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Entity-centric knowledge graphs (KGs) are now popular to collect facts about entities. KGs have rich schemas,
with a large number of different types and predicates to describe the entities and their relationships. On these
rich schemas, logical rules are used to represent dependencies between the data elements. While rules are
useful in query answering, data curation, and other tasks, they usually do not come with the KGs. Such rules
have to be manually defined or discovered with the help of rule mining methods. We believe this rule-collection
task should be done collectively to better capitalize our understanding of the data and to avoid redundant
work conducted on the same KGs. For this reason, we introduce RuleHub, our extensible corpus of rules for
public KGs. RuleHub provides functionalities for the archival and the retrieval of rules to all users, with an
extensible architecture that does not constrain the KG or the type of rules supported. We are populating the
corpus with thousands of rules from the most popular KGs and report on our experiments on automatically
characterizing the quality of a rule with statistical measures.
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1 INTRODUCTION
Knowledge graphs (KGs) represent data with large collections of interconnected entities. Usually, a
rich set of types (classes) are available to describe the entities (e.g., entity Paris is a city, France is
a country), while predicates describe their relationships (a city isCapital of a country) and their
properties (France has a population:62M). Over the last 15 years, lots of large academic [7, 10, 35, 39]
and institutional [8, 14, 18] KGs have been presented. Entities across several KGs have been aligned
to create the public web of linked open data, contributing to the creation of a larger graph [6]. Public
and institutional KGs fuel several applications, including semantic search, personal assistants, and
question answering in general [18, 27].

One of the great benefits of a structured dataset is that it is possible to define dependencies over
it. KG dependencies (or logical rules) are used for identifying errors [28], adding new facts [20],
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Fig. 1. Architecture of RuleHub.

executing queries faster [31], and reasoning for many tasks, such as explaining decisions in fact-
checking [5]. Unfortunately, KGs do not come with a set of logical rules. In fact, manually crafting
such rules is an expensive, human-intensive task. To support the definition of rules, several methods
have been proposed. The literature for rule mining goes back to classic work on inductive logic
programming and several methods have been recently proposed to mine large KGs [17, 20, 28,
32, 37]. This stream of works enables the mining of rules for any KG, thus limiting the user
effort to the selection and the refinement of such rules. Users select valid rules from the many
(possible thousands) discovered by a system and manually refine the ones that need changes in
their conditions to be more general or more precise. Once a good set of semantically valid rules has
been identified, they are usually annotated with a measure of their quality, such as a confidence of
the rule applicability. This is necessary, as there are very few rules that are true for each and every
case. As an example, consider a rule stating that “a country has always one capital”. This is true for
most countries, but there are 15 countries that have two or more capitals. Therefore the rule would
have a very high confidence, but we cannot state that it is certain.
Collecting a set of high quality and well described rules is therefore an essential exercise con-

ducted by users of KGs to improve the performance of their applications. While mining tools help
in this task, there is still a lot of manual work in selecting good rules, refining them, and anno-
tating them with their metadata. Given that several KGs are public and are used by thousands of
researchers and practitioners around the world, a lot of human work on rule discovery is redundant
and is not taking any benefit from this critical mass of users. We argue that rule discovery and
managing should be a collective task, where we can capitalize our understanding of the data and
avoid redundant work in collecting, refining, and annotating rules.
To support a collective rule discovery effort, we introduce RuleHub, a system that exposes in a

website an extensible corpus of rules for public KGs (http://rudik.eurecom.fr). RuleHub is designed
with rule mining tools as the principal source of rules in mind, as depicted in Figure 1. Users can
query or browse the repository of rules, based on the KG and the predicate of interest. Moreover,
they can manually specify and add new rules or update existing ones by providing more metadata,
such as the confidence of a rule. We believe confidence is crucial for rules, as very few rules are
completely correct or wrong in general. For this reason, we also provide a module that computes
the confidence for a given rule over a KG. Rules for any KG and of any kind can be handled by the
system. In this work, we report our experience in building RuleHub and populating it with rules
discovered by existing rule mining systems. We discuss three main contributions:

(1) We introduce a new confidence computation method for negative rules, i.e., rules that identify
contradictions in the data (Section 2).

(2) We present the first open corpus of (automatically generated) rules for public KGs and detail
its data model and its components (Section 3).

(3) We report the lessons learned in creating such corpus and the experimental results showing
how our model for computing rule confidence has remarkable correlation with manually
annotated confidence values (Section 4).

, Vol. 1, No. 1, Article . Publication date: July 2020.

http://rudik.eurecom.fr


RuleHub: a Public Corpus of Rules for Knowledge Graphs 3

We believe RuleHub can be an enabler for a much needed collaborative work in defining metadata
for public KGs, as witnessed in the large amount of recent efforts in the related literature (Section 5).
Finally, we conclude the paper with our future directions of research (Section 6).

2 MINING RULES AND CONFIDENCE
2.1 Knowledge Graphs and Rules
AKnowledge Graph (KG) is a structured representation of information storing real-world entities and
lexical values as nodes, and relationships between them as edges. Most KGs organize information
in the form of (RDF) triples. Each triple contains a predicate (edge in the graph) expressing a binary
relation between a subject and an object (nodes in the graph). We focus on Horn rules of the form:

®B → r (x ,y) (1)

where r (x ,y) is a single atom (head of the rule) and ®B (body of the rule) is a conjunction of atoms
B1(z1, z2) ∧ B2(z3, z4) ∧ · · · ∧ Bn(zn−1, zn). An atom is a predicate connecting two variables, two
entities, an entity and a variable, or a variable and a lexical value. We distinguish two classes of
rules. Positive rules define relationships between KG elements that identify missing triples, e.g.,
“if two persons have a child in common, they are in the spouse relation”. Negative rules have
a negated atom in the head identify false facts from the ones in the KG, e.g., “parents cannot
marry their children”. As an example of using negative rules for error detection, this negative rule
child(x ,y) → ¬spouse(x ,y) can be rewritten as child(x ,y) ∧ spouse(x ,y) → ⊥ and the body is run
as a query on the KG.

2.2 Rule Mining
Given a KG, a set of positive example facts, and a set of negative example facts, a rule mining
algorithm aims at identifying a set of rules that, when executed on the KG, have all the positive
examples facts in their output and none of the negative facts. In other words, the algorithms are
after rules that are general, as they cover all true facts, and do not make mistakes, as they do not
produce false facts. As these requirements are quite strict in the presence of noisy and incomplete
KGs, they are relaxed in some mining algorithms with a notion of weight (or score) defined on the
number of positive and negative examples in the output of the set of mined rules.

The goal of RuleHub is not to propose a new mining algorithm. Our focus is to manage a large
number of rules, by computing an estimate of their quality and enabling their review, storing, and
querying. In Building the corpus, we collected rules from many mining algorithms, but most of the
rules come from AMIE [20] and RuDiK [28, 29]. We give more details about their algorithms in
Appendix A and report other related proposals in Section 5.

2.3 Rule Confidence
We now discuss the computation of the confidence for positive and negative rules. We start with
the notion of confidence of a positive rule from the literature [20] and extend it to negative rules.

The support of a rule is defined as the number of distinct pair of subjects and objects in the head
of all instantiations of the rule that appear in the KG:

supp( ®B → r (x ,y)) := #(x ,y) : ∃z1, ..., zn : ®B ∧ r (x ,y) (2)

where z1, ..., zn are the non target variables.
We remark that the support makes use of the non target variables, but count only the number

of distinct pairs for the head values. Consider the rule “if two persons have a child in common,
they are in the spouse relation” (hasChild(x ,v0) ∧ hasChild(y,v0) → spouse(x ,y)) and the Obama
family. Assume Barack Obama, Michelle Obama, and their two children are in the KG with the
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correct Spouse and Child triples to represent their relationships. The support would count this
family as one occurrence. While it uses the non target variables (referring to the child), the measure
does not count this family twice, despite the rule can be instantiated twice (once for child). This
design choice takes care of possible skew in the data, making sure that a rule does not get assigned
a very high support when it applies for only one (distinct) pair of head entities.

The counter-support of a rule quantifies the number of false predictions over the existing KG. A
challenge to compute this number is that KGs do not provide negative evidence, but we want to
claim a mistake only if we have some evidence to support the case. To address this issue, we rely
on Local Closed World Assumption. This assumption states that if we know one y (resp. x) for a
given x (resp. y) and r , then we know all y (resp. x ) for that x (resp. y) and r . This is widely used in
practice and has proven to be an effective heuristic to overcome incompleteness of KGs [14, 20, 28].
Assume a rule concludes that P (x1,y1) should exist. If this is the only triple involving P , x1, and
y1, then we do not count it neither as supporting or not supporting. But if there is already a
triple such as P (x1,y2) in the KG, then we count this a counter support. This allows us to exploit
counter-evidences less restrictively than the assumption ‘all facts that are not in KG are false’.

counter_supp( ®B → r (x ,y)) := #(x ,y) : ∃z1, ..., zn , r (x ,y ′) ∨ r (x ′,y) : ®B ∧ ¬r (x ,y) (3)

For example, a rule predicts that “Luke” and ”Mary” are married, this triple is not in the KG, but
“Luke" is already reported as married to someone else in the KG. To take into account both true and
false predictions for a rule, we introduce confidence scores for positive and negative rules.

Positive Rules.Considering a positive rule ®B → r (x ,y) for relation r (x ,y). We define its confidence
score as following:

conf ( ®B → r (x ,y)) :=
supp( ®B → r (x ,y))

supp( ®B → r (x ,y)) + counter_supp( ®B → r (x ,y))
(4)

This formula normalizes the support by number of pairs (x ,y) satisfying the condition that there
exists r (x ′,y) or r (x ,y ′). As an example, consider the rule hasDependant(a,b) → hasChild(a,b)
with the following triples hasDependant(Laure,Mark), hasDependant(Laure,Mary),
hasDependant(Laure,Anne), hasChild(Laure,Mary), hasChild(Laure,Anne), in other words,
one person has three dependants and two of them are her children. Assume we also have two more
triples for another person: hasDependant(Gary,Rose),hasChild(Gary,Mark). The confidence for
this rule would be 0.5. In fact, support would be 2, coming from (Laure,Mary) and (Laure,Anne), and
counter support would also be 2, coming from (Laure,Mark) and (Gary,Rose). The confidence value
reflects the reality: being a dependant of someone does not imply that there is a child relationship,
but it can happen. How often it happens in the given KG determines the support for the rule in
that context, e.g., it may be different in Europe and USA because of legal or cultural reasons.

Negative Rules. Consider a negative rule ®B′ → ¬r (x ,y) for relation r (x ,y). We define its confi-
dence score as following:

conf ( ®B′ → ¬r (x ,y)) :=
counter_supp( ®B′ → r (x ,y))

counter_supp( ®B′ → r (x ,y)) + supp( ®B′ → r (x ,y))
(5)

Intuitively, by definition, the support (resp. counter-support) of negative rule ®B′ → ¬r (x ,y)

is indeed the counter-support (resp. support) of corresponding positive rule ®B′ → r (x ,y). As
an example, consider the rule spouse(a,b) → ¬hasChild(a,b) and triples spouse(Laure,Mark),
hasChild(Laure,Anne), spouse(Gary,Rose), and hasChild(Gary,Micheal). The confidence for this
rule would be 1. In fact, counter support would be 2, coming from (Laure,Mark) and (Gary,Rose), and
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support would be 0. If we add one case such as spouse(Paul ,Ron) without children, the confidence
does not change. If we add spouse(Mary,Georдe),hasChild(Mary,Georдe), then the support would
become 1 and the confidence would drop to 0.67.
Issues in ConfidenceMeasures. In negative rules, support evidences are dominating, but counter-
evidences are more important. For example, consider the negative rule:

r1 : birthPlace(x ,v0) ∧ country(v1,v0) ∧ child(y,v1) → ¬spouse(x ,y)

Due to the presence of the intermediate atom country(v1,v0) and the common atom
birthPlace(x ,v0), we can generate a large number of support examples for spouse . Meanwhile, the
counter-support of this rule is always lower than the total number of facts spouse in KG. If formula
(5) is used to evaluate the rule, we obtain a very high confidence score (≈ 1.0), which is misleading
because the number of supporting examples is way higher then negative ones.
With the same computation, a rule child(x ,y) → ¬spouse(x ,y) gets a confidence score of

0.96. From these scores, the two rules seem to be of comparable quality, but intuitively rule
child(x ,y) → ¬spouse(x ,y) can cover a much larger number of facts and its confidence score
should be higher. Here, considering the body of the rule, spouse(x ,y) is false. Therefore, its score
should be much higher than rule r1.

The explanation is that the support #(x ,y) for rule r1 is very large, but because of the Cartesian
product, #x can dominate #y or vice versa. This undesired property overestimates the support and
thereby underestimates the counter-support of a rule. To avoid this issues we define a new support
for negative rules by using the minimum number of facts satisfying the head predicate, denoted as
min_supp:

min_supp( ®B → ¬r (x ,y)) :=min(#x , #y) : ∃z1, ..., zn , r (x ,y ′) ∨ r (x ′,y) : ®B ∧ ¬r (x ,y) (6)
Which returns the smaller across the numbers of occurrences for variables x and y in the KG that
already satisfy the predicate. Now, (5) becomes:

conf ( ®B′ → ¬r (x ,y)) :=
min_supp( ®B′ → ¬r (x ,y))

min_supp( ®B′ → ¬r (x ,y)) + counter_supp( ®B′ → ¬r (x ,y))
(7)

Here we re-write the support of the corresponding positive rule (second term of the denominator)
as counter_supp for better clarification, but essentially counter_supp( ®B′ → ¬r (x ,y)) = supp( ®B′ →

r (x ,y)).
As an example, consider three more rules: r2 : parent(x ,y) → ¬spouse(x ,y); r3 : relative(x ,y) →

¬spouse(x ,y); r4 : occupation(x ,v0) ∧ occupation(y,v0) → ¬spouse(x ,y).

Rule min_supp counter_supp Conf. Score Equation (7) Conf. Score Equation (8)
r2 8174 43 0.995 0.881
r3 1859 123 0.938 0.375
r4 11792 1757 0.870 0.211

Table 1. Support, Counter_Support, Confidence Scores for r2, r3, r4

Consider in Table. 1 the computed values formin_supp, counter_support and confidence score
computed from Equation (7) for r2, r3, r4. Although there are significant differences in term of
min_support and counter support among the rules, they still get very high confidence score. In
common sense, r2 is better than r3, and r4 is not a useful rule. But theirmin_support values are
still large enough to hide the differences in the counter support and lead to an overestimate of the
confidence. In other words, the ratio of counter_supp :min_supp of the three rules are 0.005, 0.066,
0.150, respectively, but is not reflected in the values for (7). We argue that counter-evidence is more

, Vol. 1, No. 1, Article . Publication date: July 2020.



6 Ahmadi et al.

important in measuring the quality of negative rules, so it is critical to make it contribute more
to the confidence computation. A reasonable way to achieve this is to make the counter-evidence
comparable in values to the support evidences. We achieve this by multiplying the counter_supp
by a factor κ, as follows:

conf ( ®B′ → ¬r (x ,y)) :=
min_supp( ®B′ → ¬r (x ,y))

min_supp( ®B′ → ¬r (x ,y)) + κ ∗ counter_supp( ®B′ → ¬r (x ,y))
(8)

How to set κ depends on how rare are errors. This is modeled by the actual percentage of errors
in the KG at hand. We assume that we are given (or can estimate) the ϵ error rate of the KG, i.e.,
the ratio of erroneous triples over all triples. We set κ to 1

ϵ . KGs with very low error rate will
get higher values for κ to preserve the counter_supp : min_supp ratio in the original confidence
computation formula. Yago reports an estimated accuracy of 95% [35] and other papers report
higher estimated values [28]; we experimentally found that an estimate accuracy of 96% works
better for our confidence computation. Given accuracy of 96%, an ϵ equals to 0.04 implies κ = 25.

Using Equation (8), new confidence scores of r2, r3, r4 are re-calculated in the last column of Tab.
1. The new confidence values match our intuitions about the rules.

3 A CORPUS OF RULES
There are different algorithms to discover rules over KGs, as a consequence there are many rules that
can be generated from different experiments over time. With the aim to store and share discovered
rules as well as to expose themwith metadata, such as the confidence discussed in Section 2, we have
built a website with an initial corpus of more than 7000mined rules (http://rudik.eurecom.fr). Besides
basic information about the rule itself, we expose different kinds of confidence score: computed
confidence, which is calculated automatically, while human evaluation and human confidence are
evaluated manually. Our web portal allows users to easily search for rules, add new rules, and
export them in different formats. Our long term vision is to have users contributing by opening the
database to users for editing as in Wikidata. For now the system has an admin validation panel,
where rules submitted by users get reviewed before being added to the corpus. In this section, we
describe the information in the corpus and how to use it. Screenshots and details about the portal
are reported in Appendix C.

3.1 Human measures
We start presenting our two measures of quality for the rules based on human judgment.

3.1.1 Quality evaluation. The first one is the quality evaluation, a subjective assessment about
the rule semantic correctness, i.e., a score of their logical meaning expressed by a human. In this
measure, a user expresses a subjective assessment of the quality of a rule by reading the rule in its
logical form. For example, the rule spouse(a,b) → spouse(b,a) can be judged as clearly correct. We
define five levels of accurateness as following:
Level 1: Good rules, the precision is more than 80 percent.
Level 2: Acceptable rules, the precision is around 60 - 80 percent.
Level 3: Neutral rules, the precision is around 40 - 60 percent.
Level 4: Rules make sense only in certain contexts, the precision is around 20 - 40 percent.
Level 5: Illogical rules, not recommended for use.

Because each individual has her own evaluation for this score, we allow different users to express
their assessment in our system.
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3.1.2 Human confidence. The second score is the human confidence. This score is calculated
manually based on the examination of the triples resulting from the application of a given rule. For
each rule, we apply it on the KG and randomly pick 20 instances from such output. Every instance
in this sample is manually validated according to external resources, such as the Web, and human
assessment.

Evaluation process:
(1) Given a rule, we apply it over the KG and randomly select from the results 20 instances as a

sample for human confidence computation.
(2) Three different annotators manually check instances independently, and conflicts are resolved

with a majority voting strategy. For each positive rule, an instance is labeled as 1 if it is true,
0 otherwise. For each negative rule, an instance is labeled as 1 if it is erroneous, 0 otherwise.

(3) From the result of the labeling process, the human confidence of a rule is then computed as
the ratio of the number of labels 1 out of all items in the sample.

Even if computed on a sample, the second score is more objective than the human assessment
and we use it as our reference to evaluate the quality of the confidence computed with the measures
discussed in Section 2.

3.2 Rule information
Each rule is stored as a JSON (JavaScript Object Notation [24]) file in a MongoDB instance with
metadata about its provenance, support, and manual evaluation results.

• id: the rule internal identifier.
• knowledge_graph: the knowledge graph in which the rule is valid.
• rule_type: true or false corresponds to positive or negative rule.
• predicate: the target predicate.
• premise: the rule body.
• hashcode: it is computed from the predicate and rule premise, it is used to check uniqueness
of rules in the system.

• human_confidence: indicates the human confidence.
• computed_confidence: indicates the support score.
• source: indicates the rule’s origin. Rule can be added by users or obtained from a discovery
system.

• configuration: configuration of the mining system that found the rule.
• quality_evaluation: subjective human evaluation.

The last three fields can have multiple occurrences for the same rule.

3.3 Rule forms
Besides exploring rules in our web portal directly, we also provide rules in different formats which
can be easily consumed by other systems.

• JSON is a popular light-weight format designed for easy parsing.
• SPARQL is an RDF query language. SPARQL queries return rule output from the KG [30].

4 EXPERIMENTS
In this section, we evaluate our confidence measures and report on the lessons learned in annotating
rules. We group our evaluations into four parts: (i) showing the accuracy of our confidence measures
by comparing them with the human computed confidences (see Section 3.1). (ii) discussing the
effect of the κ parameter on the results. (iii) evaluating the performance of the proposed measure
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Fig. 2. Confidence results for DBpedia predicate spouse.

Fig. 3. Confidence results for DBpedia predicate foundedBy.

by reporting its execution time. (iv) measuring the impact of missing values and errors in the
computation of confidence.

For this experiment, we focus on rules for two popular KGs: DBpedia [7] and Yago [35]. DBpedia
is a KG derived from Wikipedia, we used version “2016-04". Yago is an open source KG with
information from Wikipedia, Wordnet, and GeoNames; we used Yago3.

Wemined rules with rule learning systems and then chose a subset of predicates for the evaluation.
Predicates were chosen based on two considerations: (1) it had at least five positive and negative rules
in the corpus; (2) the computed confidences for its rules cover a wide range of values. Considering
these constraints, we selected seven DBpedia predicates (spouse, foundedBy, relative, founder,
publisher, employer and influencedBy ) and two Yago predicates (isMarriedTo and hasChild) for
manual annotation. For both KGs, we use their online endpoint to have the latest version available.
The annotators of the triples are authors of the paper, therefore familiar with the process and
considered experts. They checked triples independently and, given that we conducted the evaluation
over general purpose KGs, they have been able to use internet resources (e.g., Wikipedia) to verify
the validity of the randomly selected claims.

4.1 Accuracy of Confidence Measures
Figure 2 reports the confidence values for 20 rules for the spouse predicate in DBpedia. We divided
positive and negative rules in two plots and report for every rule both the confidence computed
by our method and the human confidence. Each point on the x-axis represents an individual rule
with its id, and the two bar charts associated with a rule show the confidence measure computed
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Fig. 4. Average computed and human confidence over rules for all predicates.

either manually and automatically. The mean error is 8.4% for positive rules and 10.4% for negative.
Similarly, we report results for 24 rules for the predicate foundedBy in Figure 3, with 5.4% mean
error for positive and 11.2% for negative rules. Both figures show a highly correlation between the
manually computed confidence and the confidence computed by the proposed measures. What is
most important for us is that the quality of the computed confidence for negative rules is close to
the traditional computed confidence for positive ones, despite computing the quality of negative
rules from data is harder.

Figure 4 reports the computed and human confidences for all the rules over the nine predicates
(DBpedia spouse, foundedBy, relative, founder, publisher, employer, influencedBy; Yago isMarriedTo
and hasChild). We grouped rules by their human confidence and for each group we report a point.
The horizontal (x) axis is the human confidence and the vertical (y) axis represents the average of the
computed confidence for that group of rules. The trend-lines show the similar trends for computed
and human confidences, with only 7.8% mean errors for positive rules and 9.0% for negatives.
The aggregates results confirm the effectiveness of our measure for computing confidence. More
experimental results are reported in Appendix B.

(a) (b)

Fig. 5. (a) Confidence for different values of κ. (b) Avg execution times for computing confidence.

, Vol. 1, No. 1, Article . Publication date: July 2020.



10 Ahmadi et al.

4.2 Effect of the κ Parameter
In previous experiments, we used κ = 25. To show the effect of this parameter, we report results
for executions with different κ values (10, 25, 50, 100) for 25 negative rules over 7 predicates1.
Figure 5a reports the results with the rules in increasing order of human confidence. The plot
shows that the computed confidence for κ = 25 is the closest to the human confidence. By looking
in more detail at rules 4, 15, and 17, we can explain the significant difference between human
confidence and computed confidence. Rule 4 is a clearly incorrect rule (almaMater (object ,v0) ∧
country(v0,v1) ∧ birthPlace(subject ,v1) ∧ relative(subject ,object) → ⊥) and this is correctly
reflected by its computed confidence (0.02). However, due to the sampling process on 20 triples,
two spurious correct triples lead to an estimated human confidence of 0.1. Although rules 15
and 17 seem to be true, they have 30 and 11 counter_support triples in DBpedia, respectively.
Some of these counter_supports are exceptions for the rule and the rest are errors. For example,
rule 15 states that a person cannot be in a spouse relation with his parent’s spouse. There are 30
counter_supports for this rule in DBpedia and by checking them we saw that 22 of them are errors
and other 8 counter_support triples are exceptions for the rule, such as ancient monarchs and
fictional characters. Considering the importance of counter_support in formula 8, these numbers
reduce the confidence for these rules.

4.3 Computed Confidence Execution Time
We report the execution times of our method in computing the confidence measure. We computed
confidence values for 199 positive and 307 negative rules for 4 DBpedia predicates and 36 positive
and 40 negative rules for 6 Yago predicates. As reported in Figure 5b, average execution times are
within seconds in both KGs despite we are using web APIs and more than 90% of the time goes in
collecting responses. Execution times between the two KGs are not comparable as their endpoints
are on different servers, they have different sizes in terms of predicates and triples, and different
numbers of rules.

4.4 Impact ofQuality Issues on Computing Confidence
Two main issues affect the quality of data in KGs: i) factual mistakes, such as incorrect or outdated
data, and ii) incompleteness. In this experiment, we study the impact of data issues on the perfor-
mance of the proposed confidence measure for negative rules. For this task, for rules we used in
Section 4.2 (rules are reported in Table 3 in the Appendix), we manually identified factual mistakes
and missing facts in their counter support. We then computed the confidence and observed the
changes in the error rate w.r.t. the human confidence.
Factual mistakes are triples that are wrongly considered as counter support, as they are incorrect or
outdated. These triples should be removed to have a correct counter support set. For example, some
of the triples in the counter support of a rule (# 15) are entities in a child relation with themselves.
As another example, another rule (#19) states that a person cannot be in a spouse relation with
someone who died before she was born. This rule is logically correct but there are 13 real errors in
the counter support for it in DBpedia.
Missing facts are triples that, based on KG relations, should be considered as counter
support but because of incompleteness are not present in the KG. For example, for
rule (# 10: spouse(v0,object) ∧ parent(subject ,v0) ∧ spouse(subject ,object) → ⊥), we
observe in DBpedia: spouse(Kaumualii,Deborah_Kapule), with Kaumualii and Debo-
rah_Kapule assigned to variables v0 and object, respectively; parent(Kealiiahonui,Kaumualii)
(subject,v0); and spouse(Deborah_Kapule,Kealiiahonui) (object,subject). The triple

1We report the rules in Appendix B.2.
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spouse(Kealiiahonui,Deborah_Kapule) would be counter support to this rule, but it
is not in the KG, despite the presence of parent(Kealiiahonui,Kaumualii) and the
fact that the rule spouse(a,b) → spouse(b,a) is always true. We therefore count
spouse(Kealiiahonui,Deborah_Kapule) as a missing fact for this rule.

Rule Hum. Conf. C_S 1 MF IF C_S 2 Conf. 1 Conf. 2 Conf. MF Conf. IF
1 0 56 15 0 71 0.05 0.04 0.4 0.05
2 0.05 477 89 0 566 0.04 0.03 0.03 0.04
3 0.07 15 4 0 19 0.16 0.13 0.13 0.16
4 0.1 107 59 0 166 0.02 0.01 0.01 0.02
5 0.1 44 0 0 44 0.13 0.13 0.13 0.13
6 0.1 51 90 0 141 0.23 0.10 0.10 0.23
7 0.2 1 1 0 2 0.26 0.15 0.15 0.26
8 0.25 20 9 0 29 0.20 0.15 0.15 0.20
9 0.3 306 220 0 526 0.39 0.27 0.27 0.39
10 0.85 32 9 0 41 0.86 0.83 0.83 0.86
11 0.85 1 0 0 1 0.87 0.87 0.87 0.87
12 0.9 25 0 0 25 0.88 0.88 0.88 0.88
13 0.9 1 0 0 1 0.94 0.94 0.94 0.94
14 0.9 15 6 0 21 0.95 0.93 0.93 0.95
15 0.95 30 0 22 8 0.88 0.96 0.88 0.96
16 0.95 4 5 0 9 0.97 0.94 0.94 0.97
17 1 11 0 0 11 0.80 0.80 0.80 0.80
18 1 7 1 0 8 0.97 0.96 0.96 0.97
19 1 13 1 13 0 0.98 1 0.98 1
20 1 0 0 0 0 1 1 1 1
21 1 0 0 0 0 1 1 1 1
22 1 0 0 0 0 1 1 1 1
23 1 0 0 0 0 1 1 1 1
24 1 0 0 0 0 1 1 1 1
25 1 1 0 1 0 1 1 1 1

Table 2. Negative rules information: rule #, human confidence obtained from triple annotation (Hum. Conf.),
number of missing facts (MF) and incorrect facts (IF), original (C_S 1) and updated counter support (C_S 2),
computed confidence before (Conf. 1) and after refining counter support (Conf. 2), computed confidence by
only adding missing facts (Conf. MF ) and by only removing incorrect facts (Conf. IF ).

Adding missing facts and removing incorrect facts affect the counter supports of rules and
therefore changes the confidence measure value. For measuring this impact, for every negative
rule in this experiment (listed in Table 3), we report in Table 2 its confidence before and after
refining their counter supports. We manually checked every rule to compute the new counter
support (newC_S) after adding missing facts (MF) and removing incorrect facts (IF). The original
confidence measure (Conf. 1) and the one obtained with the new counter support (Conf. 2) are also
reported. Identifying incorrect and missed counter supports for negative rules decreases the average
error rate of the computed confidence measure w.r.t. human confidence (Hum. Conf., obtained by
annotating triples) from 4.3% to 3.3%.
We also report the updated confidence of every rule by only adding missing facts (Conf. MF )

and by only removing incorrect facts (Conf. IF ). We added 509 missing facts, which affected 13
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rules (every rule has 20.4 missed facts by average), and removed 36 mistakes, which affected 3 rules
(1.4 for each rule by average). By adding missing facts only to counter supports (Conf. MF), we
decrease the average error rate of the computed confidence measure w.r.t. human confidence from
4.3% to 3.6%, while the average error rate Conf. IF is 4.0% by only removing mistakes. We observe
that adding missing facts has a bigger positive impact on the confidence computation.

Fig. 6. Computed confidence error rate w.r.t. human quality with and without manual cleaning of the triples
for different κ values.

The Effect of KG Cleaning on κ. As discussed in Section 2.3, the correct value of κ depends on the
accuracy of a KG. We report the effect on the confidence computation quality when removing
missing and incorrect facts with different κ values.

Results in Figure 6 show that cleaning counter supports has a positive impact on lower κ values
while it can increase error rate for high values. Even a small amount of cleaning effectively decreases
errors and incompleteness in KGs. As κ depends on KG accuracy, the results consistently show
that by increasing the accuracy, a lower value for κ (20) has the minimum average error rate.
Improvement can be observed for all values smaller than 25, while larger values report worse
results, thus confirming that the estimate of the error rate is too big and a smaller κ value should
be used.

4.5 Lessons Learned in Annotating Rules
One of the observations from our work is that evaluating rules is a non trivial task. In fact, we

advocate that, when possible, rules should be evaluated by looking and annotating the output triples
as true or false. Even with a small number of randomly sampled triples, the estimated confidence is
usually more reasonable than a human quality evaluation.

On the other hand, it is much faster to come up with a subjective measure of the quality of a rule
by looking at its logical form. This can be effective for some rules, but more difficult for others. We
conducted experiments on quality evaluation to find more evidence of the gap between the two
measures and to better understand what are the more complicated cases for annotators.

We recruited three graduate students, not involved in this work and not familiar with KGs. We
gave them the task to assign a quality evaluation score to 20 (positive and negative) rules. Each
annotator assigned individually a score from 1 to 5 to every rule, where 5 is a completely incorrect
rule and 1 is a correct one (see Section 3.1).
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Fig. 7. Impact of number of rules atoms on quality evaluation annotations.

Experimental results show a good correlation between the average of the quality evaluation score
from the non-expert annotators and the human confidence values based on triples annotations.
Detailed results are reported in Appendix B.3. After a more detailed analysis of the results, the
triple annotation based method is clearly closer to the correct evaluation. In fact, quality evaluation
scores are not always in agreement and the Kendall’s tau-b correlation [25] score over the 20 rules
is 0.49 as annotators had different understanding of some of the non-trivial rules.

There are multiple factors that affect the understanding of a rule. An important feature of rules
is their type. In our experiments, quality evaluation annotators had a lower error rate in evaluating
positive rules (0.50) in comparison to negative ones (0.72). Another factor is the number of atoms
in the rule. Figure 7 shows that rules with a higher number of atoms seem to be more difficult to
evaluate. The low error rate in Figure 7 is explained by the fact that only two rules have 7 atoms
and both of them are positive.

5 RELATEDWORK
For relational data, dependencies are discovered over the attributes of a given schema and encoded
into formalisms, such as Functional Dependencies [2, 22] and Denial Constraints [12, 16]. However,
relational techniques cannot be applied to KGs for three main reasons: (i) the schema-less nature
of RDF data and the open world assumption; (ii) traditional approaches rely on the assumption
that data is either clean or has a small amount of errors, which is not the case with KGs; (iii) even
when the algorithms are designed to support more errors [1, 26], there are scalability issues on
large RDF datasets: a direct application of relational database techniques on the graph requires the
materialization of all possible predicate combinations into relational tables. These reasons have
motivated a lot of work on discovering rules for KGs. Recently, algorithms to discover Functional
Dependencies on Graphs have been introduced [17]. Traditional approaches rely on general purpose
ILP systems [13, 32], while more recently new algorithms have been designed specifically for KG
mining. RuDiK is a system that mines both positive and negative rules in RDF KGs [28]. Other
approaches are designed for positive rule discovery with an emphasis on scalability [11, 20, 40, 42]
and accuracy [15, 19]. Recent work has also started to look at how to use external information
in the mining of rules, such as edit history [37] and graph embeddings [21]. For the algorithmic
details, we refer the reader to a recent survey on rule mining systems [36].

Other works recommend new facts by using association rule mining techniques [3] or detect data
contradictions by discovering axioms concerning properties’ domain and range restrictions [38].
Another approach identifies outliers after grouping subjects by type [41]. Finally, the generation of
new facts in a graph is related to the task of link prediction [9, 23, 33].
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6 CONCLUSION
We introduced RuleHub, a system managing an open corpus of more than 7,000 rules collected
from different systems for three KGs. Our system exposes a web portal to the users to let them
retrieve rules for their tasks, add new rules, and refine and annotate rules in the corpus. We believe
that metadata play a key role to make rules really effective. Towards this goal, we introduce a new
confidence measurement to evaluate the quality of negative rules. An experimental comparison
against human computed confidences show that our measure gives valid quality estimations.
Looking forward, we plan to keep enriching the corpus by supporting more kinds of rules,

such as graph functional dependencies [17]. Indeed, these dependencies have a syntax that is not
modelled by the Horn rules supported in our current system. We will improve the interface to
make it more convenient for users and better allow them to contribute to the hub. We also believe
that, in terms of metadata, there is a great opportunity in going beyond confidence and extend
our system to compute more statistical measures, such as unexpectedness [34]. Finally, we plan
to design a novel rule mining algorithm that makes use of the proposed method to estimate the
confidence for negative rules.

With the continuous development of KGs as well as the evolution of rule mining techniques, we
believe that RuleHub will play an important role in collective storing and managing of KG rules.
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A RULE MINING SYSTEMS
We briefly describe the two systems that we used to generate most of the rules in our corpus.

AMIE mines positive rules from KGs and it works based on the assumption that the target KG
fits into memory. AMIE lists all the predicates in the KG and inserts each of them as head of the
rule. Once the head is filled, the system tries to expand the rule by pivoting on one of the variables
of the current predicate and looks for predicates sharing the same variable with high coverage in
the KG. The coverage of a rule is penalized with the partial closed world assumption, where the
set of negative examples for a given pair (x ,y) and a target predicate p is all those pairs where x
is connected through p to an entity different from y. It then ranks rules according to a support
function.
RuDiK is a disk-based system that mines positive and negative rules over KGs. RuDiK extracts

both positive and negative rules and finds the smallest set of rules that cover most of the positive
examples and few negative examples. RuDiK uses positive and negative example as Generation and
Validation sets. Next, it retrieves all valid paths that start from every node in those sets. It finally
computes the coverage for each path and traverses only paths that can generate promising rules.
We generate rules using AMIE and RuDiK with their default settings as suggested from the

authors. These settings imply a maximum number of atoms in the body of a rule equals to 3 for
AMIE and 5 with RuDiK.

Fig. 8. Confidence measures of the rules for DBpedia:spouse.

Fig. 9. Confidence measures of the rules for DBpedia:foundedBy.
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Fig. 10. Confidence measures of the rules for DBpedia:relative and DBpedia:publisher (union of the two rule
sets).

B MORE EXPERIMENTAL RESULTS
B.1 Other Predicates Confidence Results
In this section, we report more results about our experiments. Figure 8 shows a comparison between
human confidence and computed confidence for the rules involving DBpedia:spouse. Figure 9 shows
the results for the rules involving the DBpedia:foundedBy predicate. Figure 10 reports the results
for the union of the rules for two DBpedia predicates: relative and publisher. The mean error for
these predicates is 8.36% for positive rules and 8.71% for negative rules. The correlation between
human confidence and computed confidence for both positive and negative rules for these predicates
is evident from the plots.

B.2 A Sample of Rules Used for Evaluations
We report in Table 3 the negative rules that we used for evaluating our confidence measures.
Figure 5a shows the computed confidence of these rules for different κ values.

In Table 4 we report the positive rules that we used for evaluating our confidence measures.

B.3 Quality Evaluation Measure Experiment
In this experiment, we assess the quality evaluation measure (Section 3.1) by comparing it with the
human computed confidence. We randomly chose 20 annotated positive and negative rules from
the RuleHub database and asked three non-experts to assign quality evaluation score to each one
of them. We provided three annotators with some general guidelines about logical rules and KGs,
as well as with a brief description in English for every rule to help them understand the semantic
meaning of the rule. Each annotator assigned individually a score from 1 to 5 to every rule, where
5 is a completely incorrect rule and 1 is a correct one.
In Figure 11, we report on the horizontal axis the average of annotators quality evaluation

score for the rules (between 1 and 5) and in the vertical axis their human confidences (based
on triple annotation). The results show a clear correlation between the two measures, with the
exception of the two rules marked with red points. The first exception rule (red point on the right)
is predecessor (object ,v0) ∧ spouse(v0,v1) ∧ predecessor (subject ,v1) → spouse(subject ,object),
which has 0.35 human confidence and the average of annotators score is 4.7. This rule is a positive
rule which states that if the job predecessors of two given persons are married then these two
persons are married. Even though it was difficult for annotators to find supports for this rule, there
are 547 support triples for this rule in DBpedia. In fact, this is true in most of the cases when kings or
presidents are replaced. For example, given that predecessor (Donald_Trump,Barak_Obama) and
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Rule
1 owninдCompany(object ,v0) ∧manu f acturer (v1,v0) ∧ computinдPlat f orm(subject ,v1)

∧publisher (subject ,object) → ⊥

2 relative(v0,object) ∧ child(v0, subject) ∧ parent(subject ,v0) ∧ relative(subject ,object) → ⊥

3 country(subject ,v0) ∧ location(v1,v0) ∧ successor (v1,object) ∧ publisher (subject ,object) → ⊥

4 almaMater (object ,v0) ∧ country(v0,v1) ∧ birthPlace(subject ,v1) ∧ relative(subject ,object) → ⊥

5 employer (v0,object) ∧ birthYear (v0,v1) ∧ deathYear (subject ,v1) ∧ employer (subject ,object) → ⊥

6 publisher (subject ,v0) ∧ product(object ,v0) ∧ publisher (subject ,object) → ⊥

7 owninдCompany(subject ,object) ∧ owner (v0,object) ∧ author (v0,object)∧
type(object ,Orдanisation) ∧ type(subject ,Orдanisation) ∧ f oundedBy(subject ,object) → ⊥

8 publisher (subject ,v0) ∧ parentCompany(v1,v0) ∧ successor (object ,v1) ∧ publisher (subject ,object) → ⊥

9 birthYear (object ,v0) ∧ birthYear (subject ,v1)∧ > (v0,v1) ∧ in f luencedBy(subject ,object) → ⊥

10 spouse(v0,object) ∧ parent(subject ,v0) ∧ spouse(subject ,object) → ⊥

11 writer (v0,object) ∧ artist(v0, subject) ∧ f oundedBy(subject ,object) → ⊥

12 predecessor (v0,object) ∧ predecessor (subject ,v0) ∧ spouse(subject ,object) → ⊥

13 associatedMusicalArtist(object , subject) ∧ associatedBand(object ,v0)∧
associatedMusicalArtist(v0, subject) ∧ f oundedBy(subject ,object) → ⊥

14 deathYear (subject ,v0) ∧ activeYearsStartYear (object ,v1)∧ < (v0,v1) ∧ spouse(subject ,object) → ⊥

15 spouse(v0,object) ∧ child(v0, subject) ∧ spouse(subject ,object) → ⊥

16 deathPlace(object ,v0) ∧ reдion(v0,v1) ∧ birthPlace(subject ,v1)∧
type(subject ,Royalty) ∧ type(object ,Royalty) ∧ spouse(subject ,object) → ⊥

17 birthPlace(object ,v0) ∧ deathPlace(object ,v0) ∧ predecessor (object , subject)
∧spouse(subject ,object) → ⊥

18 spouse(subject ,v0) ∧ parent(object ,v0) ∧ parent(object , subject) ∧ spouse(subject ,object) → ⊥

19 deathDate(object ,v1) ∧ birthYear (subject ,v0)∧ > (v0,v1) ∧ spouse(subject ,object) → ⊥

20 spouse(v0,object) ∧ parent(subject ,v0) ∧ predecessor (subject ,object) ∧ spouse(subject ,object) → ⊥

21 successor (object , subject) ∧ parent(subject ,v0) ∧ spouse(object ,v0) ∧ spouse(subject ,object) → ⊥

22 parent(object ,v0) ∧ spouse(subject ,v0) ∧ successor (subject ,object) ∧ spouse(subject ,object) → ⊥

23 artist(v0, subject) ∧ recordedIn(v0,v1) ∧ birthPlace(object ,v1) ∧ f oundedBy(subject ,object) → ⊥

24 f oundedBy(subject ,v0) ∧ deathPlace(v0,v1) ∧ locationCountry(object ,v1)
∧type(object ,Company) ∧ type(subject ,Company) ∧ f oundedBy(subject ,object) → ⊥

25 f oundinдYear (subject ,v0) ∧ activeYearsStartYear (object ,v1)∧ < (v0,v1) ∧ f ounder (subject ,object) → ⊥

Table 3. Examples of negative rules.

predecessor (Melanie_Trump,Michelle_Obama), since spouse(Barak_Obama,Michelle_Obama)
then spouse(Donald_Trump,Melanie_Trump). The second rule deathDate(subject ,v0)∧ <
(v0,v1) ∧ activeYearsStartYear (object ,v1) ∧ spouse(subject ,object) → ⊥ has 0.9 human con-
fidence but a lower evaluation score of 2.7. This rule states that a person (object) can not be in
spouse relationship with a person (subject) who died before object has started his career. In both
cases, the triple annotation based method seem to be closer to the correct evaluation. We observe
that in these two cases there was always one non-expert making the evaluation very different from
the one based on triple annotation, thus skewing the results. In fact, the Kendall’s tau-b correlation
[25] score for annotating the 20 rules is 0.49, which is a fair agreement but also shows that the
annotators had different understandings of some of the non-trivial rules. These results confirm
that the triple based annotation is more time-consuming but also more reliable than the qualitative
analysis of the rules.
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Rule
1 recordLabel(v0, subject) ∧ f oundedBy(object ,v0) → f oundedBy(subject ,object)

2 parentCompany(subject ,v0) ∧ successor (v1,v0) ∧ f oundedBy(v1,object) → f oundedBy(subject ,object)

3 producer (v0,object) ∧ producer (v0, subject) → relative(subject ,object)

4 predecessor (v0,object) ∧ spouse(v1,v0) ∧ successor (subject ,v1) → spouse(subject ,object)

5 author (subject ,v0) ∧ author (v1,v0) ∧ publisher (v1,object) → publisher (subject ,object)

6 relative(v0,object) ∧ spouse(v0, subject) → relative(subject ,object)

7 child(object ,v0) ∧ spouse(v0, subject) → relative(subject ,object)

8 successor (subject ,v0) ∧ parent(v0,object) → spouse(subject ,object)

9 relative(subject ,v0) ∧ relative(v0,object) ∧ child(object ,v0) → relative(subject ,object)

10 spouse(subject ,v0) ∧ spouse(v1,v0) ∧ spouse(v1,object) → spouse(subject ,object)

11 developer (subject ,object) ∧ developer (v0,object) ∧ composer (v0,v0) → publisher (subject ,object)

12 child(subject ,v0) ∧ child(object ,v0) → spouse(subject ,object)

13 relative(object , subject) ∧ birthPlace(object ,v0) ∧ birthPlace(subject ,v0) → relative(subject ,object)

14 spouse(object , subject) → spouse(subject ,object)

15 parent(v0,object) ∧ parent(v0, subject) → spouse(subject ,object)

Table 4. Examples of positive rules.

Fig. 11. Quality Evaluation (subjective value between 1 and 5) vs Human Confidence (derived from triple
annotation).

Fig. 12. Impact of number of atoms on the error rate for the computed confidence w.r.t. human confidence.
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B.4 Important factors in Computing Rules Confidence
We report some observations from comparing computed rule confidence with human confidence.
There are 105 manually annotated rules in the RuleHub corpus: 56 positive and 49 negative ones.
Comparing computed confidence values with human confidence values shows that there is a lower
error rate for positive rules (12.9%) in comparison to negative rules (16.5%). The number of atoms
in a rule also affects the computed confidence. Figure 12 shows that the computed confidence has a
better accuracy for rules with a higher number of atoms. Intuitively, the more a rule is specific,
the less likely it is that it is satisfied with incorrect triples. In fact, assuming most of the errors are
independent from each other (i.e., they are no systematic), it is very unlikely that multiple atoms
show a pattern by chance.
Conditional rules are rules that apply only for a subset of data and therefore come with at

least two extra atoms compared to the same rules without type constraints [4]. For example,
party(object ,v0) ∧ party(subject ,v1) ∧ type(subject , Politician) ∧ type(object ,O f f iceHolder ) ∧
spouse(subject ,object) → ⊥ is a conditional rule that applies where subject has type Politician and
object has type OfficeHolder. In accordance with our observation above, conditional rules show
on average a lower error rate in the computation of their confidence (11.6%) in comparison to the
average for rules that are not conditional (15.1%).

C RULEHUBWEB PAGE
In this section, we report more details about the web interface of RuleHub. A step-by-step user
manual is available at http://rudik.eurecom.fr/user-manual.

C.1 Add new rules
To enrich the corpus, RuleHub allows users to easily add more rules into the system through a
simple form with the following mandatory fields:

• Knowledge Base
• Predicate
• Rule Type
• Premise
• Human Confidence
• Quality Evaluation

When a rule is submitted, the system computes the hash code to check if the rule already exists in
the corpus. If it is a new rule, it will automatically calculate the support score based on the number
of matching cases and not-matching cases over the corresponding KG (see Section 2.3), then store it
into the database as a rule to be validated. These rules will not be published until they are approved
by administrators of the site. Figure 13 reports a screenshot of the main page of the RuleHub portal.
Figure 14 reports a screenshot of the page to add rules. Figure 15 reports a screenshot of the rule
management page.

C.2 Evaluate rules
Administrators can get samples of the output of a rule execution and label them through RuleHub.
Figure 16 reports a screenshot of the evaluation page.
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Fig. 13. Screenshot of RuleHub web portal - Search for rules.

Fig. 14. Screenshot of RuleHub web portal - Add rule.
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Fig. 15. Screenshot of RuleHub web portal - Rule Management.

Fig. 16. Screenshot of RuleHub web portal - Rule Evaluation.
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