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Abstract—In this work, we study the impact of imperfect
sharing of the Channel State Information (CSI) available at the
transmitters on a Network MIMO setting in which a set of M
transmit antennas, possibly not co-located, jointly serve two multi-
antenna users endowed with N1 and N2 antennas, respectively.
We consider the case where only a subset of k transmit antennas
have access to perfect CSI, whereas the other M − k transmit
antennas have only access to finite precision CSI. The analysis of
this configuration aims to answer the question of how much an
extra informed antenna can help. We model this scenario as a
Decentralized MIMO Broadcast Channel (BC) and characterize
the Degrees-of-Freedom (DoF) region, showing that only k =
max(N1, N2) antennas with perfect CSI are needed to achieve
the DoF of the conventional BC with ubiquitous perfect CSI.

I. INTRODUCTION

The availability of CSI at the Transmitters (CSIT) is one
of the fundamental requirements for managing interference
in MIMO and multi-user cooperative settings. On account of
the infeasibility of acquiring perfect CSIT in many practical
scenarios, there has been a significant interest in characterizing
the impact of non-perfect CSIT on the system performance.
The assumption of non-perfect CSIT has been analyzed from
many different perspectives, considering e.g. the cases of noisy
instantaneous CSIT [1], perfect delayed [2], partial [3], hybrid
[4], or alternating CSIT [5], [6]. However, it is normally
assumed that the CSIT is centralized, i.e., perfectly shared
among the transmitters. Although this belief arises naturally
in MIMO settings with one multi-antenna transmitter, it is
unattainable in many practical settings with cooperating nodes.
Such settings are expected to burgeon due to the increased
heterogeneity and densification of the wireless networks.

Motivated by the foregoing, we aim to understand the
impact of imperfectly shared CSIT, i.e., the case in which each
transmitter may have a different CSI. This configuration, coined
Distributed CSIT setting, has been previously studied in the
Interference Channel [7] or the Network MISO setting [8], [9].
In this work, we focus on the Network MIMO setting. Note that
a Network MIMO setting in which the transmitters perfectly
share the user data but not the CSIT can be modeled as a MIMO
BC setting with antenna-dependent CSIT, and consequently
we denote this setting as the Decentralized MIMO BC.

Therefore, we consider the 2-user MIMO BC where the users
have N1 and N2 antennas, respectively. The DoF metric of this
setting has been analyzed for multiple heterogeneous, yet cen-

tralized, CSI configurations, e.g. the cases where the CSIT for
each user can be Perfect, Delayed, or Not-available [4], [5], [10].
However, this work is to our knowledge the first to consider
distributed CSIT. In particular, we assume that only k of the M
transmit antennas have access to perfect CSI, whereas the other
transmit antennas have only access to finite precision CSI.

This model, in which some transmit antennas are provided
with global CSI (also from the other non-informed transmit
antennas), arises in the context of FDD heterogeneous
networks where the users feed back the global CSI to a main
base station, which is in turn helped by secondary nodes or
remote radio-heads with a limited backhaul. The availability
of the user data at all transmit antennas is feasible at the same
time thanks to caching and Cloud/Fog-RAN technologies [9].

Our main contributions are as follows: i) We present an outer
bound for the DoF region of the 2-user MIMO BC when only k
transmit antennas have access to perfect CSI; ii) we show that
having perfect CSIT at k = max(N1, N2) antennas is enough
to achieve the DoF region of the conventional MIMO BC with
perfect CSIT at every antenna; and iii) we develop an achiev-
able scheme that attains the DoF region for k ≥ min(N1, N2)
and partially closes the gap for k < min(N1, N2).

Notations: [n] is defined as [n] , {1, . . . , n} and, in any
variable X , the superscript [n] stands for {X(i)}i∈[n]. The joint
entropy of a set of variables S is denoted as H

(
∩Si∈S Si

)
.

II. SYSTEM MODEL

A. MIMO Broadcast Channel

We analyze a setting where M transmit antennas (TXs)
jointly serve 2 users (RXs) of N1 and N2 antennas, considering
w.l.o.g. that N1 ≤ N2. The received signal at RX i is given by

Yi(t) ,
√
P Hi(t)X(t) + Ni(t), (1)

where Yi(t) , [Yi,1(t), . . . , Yi,Ni(t)]
T, Hi∈RNi×M denotes

the matrix of channel coefficients for RX i, and P denotes
the nominal SNR parameter. We define the global channel ma-
trix as HT ,

[
HT

1, HT
2

]
, and the channel vector between TX j

and RX i as Hi,j . The vector X(t) , [X1(t), . . . , XM (t)]
T

is the transmit signal vector, which satisfies a unitary power
constraint, and Ni(t) denotes the AWGN noise at RX i. RX i
wants to receive a message Wi, which is available at all the
TXs. The definitions of achievable rates Ri(P ) and capacity



region C(P ) are standard [11]. The DoF for RX i is defined
as di , limP→∞

Ri(P )
log P̄

, where P̄ ,
√
P . The closure of

achievable DoF tuples (d1, d2) is called the DoF region D.
We assume that the channel coefficients are bounded away

from 0 and infinity and that are drawn from distributions that sat-
isfy the bounded density assumption, which is presented below.

Definition 1 ([3, Def. 4] Bounded Density). Let G be a set of
real-valued random variables, which satisfies both of the follow-
ing conditions: i) The magnitudes of all the random variables
in G are bounded away from infinity, i.e., there exists a constant
∆ < ∞ such that for all g ∈ G we have |g| ≤ ∆; ii) there
exists a finite positive constant fmax, such that for all finite
cardinality disjoint subsets G1,G2 of G, the joint probability den-
sity function of all random variables in G1, conditioned on all
random variables in G2, exists and is bounded above by f |G1|max.

B. Distributed CSIT

We consider a Distributed CSIT setting [9] where the first
k TXs are provided with perfect global CSI, such that they
know the whole multi-user channel matrix H, whilst the other
M − k TXs have only finite precision CSI. Hereinafter, we
will denote this setting as the (M,N1, N2, k) MIMO BC.

Remark 1. The notation “TX” refers to a single transmit
antenna. The transmit antennas can be distributed among an ar-
bitrary number of physical transmitters. Thus, there can be e.g.
M single-antenna transmitters or two M

2 -antenna transmitters.

We split the set of transmit antennas in two different groups.
Let us denote the i-th transmit antenna as TXi, i ∈ [M ]. Hence,
• TX? , [TX1, . . . ,TXk] denotes the k TXs that have

access to perfect CSI, i.e., which know H instantaneously.
• TX∅ , [TXk+1, . . . ,TXM ] stands for the M − k TXs

with finite precision CSI. This implies that, for any TX
in TX∅, the channel coefficients satisfy the bounded
density assumption of Definition 1 [3], [12].

The transmit signals from TX∅, TX? are denoted as X∅, X?.

Remark 2. Although considering both perfect and finite CSIT
may resemble the conventional BC with Hybrid CSIT in which
there exists perfect CSIT for one RX and no CSIT for the other
RX (the so-called ‘PN’ setting) [3], [4], [13], the CSI model
here considered is substantially different: In the mentioned ‘PN’
setting, all the TXs share the same CSI, i.e., all of them have
access to perfect CSI for one RX and no TX has access to CSI
of the other RX. However, in our setting, a subset of TXs has
access to perfect global CSI (for both RXs), whereas the other
subset has access only to finite precision CSI of the global CSI.
Further discussion about this CSIT setting can be found in [9].

III. DOF REGION OF THE (M,N1, N2, k) MIMO BC

We analyze the DoF region of the MIMO BC as a function
of the number of TXs with perfect CSIT (k). Therefore, we can
measure the gain (in terms of DoF) that is obtained by providing
an extra TX with perfect CSIT, which would require either
backhaul of feedback resources. We first present an outer bound.
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Figure 1: System model for (M,N1, N2, k) = (4, 1, 3, 2). The
transmit antennas can belong to non-colocated transmitters.

Theorem 1. Let us consider the (M,N1, N2, k) MIMO BC.
If k < N2 and M > N2, the DoF region (D) is enclosed in

(d1, d2) ∈


d1 ≤ min(M, N1)

d2 ≤ min(M, N2)

d1 + d2 ≤ min(M, N1 +N2)
d1

min(M,N1+N2)−k + d2−k
min(N2,M)−k ≤ 1

(2a)
(2b)
(2c)

(2d)

Otherwise (i.e., if k ≥ N2 or M ≤ N2), D is enclosed in

(d1, d2) ∈


d1 ≤ min(M, N1)

d2 ≤ min(M, N2)

d1 + d2 ≤ min(M, N1 +N2)

(3a)
(3b)
(3c)

Proof: The proof is relegated to Section V.
The DoF region in (3) matches the DoF region of the MIMO

BC with perfect CSIT. Moreover, the bound (2d) holds for any
value of M . However, note that, if M ≤ N2, (2d) becomes (3c),
and hence we recover (3). Let us consider now the sum DoF.

Lemma 1. The sum DoF of the (M,N1, N2, k) MIMO BC,
defined as dΣ , max(d1,d2)∈D(d1 + d2), is upper-bounded by

dΣ ≤ min
(
N1+N2, M, N2 +

N1 min(N1,M −N2)

min(N1 +N2,M)− k

)
.

Lemma 1 is a direct aftermath of Theorem 1. Thus, the sum
DoF upper bound is strictly smaller than the DoF of the BC
with perfect CSIT [4] for the regime of (2), and matches it for
the regime of (3). Next, we introduce the achievability results.

Theorem 2. The DoF region outer bound of Theorem 1 is
achievable for k ≥ min(N1, N2).

Proof: The proof follows from a novel transmission
scheme introduced in Section VI, which shows that the sum
DoF of Lemma 1 is achievable. The DoF region can be obtained
then by time-sharing. The transmission scheme achieving
Theorem 2 is based on the Active-Passive Zero-Forcing
precoding (AP-ZF) introduced in [9] and the fact that exploiting
the unavoidable interference as side information is beneficial.
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Figure 2: Sum DoF as a function of the number of TXs with
perfect CSIT (k) for the case (M,N1, N2) = (9, 6, 3).

Hence, for the case where M = N1 +N2, it follows that

dΣ =

{
N2 +N1 if k ≥ N2

N2 +N1
N1

N1+N2−k if N1 ≤ k < N2.
(4)

Unfortunately, besides particular cases, no tight general bound
is known for the regime k < N1. Nevertheless, we can extend
the proposed scheme to obtain a general lower bound, whose
proof is relegated to the extended version of this work [14].

Proposition 1. Let us assume that k < N1 and define mM−k
N2

as mM−k
N2

, min(N2, M − k). Then, the sum DoF of the
(M,N1, N2, k) MIMO BC is lower-bounded by

dΣ ≥ max
(

min(N2, M), mM−k
N2

+
k2

mM−k
N2

)
. (5)

IV. DISCUSSION

The sum DoF of the 2-user MIMO BC with perfect CSIT is
DoF? = min(M,N2+N1) [4]. Hence, Theorem 1 implies that
we only need perfect CSI at k = N2 to recover the maximum
DoF. This aftermath extends the results of previous works on
the MISO setting [8], [9], where it was shown that having
the most accurate CSI at only a subset of TXs is (sometimes)
enough to recover the DoF achieved with perfect CSI sharing.

Fig. 2 represents the sum DoF as a function of k. We
observe how for k ≥ N2 the DoF obtained with centralized
perfect CSIT is attained, and that for N1 ≤ k ≤ N2 the bound
is tight. For the case k < N1, there exists a gap between
the upper and the lower bound. We can infer that the upper
bound is loose from the fact that for k = 0 we obtain that
DoF = N2 + 1, but the DoF in this case is known to be
DoF = N2 [3]. It is noteworthy that, the closer k is to the
number of antennas of any of the RXs, the more the DoF
increases from k to k+1. In Fig. 3, we present the DoF region
for the case (4, 1, 3, k). Interestingly, a single informed antenna
can considerably increase the performance, specially for RX 1.

Besides this, the DoF obtained for this decentralized setting
has an appreciable similarity with the DoF of the centralized
MIMO BC in which the transmitter has perfect CSI for RX 1
and delayed CSI for RX 2, also known as the ‘PD’ setting,
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Figure 3: DoF region for the (M,N1, N2, k) = (4, 1, 3, k)
MIMO BC for k ∈ {0, 1, 2, 3}.

whose DoF region was derived in [10]. By way of example,
consider the scenario with M = N1 +N2 and N1 ≤ k < N2,
such that the particular bound of (2d) is active. If we compare
these two settings with the perfect-CSIT MISO BC, we can
observe that there exists an analogy between both settings:

1) In the ‘PD’ setting, the loss of DoF due to having delayed
CSIT for RX 2 instead of perfect CSIT is −N2

N1

N1+N2
.

2) In our decentralized setting, the loss of DoF due to having
perfect CSIT only at k antennas is −(N2−k) N1

N1+(N2−k) .
Therefore, the (M,N1, N2, k) setting seems analogous to a
‘PD’ case where only N2 − k antennas suffer from having
delayed CSI. An intuition behind this result is that we can apply
a change of basis at RX 2 so that the TXs with perfect CSI are
only listened by k antennas of RX 2. Hence, even if those TXs
have perfect CSI for the other N2−k antennas, these antennas
receive only information from the TXs with finite precision CSI.

V. CONVERSE OF THEOREM 1
We prove Theorem 1 for real channels. The extension to com-

plex variables is intuitive but cumbersome, and hence we omit
it for sake of conciseness. First, let us consider a genie-aided
setting with perfect CSIT available at every transmit antenna.
This genie-aided scenario corresponds to the well-known con-
ventional MIMO BC with perfect CSIT [4], whose DoF region
coincides with (3). Since providing with additional CSI can not
hurt, we obtain that (3) is an outer bound for the (M,N1, N2, k)
MISO BC. Hence, it remains to prove that the bound (2d), i.e.,

d1

min(M,N1 +N2)− k
+
d2 − k
N2 − k

≤ 1, (6)

holds when M > N2 and k < N2. We present here the proof
for the key regime N2 < M ≤ N1 +N2. The outer bound for
the regime M > N1 +N2 follows from invertible transforma-
tions at the nodes and is relegated to the extended version [14].

1) Deterministic Channel Model: We start similarly as
in [1], [3], [15] by discretizing the channel, what leads to
a deterministic channel model first introduced in [16]. The
discretized model is such that the input signals X̄j(t) ∈ Z
and output signals Ȳi(t) ∈ Z are given by

X̄j(t) ∈ {0, 1, . . . , dP̄ e}, ∀j ∈ [M ],

Ȳi(t) ,
M∑
j=1

bHi,jX̄j(t)c, ∀i ∈ {1, 2}.

(7)

(8)



In the following, we obtain an outer bound for this channel
model. From [1, Lemma 1], this DoF outer bound is also an
outer bound for the channel model that we have considered.

2) Weighted sum rate: We obtain (6) by means of bounding
the weighted sum rate n(N2 − k)R1 + n(M − k)R2. First of
all, we present an instrumental lemma.

Lemma 2. Let the number of transmit antennas with perfect
CSIT satisfy that k < N2. Then, it holds that

(N2 − k)H(Ȳ
[n]
1 |H[n],W2)

− (M − k)H(Ȳ
[n]
2 |H[n],W2) ≤ o(log P̄ ).

(9)

Proof: The proof is relegated to Section V-A.
We start from Fano’s inequality to obtain that

n(R1 +R2) ≤ I(W1; Ȳ
[n]
1 |H[n],W2) + I(W2; Ȳ

[n]
2 | H[n])

= H(Ȳ
[n]
2 | H[n])−H(Ȳ

[n]
2 | H[n],W2)

+H(Ȳ
[n]
1 | H[n],W2) + o(n).

(10)

The entropy of a random variable is bounded by its support,
i.e., H(Ȳ

[n]
2 ) ≤ N2 n log P̄ . This fact and Lemma 2 yield

n(N2 − k)R1 + n(M − k)R2

≤ (M − k)
(
H(Ȳ

[n]
2 |H[n])−H(Ȳ

[n]
2 |H[n],W2)

)
+ (N2 − k)H(Ȳ

[n]
1 |H[n],W2) + o(n)

≤ n (M − k)N2 log P̄ + n o(log P̄ ) + o(n).

(11)

We can divide (11) by (M − k)(N2 − k) to write

nR1

M − k
+

nR2

N2 − k
≤ nN2 log P̄

N2 − k
+ n o(log P̄ ) + o(n). (12)

From the definition of DoF, it follows that

d1

M − k
+

d2

N2 − k
≤ N2

N2 − k
⇒ d1

M − k
+
d2 − k
N2 − k

≤ 1,

what concludes the proof of (2d) for N2 < M ≤ N1 +N2.

A. Proof of Lemma 2

Next, we prove Lemma 2. We omit some intermediate steps
for space constraints, while a more detailed step-by-step proof
can be found in [14]. We first recall a key definition from [12].

Definition 2 ([12, Def. 4]). For real numbers x1, x2, . . . , xK ,
define the notations Lbj(xi, i ∈ [K]), and Lj(xi, i ∈ [K]), as

Lbj(x1, x2, . . . , xk) ,
∑

i∈[K]
bgj,ixic

Lj(x1, x2, . . . , xk) ,
∑

i∈[K]
bhj,ixic

(13)

(14)

for distinct random variables gj,i ∈ G with bounded density,
and for real valued and finite constants hj,i ∈ H, |hj,i| ≤ δz <
∞. Subscript j is used to distinguish among multiple sums.

We recall that Ȳ[n]
i , [Ȳ

[n]
i,1 , . . . , Ȳ

[n]
i,Ni

]. Moreover, it follows
from Definition 2 that Ȳi,j(t) = Li,j(t)(X̄1(t), . . . , X̄M (t)).
Note that the signals X̄ [n]

1 , . . . , X̄
[n]
k may be a function of the

messages and the channel, but {X̄ [n]
k+1, . . . , X̄

[n]
M } , X̄

[n]
∅ are

independent of the channel. We can apply a rotation matrix at

RX 2 such that the k first TXs (TX?) are only heard by the first
k antennas of RX 2. Hence, for any k < j ≤ N2, we have that

Ȳ
[n]
2,j = L

b[n]

Ȳ ,j
(X̄

[n]
∅ ) (15)

since TX∅ has only finite precision CSI. We omit hereinafter
that j ≤ N2 for ease of readability. From (15), it follows that

H
(⋂
j>k

Ȳ
[n]
2,j |H

[n],W2

)
= H

(⋂
j>k

L
b[n]

Ȳ ,j
(X̄

[n]
∅ )|H[n],W2

)
. (16)

From the fact that H(A,B) ≥ H(A), it holds that

(N2 − k)H(Ȳ
[n]
1 |H[n],W2)− (M − k)H(Ȳ

[n]
2 |H[n],W2)

≤ (N2 − k)
(
H(Ȳ

[n]
1 |H[n],W2)−H(Ȳ

[n]
2 |H[n],W2)

)
− (M −N2)H

( ⋂
j>k

Ȳ
[n]
2,j |H

[n],W2

)
. (17)

Let us first describe the intuition behind the proof before
deriving the result. In (17), there are N2 − k negative entropy
terms, each one of N2 variables, and another M −N2 negative
entropy terms, each one of N2 − k variables. All the variables
are linear combinations of the M transmit signals (X̄i). Our
goal is to show that all those negative terms can be reordered so
as to create N2−k terms of M independent linear combinations.
If this statement is true, from the fact that H(A)−H(B) ≤
H(A|B), we can remove the contribution of the N2−k positive
terms H(Ȳ

[n]
1 |H[n],W2), since we can decode the M signals

with high probability from M independent linear combinations.
In the following we show rigorously that the previous idea is
indeed applicable. First, let us note that

Ȳ
[n]
2 ,

{⋂
m≤k

Ȳ
[n]
2,m,

⋂
j>k

L
b[n]

Ȳ ,j
(X̄

[n]
∅ )
}
, (18)

and let us present a useful lemma that follows directly from [1].

Lemma 3. Consider β > 0 and random variables F [n]
j , G[n]

j ,
j ∈ [J ] that satisfy the bounded density assumption. Let X̄ [n]

j

be independent of F [n]
j , G

[n]
j , ∀j ∈ [J ]. Then, it holds that

H
( J∑
j=1

dP̄ βF [n]
j X̄

[n]
j e
)
≤ H

( J∑
j=1

dP̄ βG[n]
j X̄

[n]
j e
)

+ o(log P̄ ).

Hereinafter, we omit the o(log P̄ ) terms for ease of notation
and because they are irrelevant for the DoF metric. Lemma 3
and the fact that H(L(Xi)) ≤ H(Lb(Xi)) [12], [15] yield

H
(⋂

j>k
L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
≥ H

(
L[n](X̄

[n]
∅ ),

⋂
j>k+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
.

(19)

Until now, we have presented the preliminary steps. Next,
we bound H

(
Ȳ

[n]
2 |H[n],W2

)
+ H

(⋂
j>k Ȳ

[n]
2,j |H[n],W2

)
as

a key intermediate step. To conclude, we will show how we
can repeat this step so as to obtain Lemma 2. It holds that

H
(
Ȳ

[n]
2 | H[n],W2

)
+H

(⋂
j>k

Ȳ
[n]
2,j | H

[n],W2

)
(a)

≥ H
(⋂

m≤k
Ȳ

[n]
2,m,

⋂
j>k

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
+H

(⋂
j>k+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ), L[n](X̄

[n]
∅ ) | H[n],W2

) (20)



(b)

≥ H
(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
+H

(⋂
j>k+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
,

(21)

where (a) comes from (15), (18), and (19), and (b) comes
from (18) and the sub-modularity property, which states
that H(A,B) +H(B,C) ≥ H(A,B,C) +H(B) [17, Th. 1].

Recovering (17), we focus on its negative terms. Let us
introduce L[n](X̄

[n]
∅ ) , {L[n]

1 (X̄
[n]
∅ ), · · · , L[n]

M−N2
(X̄

[n]
∅ )},

which is composed of M−N2 independent linear combinations
of X̄[n]

∅ . Therefore, handily repeating (21) yields

(N2 − k)H
(
Ȳ

[n]
2 | H[n],W2

)
+ (M −N2)H

(⋂
j>k

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
(a)

≥ (N2 − k − 1)H
(
Ȳ

[n]
2 | H[n],W2

)
+H

(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
+ (M −N2)H

(⋂
j>k+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
(b)

≥ (N2 − k)H
(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
(22)

where (a) comes from repeating (21) for each of the
H
(⋂

j>k L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
terms that appear in (17)

(which sum up M −N2 terms), and (b) follows after repeating
(a) up to N2 − k times for j = k + 1, k + 2, . . . , N2. Note
that the entropy terms H

(
Ȳ

[n]
2 ,L[n](X̄

[n]
∅ ) | H[n],W2

)
are

composed of M independent linear combinations of the
transmitted signals {X̄ [n]

i }i∈[M ], such that it follows that

H
(
Ȳ

[n]
1 | H[n],W2)−H

(
Ȳ

[n]
2 ,L[n](X̄

[n]
∅ ) | H[n],W2

)
≤ H

(
Ȳ

[n]
1 | Ȳ

[n]
2 ,L[n](X̄

[n]
∅ ),H[n],W2

)
≤ o(n).

(23)

From (22) and (23), it holds that

(N2 − k)H(Ȳ
[n]
1 |H[n],W2)− (M − k)H(Ȳ

[n]
2 |H[n],W2)

≤ (N2 − k)H(Ȳ
[n]
1 | Ȳ

[n]
2 ,L[n](X̄

[n]
∅ ),H[n],W2)

≤ o(n),

(24)

what concludes the proof of Lemma 2.

VI. ACHIEVABILITY RESULTS

The transmission scheme exploits the unavoidable interfer-
ence as side information, in a similar way as in [10] for the
centralized ‘PD’ setting. At the same time, the proposed scheme
also exploits the instantaneous CSI available at TX? by means
of the AP-ZF precoding scheme that was introduced in [9].
The key of the use of AP-ZF is the following lemma (cf. [9]).

Lemma 4 ([9]). Consider k TXs with perfect CSI and M − k
TXs with finite precision CSI. By precoding with AP-ZF the
interference can be canceled at k different receive antennas.

We refer to [9] for more details about AP-ZF. We present
in the following the DoF-optimal transmission scheme for
N1 ≤ k < N2, i.e., the proof of Theorem 2. The achievable
scheme for the case M ≤ N2 (DoF = M ) is trivial and thus

we omit it for sake of conciseness. Given that the DoF does
not increase for M bigger than M = N1 +N2, we consider
that N2 < M ≤ N1 +N2.

We transmit a set Si of Si , |Si| symbols to RX i,
i ∈ {1, 2}. In particular, we send a total of S1 = (M − k)N1

symbols to RX 1 and S2 = N2(M − k−N1) + kN1 symbols
to RX 2 in a transmission spanning M − k Time Slots (TS).
The scheme is composed of two phases, the first one lasting
N1 TS and the second one lasting M−k−N1 TS. Specifically,
at each one of the N1 TS of the first phase, we transmit:
• M −N1 independent linear combinations (i.l.c.) of the

symbols in S2 that are canceled at RX 1 through AP-ZF
precoding (which is possible because k ≥ N1).

• N1 i.l.c. of the symbols in S1, which are canceled at k
antennas of RX 2 using AP-ZF precoding (see Lemma 4).

Then, at the end of the first phase, RX 1 has N2
1 i.l.c. of

its S1 symbols. Thus, RX 1 needs another (M − k −N1)N1

i.l.c. to decode all the symbols in S1. On the other hand,
RX 2 has N2N1 i.l.c. of S2 desired symbols and (N2 − k)N1

interference variables, since the symbols for RX 1 can be
canceled only at k of the N2 antennas. Let us denote the set
of interference terms received at RX 2 during the first phase
as I2, |I2| = (N2− k)N1. At TX?, we can reconstruct the set
I2 thanks to the perfect CSI available. Hence, TX? can create
(M − k −N1)N1 i.l.c. of |I2| interference terms, which are
functions of the symbols of RX 1, because M −N1 ≤ N2.

In the second phase, which lasts M − k −N1 TS, we send
at each TS:
• N1 of the (M − k −N1)N1 i.l.c. of I2 from TX?.
• N2 −N1 i.l.c. of the symbols in S2, which are canceled

at RX 1 through AP-ZF precoding.
Consequently, at the end of phase 2, RX 1 has obtained
N2

1 + (M − k −N1)N1 = S1 i.l.c. of its S1 symbols. Hence,
RX 1 can decode all its symbols. Further, RX 2 has N2N1 +
N2(M−k−N1) = N2(M−k) i.l.c. of S2 desired symbols and
(N2−k)N1 interference variables, what amounts to N2(M−k)
variables. Thus, RX 2 can decode its intended symbols.

Hence, at the end of the communication we have successfully
delivered a total of S1 + S2 = (M − N2)N1 + N2(M − k)
symbols over M − k TS, what leads to a sum DoF of

dΣ = N2 +N1
M −N2

M − k
, (25)

what concludes the proof of Theorem 2.

VII. CONCLUSION

We have analyzed the 2-user MIMO BC setting in which
only k transmit antennas have access to perfect CSI, whereas
the other M−k transmit antennas have access only to finite pre-
cision CSI. We have derived an outer bound for the DoF region
that is tight for k ≥ min(N1, N2), characterizing the loss of
DoF obtained from reducing the number of informed antennas.
On this basis, we have shown that it is not necessary to have
perfect CSI at every transmit antenna, but only at max(N1, N2)
antennas. We have also presented an achievable scheme that
adapts to the distributed CSI setting so as to boost the DoF
with respect to the use of conventional centralized schemes.
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