker
identities is known as a target trial, otherwise as a non-target
trial. The ASV system propositions (hypotheses) are hence
given by:{

Hasv
0 (target hypothesis) : id(Xe) = id(Xt)

Hasv
1 (nontarget hypothesis) : id(Xe) 6= id(Xt),

where id(X ) ∈ N = {1, 2, . . . } is the unique speaker identity
(a categorical variable) of utterance X . The ASV system can
encounter spoofed trials too. It is because the ASV system is
assumed to have limited (or no) capacity to reject spoofs that
dedicated CMs are needed.

The CM operates only upon the test utterance Xt and aims
to verify its authenticity. If it corresponds to genuine speech
produced by a human speaker, then the test upon Xt performed
by the CM is referred to as a bona fide trial. If it corresponds
to non-genuine, manipulated or synthesized speech, then it is
referred to as a spoof trial. The CM propositions are hence
given by:{

Hcm
0 (bona fide hypothesis) : Xt is bona fide speech

Hcm
1 (spoof hypothesis) : Xt is spoofing attack.

The CM system is designed to distinguish bona fide from
spoof trials. In the same way that the ASV system has limited
capacity to reject spoofing attacks, the CM is assumed to have
limited capacity to distinguish target from nontarget trials; both
are bona fide. The ASV and CM systems play complementary
roles and both are needed to ensure spoofing-robust ASV.

We define the tandem system as a cascade of CM and
ASV systems, as illustrated in Fig. 1. The CM acts as a
gate which aims to prevent spoofing attacks from reaching the
ASV system. Conventional ASV systems can also be regarded
as tandem systems with a dummy ‘accept all’ CM [11].
Accordingly, the work presented applies also to the analysis
of conventional ASV systems. Internally the tandem system
consists of two subsystems that act together (and whose errors
combine). To end users the tandem system acts as a single
ASV system that either accepts or rejects their identity claim;
the tandem system should therefore be viewed as a spoofing-
robust ASV system with a CM ‘under the hood’. The tandem
system can encounter three different types of trials: (i) target,
(ii) nontarget and (iii) spoof. It should accept only the target
trials. Both nontarget and spoof trials should be rejected.

III. TANDEM DETECTION COST FUNCTION

The tandem detection cost function (t-DCF) [11] metric
reflects the performance of a combined ASV and CM system
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TABLE I
THE INGREDIENTS OF T-DCF. THE SYSTEM ILLUSTRATED IN FIG. 1 CAN FACE THREE TYPES OF TRIALS (FIRST COLUMN): target, nontarget AND spoof,

EACH WITH SOME ASSERTED PRIOR (SECOND COLUMN). THE SYSTEM EITHER REJECTS OR ACCEPTS THE TRIAL BY TAKING A TANDEM ACTION (THIRD
COLUMN), WITH NONNEGATIVE DETECTION COSTS (FOURTH COLUMN) ASSIGNED TO EACH ERROR (0: NO LOSS). DETECTION ERROR RATE OF THE

TANDEM SYSTEM (LAST COLUMN) IS OBTAINED BY TREATING THE CM AND ASV SYSTEM DECISIONS INDEPENDENT. THE T-DCF METRIC IS OBTAINED
BY MULTIPLYING THE PRIOR (how often we expect to observe this class?), COST (if this error happens, how much does it cost?) AND THE ERROR RATE

(how many errors were actually observed?) OF EACH ROW AND SUMMING UP THE TERMS.

Actual class Class prior Tandem action = (CM action, ASV action) Detection Cost Detection error rate

Target πtar

α1 = REJECT = (CM ACCEPT,ASV REJECT) Cmiss (1− P cm
miss(τcm))× P asv

miss(τasv)
α2 = ACCEPT = (CM ACCEPT,ASV ACCEPT) 0 –
α3 = REJECT = (CM REJECT) Cmiss P cm

miss(τcm)

Nontarget πnon

α1 = REJECT = (CM ACCEPT,ASV REJECT) 0 –
α2 = ACCEPT = (CM ACCEPT,ASV ACCEPT) Cfa (1− P cm

miss(τcm))× P asv
fa (τasv)

α3 = REJECT = (CM REJECT) 0 –

Spoof πspoof

α1 = REJECT = (CM ACCEPT,ASV REJECT) 0 –
α2 = ACCEPT = (CM ACCEPT,ASV ACCEPT) Cfa,spoof P cm

fa (τcm)× P asv
fa,spoof(τasv)

α3 = REJECT = (CM REJECT) 0 –

ACCEPTREJECT

(a) Automatic speaker verification (ASV).

ACCEPTREJECT

(b) Spoofing countermeasure (CM).

Fig. 2. The ASV and CM score density functions pR(r) and pQ(q), respectively. Fixing the detection thresholds of ASV (τasv) and CM (τcm) yields five
different types of error rates: miss and false alarm rates of each system and spoof false alarm rate of the ASV system. The error rates of ASV and CM are
multiplied to form tandem error rates (see Table I).

for an assumed operating environment (application). Unlike
the EER, the t-DCF is a parametric function which requires
the specification of application parameters in advance.

A. Detection Costs and Priors (the Application)

Consider a hypothetical ‘banking’ scenario in which cus-
tomer authentication is controlled using voice biometrics.
Access should be restricted to target users (account owners),
while nontarget (zero-effort impostor) and spoofed (dedicated
impostor) access attempts should always be denied; the system
should be secure. Access by customers should always be
granted and never denied; they should not be inconvenienced.
The competing requirements for security and convenience
cannot both be satisfied, leading to the potential for detection
errors. To each error is associated a monetary loss (e.g. loss
of funds to fraud, or loss of customers to inconvenience).

In seeking to minimise its costs, the bank will assign a
higher penalty to the more costly errors. This is formalized
through the specification of detection costs, C(α|θ) ≥ 0,
interpreted as the penalty of taking action α (making a
decision for a given test trial) when the actual class is θ
[3], [4]. Correct decisions are assigned a cost of 0 while
erroneous decisions are assigned a positive numerical value,

which signifies the monetary loss to the bank incurred as a
result of each type of detection error.

By denoting the class variable by θ ∈ Θ ≡ {θtar, θnon, θspoof}
and the action by α ∈ A ≡ {ACCEPT,REJECT}, we define
the following three detection costs:
• Cmiss ≡ C(REJECT|θtar) – cost of rejecting a target trial;
• Cfa ≡ C(ACCEPT|θnon) – cost of accepting a nontarget

trial;
• Cfa,spoof ≡ C(ACCEPT|θspoof) – cost of accepting a

spoofed trial,
where the first two correspond to the familiar notations used
in NIST speaker recognition evaluation (SRE) campaigns [1],
[2]. The third cost is specific to the new class of spoofing
attacks. It is stressed that actions are those of the tandem
system. This is different to [11] where costs are specified per
subsystem, but error rates are those of the tandem system.

The first type of tandem error occurs when either the CM
or ASV system rejects a target; the second case occurs when
both systems accept a nontarget; the last case occurs when
both systems accept a spoofing attack. As displayed in Table
I, these four cases cover all the possible errors. The remaining
five cases lead to correct tandem decisions and are therefore
assigned zero cost. Note the curious cases of nontargets being
rejected by the CM system (6th row), and spoofing attacks
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rejected by the ASV system (7th row). These trials are rejected
by the ‘wrong’ subsystem but neither incurs loss as the tandem
action is correct.

In addition to assigning detection costs for each type of
error, one must also take into account the relative occurences
of the three classes (target, nontarget, spoof). A relatively ex-
pensive error that occurs only infrequently may cost less than
a relatively inexpensive error that occurs more frequently. For
instance, if the bank expects 99% of authentication requests
to originate from bona fide account holders, then the expected
monetary loss incurred from bona fide customers (target trials)
being denied access to their accounts may override the costs
incurred from access being granted erroneously to fraudsters
(zero-effort or spoofed trials), who account for only 1% of
authentication requests. The assumed commonality of each
trial class is encoded in their prior probabilities:
• πtar ≡ PΘ(θtar) – prior probability of target;
• πnon ≡ PΘ(θnon) – prior probability of nontarget;
• πspoof ≡ PΘ(θspoof) – prior probability of spoofing attack,

where PΘ(θ) is a shorthand for PΘ(Θ = θ), Θ and θ being a
random variable and its realization, respectively.

The priors are nonnegative and sum to unity (therefore,
fixing any two priors automatically defines the third). The prior
is subjective — it asserts the belief of the relative frequency
of each trial class during the operation of a spoofing-robust
ASV (with the actual, empirical class frequencies remaining
unknown). The priors of the cost function do not have to (and
typically do not) correspond to the empirical trial frequencies
in training or evaluation corpora. The costs and priors are set
in advance and they remain fixed within a given evaluation
or application setting; they might be very different for, e.g.,
banking, forensics or surveillance applications. The set of
evaluation metric parameters are hence given by Ψt-DCF ≡
(πtar, πspoof, Cmiss, Cfa, Cfa,spoof), where the nontarget prior is
omitted and obtained from πnon = 1− πtar − πspoof.

B. Detection Error Rates of ASV and CM
Let r = ASV(Xe,Xt) and q = CM(Xt) denote ASV and

CM scores1, treated here as realizations of random variables
that admit continuous probability density functions pR(r) and
pQ(q). That is, pR(r) ≥ 0,

∫∞
−∞ pR(r) dr = 1 (similarly for

pQ(q)). The testing of the ASV system with all three types
of trials leads to detection scores drawn from the respective
class-conditional distributions:

pR(r|θtar) ASV target score distribution;

pR(r|θnon) ASV nontarget score distribution;

pR(r|θspoof) ASV spoof score distribution.

(1)

Likewise, testing of the CM with trials of bona fide and spoof
classes leads to detection scores drawn from the conditional
distributions

pQ(q|θbona) CM bona fide score distribution;

pQ(q|θspoof) CM spoof score distribution,
(2)

1Here ASV(·, ·) and CM(·) denote the two system operations as ‘black-
boxes’ that gives us the detection scores. Usually r and q are the logarithm
of the likelihood ratio (LLR) of the respective null and alternative hypothesis
likelihoods obtained from a parametric model (though the proposed metric
does not require a LLR interpretation of scores).

where we introduced θbona as a realization of a new random
variable Θbona ≡ {θtar} ∪ {θnon} ⊂ Θ, a container of any
non-spoof trials (whether target or nontarget). To obtain the
distribution of the bona fide scores, consider the joint dis-
tribution of Q and Θbona, P (q, θbona) = P (θbona)p(q|θbona),
obtained using the product rule [12, Eq. (1.11)] (subscripts
omitted for brevity). By treating Θbona as a latent variable,
the bona fide score distribution is obtained by marginalizing
the class variable out, using the sum rule [12, Eq. (1.10)]:

pQ(q|θbona) =
∑

θ∈Θbona

P (q, θ) =
∑

θ∈Θbona

PΘbona(θ)pQ(q|θ)

= PΘbona(θtar)pQ(q|θtar) + PΘbona(θnon)pQ(q|θnon)

= π̃tarpQ(q|θtar) + (1− π̃tar)pQ(q|θnon),
(3)

which is a two-component mixture distribution where π̃tar ≡
PΘbona(θtar) is the relative proportion of target trials within the
bona fide class (known by the corpus designer, but not neces-
sarily by the evaluee)2. While (3) represents the general form
of the bona fide score distribution, the target and nontarget
score distributions are typically highly overlapped, as speaker-
independent CMs are usually not designed to discriminate
between them. In the limiting case when the two become
indistinguishable, i.e. pQ(q|θtar) = pQ(q|θnon), (3) collapses
either to the target or nontarget distribution, making bona fide
an unnecessary relabeling of the original class labels.

As illustrated in Fig. 2, ASV and CM systems convert de-
tection scores r and q into hard binary decisions by comparing
their values to preset detection thresholds denoted by τasv and
τcm, respectively. The ASV system takes an ACCEPT action
if and only if r > τasv (otherwise REJECT) whereas the CM
takes an ACCEPT action if and only if q > τcm (otherwise
REJECT). Score distributions in (1) and (2) combined with
fixed decision thresholds τasv and τcm yield a set of five error
rates illustrated in Fig. 2:

P asv
miss(τasv) =

∫ τasv

−∞
pR(r|θtar) dr ASV miss rate;

P asv
fa (τasv) =

∫ ∞
τasv

pR(r|θnon) dr ASV false alarm rate;

P asv
fa,spoof(τasv) ≡

∫ ∞
τasv

pR(r|θspoof) dr ASV spoof false alarm rate;

P cm
miss(τcm) =

∫ τcm

−∞
pQ(q|θbona) dq CM miss rate;

P cm
fa (τcm) =

∫ ∞
τcm

pQ(q|θspoof) dq CM false alarm rate.

(4)
The first and last two components are the usual miss and false
alarm rates of each system, while the third defines the spoof
false alarm rate (SFAR) of the ASV system as the proportion
of spoofing attacks accepted by the ASV system3.

2Again, this is not necessarily the same as the proportion dictated by the
t-DCF priors, i.e. πtar/(πtar + πnon).

3Here spoofs are treated as the negative class (similar to nontargets) but this
convention is actually arbitrary; as we did in [11], they could also be defined
as a positive class (similar to targets) leading to an equivalent definition of
SFAR as the probability of ‘ASV does NOT miss a spoof’.
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Since the probability density functions are unknown, practi-
cal computations must be performed using empirical detection
scores ri ∼ pR(r) and qj ∼ pQ(q), where i and j index ASV
and CM trials respectively. Assuming that the scores produced
by each system are independent and identically distributed
(i.i.d.) draws from the respective distribution, integrals in (4)
may be replaced by summations, illustrated here for the ASV
miss rate:

P asv
miss(τasv) = Er∼pR(r|θtar) [I(r < τasv)] ≈ 1

Ntar

∑
i∈Λtar

I(ri < τasv),

(5)
where Ez∼pZ(z) [f(z)] denotes the expected value of function
f(z) w.r.t. distribution pZ(z), I(·) is an indicator function that
equals 1 for a true proposition and 0 otherwise, Λtar indices
the target trials, and Ntar = |Λtar| denotes the total number of
target trials. The other four error rates are computed similarly.
The CM miss rate is computed by pooling CM target and
nontarget scores, as both score sets are viewed as samples
from the same bona fide score distribution (3).

C. The t-DCF and Its Relation to the NIST DCF
The t-DCF is a measure of the expected (average) cost of all

errors made by a tandem system. The following treatment as-
sumes the cascaded setup illustrated in Fig. 1. There are three
possible actions (tandem decisions), αi ∈ A = {α1, α2, α3}:

α1 = (CM ACCEPT , ASV REJECT)

α2 = (CM ACCEPT , ASV ACCEPT)

α3 = (CM REJECT),

(6)

where the last case indicates rejection of a trial at the CM
stage. In this case, the ASV action is null or undefined
(referred to in [11] as a dummy SLEEP action). As Table I
indicates, five of the nine possible (ground truth, action)
combinations lead to correct tandem decisions. The remaining
four terms all constitute errors:
(a) (α1, θtar): the CM does not miss a bona fide trial, but the

ASV system misses a target.

(b) (α2, θnon): the CM does not miss a bona fide trial, but
the ASV system falsely accepts a nontarget.

(c) (α2, θspoof): both CM and ASV systems falsely accept a
spoof.

(d) (α3, θtar): the CM misses a target, which is never pro-
cessed by the ASV system.

If CM and ASV error probabilities are assumed to be in-
dependent (discussed further in Subsection VIII-A), then the
probability of each of these four outcomes may be expressed
in terms of the error rates in (4) as follows:

Pa(τcm, τasv) = (1− P cm
miss(τcm))× P asv

miss(τasv)

Pb(τcm, τasv) = (1− P cm
miss(τcm))× P asv

fa (τasv)

Pc(τcm, τasv) = P cm
fa (τcm)× P asv

fa,spoof(τasv)

Pd(τcm, τasv) = P cm
miss(τcm).

(7)

Finally, the t-DCF is obtained by multiplying the class prior,
cost and error terms in each non-zero row (rows with nonzero
entry in the 4th column) of Table I and summing up the
resulting four terms:

Unconstrained t-DCF
t-DCF(τcm, τasv) =

Cmiss · πtar · [Pa(τcm, τasv) + Pd(τcm, τasv)]

+ Cfa · πnon · Pb(τcm, τasv)

+ Cfa,spoof · πspoof · Pc(τcm, τasv),

(8)

where the three lines correspond to target, nontarget and
spoof related errors, respectively. Eq. (8) is referred to as the
‘unconstrained’ t-DCF to distinguish this formulation from a
special case discussed shortly.

It is readily seen that the NIST DCF [2],

DCFNIST(τasv) ≡ CmissπtarP
asv
miss(τasv) +Cfa(1− πtar)P

asv
fa (τasv),

(9)
is a special case of the t-DCF by assuming (a) the use of
a dummy ‘accept all’ CM (τcm = −∞ ⇒ P cm

miss(τcm) =
0, P cm

fa (τcm) = 1) and (b) there are no spoofing attacks
(πspoof = 0). In this sense, the NIST DCF could be considered
as an optimistic t-DCF. Even if the NIST DCF has been
instrumental to developments in the ASV field, it may not
be well suited to operational environments where there is
potential for spoofing attacks.

D. ASV-Constrained t-DCF

In the unconstrained t-DCF (8) both CM and ASV are
adjustable, which can make evaluation of the tandem system
cumbersome. Here we explore the t-DCF from the perspective
of a CM developer who cannot interact with the ASV system
(or has no capacity to develop one). The ASVspoof 2019
challenge is representative of such a scenario. The evaluee
focuses instead on a special case, ASV-constrained t-DCF,
where the only information known about the ASV system
(a black-box) are the three error rates P asv

miss ≡ P asv
miss(τasv),

P asv
fa ≡ P asv

fa (τasv) and P asv
miss,spoof ≡ P asv

miss,spoof(τasv) provided
by another party (e.g., ASV vendor or challenge organizer).

As the main difference between the two t-DCF variants
is whether we can adjust the ASV threshold or not, we
use the overloaded notation t-DCF(τcm) to indicate the ASV-
constrained t-DCF. With straightforward manipulation, the t-
DCF expression of (8) can then be rewritten as:

ASV-constrained t-DCF

t-DCF(τcm) = C0 + C1P
cm
miss(τcm) + C2P

cm
fa (τcm), (10)

where C0, C1, and C2 are constants dictated both by the t-DCF
parameters and the ASV error rates. They are given by:

C0 = πtarCmissP
asv
miss + πnonCfaP

asv
fa

C1 = πtarCmiss − (πtarCmissP
asv
miss + πnonCfaP

asv
fa )

C2 = πspoofCfa,spoofP
asv
fa,spoof.

(11)

We present an analysis of these coefficients in detail below.
First, however, we explain the necessity to normalize the raw t-
DCF values (whether unconstrained or ASV-constrained case).
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IV. NORMALIZED AND MINIMUM T-DCF

Both the individual (4) and the tandem (7) error rates take
values in [0, 1]. This is not the case for the t-DCF in (8),
however, which is a linear combination of the tandem errors
formed by non-negative but otherwise unconstrained multipli-
ers (the products of costs and priors). The ‘raw’ t-DCF values
can hence be difficult to interpret, especially across different t-
DCF parametrizations. Normalization is performed differently
depending on whether one focuses on the unconstrained case
(both CM and ASV systems are adjustable) or the ASV-
constrained case (only the CM system is adjustable). Let us
first focus on the unconstrained case.

A. Normalizing the Unconstrained t-DCF

Following the practice adopted in the NIST SREs [1], [2],
it is preferable to report the normalized t-DCF given by:

t-DCF′(τcm, τasv) =
t-DCF(τcm, τasv)

t-DCFunconstr
default

, (12)

where t-DCF′ denotes the normalized cost and t-DCFunconstr
default >

0 is the t-DCF of a default (reference) system that yields a
fixed decision regardless of input data. The default system
either accepts every user, or rejects every user. As an intuitive
analogy, the reader may picture a door lock that will either
open with any key (inluding that of a burglar), or with no
key in the world (including the owner’s key). Any useful lock
should do better work than either one of these two default
options.

In a similar vein, any useful tandem system should yield a
lower cost than that of both ‘accept all’ and ‘reject all’ default
systems. The former corresponds to action α2 in (6). When
both thresholds are set to −∞, the two miss rates P asv

miss(τasv)
and P cm

miss(τcm), and hence also Pa(τcm, τasv) and Pd(τcm, τasv)
in (7) all reduce to zero. Pb(τcm, τasv) and Pc(τcm, τasv) reduce
to one, giving:

t-DCFα2
= t-DCF(−∞,−∞)

= Cfa · πnon + Cfa,spoof · πspoof,
(13)

in which there are no target speaker parameters (as there are
no misses). In similar fashion and depending on whether each
trial is rejected by the ASV system (action α1) or by the CM
(action α3), the ‘reject all’ default systems are given by:

t-DCFα1
= t-DCF(−∞,∞) = Cmiss · πtar

t-DCFα3
= t-DCF(∞, τasv) = Cmiss · πtar, ∀ τasv ∈ R

(14)

which contains neither nontarget nor spoof terms (both types
of trials are correctly rejected). The equality t-DCFα1

=
t-DCFα3

, in turn, reinforces the idea that it does not matter
whether it was the CM or the ASV which rejected the target
— it was rejected, and in both cases the user experiences the
same inconvenience.

A useful tandem system should have lower t-DCF than both
of the dummy systems (13) and (14). That is, it should yield

TABLE II
SUMMARY OF T-DCF VARIANTS AND THEIR NORMALIZATIONS.
NORMALIZED T-DCF VALUE LARGER THAN 1 INDICATES BADLY

CALIBRATED SYSTEMS.

Type of t-DCF Raw form Normalized form Min. value
Unconstrained (8) (8)/(15) 0

ASV-constrained (10) (10)/(18) C0

-20 0 20
-30

-20
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20
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0.4
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1
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Fig. 3. Illustration of unconstrained (left) and ASV-constrained t-DCFs (right)
using simulated ASV and CM scores. The former involves both thresholds,
while the latter considers ‘slices’ defined by a fixed ASV operating point.
Both variants are displayed in their normalized forms (See Table II). The
isocontour of t-DCF′ = 1 is highlighted in each case.

a cost lower than their minimum. The default system is hence
chosen according to:

t-DCFunconstr
default = min {t-DCFα1

, t-DCFα2
, t-DCFα3

}
= min {t-DCFα1

, t-DCFα2
}

= min {Cfa · πnon + Cfa,spoof · πspoof, Cmiss · πtar},
(15)

where the second line follows from (14). Note, however, that
the normalized t-DCF obtained by dividing (8) by (15) is
not an upper bound. With poorly set detection thresholds
(alternatively, using Bayes-optimal thresholds but with badly
calibrated scores [13]), the normalized cost can exceed 1; it
can be higher than that of the default system. Such systems
are said to be badly-calibrated.

An optimally calibrated system provides another useful
reference. This minimum t-DCF is defined as the minimum
cost over all thresholds (tcm, tasv) ∈ R2,

t-DCFmin = inf
(tcm,tasv)

t-DCF(tcm, tasv), (16)

where the infimum (greatest lower bound) is replaced by
min for finite score sets. By definition, t-DCF(τcm, τasv) ≥
t-DCFmin for any choice of the thresholds (including those of
the ‘default’ tandem system). Thus, the normalized minimum
cost t-DCF′min, is upper bounded by unity:

t-DCF′min =
t-DCFmin

t-DCFdefault
≤ t-DCFmin

t-DCFmin
= 1, (17)

making it a convenient number between 0 and 1. Like the
EER metric, the minimum t-DCF uses an oracle threshold
determined with use of ground-truth labels (trial key).
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B. Normalizing the ASV-Constrained t-DCF

A normalised version of the ASV-constrained t-DCF,
t-DCF(τcm)′ = t-DCF(τcm)/t-DCFconstr

default, can similarly be de-
fined by selecting an appropriate default cost t-DCFconstr

default > 0.
Since the ASV system is now fixed, the default cost is obtained
by adjusting the CM threshold only, with either τcm = −∞
(accept all) or τcm = +∞ (reject all) in (10), giving:

t-DCFconstr
default = min{C0 + C1, C0 + C2}

= C0 + min{C1, C2}.
(18)

C. A Summary of the Two t-DCF Variants

A summary of the two different t-DCF versions discussed
above is given in Table II. For the unconstrained case, cost
scaling is specified by the t-DCF parameters only. For the
ASV-constrained case, it is also dependent on the known, fixed
ASV error rates. In both cases, however, normalized costs
larger than 1 indicate that the system under consideration can-
not do better than ‘no system’. The ‘system’ differs between
the two cases: for the unconstrained case, it is the (CM, ASV)
tandem; for the ASV-constrained case, it is the CM only.

Both t-DCF variants are illustrated in Fig. 3 for simulated
scores (see Appendix) with P asv

e = 0.01 (ASV EER=1%),
P cm

e = 0.02 (CM EER=2%) and ξ = 0.85 (a parameter defined
in Eq. (24) to model efficacy of spoofing attacks. The arbitrary
value 0.85 used here is a proxy of highly effective spoofing
attack, see Fig. 9). The t-DCF parameters are set as described
in Section VI (with πspoof = 0.05). Even in this idealized
simulation, the resulting unconstrained t-DCF has a relatively
complicated shape. We observe a valley near the origin (0, 0)
in the left panel of Fig. 3. Moving away from this ‘sweet
spot’ yields increased costs. Whenever either threshold is too
high/low, we approach the ‘accept all’ or ‘reject all’ cases
which are generally suboptimal.

Focusing on the ASV-conditional case and comparing the
t-DCF values across five arbitrary ASV operating points
indicated in Fig. 3, the lowest min t-DCF is obtained for
τasv = 0.00 (which coincides with the EER operating point in
our simulation). We also observe that (a) the t-DCF function
flattens with increasing τasv, and (b) it reaches the value of 1 at
one of the infinities (here, at τcm = −∞). These two properties
hold for any ASV and CM system, and will be elaborated on
below.

V. ANALYSIS OF THE ASV-CONSTRAINED T-DCF

We now provide some intepretation of the coefficients in
(11). First, the offset C0 ≥ 0 is dubbed the ASV floor as it
lower bounds (10) and vanishes only for a perfect ASV system
(P asv

miss = P asv
fa = 0). Note that, even though C0 resembles the

NIST DCF (9), they are not the same; unlike for the NIST
DCF, πtar + πnon 6= 1 since some probability mass is assigned
to πspoof. C1 and C2 reflect the relative importance of the CM
miss and false alarm rates in (10).

The coefficients in (11) may seem complicated. Some
insight into their influence on the t-DCF can be gained by
setting the ASV system to the EER operating point so that
P asv

miss = P asv
fa ≡ P asv

e , where P asv
e indicates the EER of the

ASV system. The choice of EER operating point may look
arbitrary as it contradicts the t-DCF parameter specifications.
Nonetheless, the EER serves as tight upper bound on the
binary classifier Bayes error-rate [14, p.72]. By fixing the ASV
system to the EER operating point, we mimic a miscalibrated
ASV system which operates with the worst possible target-
nontarget discrimination performance.

The coefficients in (11) can now be rewritten as functions
of either the EER or the SFAR of the ASV system:

C0(P asv
e ) = αP asv

e

C1(P asv
e ) = β − αP asv

e

C2(P asv
fa,spoof) = γP asv

fa,spoof,

(19)

where α = πtarCmiss + πnonCfa, β = πtarCmiss, and γ =
πspoofCfa,spoof are constants. By substituting (19) to (10) we
obtain:

t-DCF(τcm) = αP asv
e + (β − αP asv

e )P cm
miss(τcm)

+γP asv
fa,spoofP

cm
fa (τcm).

(20)

The influence upon the t-DCF, or weight of CM misses (C1)
is a function of the ASV system accuracy (encoded in P asv

e ).
The weight of CM false alarms (C2) is a function of the ASV
system sensitivity to spoofing attacks (encoded in P asv

fa,spoof).
Once the evaluation conditions and the performance of the
unprotected ASV system in the same conditions is known, then
the CM may be optimised using the t-DCF metric (20) tailored
to the specific ASV system and evaluation conditions. Here we
are not concerned how such optimization (involving generally
non-differentiable functions due to hard error counting) should
be performed — we are merely stating the objective.

Another way to analyze C0, C1 and C2 is directly in terms
of the ASV threshold. This is visualized in Fig. 4 both for
simulated, Gaussian-distributed ASV scores (see Appendix)
and real x-vector based ASV scores (see Section VI). The data
used for drawing the graphs in the two panels are unrelated;
the resemblance of simulated and real functions is indicative
of their general shape. Also illustrated are the limits of each
coefficient as τasv → ±∞. As seen, the coefficients are
nonlinear functions of the ASV operating point. The ‘X ’
shape formed by C0 and C1 is explained by the dependence
C0(τasv) + C1(τasv) = πtarCmiss seen from Eq. (11). We now
have the following interpretations:
• C0 approaches the ‘accept all’ and ‘reject all’ dummy

systems at τasv = −∞ and τasv = +∞, respectively.
What remains in the ASV floor is either the nontarget
(πnonCfa) or the target (πtarCmiss) term.

• C1 at τasv = −∞ leads to a curious subtractive expression
(which can also take negative values), πtarCmiss−πnonCfa.
How so? The dummy ASV system is set to ‘accept all’.
The CM nonetheless offers potential to reject some trials.
Subtraction of the nonnegative nontarget term lowers C1,
which in turn encourages a higher CM threshold. For
τasv → +∞, C1 vanishes. Since the ASV system will
always reject target trials, CM behaviour is irrelevant.

• C2 is a nonincreasing function of τasv. For the ‘accept
all’ ASV at τasv → −∞, the CM has the tightest security
(highest C2). Similar to C1, C2 vanishes at τasv → +∞:
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Fig. 4. Illustration of ASV-constrained t-DCF coefficients (11) for (a) simulated ASV scores (P asv
e = 0.01, ξ = 0.85) described in the Appendix, and (b)

real x-vector ASV scores computed on the ASVspoof 2019 LA database, with t-DCF parameters described in Section VI (with πspoof = 0.05). The indicated
special values indicate the coefficient values at τasv = ±∞. See text for details.

such ASV rejects also the spoofing attacks, so the spoof
false alarms of CM does not matter.

Concerning the ‘flattening’ of the ASV-conditional t-DCF
observed in Fig. 3, note that for the ‘reject all’ case (τasv →
+∞) we have

t-DCF′(τcm) =
C0 + C1P

cm
miss(τcm) + C2P

cm
fa (τcm)

C0 + min{C1, C2}

=
C0 + 0 · P cm

miss(τcm) + 0 · P cm
fa (τcm)

C0 + min{0, 0}
=
C0

C0
= 1,

regardless of the CM system or its operating point. This simply
says there is no way to improve (or for that matter, to degrade)
such an ASV system using any CM. For the ‘accept all’ ASV
system (τasv → −∞), the situation is similar. Performance
cannot be improved using any CM (C1 = C2 = 0) if (and
only if)

(πtarCmiss = πnonCfa) AND (πspoof = 0 OR Cfa,spoof = 0).

The first condition above states that overall costs from missed
targets and falsely accepted nontargets are the same (there
is no preference for either). The second condition states that
either spoofing attacks are not anticipated (πspoof = 0), or that
one does not care about them (Cfa,spoof = 0). This is intuitively
reasonable. The CM cannot do anything useful to reject spoofs
(they do not incur losses), and the potential benefit of CMs
helping to reject nontargets will be ‘evened out’ by equally
costly target rejections (that the dummy ASV system would
have otherwise accepted). Whenever the t-DCF parameters and
the ASV operating point are chosen so that C1 6= 0 and C2 >
0, there is potential for the CM to improve performance.

Finally, why does the normalized ASV-conditional t-DCF
reach the value 1 at one of the infinities (as the right panel
of Fig. 3 suggests)? Without loss of generality, suppose that
t-DCF′(+∞) 6= 1. Since P cm

miss(+∞) = 1 and P cm
fa (+∞) = 0,

we have

t-DCF′(+∞) =
C0 + C1 · 1 + C2 · 0
C0 + min{C1, C2}

=
C0 + C1

C0 + min{C1, C2}
,

and since we assumed this expression is 6= 1, it follows
that min{C1, C2} = C2. Therefore, at τcm = −∞, we have

t-DCF′(−∞) = (C0 +C2)/(C0 + min{C1, C2}) = 1. Similar
argumentation can be made by assuming t-DCF′(−∞) 6= 1,
which implies t-DCF′(+∞) = 1. At either (CM) infinity, the
normalized t-DCF equals 1, as the system collapses to the
default system.

VI. EXPERIMENTAL SET-UP

The experimental work aims to assess the tandem operation
of ASV and CM systems submitted to the three editions of the
Automatic Speaker Verification Spoofing and Countermeasures
(ASVspoof) challenge. This section defines the cost model
parameters, gives an overview of the ASVspoof corpora and
the fixed ASV system.

We focus on authentication scenarios, to which the prob-
lem of spoofing is most relevant. As in [11], we assume a
hypothetical banking application where Cmiss = 1, Cfa =
Cfa,spoof = 10 and πnon � πtar, and πspoof � πtar. The
parameter of interest is πspoof, which we fix to a small
arbitrary value and then obtain πtar = (1− πspoof)× 0.99 and
πnon = (1− πspoof)× 0.01.

The three speech corpora originate from the past ASVspoof
challenges. The 2015 edition [15] focused on the detection of
synthetic speech and voice conversion, the 2017 edition [16]
focused on the detection of replay attacks and the latest 2019
edition [17] focused on the three types of attacks categorized
into logical access (LA) and physical access (PA) scenarios.
The data and protocol related details of these corpora are
reported elsewhere [15], [16], [17]; the focus here is on aspects
relevant to the current evaluation. A summary of trial statistics
for the evaluation partitions of the corpora used in this work
is presented in Table III.

The ASV system uses time-delay neural network (TDNN)
based x-vector speaker embeddings [18] together with a prob-
abilistic linear discriminant analysis (PLDA) [19] backend.
The x-vector extractor is a pre-trained4 neural network model
developed with the Kaldi [20] toolkit. It is trained with MFCC
features extracted from audio data from 7,325 speakers of the

4http://kaldi-asr.org/models/m7
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TABLE III
NUMBER OF TRIALS IN THE EVALUATION PROTOCOLS FOR ASV

EXPERIMENTS.

Dataset Name Target / Non-target / Spoof
ASVspoof 2015 4053 / 77007 / 80000
ASVspoof 2017 1106 / 18624 / 10878

ASVspoof 2019 (LA) 5370 / 33327 / 63882
ASVspoof 2019 (PA) 12960 / 123930 / 116640

VoxCeleb1 and VoxCeleb2 corpora [21].5 Further details re-
lated to network parameters and data preparation are available
in [18]. The original Kaldi recipe was modified to include
PLDA adaptation using in-domain data. Full details of the
ASV system can be found in [22]. PLDA adaptation is applied
separately for the ASVspoof 2015, 2017, and 2019 (LA and
PA) datasets using in-domain data.

VII. RESULTS

First, the unconstrained and ASV-constrained variants are
compared empirically. Then, the ASV-constrained t-DCF is
used to assess the performance of submitted CM systems
together with a common ASV system. The ASV threshold τasv
is fixed to the EER operating point, while the CM threshold
is set to the minimum point of t-DCF. The final experiment
addresses the choice of thresholds. All the presented t-DCF
values are in their normalised form (see Table II).

A. Unconstrained vs. ASV-Constrained t-DCF

Fig. 5 illustrates a comparison of unconstrained and ASV-
constrained t-DCF formulations for the three top-performing
systems of the ASVspoof 2019 LA scenario. The ASV-
constrained values are systematically higher, as expected:
while the unconstrained t-DCF does not assume a pre-defined
ASV threshold, the ASV-constrained t-DCF does. The mini-
mum t-DCF for the ASV-constrained is lower bounded by the
cost of the ASV system at the EER operating point (which
is suboptimal), the unconstrained t-DCF allows both ASV
and CM thresholds to be varied jointly, yielding lower t-
DCF values. Another difference is in the default cost used
to obtain the normalised t-DCF: while the default t-DCF for
the unconstrained formulation does not depend on ASV error
rates — see Eqs. (13), (14) and (15) — the one for the ASV-
constrained t-DCF does; see Eqs. (11) and (18).

B. ASV-Constrained t-DCF of ASVspoof Submissions

Fig. 6 illustrates the ASV-constrained, minimum normalised
t-DCF of the ten top-performing submission of each ASVspoof
challenge (2015, 2017, 2019 LA and 2019 PA). Submissions
are sorted by increasing t-DCF. The upper and lower figures
were computed using πspoof = 0.01 and πspoof = 0.05,
respectively. For reference purposes, the green line shows the
t-DCF for a perfect CM. It corresponds to the ASV floor C0

as defined in Eq. (11). Another reference, shown by the red

5For further details, check the VoxCeleb Kaldi recipe at https://github.com/
kaldi-asr/kaldi/tree/master/egs/voxceleb/v2
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Fig. 5. Comparison of the unconstrained and ASV-constrained minimum t-
DCF for the top three systems of the ASVspoof 2019 LA challenge (πspoof =
0.05). For t-DCF both ASV and CM thresholds are chosen to minimize the
cost, while for ASV-constrained t-DCF, the ASV is set to its EER point.

dashed line, corresponds to the default CM that either accepts
or rejects all trials, whichever produces a lower cost.

Our first two immediate observations are that CMs are
beneficial (all values are below ‘no CM’) and that the improve-
ments are often substantial. Second, none of the CMs reaches
the ASV floor, suggesting potential for future improvements
in the CM technology. We see overall higher t-DCF values
obtained with lower spoofing prior πspoof = 0.01. This may
seem counterintuitive at first but the operation of an imperfect
CM will also produce target speaker misses, which increases
the overall cost. In the extreme case when no spoofing attacks
are expected, one should not use any CM. In contrast, when
spoofing attacks are likely to occur, CMs are helpful in
decreasing the cost by rejecting spoofing attempts (relative
to not having any CM).

Note that the CM rank may change when πspoof varies.
Differences in the ranks are notable for the ASVspoof 2017
database. This is explained by noting that the target metric
for the ASVspoof 2017 edition was the CM EER, which
is generally not the optimal operating point for the t-DCF
parameters used here. A given system (e.g. S02) can perform
better than others at the EER point, but worse in other areas
of the DET curve.

Fig. 7 can give some insights into the observations made
from Fig. 6. Here, the ASV-constrained normalised t-DCF
curve is shown for submission T45 of the ASVspoof 2019 LA
challenge, when varying the CM threshold τ cm, for different
values of πspoof: 0.05, 0.10, 0.15 and 0.20. We see that
the (minimum) t-DCF decreases with an increasing value of
πspoof. The optima are reached for different values of τcm
depending on πspoof, as expected. For the lowest spoof prior
πspoof = 0.001, minimum t-DCF is only slightly below 1,
indicating that the CM cannot improve the performance much;
even though T45 performs well, the spoofing attack is simply
too rare for it to make a substantial difference.

Thus far, we have focused on scores pooled from all attacks,
even if their effectiveness (in terms of fooling ASV) varies.
It is therefore useful to diagnose attack-specific, empirical C2

functions, similar to those in Fig. 4 (note that C0 and C1

depend on target and nontarget trials only). The attack-specific
C2 graphs are shown in Fig. 8 along with the corresponding
ASV EERs. We observe, first, that different attacks produce
similarly-shaped but differently located graphs along the τasv
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Fig. 6. ASV-constrained minimum normalised t-DCF of top-10 systems of ASVspoof 2015, 2017, 2019 LA and 2019 PA challenges for (a) πspoof = 0.01
and (b) πspoof = 0.05. “ASV floor” indicates the cost of the tandem system if the CM system was perfect (equal to C0). “Default CM” indicates the cost of
the tandem system with a dummy CM that either accepts or rejects all the trials (whichever yields a lower cost).

axis. For fixed τasv, the more effective attack (i.e., higher EER)
gives larger C2. Second, there is substantial variation of C2,
especially on the LA condition. For the PA condition, both
the C2 graphs and the EERs vary less across attacks. Unlike
the LA attacks generated by a large number of researchers
and teams, the PA attacks were generated through a common
simulation model with a few control parameters only [22],
which may explain the more homogenous behavior. The
interested reader may refer to [22], [17] for further details
on ASVspoof 2019 attack generation and their impact upon
ASV.

C. Empirical Threshold Selection Using t-DCF

Until this point, we considered an arbitrary τasv (set at
the EER operating point) along with an optimum τcm. These
were the choices in the ASVspoof 2019 challenge though the
former is not aligned with the t-DCF specification. Further, we
have considered oracle calibration only where both thresholds
are set on the evaluation data. Thus, in our final experiment
we demonstrate use of the t-DCF to guide selection of both
thresholds (on development and evaluation data).

In line with the ASV-constrained approach, we consider a
particular scenario where the ASV and CM systems developers
agree upon a specific t-DCF parametrization (specified by the
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Fig. 7. Normalised ASV-constrained t-DCF w.r.t. the CM threshold for system
T45 on ASVspoof 2019 LA.

bank) but optimise their respective systems separately, while
sharing ASV error rates only. Using common development
data, they proceed as follows:

1) Since the ASV system is not designed to reject spoofing
attacks and hence by using target/non-target trials only,
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Fig. 8. C2 over the ASV threshold τasv per spoofing attack type, on the
ASVspoof 2019 logical access (upper panel) and physical access (lower panel)
scenarios. The indicated EERs are those of the x-vector based ASV system.

TABLE IV
ASV-CONSTRAINED T-DCF OBTAINED USING DIFFERENT ASV AND CM

THRESHOLDS. THE FIRST TWO LINES INDICATE THE EMPIRICAL
CRITERION (AND DATA) TO SET τASV AND τCM , RESPECTIVELY.

Fix τasv → EER (eval) EER (dev) minC0 (dev) minC0 (dev)

Fix τcm →
min t-DCF

(eval)
min t-DCF

(eval)
min t-DCF

(eval)
min t-DCF

(dev)
System min t-DCF actual t-DCF

ASVspoof 2019 LA
ASV floor 0.0627 0.0860 0.0304 0.0304
T05 0.0692 0.0923 0.0367 0.3260
T45 0.1104 0.1327 0.0785 0.4989

ASVspoof 2019 PA
ASV floor 0.1354 0.1389 0.0628 0.0628
T28 0.1437 0.1472 0.0715 0.0718
T45 0.1460 0.1495 0.0740 0.0769

the ASV system developer optimizes τasv by minimizing
the ASV floor, i.e.:

τ∗asv = arg min
τasv

C0(τasv)

= arg min
τasv

{
πtarCmissP

asv
miss(τasv) + πnonCfaP

asv
fa (τasv)

}
.

(21)
2) Using the shared ASV error rates, bonafide (target/non-

target) and spoofed trials, the CM developer determines
C0, C1, and C2 coefficients in (11) and sets the CM to
operate at the empirical minimum of the ASV-constrained
t-DCF in (10):

τ∗cm = arg min
τcm

t-DCF(τcm). (22)

We contrast the above approach with the EER-based ASV
threshold selection (as used in previous experiments) in Ta-

ble IV which shows results for the evaluation partitions of the
ASVspoof 2019 datasets for LA and PA tasks. The first two
columns corresponds to the EER-based optimization of τasv
on evaluation and development data, respectively. The last two
columns correspond to choosing the ASV threshold using (21)
on development data.

Concerning τcm, in turn, the first three columns correspond
to oracle calibration of the CM (minimum t-DCF on the
evaluation set). The last column corresponds to the actual t-
DCF where both τasv and τcm are set on the development set.
Results are shown for the top-2 systems for the ASVspoof
2019 LA and PA scenarios. Similar to Fig. 6, the lower bound
(ASV floor) is also shown for reference purposes.

Upon comparison of results in the first two columns we
see that, for the LA scenario, the ASV EER threshold set
on development data is suboptimal compared to the ASV
EER threshold tuned on evaluation data; there are differences
between results in each column. In contrast, for the PA
scenario, results are similar, no matter if the threshold is tuned
on the development data or the evaluation data. Results in
column 3 indicate that the ASV threshold set to minimize C0

on the development data leads to substantially lower t-DCF
values than in columns 1 and 2. This is expected since the
EER operating point represents a miscalibrated ASV system
that is generally not intended as a minimizer of the t-DCF.

Finally, results for the LA scenario in column 4 indicate
that a CM threshold tuned on the development set does not
generalize well to the evaluation set; except for the perfect CM
(ASV floor), results in columns 4 are substantially worse than
those in column 3. In contrast, the difference is comparatively
small for the PA scenario. This might be due to the same
reasons noted in Fig. 8 — the diversity in the spoofing attacks
for the LA scenario is greater than that for the PA scenario.
Data for the latter was generated with a common simulation
procedure, leading to more homogeneuos attacks.

These results demonstrate the potential of t-DCF as an
empirical threshold selection criterion. The above procedure
is intended as a demonstration that follows the format of the
ASVspoof 2019 challenge, though there are a number of open
questions that we discuss below.

VIII. DISCUSSION AND FUTURE WORK

Before concluding, we discuss here the assumed indepen-
dence in the t-DCF metric, and outline a number of open
research problems exposed in this work.

A. The ASV—CM Independence Assumption

The formulation of the tandem error rates in Eqs. (7)
is based upon the assumption that ASV and CM system
error rates are independent. While this may seem somewhat
questionable, there are a number of reasons that support such
a restrictive assumption. They relate to the specific ASVspoof
scenario and the fundamental differences between ASV and
CM systems:

1) as discussed in Section II, ASV and CM systems address
different detection tasks and hence the two detectors
provide complementary views, even to the same data;
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2) in a speaker-independent CM setting, the two systems are
trained using disjoint speakers;

3) ASV systems provide scores for each (target speaker, test)
pair whereas speaker-independent CM systems, in turn,
use one anti-spoofing model to score all test utterances;

4) the ASV and the CM systems could be developed by
different researchers, teams or companies and can hence
be based on different ideas, methods, software implemen-
tations, control parameters, and training data choices;

5) the two systems typically use different features (e.g.
CQCC vs. MFCC features) and classifier back-ends.

Thus, before application of the tandem system to evaluation
data, ASV and CM scores can be treated as being independent,
as can the respective nontarget/target and bonafide/spoof score
distributions. After the same tandem system is applied to
evaluation data, however, ASV and CM cannot necessarily be
treated as being independent — there will be some conditional
dependence by virtue of both systems being executed on the
same data. We nonetheless assert in (7) that ASV and CM
scores are conditionally independent.

The primary reason for our conditional independence as-
sumption is practical: it allows the ASV and CM error rates
be computed by different parties (and from different data).
We have deemed this as a necessity given the practical focus
of the ASVspoof challenge series. Nonetheless, if the joint
distribution of ASV and CM scores is available (for instance,
when the same person develops both systems), it may be useful
to assess the impact of statistical dependency on the estimated
detection error rates. Independence assumptions are sometimes
difficult to avoid, e.g. the well known NIST SREs [1] which
assume statistically independent trials, yet reuse many times
data from the same target/non-target speakers [23]. A deeper
study of the in/dependence issue is kept for future work.

B. The Need for a Tandem Calibration Model
Aside from experiments reported in Section VII-C, the issue

of optimally calibrated detectors is largely overlooked in this
paper. In doing so, we have sidestepped the important but
very real problem of threshold setting. The default practice
in ASV research, with widespread acceptance by the ASV
research community, is to fix τasv to the Bayes minimum-risk
operating point [3], with the assumption that detection scores
are well-calibrated log-likelihood ratios (LLRs) [13]. The
Bayes threshold is given analytically by the DCF parameters
as τasv = log[(Cfa/Cmiss) · (1 − πtar)/πtar]. Since arbitrary
detectors may yield poorly calibrated LLRs it is customary to
apply a calibration transform in the score domain [24], [25],
[26]. Among other benefits, this allows calibrated scores to
be used readilly with different DCF parameters. Furthermore,
calibration allows principled decomposition of discrimination
loss (how bad the system is in terms of classification; at
an ideal threshold) and calibration loss (how badly off the
threshold is from that ideal threshold) [13], [27]. The apparent
benefits of calibration may cause the reader to wonder why we
did not apply a tandem calibration model in the case of the
t-DCF.

The main reason for having avoided calibration is that the
manner by which it should be applied in the tandem setting is

far from being a simple extension of calibration in the case of
the DCF. Under the tandem framework, we have not only one
additional system (CM) but also one additional class (spoof).
At this point, the authors have no analytical expressions for
Bayes-optimal ASV and CM thresholds. In addition, the un-
constrained and ASV-constrained cases may require different
treatments. The ASV-constrained case yields a cost function
for particular spoofing attacks whose impact upon the ASV
system is known; in reality, we do not know that impact in
advance. In summary, how calibration transforms should be
defined for tandem systems remains an open question and one
that deserves attention in future work.

IX. CONCLUSIONS

The intention of the authors has been to provide a self-
contained tutorial on the tandem detection cost (t-DCF) frame-
work that generalizes the standard DCF. Extending upon [11],
our special focus has been on a constrained t-DCF formula-
tion, where the biometric system (here, ASV) is essentially
treated as a black-box. The constrained cost serves as a guide
for the optimization of a countermeasure for a given biometric
system. A variant of the constrained t-DCF was put to its first
stress test in the latest ASVspoof 2019 challenge [22] and we
anticipate it remaining as the primary metric in future editions
of the challenge.

The question of how the performance of any binary classi-
fier is to be assessed is much more subtle than it appears on the
surface; it took some considerable time for the DCF framework
to be absorbed as an integral part of ASV system develop-
ment — and even longer to migrate from ad-hoc ‘threshold
optimization’ recipes to calibrated log-likelihood ratios [24],
[27], [14], [26], [25]. We hope that the current study serves
to reduce the risk of similarly slow adoption of application-
directed metrics within the anti-spoofing community. Since the
necessity for tandem systems (consisting of two subsystems)
add to the complexity of the assessment issue, the authors
have purposefully left out a number of related topics, such
as calibration; we focused on minimum t-DCF (with oracle
threshold). We plan to address calibration in our future work.

The authors note that a variety of different, adhoc metrics
remain popular in the assessment of biometric systems (be-
yond the voice trait). Presentation attack detection is a rela-
tively recent, but growing and evolving area of research, and
this state of rapid development may go some way to explain
the lack of application-directed metrics in use today. What
is clear, however, is that next-generation biometric systems
must be prepared for the possibility of spoofing (whether it be
ever-improving DeepFake video and synthetic speech quality,
or potential fraud in high-stakes applications including border
control and forensics). To help prepare for a future where
biometrics may no longer be trusted, we need meaningful
metrics both for performace assessment and optimization.
One benefit of the proposed t-DCF framework lies in its
generality. While, on account of the authors’ research interests,
voice biometrics has been the running example, the t-DCF
itself requires nothing beyond the detection scores (or hard
decisions) of the biometric recognizer and the presentation
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attack detector. The specification of cost parameters is left to
the domain expert.
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APPENDIX: GAUSSIAN SCORE SIMULATOR

In [24], relations between Gaussian score distributions, well-
calibrated log-likelihood ratios (LLRs) and the EER were
drawn to derive a supervised score calibration recipe under the
assumption of Gaussian nontarget/target scores. In this special
case, the means of non/target distributions are symmetric and
also relate to their variance. Such constrained score distribu-
tions can be parameterized by a single number, such as the
EER. In the following, we outline a simple score simulator
models for target, nontarget, and spoof classes.

Our score simulator models all the class-conditional score
distributions in (1) and (2) as Gaussians,

pR(r|θ•) = N (r|µasv
• , (σ

2
•)

asv), • ∈ {tar, non, spoof}
pQ(q|θ◦) = N (q|µcm

◦ , (σ
2
◦)

cm), ◦ ∈ {bona, spoof},
(23)

where N (·|µ, σ2) denotes the univariate normal density with
mean µ and variance σ2. For the CM, the target and nontarget
distributions are assumed to be the same — the CM cannot
discriminate between target and nontarget classes.

As there are three classes within the ASV system and two
classes within the CM system, (23) requires the specification
of (3+2)×2 = 10 parameters. A convenient means to reduce
the number is through the EERs of each system — target vs.
nontarget EER for ASV and bonafide vs. spoof EER for CM.
The EER can be expressed analytically in terms of Gaussian
parameters [28], [24]. Even if the tail behavior of empirical
ASV scores obtained from typical back-ends [19] differs from
that of Gaussians [26], [25], supervised calibration using
constrained Gaussians [24] leads to near-optimum calibration
near the minimum cost operating point [26], [25].

Let us begin with the ASV system with N (r|µasv
tar , (σ

2
tar)

asv)
and N (r|µasv

non, (σ
2
non)asv) as the target and nontarget score

distributions, respectively. The analytic EER is given by
Pe = 1 − Φ(F asv), where Φ(·) is the cumulative distribution
function of the standard normal distribution and F asv =
(µasv

tar − µasv
non)/(σasv

tar + σasv
non). For completely overlapped dis-

tributions with equal means, one obtains the chance level
P asv

e = 1
2 . The four parameters collapse to a scalar F asv,

which uniquely specifies the EER (as Φ is bijective). We tie

the means and variances so that we have only one degree of
freedom, specified by the EER, from which we determine the
four parameters. To this end, we adopt the approach of [24]
with shared variance σasv ≡ σasv

tar = σasv
non, symmetric means

(µasv ≡ µasv
tar = −µasv

non) and mean and variance being related
by σasv =

√
2µasv. To sum up, pR(r|θtar) = N (r|µasv, 2µasv),

pR(r|θnon) = N (r| − µasv, 2µasv).
After having determined the target and nontarget distribu-

tions from a given EER, P asv
e , we proceed by defining the

ASV spoof score distribution as:

pR(r|θspoof) = N
(
r|µasv (2ξ − 1) , 2µasv

)
, (24)

characterized by an additional parameter ξ ∈ R that we dub as
the spoofing factor. It is illustrated in Fig. 9, with the following
interpretation:
• ξ = 1 implies spoof mean equal to target mean (attack

indistinguishable from the target speaker).
• ξ = 0 implies spoof mean equal to nontarget mean, i.e.

zero-effort spoofing attack.
• ξ > 1 implies spoof mean higher than target mean.
• ξ < 0 implies spoof mean less than nontarget mean.

The typical case is 0 � ξ < 1, i.e. attacks that produce sub-
stantially higher scores than nontargets but do not quite reach
the target scores due to modeling imperfections, difficulties in
gathering spoofing attack training data, or other reasons.

The CM bona fide score distributions are specified in the
same way as for the ASV system: given a desired bonafide-
to-spoof EER, P cm

e , we find the distributions of bona fide and
spoof classes as N (µcm, 2µcm) and N (−µcm, 2µcm), respec-
tively, following the same parameter constraints noted above.

To state our simulator assumptions in an alternative way,
the ASV and CM score random variables are assumed to
be statistically independent (for practical reasons; see Section
VIII-A). The joint probability density functions of target,
nontarget and spoof classes are then the product of their
marginal distributions, which can be represented as bi-variate
Gaussians with a diagonal covariance matrix. For the target
distribution, for instance, we have

pR,Q(r, q|θtar) = N (r|µasv
tar , (σ

2
tar)

asv)N (q|µcm
bona, (σ

2
bona)

cm)

= N (µtar,Σtar),

with

µtar =

[
µasv

µcm

]
, Σtar =

[
2µasv 0

0 2µcm

]
.

Similarly, for the nontarget and spoof class we have

µnon =

[
−µasv

µcm

]
, Σnon =

[
2µasv 0

0 2µcm

]
µspoof =

[
µasv(2ξ − 1)
−µcm

]
, Σspoof =

[
2µasv 0

0 2µcm

]
.

In summary, the three control parameters of our score
simulator that define the above distributions, are:

1) Target-to-nontarget EER of ASV, P asv
e , as a model of the

discrimination performance of ASV;
2) ASV spoofing factor, ξ ∈ R, as a model of how effective

the spoofing attacks are in fooling the ASV;
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Fig. 9. Simulated, Gaussian-distributed ASV score distributions with varied
spoofing factor, ξ. Nontarget and target classes are special cases with ξ = 0
and ξ = 1, respectively.

3) Bonafide-to-spoof EER of CM, P cm
e , as a model of CM

discrimination performance.

Under the above Gaussian model, the detection error rates
in (4) are given by,

P asv
miss(τasv) = Φ

(
τasv − µasv
√

2µasv

)
P asv

fa (τasv) = 1− Φ

(
τasv + µasv
√

2µasv

)
P asv

fa,spoof(τasv) = 1− Φ

(
τasv − µasv (2ξ − 1)√

2µasv

)
P cm

miss(τcm) = Φ

(
τcm − µcm
√

2µcm

)
P cm

fa (τcm) = 1− Φ

(
τcm + µcm
√

2µcm

)
,

(25)

where Φ(τ) denotes the cumulative distribution function
(CDF) of the standard normal distribution. The standardization
operator τ 7→ (τ − µ)/σ yields the CDF of a nonstandard
normal distribution with mean µ and variance σ2.

REFERENCES

[1] C. S. Greenberg, L. P. Mason, S. O. Sadjadi, and D. A. Reynolds, “Two
decades of speaker recognition evaluation at the National Institute of
Standards and Technology,” Computer Speech & Language, vol. 60,
2020. [Online]. Available: https://doi.org/10.1016/j.csl.2019.101032

[2] G. R. Doddington, M. A. Przybocki, A. F. Martin, and D. A.
Reynolds, “The NIST speaker recognition evaluation — Overview,
methodology, systems, results, perspective,” Speech Communication,
vol. 31, no. 2-3, pp. 225–254, 2000. [Online]. Available: https:
//doi.org/10.1016/S0167-6393(99)00080-1

[3] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley, 2001.

[4] E. T. Jaynes, Probability theory: The logic of science. Cambridge:
Cambridge University Press, 2003.

[5] ISO/IEC 30107-1:2016, “Information technology — Biometric presen-
tation attack detection — Part 1: Framework,” https://www.iso.org/
obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en, 2016, [Online; accessed 22-
February-2018].

[6] N. Evans, T. Kinnunen, and J. Yamagishi, “Spoofing and countermea-
sures for automatic speaker verification,” in Proc. Interspeech, 2013, pp.
925–929.

[7] T. Satoh, T. Masuko, T. Kobayashi, and K. Tokuda, “A robust
speaker verification system against imposture using an HMM-
based speech synthesis system,” in Proc. EUROSPEECH, 2001,
pp. 759–762. [Online]. Available: http://www.isca-speech.org/archive/
eurospeech 2001/e01 0759.html

[8] A. Sizov, E. Khoury, T. Kinnunen, Z. Wu, and S. Marcel, “Joint
speaker verification and antispoofing in the i-vector space,” IEEE
Trans. Information Forensics and Security, vol. 10, no. 4, pp. 821–832,
2015. [Online]. Available: https://doi.org/10.1109/TIFS.2015.2407362

[9] M. Sahidullah, H. Delgado, M. Todisco, H. Yu, T. Kinnunen,
N. Evans, and Z. Tan, “Integrated spoofing countermeasures and
automatic speaker verification: An evaluation on ASVspoof 2015,”
in Proc. Interspeech, 2016, pp. 1700–1704. [Online]. Available:
https://doi.org/10.21437/Interspeech.2016-1280

[10] M. Todisco, H. Delgado, K. A. Lee, M. Sahidullah, N. Evans,
T. Kinnunen, and J. Yamagishi, “Integrated presentation attack
detection and automatic speaker verification: Common features and
Gaussian back-end fusion,” in Proc. Interspeech, 2018, pp. 77–81.
[Online]. Available: http://dx.doi.org/10.21437/Interspeech.2018-2289

[11] T. Kinnunen, K. A. Lee, H. Delgado, N. Evans, M. Todisco,
M. Sahidullah, J. Yamagishi, and D. A. Reynolds, “t-DCF: a detection
cost function for the tandem assessment of spoofing countermeasures
and automatic speaker verification,” in Proc. Odyssey, 2018, pp. 312–
319. [Online]. Available: http://dx.doi.org/10.21437/Odyssey.2018-44

[12] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
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