
5G Cloud-Native: Network Management &
Automation

Osama Arouk and Navid Nikaein
Communications Systems Department - EURECOM, Biot, France - Email: firstname.lastname@eurecom.fr

Abstract—In this demo, we present 5G network automation
in cloud-native environment. Our proposition is to demonstrate
the network automation using Kubernets as container orches-
tration and automating application deployment, while using
Openshift Operator as a tool to manage complex services, such
as 5G services. For this purpose, we use the containerized
OpenAirInterface (OAI) to deploy the network and demonstrate
the automatability, such as dynamic switch of RAN between
monolithic base station and disaggregated RAN (i.e. Distributed
Unit-DU and Centralized Unit-CU), and auto-configuration.

Index Terms—4G/5G, cloud-native, NFV, Network Manage-
ment and Automation, kubernetes, OpenAirInterface (OAI),
Openshift Operator

I. INTRODUCTION

Fast, access at scale, frequent deployment of services, and
quick failure recovery (e.g., service availability >= 99.999)
became important features to support current and novel ser-
vices of 5G networks in a virtualized environment. Such
network automation in 5G networks as required for network
slicing, as well as the evolution of the services (e.g., service
update/upgrade, scaling etc.), can be achieved by softwariza-
tion, virtualization, and cloud computing technologies.

Cloud-native approach is a way to build and run appli-
cations that fully exploit the cloud computing model. Auto-
scaling, self-healing, agility, among others, are considered as
the core features that are envisioned for 5G in cloud native
environment. Note that Cloud Native Computing Foundation
(CNCF) is one of the main drivers for the adoption of such
paradigm by fostering and sustaining an ecosystem of open
source and vendor-neutral projects [1]. Generally, cloud-native
applications have three main features. Firstly, they are com-
posed of microservices [2], where a cloud-native application
can be composed of many services operating independently
of each other. Secondly, the cloud-native applications are
packaged in containers, and thus ensuring the context’s iso-
lation of microservices. Finally, they run in a continuous
delivery model, which ensures fast cycles of building, testing,
deploying, releasing, and developing the applications.

One of the main features of microservices and containers
is that they have small footprint and fast start times, which
is an important feature for 5G in the cloud. There are many
technologies for containerization, such as Linux Containers
(LXC), containerd, CRI-O, docker. However, it is hard to
decide which containerization is better for 5G, since they
have comparatively similar performance [3]. However, we use
docker due to its maturity and support by large community.

In order to cloudify the network, flexible functional split
was introduced by 3GPP [TR 38.801] to cope with the
ever increasing COPEX/CAPEX with the introduction of new
services in 5G. Contrary to monolithic 4G RAN, the RAN of
5G is disaggregated into three main units: the Remote Radio
Unit (RRU), the Distributed Unit (DU), and the Centralized
Unit (CU). All the necessary components related to signal
transmission/reception exist in RRU [4], while DU may con-
tain a set of physical layer functions shifted to the cloud as
well as some set of higher layer functions. The rest of higher
layer functions will be then treated/processed at the CU. 3GPP
defined 8 types of functional split, where their requirements
(regarding CPU, latency, and fronthaul rates) are different for
every split.

After shifting most of the 5G functions to the cloud (i.e.,
build them as a cloud-native applications), the management
and orchestration of the ecosystem is required in order to
achieve the envisioned performance. Several frameworks al-
ready exist, such as Kubernetes [5], Docker Swarm, and
Apache Mesos. Kubernetes is considered as a good candi-
date for supporting 5G services, since it can well support
the flexibility required in 5G [6], [7], and it is taking the
momentum [1]. Moreover, it has bigger community, and thus
guaranteeing better support on a long term. For the ease of
packaging, deploying and managing a Kubernetes application,
the openshift Operator framework [8] was introduced (deailed
in the next section).

In this paper, we present our demo on 5G dynamic network
automation and management in cloud-native environment.
More specifically, we demonstrate the ability to support 5G
in cloud native and dynamically automate the network, i.e.
upgrade/downgrade services, change the configuration auto-
matically, and dynamically switch between monolithic eNB
and functional split (CU-DU).

II. OPENSHIFT OPERATOR & 5G NETWORK
AUTOMATION

In order to fully automate the deployment and managing the
lifecycle of applications under Kubernetes, we use openshift
Operator, or simply Operator. Operator is capable of managing
complex services, which is managed by administrators and
their operational scripts, e.g. ansible. Since Operator can be
run inside Kubernetes as a service, it’s thus more portable and
has better integration. The Operator utilizes what is called
Controller to achieve its ability. Considered as one of the
core concepts of Kubernetes, a Controller is an entity that
continuously loops on the master node of Kubernetes. With978-1-7281-4973-8/20/$31.00 © 2020 IEEE

Kubernetes
Operator

PC1

docker0

flannel

10.244.1.1/24

10.244.1.0/16

192.168.12.94 PC2

POD eth0

docker0

flannel

OAI-CN

10.244.2.2

10.244.2.1/24

10.244.2.0/16

192.168.12.92

POD eth0

Mysql

10.244.2.3

Internet

POD eth0

Mosaic5G	Operator

10.244.1.3

Kubernetes
Operator

PC1

docker0

flannel

10.244.1.1/24

10.244.1.0/16

192.168.12.94 PC2

POD eth0

docker0

flannel

OAI-CN

10.244.2.2

10.244.2.1/24

10.244.2.0/16

192.168.12.92

POD eth0

Mysql

10.244.2.3

Internet

POD eth0

Mosaic5G	Operator

10.244.1.3POD eth0

OAI-DU

10.244.1.2 POD eth0

OAI-CU

10.244.1.2
USRP

USRP
POD eth0

OAI-RAN

10.244.1.2

Fig. 1. Network slice lifecycle and resource monitoring

the help of client-go12, this entity will listen to the cluster
for any changes in the resources. Whenever these chanegs
are detected, the controller will perform the corresponding
action(s). For example, a Deployment controller will listen
to any changes to its pods, and it will make changes if
the state of that pods is not correct. For the objective of
managing complex services like 5G, we implemented an open-
shift operator, dubbed as Mosaic5G Operator, using Openshift
Operator SDK3. Currently, this Mosaic5G Operator supports
the following: i) service deployment, ii) (re)configuration, iii)
upgrading/downgrading of service’s version. Note that this
operator is implemented using golang, since it has more
capability than the other two types of operator (namely helm
and Ansible) like auto-pilot and deep insights [9].

III. DEMO REPRODUCIBILITY AND POTENTIAL IMPACT

All the tools that are used by this demo are open source.
Therefore, by setting up correctly kubernetes and openshift
operator, the research community can reproduce the current
demo. This demo can help to deploy 5G network on large
scale, while managing it according to the current user traffic
(e.g., switch to monolithic RAN in case of high user traffic or
to disaggregated RAN when low user traffic is detected).

IV. PROOF OF CONCEPT AND PLANNED DEMO

Fig. 2 illustrates the entities of 4G/5G network that are
considered in our demo. These entities are: i) mysql, ii)
oai-cn that includes oai-hss, oai-mme, oai-spgw, iii) oai-ran
that is oai-enb for monolithic mode and oai-cu/oai-du for
disaggregated mode. Note that the USRP and the antenna
act as forntend to connect the User Equipment (UE), which
can be any commercial mobile phone, to the network. The
detailed setup is illustrated in Fig. 1, where a 4G/5G network is
deployed using Mosaic5G operator and kubernetes cluster with
two nodes: one as master node, and the other as worker node.
Moreover, Mosaic5G operator is used for the automation,

1client-go is client used to talk to Kubernetes cluster
2https://github.com/Kubernetes/client-go
3https://github.com/operator-framework/operator-sdk

OAI-RAN OAI-CN Mysql

HSS

MME

SPGW

USRP

Antenna

Internet

UE

CUDU

OAI-RAN OAI-CN Mysql

HSS

MME

SPGW

eNB

USRP

Antenna

Internet

UE

Fig. 2. 4G/5G network illustration: Monolithic RAN (top), versus disaggre-
gated RAN (bottom)
where three principal features are demonstrated: i) change
of network configuration, ii) network upgrade (i.e., upgrade
one or more network entities), iii) switch between monolithic
RAN (top topology in Fig. 1) and disaggregated RAN (bottom
topology in Fig. 1) and vice versa according to user traffic.

REFERENCES

[1] CNCF, “CNCF: Building Sustainable Ecosystems for Cloud Native
Software.” [Online]. Available: https://www.cncf.io/

[2] M. Fowler, “Microservices: a definition of this new architectural term .”
[Online]. Available: https://martinfowler.com/articles/microservices.html

[3] Kubernetes, “Kubernetes Container Runtimes.” [Online]. Available:
https://kubedex.com/kubernetes-container-runtimes/

[4] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, and T. Braun,
Towards a Cloud-Native Radio Access Network. Springer International
Publishing, 2017, pp. 171–202.

[5] Kubernetes, “Kubernetes: Production-Grade Container Orchestration.”
[Online]. Available: https://kubernetes.io/

[6] 5G-PPP, “From Webscale to Telco, the Cloud Native Journey,” 5G-PPP
Software Network Working Group, Tech. Rep., 08 2018.

[7] 5G-PPP, “Cloud-Native and Vertical services,” 5G-PPP Software Network
Working Group, Tech. Rep., 08 2019.

[8] RedHat, “Introducing the Operator Framework: Building Apps on
Kubernetes.” [Online]. Available: https://blog.openshift.com/introducing-
the-operator-framework/

[9] Redhat, “Understanding Operators.” [Online]. Avail-
able: https://docs.openshift.com/container-platform/4.2/operators/olm-
what-operators-are.htm

