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@. This talk is about more than the title = teaser.
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__Introduction _Static SBL_Combined BP-MF-EP Framework _Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference T
Main Messages

@. There are many Bayesian estimation problems, many of which are LMMSE (Wiener, Kalman),
which contain hyperparameters to be tuned, using various approaches.

@. Information combining: from weighted least-squares to message passing in a more general overall
Bayesian formulation (e.g. cooperative location estimation)

. Empirical Bayes (EB) as principled framework for bias-variance trade-off

@. but not necessarily using empirical Bayes for hyperparameter estimation: SURE, Cross Validation

@ compressive sensing, sparse models, generalization of model order selection to support region,
model complexity and structure

@. Sparse Bayesian Learning (SBL) is one EB instance, allowing to exploit (approximate) sparsity for
compressed sensing

e can be extended to time-varying scenarios with sparse variations also
e can be extended to dictionary learning, in particular with Kronecker structured
dictionaries

@. message passing (approximate iterative) inference techniques: easy to get the mean (estimate)
correct but more difficult to get correct posterior variances
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__Introduction _Static SBL_Combined BP-MF-EP Framework _Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference T
Main Messages (2)

a. free energy optimization framework, guided by mismatched Cramer-Rao Bound (mCRB) for split
in various MP simplification levels (Belief Propagation (BP), Variational Bayes (VB) - Mean
Field (MF)), allowing performance-complexity trade-off

@. large system analysis (LSA) yields simplified asymptotic performance analysis for certain
measurement matrix models, allowing to show optimality and to justify algorithmic simplifications

. Approximate Message Passing (AMP) very similar to approximate large turbo receivers for
CDMA for which heuristic LSA was performed based on Replica Method Analysis.

@. AMP can be derived more rigorously from BP, using asymptotically justifiable first-order Taylor
series expansions and Gaussian approximations.

@. LSA allows tracking of the AMP MSE through the iterations, called State Evolution (SE),
showing convergence to MMSE and hence optimality.

@. SE requires statistical models for the measurement matrix A. Pushing these model assumptions
completely through to the xAMP algorithms may be an unnecessary simplification. The main
requirement is independent rows/columns as in CDMA random spreading.

@. Most xAMP versions require i.i.d. x, which is not suited for SBL. We present new LSA for
SBL-AMP.
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Introduction

Kalman Filter

Linear state-space model:

state update equation:
X1 = Fi(0) xi + Gi(0) wi
measurement equation:

Yo = Hk(e)Xk-i-Vk

for k =1,2,..., with uncorrelated
@ initial state xo ~ N (Xo, Po),
@ measurement noise v, ~ N(0, R(0)),
@ state noise wyx ~ N(0, Q«(9)).
State model known up to some parameters 6.
Often Fi(0), Gk(0), H(0) linear in 0: bilinear case.
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Introduction

Numerous Applications

@, LMMSE wireless channel estimation:
xx = FIR filter response, 6: Power Delay Profile, AR(1) dynamics in e.g. diagonal F and Q

@. Bayesian adaptive filtering (BAF):
analogous to LMMSE channel estimation, except measurement equation: only one 1D
measurement is available per instance. An extremely simplified form of BAF is the so-called
Proportionate LMS (P-LMS) algorithm.

@, Position tracking (GPS):

1 At LA#? zy+ At v + 1A%
Xee1=| 0 1 At CXy = vy + AL - a
0 0 1 a

0: acceleration model parameters (e.g. white noise, AR(1))
@. Blind Audio Source Separation (BASS):

Xk = source signals,
0: (short+long term) AR parameters, reverb filters
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Static LMMSE (Wiener) Applications

@ Direction of Arrival (DoA) estimation: x = decorrelated sources, apart from the DoA parameters
there could also be antenna array calibration parameters or source and noise covariance
parameters.

@. Blind and semi-blind channel estimation. In the techniques that exploit the (white) second-order
statistics of x, (the unknown part of) x gets modeled as Gaussian. Numerous variations:
single-carrier, OFDM and CDMA versions, single- and multi-user, single- and multi-stream, with
black box FIR channel models or propagation based parameterized channel models.

Image Deblurring, NMRI Imaging

@. LMMSE receiver (Rx) design: x = Tx symbol sequence to be recovered on the basis of Rx signal,
in single- or multi-user settings and other variations as in the channel estimation case. The
crosscorrelation between Tx and Rx signals depends on the channel response, which is part of the
parameters. The Rx signal covariance matrix on the other hand can be modeled in various ways,
non-parametric or parametric. Account for the channel estimation error in the LMMSE Rx
design. Another approach: consider the LMMSE filter directly as the parameters.

LMMSE Tx design, partial CSIR/CSIT.
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Adaptive Kalman Filter solutions

@ Extended Kalman Filter (EKF)

@. other generic nonlinear Kalman Filter extensions:
Unscented Kalman Filter (UKF), Cubature Kalman Filter (CKF), Gaussian Sum
Filter, Particle Filter (PF)

@ Recursive Prediction Error Method (RPEM) Kalman Filter
@ Second-Order Extended Kalman Filter (SOEKF)
@ Expectation-Maximization (EM)/Variational Bayes (\VVB) Kalman Filter
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Introduction

Time Varying Sparse State Tracking

Sparse signal x; is modeled using an AR(1) process with diagonal correlation coefficient matrix F.
X v,

Ve
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Define: E = diag(¢), F = diag(f).
fi . correlation coefficient and x;,: ~ CN(xi,:; 0, é) Further, w; ~ CN(w:; 0,771 = 2711 — FF"))
and v; ~ CN(v; O,fy_ll). VB leads to Gaussian SAVE-Kalman Filtering (GS-KF).
Applications: Localization, Adaptive Filtering.
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing gn/d é—\ldaptive Kalman Filtering
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Compressed Sensing Problem

@. Noiseless case: Given underdetermined y, A, the optimization problem is

min ||x||, subject to y = Ax.
X

Can recover x and its support for small N — ||x||,
(small overdetermination if support were known)

@, Noisy case:
min ||x||, subject to ||y — Ax||, <e.
X

@. Il norm minimization: an NP-hard problem.
@. Constrained problem = Lagrangian, Convex Relaxation (using p norm, p > 1):

. 2
min [y — Ax]ly + X [|x[|, -

Restricted Isometry Property (RIP): AT A sufficiently diagonally dominant
@. Most identifiability work considered noiseless data & exact sparsity
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Sparse Signal Recovery Algorithms

Convex Relaxation based Methods:

o Basis pursuit (4 norm) *.

@ LASSO(h norm)?

o_ Dantzig selector®

@. FOCUSS (I, norm, with p < 1).
Greedy Algorithms:

@ Matching Pursuit*

@ Orthogonal Matching Pursuit (OMP)®

o. CoSaMP*
Iterative Methods:

@ lterative Shrinkage and Thresholding Algorithm (ISTA) or Fast ISTA.
9. Approximate Message Passing variants (xAMP)- more details to follow.

@. Very recent: Deep learning based methods such as Learned ISTA (LISTA)®, Learned AMP
(LAMP) and Learned Vector AMP (LVAMP)®.

!Chen, Donoho, Saunders'99, 2Tibshirani'96, *Candes, Tao'07

*Mallat, Zhang'93, 3Tropp, Gilbert'07, *Needell, Tropp'09

"Daubechies, Defrise, Mol'04, 8Gregor, Cun'10, °Borgerding, Schniter, Rangan’'17
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James-Stein Estimator

Q

)

Bayesian interpretation of (possibly overdetermined) Compressed Sensing:

min ||y — Ax||5 — 207 In p(x)

Stein and James'® showed that for i.i.d. linear Gaussian model p(x) = N(x;0,£7), it is possible

to I(construct a nonlinear estimate of x with lower MSE than that of ML for all values of the true
unknown x.

A popular design strategy: is to minimize Stein’s unbiased risk estimate (SURE), which is an
unbiased estimate of the MSE.

SURE directly approximates the MSE of an estimate from the data, without requiring knowledge
of the hyperparameters (), it is an instance of empirical Bayes.

Stein’s landmark discovery lead to the study of biased estimators that outperform minimum
variance unbiased estimators (MVU) in terms of MSE, e.g. work by Yonina Eldar''.

Shrinkage estimators and penalized maximum likelihood (PML) estimators.

10 James, Stein’61
E|dar'08
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Kernel Methods in Automatic Control

© 0 06060

Q

Kernel methods in linear system identification®? (y = Ax + v, v ~ N(v; 0,77 1)).

Traditional methods: maximum likelihood (ML) or prediction error methods (PEM)

ML/PEM optimal in the large data limit.

Questions: Model structure design for ML/PEM. Achieving a good bias-variance trade off.
Solution: Parameterized Kernel design and hyperparameter estimation. Methods for
hyperparameter estimation include cross-validation (CV), empirical Bayes (EB), C, statistics and
Stein’s unbiased risk estimate (SURE).

Regularized least square estimator (P is symmetric and +ve semidefinite kernel matrix):

~ . 1 _
X = arg min lly — Ax|]® + ;XTP x.
X

Parameterized family of matrices, P(n), where n € RP. m are the hyperparameters.
Can be interpreted as a constrained form of SBL, with a zero-mean Gaussian prior for x of which
the covariance matrix is a linear combination of some fixed matrices (SBL being a special case

with fixed matrices e,-e,-T).
A good overview of Kernel methods, connection with machine learning®

2Pillonetto, Nicolao'10
13Pillonetto, Dinuzzo, Chen, Nicolao, Ljung'14
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Kernel Hyperparameter Estimation

@. Empirical Bayes (EB=Type Il ML):

Teg = arg myin fes(P(m)),
fes(P(n)) = y' Q 'y + Indet(Q) with @ = APAT + 1.
@. Two SURE methods:
@ SURE 1: MSE of signal reconstruction (MSE,(P) = E(||x — x||*)):
SURE; : jsx = arg min fs(P(n)), with
n
fs(P()) = zy" Q" TAATA)PATQ 'y + Jtr{2R™ — (ATA) '},

'YZ

R=ATA+ 2P L
@ SURE 2: MSE of output prediction (MSE,(P) = E(||AX + v* — y||*)), v* independent from v:

SURE, : fs, = arg min f5,(P(n)), with
n
fo(P(m) = 2y"QTQ 'y +22tr{APATQ}

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing an(; Adaptive Kalman Filtering
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Introduction

Asymptotic Properties of Hyperparameter Estimators

@. Derived first order optimality conditions. In general, no closed form expression shown except for
special cases for e.g diagonal A, ridge regression with ATA = Nly.

. - L , TA N
* Assume that P(n) is any +ve definite parameterization of the kernel matrix and A—NA =° %, where
3. is positive definite. Then we have the following almost sure convergence.

HMSEX — 77); ) QSX — nX
nMSEy — 7]y7 TISy — 77y
TNees — Neps TEE — TEs

Q. Tmsex, Nmsey, Nees being the ORACLE estimators which are optimal for any data length N.

@, The two SURE estimators converge to the best possible hyperparameter in terms of MSE in the
asymptotic limit, “asymptotically consistent”.

@. EB estimator converges to another best hyperparameter minimizing the expectation of the EB
estimation criterion (EEB).

@_ Convergence of EB is faster than that of the two SURE estimators.

*Mu, Chen, Ljung'18
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Sparse Bayesian Learning - SBL

@ Bayesian Compressed Sensing: 2-layer hierarchical prior for x as in . inducing sparsity
for x (conjugate priors: posterior pdf of same family as prior pdf) :

Pe(xit6i) = N (x.1:0,&71), p(&ila, b) =T (a)b?¢7 e

= sparsifying Student-t marginal Ealscin St

br(a+1)

(27)21(a)

@ Sparsification of the Innovation Sequence: we apply the (Gamma) prior not to the
precision of the state x but of it's innovation w, allowing to sparsify at the same time the

components of x AND their variation in time (innovation).
@. The inverse of the noise variance -y is also assumed to have a Gamma prior,

py(vlc,d) = T~Y(c)deycte 9.

15Tipping’Ol
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing an(; Adaptive Kalman Filtering
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Original SBL Algorithm (Type Il ML)

@ Original SBL, for a fixed estimate of the hyperparameters (E, ), the posterior of x is Gaussian,

i.e. ~ R
Px(xly, &7) = N(x; X, 1)
leading to the (Linear) MMSE estimate for x

= T IAT
X = (ATA+ ) A Yy, (1)
T =(FATA+E)T

@. The hyperparameters are estimated from the likelihood function by marginalizing over the sparse
coefficients x, the marginalized likelihood being denoted as py(y|&,7). &,~ are estimated by
maximizing py(y|€,~) and this procedure is called as Type-Il ML. Type-Il ML is solved using EM,
which leads to the following updates for the hyperparameters.

1
~ 1
ats;

& = , where <x?>=X*+ 02, <y>=

N
c+35

2 — 2 ?

<x2,.> <<Hy A 2> +d>

where, <|ly — Ax||?>=|ly|] - 2yTAx + tr (ATA(xx + X)),
Y = dlag(EL) = diag(o?, 03, ..., o), X = [X1, %, ..., Xm] "

1 Tipping'01, Wipf,Rao'04
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Type | vs Type Il ML

@. Type | = standard MAP estimation (involves integrating out the hyperparameters)
X = arg max[log py (y[x) + px(x)].

@. Type Il = hyperparameters (¥ = {£, v}) are estimated using an evidence maximization
approach

W = argmaxpy (¥|y) = arg mqaxpw(‘l’)/py(y\‘l’) = arg qujxpw(‘l’)/py(ylx,v)px(XIQdX-

@ Why Type Il is better than Type 17 }” In the evidence maximization framework instead of looking
for the mode of the true posterior px(x|y), the true posterior is approximated as py(x|y; ¥),

where ¥ is obtained by maximizing the true posterior mass over the subspaces spanned by the
non zero indexes.

@. Type | methods seek the mode of the true posterior and use that as the point estimate of the
desired coefficients. Hence, if the true posterior distribution has a skewed peak, then the Type |
estimate (Mode) is not a good representative of the whole posterior.

17Giri, Rao'16
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18 / 81

ICASSP 2020, Dirk Slock, EURECOM, FRANCE



Variational Bayesian (VB) Inference

)

The computation of the posterior distribution of the parameters is usually intractable. As in
SAGE, SAVE is simply VB with partitioning of the unknowns at the scalar level. Define
0 = {x,&,~}, 0 represents each scalar and 6; denotes 6 excluding 6.

q(0) = g+(7) _qu,-(Xf) Hqg,-(&)-

VB compute the factors g by minimizing the Kullback-Leibler distance between the true posterior
distribution p(8]y) and the g(8). From '8,

KLDvs = Die (a(0)[1p(0ly)) = [ a(0)In 552} do.

The KL divergence minimization is equivalent to maximizing the evidence lower bound (ELBO).
Inp(y) = L(q) + KLDve = —Dre(a(0)[[p(6, y)) + Dri(q(6)lp(0]y)), where,
In p(y) is the evidence, and min KLDyg becomes equivalent to max L(q), the ELBO.

We get for the element-wise VB recursions: (Expectation Maximization (EM) = special case:
0 ={6s,04},

65 random, hidden
@) =<In P(L@ 64 deterministic)

18Beal’03, °Tzikas, Likas, Galatsanos'08
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Low Complexity-Space Alternating Variational Estimation (SAVE)

@. Mean Field (MF) approximation: VB partitioned to scalar level (MF vs VB // SAGE vs EM),
results in a SBL algorithm without any matrix inversions.
@. The resulting alternating optimization of the posteriors for each scalar in 0 leads to

In(gi(6;)) =< Inp(y, 0) >z +ci,
p(y, 0) = py(y1x,&,7)px(xI€)pe (&) Py (7)-
where @ = {x,&,~} and 6; represents each scalar in 0.

Inp(y,0) = Yiny — % |ly — Ax| |2+Z(fln§,—é )+

i=1

M
Z((a— 1)In& + alnb — b¢;) + (¢ —1)Iny + cInd — dv + constants.
i=1

@. Gaussian approximate posterior for x;:

In gy (xi) = —%{ <ly = Al [P > —(y — A< x>)TAix; —
XA (y — Ar < x; >) + [|A)] |2X,-2} — S oy = —55 (6 — %)+

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing anc/l Adaptive Kalman Filtering
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SAVE lterations Continued...

@. The SAVE iterations for x get obtained as

2 _ 1 o _ 2AT ol
9i = STAIE & Xi=oiAj (y — Ax;) <7y >.

Hyperparameter estimates: same as EM iterations. Gamma posterior for &; and ~.

No matrix inversions.
@. Update of all the variables, x, &;,~y, requires simple addition and multiplication operations

o y"A, ATA and ||y||?> can be precomputed, so only need to be computed once.
o Remarks: From LMMSE expression in (1), i row of YATAX + Ex = AT y:
YATAR + €% = ATy or (v]|Al* + €)% = vAT (y — A%)
Hence SAVE does linear PIC iterations to compute the LMMSE estimate.

@. However, for the posterior variances : o7 = ((£,1);,;)"" < (X.)i,i with equality only for
diagonal 3,

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing an(; Adaptive Kalman Filtering
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Convergence of SAVE

Theorem 2

The convergence condition for the sparse coefficients x; of the SAVE algorithm ? can be written as
p(D7'H) < 1, where D = diag(A" A + E), H = offdiag(A"A). p(-) denotes the spectral radius.
Moreover, if SAVE converges, assuming the estimate of hyperparameters are consistent, the posterior
mean (point estimate) always converges to the exact value (LMMSE). However, the predicted posterior
variance is quite suboptimal.

“Thomas,Slock'18

Remark: To fix the convergence of SAVE (when p(D™'H) > 1), we can use the diagonal loading
method?’. The modified iterations (with a diagonal loading factor matrix A) can be written as,

(D +E)x1) = —(H - E)x £ 5Ty, —
(t+1 (D+ ) 1(H_ ) t)_|_ D+= ;?AT

The convergence condition gets modified as p((D + Z)}(H — £)) < 1. Another point worth noting
here is that if the _power delay profile &2 |s also estimated using MF, Fdiag(ATA) + Z, where

E=E+5, with & > 0. In this case, & = may represent an automatic correction factor (diagonal
loading) to force convergence of SAVE for cases where p(D™'H) > 1.

2 Johnson, Bickson, Dolev'09
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing am; Adaptive Kalman Filtering
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NMSE Results
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Figure 4: NMSE vs the number of observations (M = 200, L = 40, L is the number of non-zero

elements).
@ For sufficient amount of data, SAVE has significantly lower MSE than the other fast algorithms.

@. Why? The resulting problem of alternating optimization of x and the hyperparameters £ and ~
appears to be characterized by many local optima. Apparently, the component-wise VB approach
appears to allow to avoid a lot of bad local optima, explaining the better performance, apart
from lower complexity.

@. At very low amount of data, suboptimal approaches such as AMP which don't introduce
individual hyper parameters per x component and assume that the x; behave i.i.d, behave better
because of the lower number of hyper parameters to be estimated.

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensingza:;]c/l lé\iiaptive Kalman Filtering

ICASSP 2020, Dirk Slock, EURECOM, FRANCE



An Overview of Fast SBL Algorithms

o Fast SBL using Type Il ML by Tipping ?': greedy approach handling one x; at a time, plus
replacing precisions by their convergence values, leading to pruning of the small x; components,
i.e. explicit sparsity.

o Fast SBL using VB by Shutin et. al.??: Shutin uses VB while Tipping is Type Il ML as in original
SBL. They do both replace precisions by their convergence values. Shutin also added some extra
view points in terms of the pruning condition being interpreted as relating between sparsity
properties of SBL and a measure of SNR. Main message of the both being faster convergence
compared to original SBL, not much reduction in per iteration complexity.

@ BP-SBL*: In SBL, with fixed hyperparameters, MAP or MMSE estimate (follows from the
Gaussian posterior) of x can be efficiently computed using belief propagation (BP), since all the
messages involved are Gaussian (without any approx.).

@ Inverse Free SBL (IF-SBL)?*: Optimization using a relaxed ELBO.

@ Hyperparameter free sparse estimation?: Does not require hyperparameter tuning compared to
SBL. Uses covariance matching, equivalent to square root LASSO.

ATipping, Faul’03, 22Shutin, Buchgraber, Kulkarni, Poor'11
BTan, Li'10, **Duan, Yang, Fang, Li'17
#Zachariah, Stoica'15
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing2a4n(; lé\iiaptive Kalman Filtering
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Complexity Comparisons-SBL Algorithms

Type |

Type Il SBL

Fast SBL using Type

ML (Tipping,Faul’03)

(Focus more on

Convergence speed)

Fast SBL (using VB)
by Shutin
(Focus more on

Convergence speed)

Hyperparameter free

SBL (Zachariah,
Stoica’1ls)

BP-SBL (Tan, Li"10)

GAMP-SBL
(Shoukairi, Schniter,
Rao’18)

SAVE
Inverse Free SBL

(Duan, Yang, Fang.
Lir17)

Complexity per
Iteration

o>

o3>

ow3., L=mMm

o3y, L =M

owr~2>

omN>
(Similar
complexity as
xAMP, see matrix
form of the BP-
SBL in the
upcoming s

owmiN>

es)

o>

omN>

Convergenc
e (No of
iterations)

=<

log(M N>

<™
(similar to
GAMP SBL)

Exact sparsity

Exact sparsity (\alpha

converges to fry)

Exact sparsity (Using an entry
pendent ing

condition which follows from

the computation of stationary
point of \alpha_i)

Exact sparsity (Using a pruning
condi

ion similar as in Tipping’s)

The final objective function is a
weighted square root LASSO. So
the sum of 12 norm of (v and Ax)
and weighted 11 norm of x which
promotes sparsity here.

Does not give exact sparsity

Does not give exact sparsity

Does not give exact sparsity

Optimization function

Type | ML (Depending
upon the prior used,
type 1 ML corresponds
to LASSO/Re-weighted
11/12 min. problems)

Type Il ML solved using

Type Il ML (stationary
points of \alpha_i are
computed to accelerate
convergence)

Maximization of ELBO in
ve

LMMSE estimator for x

h Covariance
matching for PDP, finally
giving rise to an objective
function which can be
interpreted as weighted
square root LASSO.

Posterior of x computed
using BP and EM for
hyper-parameters

Using GAMP for
posterior of x, EM for
hyperparameters

Maximization of ELBO in
ve

Does not give Exact sp. v

Maxi an
approximate ELBO in VB

Convergence to a
local optimum.

Convergence to a
local optimum of
ELBO (Mean field
free energy)

Convergence to a
local optimum

Convergence to
local optimum of
Bethe Free Energy
(BFE)

Convergence to
local optimum of
LSL-BFE

Convergence to a
local optimum of
ELBO
Convergence to a
local optimum of
the approximate
ELBO
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Combined BP-MF-EP Framework
Outline

© Combined BP-MF-EP Framework
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Approximate Inference Cost Functions: An Overview
9o, ML min. KLD of py(y|@) to empirical distribution of y (py(y)=05(y — y)):

Omin,k1. = argming Dic (py (y)llpy (¥16)) = arg maxin(py (v16)) = Ome-

o. VB minimizes KLD of factored approximate posterior (q(0) = Hqg

KLDyg = Dgy (q(@ )||P(9|.V))-

o_ Variational Free Energy (VFE) (U(q) = Average System Energy, H(q) = Entropy). Assume actual
P(?,})’) Hap (62)
Py

F(a(6)) = Dki(a(0)[lp(6ly)) + Fn = — ZQ(B)Z Inpa(6) +Z )Inq(6) = Dki(q(0)I 1, pa(62))-

posterior p(@y) = = and Fy = —In Z (Helmholtz Free Energy or log-partition function).

. S =3 Fo
FIgU re 5: A small factor graph representing the posterior p(x, x2, X3, xa) =
®Yedidia, Freeman, Weiss'05
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Approximate Inference Cost Functions: An Overview (2)

@. F(q) > Fh, equality only if g(@) = p(0|y). Practical approach: upper bound Fi by minimizing
F(q) over a restricted class of probability distributions leading to Kikuchi, BP or MF
approximations.

@. Belief Propagation (BP) minimizes Bethe Free Energy (BFE), Mean Field (MF) minimizes MFFE
(MF Free Energy). BP converges to exact posterior when the factor graph is a tree. For MF (VB

M
pushed to scalar level), q(6) = H qe,(6;).
i=1

MFFE > BFE > VFE.

@. Region based Free Energy approximations (RFE) (more details in the next slide): The intuitive
idea behind a RFE approximation is to break up the factor graph into a set of large regions that
include every factor and variable node, and say that the overall free energy is the sum of the free
energies of all the regions. BP is a special case of this.

@. Expectation Propagation (EP): derived using BFE under moment matching constraints.
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Region Based Free Energy

@ A region R of a factor graph to be a set Vg of variable nodes and set Ar of factor nodes, such that
a € Ag = all variable nodes connected to a are in V. 0g is defined as the set of all variable nodes
belonging to the region R.

0. Region energy is defined as Eg(Or) = — > Inpa(6,).
acAr

@_ Region free energy using region entropy and region average energy:
Ur(ar) = 3= ar(OrR)ER(OR), Hr(ar) = >_ qr(Or)In qr(6r).
or Or
and Fr(qr) = Ur(qr) — Hr(qr)-

@_ Region-based free energy using region-based entropy and region-based average energy:

Ur({ar}) = RZR crUr(qr), Hr({qr}) = R%:R crHRr(qR)-

and Fr({ar}) = Ur ({ar}) — Hr ({ar})-

@_ The intuitive idea: break up the factor graph into a set of large regions that include every factor and
variable node, and say that the overall VFE is the sum of the VFEs of all the regions. If some of the large
regions overlap, then we will have erred by counting the free energy contributed by some nodes two or
more times, so we then need to subtract out the free energies of these overlap regions in such a way that

each factor and variable node is counted exactly once (weight cg takes care of this).

9. BP: Each factor node (and it's neighbouring variable nodes) form one set of regions. Another set of
regions which contain only one variable node.
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Variational Free Energy (VFE) Framework

)

")

Intractable joint posterior distribution of the parameters @ = {x, A, f, ", v}.
Actual posterior: p(O)—f H p(02) H pb(0b), where Agp Apr = set of factor nodes

acApp be Ayr

factor nodes

belonging to the BP/MF part with Agp N Aupr=10.
The whole 0 is partitioned into the set 6; (variable nodes), and we want to approximate the true
posterior p(@) by an approximate posterior q(0) =[], gi(¢i).
N&p(i), Nue(i)— the set of neighbouring factor nodes of variable node i which belong to the
BP/MF part.
Ivr= U N(a), Zesp = U N(a). N(a)— the set of neighbouring variable nodes of any

acAyr acAgp
factor node a.
The resulting Free Energy (Entropy — Average Energy) obtained by the combination of BP and
MF?" are written as below (let g;(0;) represents the belief about 0; (the approximate posterior))

Fepmr= 3 [Dki(qa(62)|pa(6s) + Dri(qa(0a)l[ I Ticpra) 9i(00))]1+ - Dic( 11 ai(0i)llps(65)),

acAgp be Ay ieN(b)

Y Riegler, Kirkelund, Manchén, Fleury'13
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Message Passing (MP) Expressions

@_ The beliefs have to satisfy the following normalization and marginalization constraints
Zq,(@ ) =1, Vi€ Iyr \ Igp, ZQa(ea) =1,Va € Agp,

q,(6‘ )= > qa(6.), Vae .ABP,I € N(a).
93\9,-
@_ The fixed point equations of the constrained optimization of the approximate VFE:

qi(0)=z TI mBP.(6;) TI mME.(6;), = Product of incoming beliefs

a€Npgp(i) ac Ny (i)
ni—4(0i) = II me—i(0;)) TI mg—i(0;), = variable to factor nodes
c€ENpgp(i)\a deNF(i)

()
mME (6;) = exp(< In pa(6a) > /\lf_[ n_(6)))y <>q is the expectation w.r.t q
JEN(\i

mBP .(6;) =< pa(6.) > [I m_.(6;) factor to variable nodes
JEN (a\i
9. Expectation Propagation (EP): The constraints in BFE can often be too complex to yield computationally
tractable messages, the following constraint relaxation leads to EP 28,

Proj, (f 42(82) Te ar(a), i 997)
Eqo(t(01) = Eq(£(0)) = miE,(0)) = ——=— 2 GSML q,(05) = 2 pa(85) [T nr(a) i—a(6)

where ¢ represents the family of distributions characterized by the sufficient statistics ¢(6;).

i

BMinka'01
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What do the MP Expressions Indicate?

Q

BP-MF combo = alternating optimization of Lagrangian®:

L = Fgp,mF + ;%[BZ qa(02) — 1] + > vil> - qi(0) — 1] + 32 Z ZM(G Mai(0;) — 2\9_ q2(0,)].

0; i aeN

At any iteration or convergence:

i(0;
62(62) = pa(6:)( TT a0 exp A explia — 1 = 2 pu(0s) TT —2U) 5 agp
ieN(a) ieN(a) Ma—i(07)
ni—a(0;)
qi(07) = exp [INep(i)| = L+ Iz, \75p () vi]  TT  exp(<Inpa(8a) g0, jenani)  T1  exp(Xai(67))
a€N e (i) a€Npp(i)
1/z mMF (6;)
mBP .(6;)

a—i

where | 4 (i) = indicator function for i € A.

Applying the marginalization constraint q;(6;) = Y. qa(6a), Va € Agp leads to the expression for
0,\0;

mBP (6;) as in (2).

a—1
The Lagrange multipliers A\; are indeed the log of the BP messages and +,, ; lead to the normalization
constants z,, z; for the beliefs g.(6a), qi(0;), respectively.

Xai(6;) = InmBF (6)).

a—rl

PYedidia, Freeman, Weiss'05
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Posterior Variance Prediction: Bayes Optimality
Outline

@ Posterior Variance Prediction: Bayes Optimality
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Posterior Variance Prediction: Bayes Optimality

SBL using BP: Predictive Posterior Variance Bayes Optimality

llustration of Message Passing
Fue mysn(zg) C
Tin—>b(Zn)

fr Tn>n(@n) = ga(zn)

Nnsn(€n) = €,

Figure 6: Factor Graph for the static SBL. Dark square nodes are the factor nodes and circle
nodes represent the variable nodes.

@. All the messages (beliefs or continuous pdfs) passed between them are all Gaussian®. So in
message passing (MP), it suffices to represent them by two parameters, which are the mean and
variance of the beliefs.

@. We represent J;f as the inverse variance (precision) of the message passed from variable node n

(corresponding to x,) to factor node k (corresponds to yx) and X, « be the mean of the message
passed from n to k, total NM of them.

@. Similarly O’k_i;(\k,n for messages from k to n.
*Tan, Li'10
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SBL using BP: Message Passing Expressions

o We start with the MP expressions derived in30. Define the matrix S with entries a;i. The Gaussian
beliefs are parameterized as my_,,(xn) :./\/'(xn;?k,,,,ai’n) and n,_k(xn) = N(x,,;)’(l,,,k,aik).
o Interpretation of m,_,,(x,) : Bayesian information combining: At variable node n, we have
)?1’,, 1
Xn = : = : xn + N (%n; 0, diag(S:,n) ") with prior N (xn; 0,5,,_1) .
N i
Q. Xp, ?;’n (Xn excluding X ) are jointly Gaussian and hence lead to "extrinsic” " posterior” message for

. —2 —2
node k: Xnk—UnkZU Xin U"’k:§"+zgi,n'

9. Interpretation of my_,,(xn): Interference Cancellat|on Substituting xm = Xm k + Xm,k (" extrinsic”
information from variables m # n for measurement k) in yi = > Ax mxm + vk leads to the 1-1
m

measurement N ~
()’k - Zm#n Ak,me,k) = Ak,an + (Vn + Zm¢n Ak,me,k) 5

with total " noise” v, + Zm# Ak mXm,k of variance ~ 4+ Zm#n Ai mafn e
So the (deterministic) estimate and variance from this measurement by itself are

Sion = Aen(Vk = Xz AkomEm k) and o, 2= A2 ( +§; A% i)

36Tan, Li'10
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SBL using BP: MP Expressions in Matrix Form

@ Posterior marginals: x,, Xr are jointly Gaussian and hence MMSE estimate leads to the messages
CN (Xn; Xn, 0'5): JZ = (& + Zi 0_;,72)—17 Xn = U%(Z,‘ 0;32,'1)-
@ In matrix form (S’, M’ of dimension M x N, S, M of dimension N x M with entries

2 ~ 2 -~ . .
T k> Xnks Op s Xk,ny respectively):

S = E].M].,-(,- + ST(].N].,-C — IN),
L =diag(S"M)1y1{ — (SoM)", M' =S),, oL, M} , = X .

Similarly, for the messages at the factor nodes, define C to be the matrix with entries Ai’nofy,, (o
represents Hadamard (element-wise) product,Aj,, denotes element-wise inverse.)

C= (%IN + dlag(BS:nv)) (]‘NII\E) —Bo S§,,-C, S = Cinv o Binv, B=Ao A,
V = (y — diag(AM)1y)1], +AoM' T M =A;, 0V,
@. Computational complexity O(dMN), d < M, N.
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Existing Convergence Conditions of Gaussian BP

@ In loopy GaBP, if the mean of the posterior belief converges, it converges to the true posterior®’.
Independently analyzed in 3.

@. Posterior variances (if initialized with values > 0) always converge to a unique stationary point,
but need not to the true posterior variance.

@ Further in®* show that the convergence condition of GaBP can be shown to be to related to the
spectral radius of a matrix |R| (element-wise absolute values), where J = | — R, with

J =~ATA+ =, which is indeed the posterior precision matrix.

@. Diagonally dominant J is one such example which satisfies this condition.

3"Rusmevichientong, Van Roy'01
%B\Weiss, Freeman'01
% Malioutov, Johnson, Willsky'06
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Existing Convergence Conditions of Gaussian BP (Cont'd)

@ In**shows that depending on the underlying graphical structure (Gaussian Markov Random Field
(GMRF) or factor graph based factorization) Gaussian BP (GaBP) may exhibit diffferent
convergence properties.

@. They prove that the convergence condition for the mean provided based on the factor graph
representation encompasses much larger class of models than those given by the GMRF based
walk-summable condition *!.

@. GaBP always converges if the factor graph is a union of a single loop and a forest (a forest is a
disjoint union of trees).

@. Moreover, they also analyze the convergence of the inverse of the message variances (message
information matrix) and analytically show that with arbitrary positive semidefinite matrix
initialization, the message information matrix converges to a uniques positive definite matrix.

@. So we can conclude that for BP there is a decoupling between the dynamics of the variance
updates and that of the mean updates.

9. (Generalized) approximate message passing (GAMP or AMP) or their variant vector approximate
message passing (VAMP) exhibit convergence to Bayes Optimal MMSE for i.i.d. or right
orthogonally invariant matrices A.

“ODu, Ma, Wu, Kar, Moura'18, **Malioutov, Johnson, Willsky'06
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Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Te

Large System Analysis: Useful Results

Theorem 3 (Theorem 1)
Let Qu € C"*M be a Hermitian deterministic matrix and Ay = XuDX}) = Z,N:l dixix}!, with

diagonal D and Xy containining N independent columns x; with covariance matrix ®;. Also, assume
that Qu, ©; have uniformily bounded spectral norms. Then, for any z > 0

Ltr{Qu(Am + zIm) 1} — Ltr{QuT(2)} ﬂiﬁ% 0, with,

m =il
T(z) = ('7 1+e( +zIM) , where,

ei(z) = e,-( (z) is defined as the unique positive solution of

=
e,-(z) = %tl’{d,'@,‘ (Z 1+e @) +Z|M) }
Lemma 4 (Lemma 4, Appendix VI, WagnerTIT2012)

M L !
xpBAuxy — 5 tr{An} ——= 0 when the elements of x are iid with zero mean and variance 1/M and

independent of Aw, and similarly when y is independent of xy, that xtiAmym NH—°°> 0.

“2\Wagner, Couillet, Debbah, Slock'12
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Bayes Optimality of Per Component MSE of Gaussian BP

In the large system limit (LSL), under i.i.d A, the predicted (by BP or xAMP algorithms) per
component MSE (or the posterior variance o2) converges exactly to the Bayes optimal values (i.e. the
diagonal elements of the posterior covariance matrix for LMMSE). This result being applicable for
AMP (Generalized AMP (GAMP) also under i.i.d A), since the derivation of AMP follows from BP
under the LSL.

Outline of the derivation:
o In the large system limit, We can approximate (neglecting terms of O(A?;))

o, =+, O, = = 0,2, independent of k. Further we define § = dlag(an 2.

@. Considering the term a;j = Ai,n(% + Zm#" A2 72 )_1, in the LSL it can be approximated by
o, a=A; (5 + Ak STIAL)TL ALSTIALL AH—°°> Ltr{S™'} = 7gp. A, represents the k"

row of A. From postenor belief variances, it follows that MSE = tr{S™'}. Further we obtain,
M— oo

ot =6+ (5 +7ep) X AL AL, o Lothus 0% = &+ (4 +7ee) T

@ Define: A; represents the matrix obtained by removing the ith column of A. Similarly, we define
=7
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Posterior Variance Prediction: Bayes Optimality

Outline of Derivation

e = 260+ (3 rer) ) 3)

Next step is to simplify the expression for LMMSE posterior covariance in the LSL using similar
techniques as above. Y, =1 E’IAT(AE’IAT I %)’IAE’I,
T —1pT 1y—1 M—o0 _
A/ (ATA" + 2) A, T Di, Dii = é
where (a) follows from first applying matrix inversion lemma and then Theorem 1 in ** to the term
A,T(A7F7_1A7T + %)’IA,- in the denominator and e is defined as the unique positive solution of the

following fixed point equation (ftr{X.} = 7),

-

_ 1M€f1 1\—1 _ 1 &
e_(ﬁzjlﬂg'i_?) ’T_NZH
= i

i=

Jo

I

i

=
o

i
Il
==

Mz
Flom
o |
I

+7, (4)

<
|
w
==

1 ¥ 1
T== L =%> .
N 1,11 N (L1

P R e ST N R e R C )

Conclusion: From (3), (4), 7, 7ep can be obtained as the solution of same fixed pojnt equation, which

also proves that per component MSE is Bayes optimal (comparing expressions of o2 and (I, nn)-

“3Wagner, Couillet, Debbah, Slock'12
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State of the Art: Approximate MP (xAMP)

o. AMP* is originally derived from Gaussian approximations of loopy BP and first order Taylor
series approximations.

@. AMP is proven to be asymptotically Bayes optimal in MMSE (only for i.i.d. A).

@ Generalized AMP (GAMP)* - AMP generalized to arbitrary input and output product
distributions. Applications in nonlinear (e.g. amplitude only) compressed sensing, 1-bit ADC
communication systems, etc. However, state evolution (SE) only for i.i.d. A.

o. S-AMP*® extends AMP to more general matrix ensembles (similar to VAMP). The fixed points of
S-AMP are stationary points of (EP-)VFE under a set of moment consistency constraints in the
large system limit (LSL).

@ Vector AMP (VAMP)* - rigorous scalar SE that holds for the much broader class of
right-orthogonally invariant random matrices A.

o. ADMM-GAMP*- GAMP algorithm based on direct minimization of a LSL approximation of the
BFE (LSL-BFE), convergent for much wider class of A compared to GAMP.

“Bayati, Montanari'11
“SRangan'l1

46Cakmak, Winther, Fleury'14
“"Rangan, Schniter, Fletcher'19

“8Rangan, Fletcher, Schniter, Kamilov'17
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Posterior Mean in the Large System Limit (LSL)

Further defining the following terms,

~ ~ _1
Zen = Yk — O AkmSmks SO Riin = Ay 1Zk,n- (5)
m#n
Also, in the LSL, X, x can be written as, X, x = Xn + 0k, where d,_,« is of the O(ﬁ) This
approximation follows from writing X, x = O’%,k(z 07 Riin — O 2Xkin) = Xn + Ons, With
Onsk = 0'5 kO, ,,Xk n, where o ,,Xk n X Akn X f Substituting X, « in 2k n,

Zin = Yk — 3 AlomXm — 3 AkymOm—k + Ai,nXn + O(%) = 2k + Sk—n, all the terms containing A7 ; or

m m
Aij0j—i becomes O(+) and x—n = Ak n%n, also here

Zk = Yk — Z Ak, mXm — Z Ak, mOm—sk- (6)

?n,k ~ U%(% + 7_BP)_I Zi#k Ai,nzi,n- (7)
We can write Xnk = fn(3_; 4 Ainzin). Here f, is a linear function for the Gaussian case (i.e.
fa(x) = oa(5 + 78P) " 'X).

mpressed Sensing and Ada ive Kalman
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Posterior Mean in the LSL (Onsager Correction)

Performing a first order Taylor series approximation of f around
ZA, nZiny Xnk = fo (Z AinZin) — Ak,nZk,nfy (E AinZin), f, being derivative evaluated at > A; nzi,n.

i

Further substituting for z;,n from (5),
Xnk = Xn + Onsky Xn = ﬁ)(z Ainzi+ Y ; Ainisn)
and 3y sk = — Aoz (5 A ). (8)

I\/I~>oo

Substituting for i, = A, »Xn and with the large system approximation E A 1,

Xn = f(ZA, nz,+Z " nXn) = f(ZA, nZi + Xn).

In vector form X = f(A z + X), WhICh is the AMP recursion for the mean, where (f(x))n = f1(xn)-
Also from (6), substituting d,_x from (8) and defining z; = [z1,--- ,zy]" at iteration ¢ :

=(y — Ax) + %Zt—l <f(ATze1)>, )

where § = N is a constant, <f/(x)>= & SM £/ (xm), and Lz 1 <f'(ATz, 1)> is the Onsager
term.
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Original AMP lIterations and SBL-AMP

9. The difference in AMP vs SBL-AMP is that in AMP f(x) = f(x): same function for every component.
@ The AMP iterations (for any Lipschitz-continuous component-wise shrinkage function f and i.i.d x) can
be written as ze =y — A% + %thl < F(Re—1+ATzi 1) >,

3(}+1 = f(;(\t + ATZt).

@ Onsager correction decouples the input to AMP* vy = X; + ATz = x + N(n¢; 0, 7¢l )

1
in case of N (x;0, %I),We get LMMSE X;11 = f(r¢) = bere, by = 5

i
+

Tt

and State Evolution (SE) 7es1 = £ + (1= be)? ¢ + jbfre = 2 + 5 (E+ 77 1) 7%

o SBL-AMP (for SBL x ~ N(0,=71)) - Iterations decouple r; : r = x + N(n¢; 0, 7¢1) leading to
Xey1 = f(rt) = Fere, with diagonal Fr = (ly + 7 E) L.
Define A, as the m" column of A and Az as the matrix excluding column m, vector 8z_, contains as
entries §,_,k, N £ m :

Consider mt noise element Nm,t = A;Amim’t —AlA,+Alv, Do = Ak mOm—>k,

M
leading to T¢+1 = %_5_ % % S (En+ 1)L
1

“Bayati, Montanari'11
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Factor Graph for Vector BP-SBL

(31 /) - d(x1 —%x2) fy(y/Axs,7)

Y
- S
fg(él)i .fé(é.z) . i%g(ﬁzu)

Figure 7: Factor Graph for the Vector BP from which GVAMP-SBL is derived.

Treating all measurements y jointly leads to a tree structured factored graph, but no more extrinsic
information between measurements, which motivates duplicating x.

For the factor graph, we use the factorization of the posterior as follows
p(x,&,7) o py(y/Ax2, 7~ 1)px(x1/€)d(x1 — x2) LT pe; (€)1~ (),

where we created two identical variables x; = xo = x similar to *° .

%0Rangan, Schniter, Fletcher'19
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Unitarily Invariant SBL using Vector AMP (VAMP)

o. Generalized AMP (GAMP) and in particular GAMP-SBL* extends AMP to a non-i.i.d. prior but
is limited to i.i.d. A, leading to the introduction of damping to increase chances of convergence.

o Consider the economy SVD A = UAVT, UTU =1,V"V = l4,d = rank(A).

@. The class of Right-Orthogonally Invariant (ROI) A considers a uniformly distributed random
orthogonal factor V (Haar distributed). ROI: the distribution of AW or VTW is the same as that
of A or VT for any square orthogonal W.

o VAMP®?exploits ROl A and its convergence is robust for a much large set of matrices A than
AMP. But VAMP does not apply directly to SBL since it is derived for i.i.d. x.

@ Orthogonal AMP (OAMP)®3unitarily invariant AMP, using decorrelated linear estimation and
divergence free nonlinear estimator (Onsager term vanishes).

@. We propose Generalized VAMP-SBL (GVAMP-SBL) which combines ROl A with non i.i.d. x as
needed for SBL.

@ We also propose SVD-GAMP-SBL which is SBL-AMP applied to y, A replaced by UTy, AVT
(SBL-AMP is GAMP-SBL for the case of i.i.d. Gaussian measurements).

@ SBL using UTAMP (AMP with unitary transformation)®, derived from GAMP (using heuristics),
is quite approximate due to the scalar EP (averaging of the different variance parameters in
GAMP).

46Shoukairi, Rao’'18, *’Rangan, Schniter, Fletcher'19, **Ma, Ping'17, *°Luo, Guo, Huang, Xi'19
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Useful Results for MMSE Estimation with Non-Gaussian Distributions

We use the following two results from Lemma 259, which we restate here. For any

random variable whose posterior distribution is of the form

f(x|r,T) = ﬁexp(ln f(x) + 7xr),

where Z(r) is the normalization constant. Then, the following relation between the
mean and variance of the posterior for x holds

a%ln Z(r) = E(x|r) = g(r,7), "denoising function”
% InZ(r) =g'(r,7) =7 Var(x|r, 7).

Here, g’(r, ) represents the derivative w.r.t. the first argument r and Var(x|r, 7)
represents the variance of x w.r.t. the posterior distribution f(x|r, 7).

%0Rangan’'11
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GVAMP-SBL Derivation

o We start by initializing the MP with the Gaussian approximation as, ms_,, (x1) = N(x1;r1, Diag(m1) 1),
so a diagonal EP instead of the scalar EP as in VAMP 31, Diagonal EP being motivated by the diagonal
prior covariance in SBL. Using the MP rules discussed, we can write the belief at the node x; as (we omit
the iteration index),

q(x1) o< px(x1)N (x1;r1, Diag(r1) ).
For a given estimate of the hyperparameter, we obtain the value of the mean of the belief as,
Xi,n = 81,n(r1,n, frfnl), where the expectation is w.r.t the density function

T1,n

2

p(xt,nlri,ns 71 ,) = exp [— Ir1,n = x1,0l* + In P(Xl,n)] :

The corresponding posterior variance can be obtained as, 771_; = Tl_,}g{ n(r1,,,,7'1_,}).

o Diagonal EP: Proj,(q(x1)) = N (x1; X1, Diag(n1)™"), ¢ represents the set of multivariate Gaussian with
diagonal covariance.

9. According to EP rule, ny, ,5(x1)(= ms_x,(x2)), which is the "extrinsic info” becomes

N(x1; %1, Diag(m1) 1)
N(x1; r1, Diag(m1)™1)

Ny —s(x1) = = N(x1; (M. * %1 — 7.+ r1)./(m — 71), Diag(m — 71) ")

%1Rangan, Schniter, Fletcher'19
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GVAMP-SBL (EP-BP, LSL justified // AMP)

Moduisht Module B
Denoisin rL,T Extrinsic 5.
. € Computation [« LA LMMSE
= (Unbiasing)
Iry x+nu A y:Ax+v’
1~ N[0, Diag(m)™) Extrinsic x ~ N (ry, Diag(m))

= » Computation >
X1,7h (Unbiasing) 2, T

Figure 8: Illustration of the GVAMP-SBL.
o_ Further, we can obtain the belief at node x, as g(x2) = N(x2; r2, Diag(72) 1) py (y/Ax2). The point
estimate (or the LMMSE mean) becomes after diagonal EP
% = go(r2, 72) =diag((FAT A+Diag(m) ") 1 XFAT y+ Diag(m2) o),
Diag(n2)

and after using SVD of A, g5(r2, 72) = diag((YVA2VT +Diag(72))!)Diag(12) 1. Further, we obtain the
"extrinsic update” ny,_5(x2)(= ms_ 5 (x1)) as follows

x0:%,Di -1 < . —
Moy s (02) o EELEGERIE ) = N (30 (. % %o — 7. 12)./ (12 — ), Diag(m2 — 72) ™).
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Proposed GVAMP-SBL

Initialization: 7-1 ) >0, r ©—o.

Denoising

%0 =)

n =" /g (", ")
0= 0 7t

D — nl© o 50 0 f9). 2l
LMMSE Estimation

A( ) = g(r} (f) 2(f))

0 =m0, 71%)

A ol (0

1
HED) (0 x() O Dy /(D)
Hyperparameter Estimation (usmg MF [Section 3 5])

¢ t) _ a+1/2 ~(t) c+N/2
T @ T Sy=Ax?> /25

i
s

./ or .x represent elementwise multiplication or division as in Matlab.
Xk,i represents the ith element in any vector x, above.

%2Thomas, Slock'18
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Posterior Variance Prediction: Bayes Optimality

Proposed (LSL-)SVD-GAMP-SBL

Initialization: Initialize 7\” > 0 and x©. Set sV = 0,t =0,y = UTy. Below, |AJ? represents the
componentwise magnitude square of A.
Repeat Until Converged
oo %)
0 _ |AVT|27‘>St) ("5 1TmT A1, - LSL-SVD-GAMP-SBL)
p=AV x® — 7, 5 st
f) -1 /(T(t +A(t 711)
s(t) =% (y' —p)
1./780 = (VAP = diag(VA Tdiag(+{?)AVT)1 ("5 (1/7{))1 : LSL-SVD-GAMP-SBL)
r0) = x4 700 L VATs®
) 0 (19, 0
XD = g (r8) .,.ét))
Hyperparameter estimation remains the same as in GVAMP-SBL.

@_ Intuition: After the unitary transformation with U7, y’ is the observation and AV plays the role
of the measurement matrix in which V can be treated as i.i.d. (approximately in the LSL).

Further, it can be verified that \AVT\2 = dlag(AVTd|ag( )VAT)) 1. Using Corollary 1 in

53 VT diag(7{")V converges a.s. to IM for Haar V.

53 Takeuchi’20
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Complexity Issues with GVAMP-SBL

@ In original VAMP, performing economy SVD of A = UAV™ and applying matrix inversion
lemma, (YATA + 7, ') "'yATy reduces to YV(yA? + 7, '1)"*AU"y. Hence this does not
require any big matrix inversion. All the substantial computations reduce to matrix-vector
multiplications. Note that all the precision matrices are multiples of identity in VAMP, so 7il, 7l
(due to scalar EP whereas it is diagonal EP in GVAMP-SBL).

@. Matrix inverse operation in the computation of go(.,.) or g5(.,.) does not simplify w.r.t. LMMSE.

@ We can use deterministic equivalents for (V7 A2V +Diag(7{"))™);.; resulting from the large
system analysis for Haar (random unitary) matrices as in °* (see next slide).

@ Based on some different but related work in % that exploits the asymptotic freeness concept from
free probability, to justify the approximation (V7 A2V + Diag(rét)))_l);,; =0+ 7'2(;))_1, for
some scalar §, we can guess the expression for the desired deterministic equivalents.

@ The same work appears to consider that the whole matrix (V7 A*V + Diag('rQ(t)))’1 can be

considered as diagonal, which may be OK for the resulting error covariance but not for the
LMMSE estimation operation.

%4 Couillet, Hoydis, Debbah’12
%5 Cakmak, Opper'18
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Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approx

Large System Simplifications

Lemma 6

Let P be any Hermitian matrix with bounded spectral norm and let V. € C"*N be N < M columns of
a Haar distributed (unitary) random matrix. Let A be a nonnegative definite matrix with ||A|| < oo
(I|A|| represents the spectral norm) and D be any diagonal matrix with positive entries. Then the
following convergence result holds almost surely,

Ltr{A(VPVT + D)™ '} — Ltr{A(el + D) '} 25 0.
The scalar € can be obtained as the unique solution (fixed point) of the following system of equations,

e= Ltr{P(eP + (1 — e&)ly) '},
e= . tr{A(ely + D) '}.
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Simulations Setup

@. To motivate further the posterior variance prediction analysis detailed in Theorem 5, we compare
the posterior variances of each x; for different approximate inference methods based on BP or MF
in Figure 9.

@. We compare SAVE and various AMP based algorithms which are robust to measurement
matrices which are beyond i.i.d. UTAMP-SBL is the algorithm derived in * based on the SVD
transformation of A from GAMP.

Legend “GAMP-SBL" corresponds to the algorithm in 7.

@. Dimensions of A, M = 1000, N = 500. The power delay profile (variances of x;) for the SBL
model is chosen as d'~!, with d = 0.995 and starting with index i = 1.

%Luo, Guo, Huang, Xi'19
57Shoukairi,Schniter,Rao’18
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Per Component MSE under i.i.d. A case

0.16 T T
—6— LMMSE
Proposed GVAMP-SBL | |

g% - -GAMP-SBL
5 — -SVD-GAMP-SBL
= 0.12 ——UTAMP-SBL L
= —©—LSL-SVD-GAMP-SBL
s —<¢ -SAVE
2 0.1
2
3
a 0.08
k=
S q
S 0.06
(=5
g
S o004
=
£

0.02

o <4} 1JLAA4| LAAJLA -] —3-d < <G < <1-3
4 <I<I< 1<t+<4< <4+ <4<I-<
o 100 200 300 400 500

Sparse Coefficient (x) Index

Figure 9: Per component MSE (posterior variance), i.i.d A.

Key Points
@. SAVE has such ridiculously low posterior variance, which clearly exhibits the MF suboptimality.

mpressed Sensing and Ada ive Kalman

to C
Dirk Slock EURECOM FRANCE 54 /8



Convergence Behaviour

600 ¥
n Proposed GVAMP-SBL
I —< -SAVE p
500 Iy - © -SVD-GAMP-SBL il
I —0—UTAMP-SBL \
f \ ——LSL-SVD-GAMP-SBL 1, \
@ 400 , \ - - -GAMP-SBL , \
S 1 \ \
S ! \
s 1 \ 1
2 300 \ L3 ﬁ\ ; \
= B \ /A k \ o
°. 1 \ ’/ \ !
o 7
= 200 [ v 4 >,\ “
' ,/,' \ - 4
- =T o P S RPN b
100( - 5= D )—e—_—’>
o < a < <+ < <
300 320 340 360 380 400
N, no of observations.
Figure 10: No of iterations to converge as a function of N
Key Points:

@. The complexity of GVAMP-SBL is O(4MN) x Ti1 and that of Algo 2 being O(MN) X Tie,
where Ti1, Tio represents the number of iterations
o . -

It is clearly evident from Figure that GVAMP-SBL converges in very few iterations (less than 10)
compared to Algo 2 which takes more than 100 iterations to converge.
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Partial Fourier Matrix Case

10
8 s T
= o I \
@ Oy rhi ¥ it F Yot
(=3 . ' 1
g 5 1y 21 ';'ﬂ.'ljl‘ e l . [ T
= alg NS | h ) ¥ AN ] |
EPS 1A AL Wk i Y AL AT L \ bt
= e e i |, e | RO i
k=) $
£ 15 —O— LMMSE
K Proposed GVAMP-SBL
- 20 -< -SAVE
S - GAMP-SBL
S -25 - -SVD-GAMP-SBL
g- ——UTAMP-SBL
S -30 ——LSL-SVD-GAMP-SBL
LA I T A< A A I AT A< << -
-40
100 200 300 400 500

. Sparse Coefficie_nt (x) In.dex . .
Figure 11: Per component MSE (posterior variance), Partial Fourier A.
Key Points:

@. In the case of partial Fourier measurements, we select A = SU, where U represents the M x M
discrete Fourier transform matrix (DFT) and S € 0, 1V*M is a subsampling matrix.

@. In this case, we observe that the posterior variance of the proposed GVAMP-SBL converges
exactly to the LMMSE estimator values. However, the SVD based GAMP-SBL versions are
havmg convergence issues which lead to suboptimal performance.
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Posterior Variance Prediction: Bayes Optimality
Open lssues?

@. Robustness of GVAMP-SBL to nonlinear measurement case, with applications:
o Quantized compressed sensing (Finite Resolution ADCs in MaMIMO)
e Binary linear classification
o Phase retrieval

Robust regression (Case of outliers or non-AWGN noise)

@ State evolution analysis for GVAMP-SBL
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Performance Analysis of Approximate Inference Te
Outline

© Performance Analysis of Approximate Inference Techniques (mCRB)
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Why Mismatched CRB (mCRB)?

e AMIL
A .. |
8 . \\ \K
AN
1\
RN

o

5 10 15 20 25
Iterations

@. VB allows to attain lower MSE than the (deterministic) CRB. So, consider the Bayesian CRB?

@. A Bayesian CRB is valid only if the (Gaussian) prior for x is the correct prior. VB converge to the
most appropriate priors even if in fact the parameter x are deterministic! This requires mCRBs.

@. mCRB corresponds to Laplace approximation® of MAP or VB.
Evaluation of marginal likelihood or free energy using Laplace’'s method - a Gaussian
approximation of the posterior g around a maximum a posteriori (MAP) estimate, motivated by
the fact that in the asymptotic regime (large amount of data or high SNR), the posterior
approaches a Gaussian around the MAP point59.

*8Smidl, Quinn’'05
%Fortunati, Gini, Greco, Richmond'17
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Performance Analysis of Approximate Inference Te

Convergence Point for mCRB (for Laplace Approximation)

@, Main message: with approximate posteriors in all variants of MP, the CRB needs to be replaced
by mCRB. Bayesian mCRB in principle, for which the SotA is not yet fully developed.

@. Mismatches: fictitious prior (for empirical Bayes, e.g. James-Stein) + replace the actual posterior
P() by q().

@ Under a mismatched distribution model, the convergence point 8 (also called as pseudo true
parameter) is used to evaluate the effectiveness of the estimator, since no true parameter vector
may exists under the assumed distribution q.

@. The VB convergence point (of complete 0) is the MAP of E,(3>",In(qge,(60;))) (assuming large
amount of data), so In of product of g's = sum of In of g's and converges to it's expected value
according to actual pdf p (LLN).

0; = arg me?X Eoy,00) In q(0i)
= arg max E,yje0) In < p(y,0) >7.

@. The expectation over p(0) (being deterministic) disappears above.
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Outline of the mCRB Derivation

@. We define ¢ = 0-0, 0 0-6°6=0-6"= ¢+ 0 For any choice of score
function 7 using a matrix generalization of the Cauchy Schwartz inequality
[RichmondTSP2015, Kantor:15], the error correlation matrix can be written as,

. ~~H
mCRB = Ry = E,00" > R¢, R, IR, + 06

where R¢y, = E(¢n") and Ree = E(¢¢H).
@. The choice of the score function: it should be zero mean and depends on the
sufficient statistic for estimating 6.

@ We chose the score function: n = 8%* Inq(@) |5

@ The Taylor series expansion of the data likelihood around 8 is given by,

log q(y,@ + Af) = logq(y,0) + AHH%%W lg +

9?1 0)
AOHZIE30.0) |2 NG 4 o A]).
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Approximations in the Asymptotic Limit

@. Equating the derivative w.r.t A@* to be zero yields an approximation of the error term (

as,
_ Plogq(y,0) | 10logq(y.0)
<= Hgpr 0 - o

@ We can replace the Hessian and 8"’%’0) above by EMH@)(%) and

Ologq(y,0)

Ep(ylo) (T 5a°), respectively in the asymptotic limit.

@ We arrive at,

p(y|9)7a pedy0) = —VHQV,

Q = J:blkdiag(0, VY <H"H> Vit <a>L<F'F>4+<p>1),
Ep(yIB)a ggq&e |6 =-V"QV.
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Optimal Partitioning of BP/MF nodes

@. mCRB refers to mismatched CRB (CRB under model misspecification

)60_

@ In the combined BP/VB framework, applied to joint detection and parameter estimation,
traditionally BP is applied to the detection part, whereas the simpler VB is applied to the
parameter estimation part.

Theorem: If the parameter partitioning in VB is such that the different parameter blocks are
decoupled at the level of Fisher Information Matrix (FIM), then VB is not suboptimal in terms
of (mismatched) Cramer-Rao Bound. If a finer partitioning granularity is used (such as up to
scalar level as in MF), then VB becomes quite suboptimal, which can be alleviated by using BP

instead. mCRBgp = blkdiag(CRB) = blkdiag(FIM 1),
mCRByg = (blkdiag(FIM))™!,
So,

mCRBgp = mCRByg if FIM = blkdiag(FIM).

@. Hence: BP may also improve parameter estimation.
But loopy BP may not reach it's mCRB.

9Richmond,Horowitz'15
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__Introduction Static SBL _Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Te
Outline

© Dynamic SBL
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Tensor Representation (Channel Tracking in MaMIMO OFDM)

e
L )
Bs =2 : o
s/
- - -
- e N
— -
— =
— S eS s L
-, -
esa T el el L7 o

Angular spread
of the clustors

—~e.
s 1

@. Sampling across Doppler space and stacking all the subcarrier and sampled (in Doppler) elements
as a vector

L
vec(H(t)) = D xiche(¢1) © he(6)) @ ve(7) © ve(£)) = A(t)x:
i=1
@. 4-D Tensor model, Delay, Doppler and Tx/Rx spatial dimensions.

Array response itself: Kronecker structure in the case of polarization or in the case of 2D antenna
arrays with separable structure [Sidiropoulos:icassp18].

User mobility changes the scattering geometry and path coefficients.

Tensor based KF proposed here avoids the off-grid basis mismatch issues.
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Time Varying Sparse State Tracking

Sparse signal x; is modeled using an AR(1) process with diagonal correlation coefficient matrix F.
X v,

Ve
|| [ |
_ .
[ | = ||
[ |
N x<1
N x< 1
X¢ F Xe—1 w,
|
= +
[
[T 1
Mx 1 M x M M x 1 Mx 1

Define: E = diag(¢), F = diag(f).
fi . correlation coefficient and x;,: ~ CN(xi,:; 0, é) Further, w; ~ CN(w:; 0,771 = 2711 — FF"))
and v; ~ CN(v; O,fy_ll). VB leads to Gaussian SAVE-Kalman Filtering (GS-KF).
Joint Dictionary Learning and Sparse Excitation Tracking.
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensingﬁa‘{m/l lé\iiaptive Kalman Filtering
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__Introduction Static SBL_Combined BP-MF-EP Framework _Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Te
Gaussian BP-MF-EP KF

@. Proposed Method: Alternating optimization between non linear KF for the sparse states (plus the
hyperparameters) and BP for dictionary learning (DL).
@ Diagonal AR(1) ( DAR(1) ) Prediction Stage: Since there is no coupling between the scalars

in the state update , it is enough to update the prediction stage using MF. However, the
interaction between x;: and f; requires Gaussian projection, using expectation propagation (EP).
More details in ®'.

@. y.— factor node, x;— variable node. (/,n) or (n,/) to represent the messages passed from / to n

. . . ~(t . t
or viceversa. Gaussian messages from y, to x; parameterized by mean xﬁ,) and variance 1/,(, 2

@. The prediction about x; can be computed from the time update equation of the standard Kalman
filter, Here we denote ?k‘t,l as the estimate of f; given the observations till t — 1 and fi|;_;
represents the error in the estimation. Similary we can represent Xk -1 = Xk e—1)t—1 + Xk,t—1]t—1,
Xk,t—1|t—1 being the estimation error.

Xk, t|t—1 = fk\t—lxk,:—u:—h Xk, t|t—1 = fk|:—1Xk,r—1\r—1 + fk\t_1Xk,t4 + Wi,t,

2 @ ¢ 2 2 2 (1o 2 2 1
= Oktlt—1 — |fk|t—1‘ Ol t—1]t—1 + Ufk(|xk7t—1|t—1‘ +Uk,t—1\t—1) + EATE)

1 Thomas,Slock asilo19DynamicSBL
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Filtering Stage

@. Measurement Update (Filtering) Stage: For the measurement update stage, the posterior for
X; is inferred using BP. In the measurement stage the prior for x;: gets replaced by the belief

N
from the prediction stage. We define d; f—(z 1/ N ne=d (Y XZ;') + ;’zt‘;l)
Siver Ciele-

n=1

,t

—2 1 =~
o = d Xt =
It[t &t + Le s Xhtle = cor r\t

@. With the hard constraints, the equivalent observation model can be written as,

Z//;g ! X = AniXi + Z,, n ' X110+ Va, Where,
x,/7 ~ CN(x;;0,vr ), and mes, ., CN(X( Xn,ls Vnil)s

mpressed Sensing and Ada ive Kalman
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Lag-1 Smoothing Stage for Correlation Coefficients f

Q

ye = A(t)Fxe—1 + Vi, where v = A(t)w; + v¢, Ve ~ CN(v; 0, ﬁf)

o We show in Lemma 1%that KF is not enough to adapt the hyperparameters, instead we need at
least a lag 1 smoothing (i.e. the computation of ?k,t,m,ai,tfl‘t through BP). For the smoothing
stage, we use BP.

@. Gaussian Posterior for x;:

O—l:f (1\1- - (fk|t+gﬂ<\f)AH(t)R lAk( ) + O—l:f 1t—1°

1 Rk t—1]t—
<X > = op (AR (e — A(D)Fg < x( 1) >) + 5,

k,t—1|t Thet—1]e—1
@. Applying the MF rule, the resulting Gaussian distribution for f has mean, U;ﬁ and variance, /f\,-|t.

Uf\t_(lxlt 1It‘ +U/t l\t)AT(t) _1A( t)i,
fl\t _Uf|tX1Ht mAH( )R (yr At )F|t G t— m)

o R =A(®T A" + 11,

2Thomas,Slock asilo19DynamicSBL
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Combined BP-MF-EP DAR SBL

Initialization fjjo, Jijo = 2,70 = §» X010 = 0,0} oo = 0, /. Define 2, 1,1 = diag(07 ;1 )-
fort =1:T do

Prediction Stage (Estimation of x, from Y;_;):
o Compute X ¢|t—1,0] ¢|e—1 using EP.

Filtering Stage (BP for X ¢)¢, 0

)’
9 Computex, Vol

! r|r) Repeat until convergence
and update X e

I_t|t e Compute V,( ) 53,;.

Smoothing Stage (Estimation of x; from Y;1):

Initialization: = = =3 11, 5(\:07)1‘[ = X;_1)t—1. Define

t—1]t
B®) = FTA(® TRflA((t))[;'—O- Se_qpe—1,he = FTAO TR y,, R = AT TIAOH 4 1),

o Pij=—mg——— pij=(hiet X Pribki) Vi

»J (f) » Py it Jilk,i)s Vi

B i+ ?Z Pui kEN(i)\j

-2

o o, =B, Piis Xi 1)t = ,-Zt,l‘t(hi,tJF Z Py iti,i)
ke./\/'(l) ] i)

o x-0 f(FHA(t)"’R LAWF,, + diag(A® HR; 1A )2F‘t+2t )

t— l\t_
o X = (E X5+ FRAOHR ),

tfl\t_ t l\t —1jt—

2
>):

Yt — A(t)Xr

Estimation of hyperparameters (Define: x; , = X+ — fixk,t—1, (e = BCi—1 + (1 — B8) < ‘
(a+1)

o Compute f,;, a2 using MF rule, ;= -t and =)
P! 1ts fie g V= Cera) Vit (<’X;t'2>\t+b)
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Identifiability
|

@. Non-singularity of FIM = local identifiability.
@. Lemma: The AR(1) model parameters require (at least lag 1) smoothing for
identifiability.
For the AR(1) parameters, we obtain the FIM submatrix
Je =T +~7AOHPAL L TF(FTFY + Jx,t,lﬁrF”,
Jee=Jr: +D— JFx,t(FFFH + JF,t—l)_leF,t
with D = (I — FF")™!, Jur . = FT[Jxc + FTF] s,
Jre=D—-D(D+Jr: 1) 'DwithD=T"2 J,, = N/¥>.

FIM recursions show that filtering may be enough for the estimation of AR(1)
parameters. However, estimation of f by MF shows that we need the true value f to get f.

. p(f/xe,y:) = p(f/x:). This suggests that posterior of f given x; does not depend on y; or
in other words the observations doesn't provide any extra information about f other than
the prior p(f/x:) and hence f is globally not identifiable .

83 Gelfand,Sahu’99
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Numerical Result-DAR SBL
- ‘ MF DAR‘-SBL with Filtering for Est. of Hyperp‘arameters

—p— MF DAR-SBL with Smoothing for Est. of Hyperparameters
< = = ='MF DAR-SBL with Known Hyper-Parameters [15]
3 r —— Proposed BP-MF-EP DAR-SBL with Known Hyperparameters
~—&-— Vector BP-MF-EP DAR-SBL with Estimated Hyper-Parameters | |
& Vector BP-MF-EP DAR-SBL with Known Hyper-Parameters
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Figure 12: DAR-SBL: NMSE as a function of time.
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Mysteries Remaining

@. The mCRB analysis indicates that the x part needs to be treated jointly, motivating joint VB or
BP. We conjecture that whatever local identifiability analysis indicates as necessitating joint
treatment for optimality requires indeed joint treatment.

@. But local analysis may not capture all dependencies? The local analysis (recursive CRB) shows
that filtering would be sufficient for local identifiability of f and that the f; and the x; are
decoupled. However, global identifiability analysis reveals that filtering is not enough for
identifiability of f and that the estimation of x; and f; is coupled.

@. The gap between local and global analysis may be reflected in the observation that the
hyperparameters could be estimated (in what corresponds to filtering) by Type-Il Maximum

Likelihood (ML) ® (ie ML for hyperparameters, with the random parameters x integrated out).

@. Characterization of local and global identifiability for a mix of Bayesian and Deterministic
parameters.

@. Fast version of type-Il ML for dynamic AR-SBL.

%4Giri, Rao’'16
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@ Kronecker Structured Dictionary Learning using BP/VB
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Kronecker Structured Tensor Models

 — A A,
-’ AN" - ="
¥ —

S P L S
N
HALI HA._P‘

@. Tensor signals appear in many applications: massive multi-input multi-output (MIMO) radar,
massive MIMO (MaMIMO) channel estimation, speech processing, image and video processing.

@. Exploiting tensorial structure beneficial compared to estimating unstructured dictionary.
From Caononical Polyadic Decompositions (CPD) to Tucker Decompositions (TD).

@. The signal model for the recovery of a time varying sparse signal under Kronecker structured
(KS) dictionary matrix can be formulated as

Ay

Observation: y; = (A1(t) ® Az(t).... ® An(t)) x¢ + ve, yr = vec(Yy)

A(t)
State Update: x; = Fx¢—1 + w,

Y, € ¢l s the observations or data at time t, A; ;(t) € C, the factor matrix .
A; (6) = [Aj1(t), ..., Ajp,(t)] and the overall unknown parameters are [A;(t), ..., An(t); x], x is

M(= H P;)-dimensional sparse center tensor and w;, v; are the state or measurement noise.
j=1
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Dictionary Learning using Tensor Signal Processing

- ~
/ANI / AN.py

Ay

Arp 4,

@ Let Y, i represents the iiir...i;; element of the tensor and
Y =11, Y11,. 2, Yib,iy] T then it can be verified that [Sidiropoulos: TSP17],
ye = (A1(t) @ Ax(t)... ® An(t))xe + we, w ~ N(w;0,7711),
Matrix Unfolding:Y(") = A, (t)X"M(An(t) @ ...Ap11(t) @ Ap_1(t)... @ Ag(t))T

o Aj(t) is of dimension, ; x P; and the resulting Tensor is C1* X/

@. Retaining the Tensor structure in the dictionary matrix leads to better estimates than using the
matricized version for A and learning it.

Q. Less free variables to be estimated in the Tensor structured case.

@. Variational Bayesian Inference usmg the followmg approxmate posterior

a(x,a,7,A) = a,(7) H 9 (xi) H qe; (&) H H qa;:(Aj,i), = SAVED-KS DL Or

q(X7 o, 7, A) = q’Y('Y) 1_.[1 qX,-(Xi) ]._[1 q&;(&i) 1_[1 qu(AJ) = Joint VB for DL
i= i= j=
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Suboptimality of SAVED-KS DL and Joint VB

@. From the expression for the error covariance in the estimation of the factor A;; (SAVED-KS DL

1 . .
n %) (tr{(k (I%#' < AL (B)A;L(t) >) < XDTXU) >11), = it does not take into account the
=N,k#J

estimation error in the other columns of Aj(t). The columns of Aj(t) can be correlated, for e.g.
if we consider two paths (say /, j) with same DoA but with different delays, the delay responses
ve(7i(t)) and v¢(7i(t)) may be correlated.

@. The joint VB estimates (mean and covariance) can be obtained as

M = Al (1) =<~y > ¥ 'B],
1

. . 10
U= (<y><XO( @ <Al(DAL(t) >)XDT >), (10)
k=N, k#j

. 1 .
where V; =< XU >< ( ® Ax(t))" > and B; is defined as with the first row of (YVV)
k=N, ke#j
removed. However, the joint VB involves a matrix inversion and is not recommended for large
system dimensions. Nevertheless, it is possible to estimate each columns of A;(t) by BP, since
each column estimate can be expressed as the solution of a linear system of equation from (10),

RL(t) = \Ilj_lbj,,-. bj,; represents the i column of B/ .

%Thomas, Slock, ICASSP’19
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Optimal Partitioning of the Measurement Stage and KS DL

For the measurement stage, an optimal partitioning is to apply BP for the sparse vector x; and VB
(SAVED-KS) for the columns of the factor matrices A; ;(t) assuming the vectors A; ;(t) are
independent and have zero mean. However, if the columns of Aj(t) are correlated, then a joint VB,
with the posteriors of the factor matrices assumed independent, should be done for an optimal

performance.

@ Proof: Follows from Lemma 1%, where the main message was that if the parameter partitioning
in VB is such that the different parameter blocks are decoupled at the level of FIM, then VB is
not suboptimal in terms of (mismatched) Cramer-Rao Bound (mCRB).

Q
M N
Ve = (3 % eF) (@ @) +we. J(Be) = [H(@1e) .o J(B,o)]
r=1 j=1
F(xt) f(®r)
) where, J(‘I’Lt) = F(Xt)(‘I’Lt [024] "'IIij e ® ‘IZ'N’t),
FIM =
E()I(@) T I(2e) 0 0 0
0 E(MI(x) T I(xe) + E(2) 0 0
0 0 2E(Z) 0
0 0 0 (N +c—1)E(v2?)

®Kalyan, Thomas, Slock'19
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@ Numerical Results and Conclusion
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BP-MF-EP Outperforms SAVED-KS DL

10
——— BP-MF-EP with ALS for DL
—=— SAVED-KS with DL
° —e— BP-MF-EP with BP for DL
— - B BP-MF-EP with Joint VB for DL
- — BP-MF-EP with Known Dictionary Matrix
-10§ \
20 :%..\
" >
-30 \ —
-a0 \P\:%
-50
-60
o 2 a4 6 8 10 12 14 16 18 20
SNR in dB

Figure 13: Static SBL: NMSE as a function of N.

ALS- Alternating Least Squares.

Exponential power delay profile for x;.

30 non zero elements in x;, same support across all time.
Dimensions: 3-D Tensor (4, 8,8), with M = 200.
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Conclusions and Thank You!

Further advancements from ®": VB with a too fine variable partitioning is quite suboptimal.

Q. Better approximation is message passing based methods such as belief propagation (BP) and
expectation propagation (EP)

@. BP or EP message passing can be implemented using low complexity methods such as
AMP/GAMP /VAMP, which are proven to be Bayes optimal under certain conditions on A.

@. AMP - Approximate message passing. We also derived an Generalized Vector AMP
(GVAMP-SBL) SBL version to take care of diagonal power delay profile.

@. Further work to be done on learning a combination of structured and unstructured Kronecker
factor matrices.

7 Thomas,Slock asilo19ConvergenceAnalysisSBL
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