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Abstract—We consider a distributed learning system, where
a parameter server (PS) assigns data and computational tasks
to edge devices to build a global model. Distributing data to
multiple workers involves communication between PS and edge
devices and entails a fundamental tradeoff between computation
and communication. In this paper, we aim at characterizing
the optimal number of edge devices required for guaranteeing
convergence and for achieving a certain accuracy within a finite
time horizon.

Index Terms—Distributed machine learning, mobile edge com-
puting, parameter server.

I. INTRODUCTION

The continuous generation of abundant and ubiquitous data
renders inefficient or infeasible for a single entity to handle
huge data sets for computation, training, and inference. Using
multiple devices to share the processing load of the whole data
set is an alternative that has recently attracted significant atten-
tion. Leveraging parallel computing, the response/completion
time of distributed learning systems can be significantly re-
duced compared with centralized architectures. At the same
time, users’ demands for enhanced quality of experience
and ultra low latency necessitate data-driven decision making
closer to the end users, i.e., at the network edge [1]. In this
context, distributed edge learning has become promising for
large-scale learning applications.

In a distributed edge learning system, a parameter server
(PS) splits the entire data into separate sets and distributes
them to the edge devices. Since each edge device holds only
part of the data set, the server needs to aggregate the outcomes
of the edge devices’ computations. Hence, intermediate results
are sent from the edge devices to the server and coordination
information is delivered to the edge devices from the server.
In this context, communication between parameter server and
edge devices becomes a key factor - and often the bottleneck -
that determines the performance of distributed learning. Con-
sequently, the communication overhead should be taken into
account when optimizing distributed edge learning systems.

There are various approaches to reduce the communication
overhead. Apart from the PS architecture, in which the server
aggregates the local models from all edge devices and pro-
duces a global model, another promising approach is federated
learning (FL) [2]. In FL, edge devices build local models based

on their local data set and transmit only the local models,
reducing the communication overhead and preserving user data
privacy. Several approaches have been proposed for efficient
use of communication and computation resources [3], [4].
Finding the best clustering under constraints of computation
rate-coverage tradeoff in distributed learning is studied in
[5]; the problem is shown to be NP-complete. The authors
in [6] have investigated a tradeoff between local updates
and global aggregations. Furthermore, a distributed learning
framework that exploits duality principle in optimization has
been proposed in [7]. The proposed framework is proven to
converge to optimal solution by solving local subproblems
and aggregating local solutions. This framework has been
employed to evaluate the performance of different scheduling
policies for local users [8].

Previous work on communication-efficient distributed learn-
ing assumes a fixed number of edge devices geographi-
cally distributed according to a given topology. However, the
number of edge devices is a key system parameter, which
heavily influences both computing performance and wireless
communication features, such as multiple access and resource
allocation. On the one hand, adding edge devices is always
beneficial from a computation point of view, but on the other
hand a higher number of edge devices is not always beneficial
in terms of communication efficiency. Since additional edge
device will share data and computational load, the workload
of existing edge devices can be reduced. In other words, in-
creasing the number of edge devices is equivalent to acquiring
additional computational resources. However, as the number
of edge devices increases, wireless resources per edge device
decrease, which in turn affects the wireless communication
performance, such as the transmission rate.

In many machine learning applications, completion time,
defined here as the time required for achieving a certain
convergence gap, is an important and practically relevant
performance metric. Expectedly, completion time depends on
the number of edge devices, which in turn dictates the time
spent in computation and communication. Our objective is
to to figure out the optimal number of edge devices that
minimizes the completion time. For that, we cast the problem
of completion time minimization in wireless distributed edge
learning and investigate the tradeoff between computation and
communication in terms of number of edge devices.



II. SYSTEM MODEL

We consider a distributed edge learning system, as shown in
Fig. 1, with a single PS and a set of K edge devices denoted
by K = {1, · · ·K}.
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Edge device Edge device Edge device Edge device

Wireless Channel

Fig. 1. A distributed edge learning system over a wireless channel.

A. Distributed Learning Framework

Suppose we have a set of N data examples represented by
a matrix X = [x1, · · · , xN ] ∈ R

M×N , where xn ∈ RM is the
n-th data example characterized by M features. The objective
function F(w) given a parameter w ∈ RM is defined as

F(w) =
1
N

N∑
n=1

ln
(
x>nw

)
+ λr(w), (1)

where ln (·) is loss function, r(·) is regularizer such as `1 or `2-
norm, and λ is the weight. For simplicity, we assume that ln(·)
is 1-smooth function and r(w) is 1-strongly convex function.
Note that our result can be readily extended to arbitrary smooth
and convex functions. The goal of the server is to find the
optimal (global) parameter that minimizes F(w).

min
w∈Rd

F(w). (2)

However, it is not easy to handle very large data sets and
distributed edge computing should be employed instead, i.e.,
the server can build the global model by coordinating multiple
edge devices. First, the server splits the data set into K subsets
which correspond to each edge device. Let us denote a set
of indexes of data examples allocated to edge device k as
Ck ⊆ {1, · · · , N}. Thus, {Ck}Kk=1 forms a partition of entire
data set. We assume that duplicate allocation of a data example
is not allowed and all examples should be given to at least one
edge device. (i.e., Ck ∩ Ck′ = ∅ and ∪K

k=1Ck = {1, · · · , N}).
The number of data examples assigned to edge device k is
represented by nk , with

∑K
k=1 nk = N .

Given a data partition, the server utilizes distributed learning
framework to efficiently solve (2) with a large set of data
examples. There exist several distributed learning frameworks
[4], [6], [7]. We employ the communication-efficient dis-
tributed dual coordinate ascent (CoCoA) framework, which
guarantees convergence and shows wide applicability [7]. The
CoCoA framework is shown in Algorithm 1. There are two

Algorithm 1 CoCoA-Distributed Learning Algorithm

Input: Initial point α0, aggregation parameter γ, partition of
the entire data set {Ck}Kk=1
for t = 0, 1, 2, · · · , do

for k ∈ {1, 2, · · · ,K} each edge device k does in parallel
do

for τ = 1, 2, · · · , τεl − 1 do
∆ατ+1
[k]
← ∆ατ

[k]
− θ∇

(
∆Dk

(
∆ατ
[k]

; Xαt, αt
[k]

))
end for
Transmit ∆α

τεl
[k]

to the server
end for
Produce global parameter: αt+1 = αt + γ

∑K
k=1 ∆α

τεl
[k]

Multicast Xαt+1 to all edge devices.
end for

key variables: a global parameter and local updates. The
global parameter denoted as α is directly related with global
parameter w via dual relationship. The global parameter is
updated based on a set of local updates which are solutions of
local subproblems given to each edge device. Hence, once data
is distributed, edge devices find local updates by solving local
subproblems defined on the data set each of them receives
and the current global parameter. Then, edge devices transmit
local updates to the server. Next, the server produces the global
parameter of next round by aggregating local updates. Hence,
local computation of updates and transmission of local updates
and the global parameter are repeated until convergence. We
define a global iteration as a round of local computation
and transmission of edge devices and the server. The local
subproblem that edge device k is supposed to solve is written
as:

min
∆α[k]∈RN

∆Dk

(
∆α[k]; Xαt ) (3)

where

∆Dk(∆α
t
[k]; Xα) =

λ

K
r∗

(
1
λN

Xαt

)
+

1
N

w>
(
X∆α[k]

)
+
γK

2λN2

����X∆α[k]����2 + 1
N

∑
n∈Ck

l∗n
(
−αt

n −
(
∆α[k]

)
n

)
, (4)

and γ∗(·) and l∗n(·) are convex-conjugate functions of γ(·) and
ln(·), respectively. Also, γ is an aggregation weight, ∆α[k]
is the local update of edge device k, and αt is the global
parameter at the t-th global iteration.

Since CoCoA is based on duality, its convergence is deter-
mined by duality gap defined as G(αt ) = F(w(αt )) − D(α),
where D(α) is a dual function of F(w). Note that it can be
proven that optimality gap is smaller than duality gap. Thus, a
solution satisfying duality gap is always within optimality gap
from the optimal solution. If we repeat the whole procedure
of local computation and exchange of the local updates and
global parameters, after a finite number of iterations, we can



obtain the following duality gap [7]: for nk = N
K , if t ≥ TG ,

then G(αt ) ≤ εG , where

TG =
1

γ (1 − εl)
λ + γ

λ
ln

(
(λ + γ)

γλ (1 − εl)
·

1
εG

)
. (5)

The above result states that we can find a sequence of so-
lutions produced by Algorithm 1 which reduces dual function
exponentially. As a result, the number of iterations required
to satisfy a given duality gap is a logarithmic function of the
duality gap.

B. Communication Model

To achieve convergence, the PS and the edge devices need
to exchange the local updates and global parameters; in
our work the communication is performed over a wireless
channel. Due to the broadcasting property of the wireless
medium, there exists interference when multiple edge devices
transmit simultaneously. To avoid interference, we assume that
bandwidth is orthogonally allocated to each edge device k. Let
us denote βk the bandwidth allocated to edge device k. The
transmission rate of edge device k to the server during the i-th
global iteration can be expressed as

Rk(i) = βk log (1 + ρk(i)) (6)

where ρk(i) is the received signal-to-noise ratio (SNR) at the
server from edge device k in the i-th global iteration.

Similarly, when the server transmits the global parameter to
edge devices, the transmission rate to edge device k is given
as

R′k(i) = βk log
(
1 + ρ′k(i)

)
(7)

where ρ′
k
(i) is the received SNR at the edge device k in the

i-th global iteration.
When the server sends the partition of the data set to each

edge device, the size of data set to transmit is large enough
to experience various fading channel realizations. Hence, the
transmission rate for distributing data is set to be ergodic rate
given by

Rk = Eρ′
k

[
βk log

(
1 + ρ′k

) ]
. (8)

III. OPTIMAL NUMBER OF EDGE DEVICES

As edge devices can work simultaneously, the computing
time can be reduced proportionally to the number of edge
devices. In addition to that, the computing load of edge
devices decreases as the number of edge devices increases.
However, exploiting parallelism necessitates communication
between the PS and edge devices. Furthermore, as the number
of edge devices increases, time to transferring the local updates
and global parameter becomes longer. Hence, there exists a
tradeoff between exploiting parallel computing and reducing
communication time. In this section, we investigate the optimal
number of edge devices that optimizes the average completion
time subject to communication constraints for achieving a
certain duality gap.

To characterize the time required to achieve a certain duality
gap, we first derive the time for each of the four phases
in the distributed learning process. The first phase involves
distributing the partitioned data to each edge device. Let S
denote the size of single data. Since the transmission rate for
distributing data set is given by (8), the time Tdist

k
required for

transmitting data set X[k] to edge device k can be expressed
as

Tdist
k =

nkS

Eρ′
k

[
βk log

(
1 + ρ′

k

)] . (9)

Considering Tdist
k

can be different depending on nk and the
distribution of ρ′

k
, Tdist, which is defined as the time to deliver

the entire data set to all edge devices, is given by the longest
time among edge devices, i.e.,

Tdist = max
k∈K

Tdist
k . (10)

After distribution of data set, edge device k solves the
local subproblem to find optimal local update in every global
iteration. It is assumed that all edge devices use gradient
descent(GD) to solve local subproblems. It is known that
the number of iterations required to have εl-accuracy with
GD is O

(
1
εl

)
. Hence, this implies that edge devices need

local iterations proportional to 1
εl

to achieve εl-accuracy of
their solutions. Furthermore, the processing time to calculate
a gradient is proportional to the number of data examples
given to edge devices. Hence, the time for solving a local
subproblem by edge device k is given by

T local
k = c

nk
εl

(11)

where c is proportional constant.
Depending on the size of data allocated to edge devices,

computing time can be different. Furthermore, the server needs
to wait until receiving from all edge devices. Thus, the time
for local computing is defined as the maximum of T local

k
, i.e.,

T local = max
k∈K

T local
k . (12)

The output of this local computation is transmitted to
the server for calculating the global parameter for the next
iteration. Suppose the size of the local update is S′. Since the
transmission rate of edge devices is given by (6), the time to
upload the local update for edge device k at the i-th global
iteration is obtained as

Tup
k
(i) =

S′

βk log (1 + ρk(i))
. (13)

Since the server needs to aggregate the local updates from
all edge devices, time for uploading should account for the
edge device of which channel quality is the lowest. Therefore,
the time for uploading all local updates at i-th global iteration,
Tup(i), is given by

Tup(i) = max
k∈K

Tup
k
(i). (14)



After receiving local updates from all edge devices, the
global parameter for the next (global) iteration can be gener-
ated following Algorithm 1. The time for aggregation, which
involves a simple addition operation, is ignored. Once a a
new global parameter is generated for the next round, the
server delivers this global parameter to the edge devices.
Since the global parameter is common information to all
edge devices, multicast transmission which is more efficient
than unicast can be applied. However, the rate for multicast
transmission is determined so that all edge devices can decode
correctly. Hence, the minimum rate of K edge devices becomes
the transmission rate of multicast for delivering the global
parameter. Provided that the size of global parameter is S′′,
the time for multicast at i-th global iteration can be expressed
as

Tmul(i) =
S′′

log(1 +mink ρ′k(i))
. (15)

For simplicity, we assume that edge devices are synchro-
nized at each phase. In the asynchronous case, each edge
device does not need to wait for the other edge devices to
finish data reception. Hence, edge devices that has received
data allocated can start solving the local subproblem earlier.
Moreover, the transmission of local parameters can start earlier
than in a synchronous system, thus reducing the completion
time. Nevertheless, the server still needs to wait for all local
updates from all edge devices. Hence, due to the bottleneck
of aggregation step, completion time for asynchronous case
could be approximated - under some assumptions - by the
completion time of the synchronous case. Thus, if we denote
the time required for i-th global iteration as Tglobal(i),

Tglobal(i) = T local + Tup(i) + Tmul(i). (16)

Clearly, the data distribution occurs only once, whereas
all other steps are repeated at every global iteration. From
[7], we need to iterate at least dTGe times to achieve εG .
Therefore, TDL, which represents the completion time so that
the distributed learning achieves a duality gap εG , can be
calculated as

TDL = Tdist +

dTG e∑
i=1

Tglobal(i). (17)

Since TDL depends on wireless fading, which is a random
variable, our goal is to minimize the average completion time
of distributed learning, which can be formulated as

min
K
E

[
TDL] . (18)

A closed-form expression of the objective function
E

[
TDL

]
requires an expression for Eρk

[
1

log(1+ρk )

]
. However,

Eρk

[
1

log(1+ρk )

]
does not exist for widely used fading distri-

butions. Therefore, we use Jensen’s inequality to approximate
the expectation with a lower bound, i.e.,

Eρk

[
1

log (1 + ρk)

]
≥

1
Eρk [log (1 + ρk)]

. (19)

Furthermore, since (18) is a scalar optimization problem, the
optimal number of edge devices can be easily found using
standard algorithms, such as branch-and-bound.

IV. SIMULATIONS

In this section, we provide our simulation results on the
completion time and the computation-communication tradeoff.
The default simulation parameters are as follows: N = 10000,
λ = 0.01, γ = 1

K , εl = 0.01, εG = 0.01, S = 1 Mbits, S′ =
100 kbits, S′′ = 100 kbits, c = 10−6, and a bandwidth of 10
MHz is uniformly allocated to edge devices. We also assume
independent and identically distributed Rayleigh fading with
mean ρ between the server and the edge devices.
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Fig. 2. Required number of global iterations vs. the number of devices for
achieving a certain εG .

First, we plot the number of global iterations required for
achieving a certain duality gap εG as a function of the number
of edge devices in Fig. 2. When the server aggregates local
updates, the factor γ, which is set as 1

K , averages out the
updates of all edge devices. As a result, the pre-log term in
(5) becomes a linear function of the number of edge devices,
so the number of global iterations behaves very closely to a
linear function.

In Fig. 3 we evaluate the completion time for different
numbers of edge devices. When the number of edge devices
is small, the completion time significantly decreases, imply-
ing that computational advantages of parallelism dominate
the communication overhead. However, when the number
of edge devices exceeds a certain number, the completion
time starts increasing, as in this regime the system becomes
communication-limited. In other words, in the low edge device
regime, the system has enough wireless resources for high-
rate communication between edge devices and the server.
However, for large number of edge devices, time spent due to
communication increases as bandwidth is shared among more
devices and the minimum received SNR is low. In that regime,
communication load dominates the reduction of computing
time due to parallel computing.
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Fig. 3. Completion time vs. number of devices for different average received
SNR.
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Fig. 4. Completion time vs. number of edge devices for different bandwidth.

In Fig. 4, we study the effect of bandwidth in the completion
time. Expectedly, when bandwidth is scarce, the completion
time dramatically increases, whereas for relatively wide band-
width, the completion time does not significantly alter with
increasing the number of edge devices.

The dependency of the completion time on the accuracy for
the local subproblems is shown in the Fig. 5. We observe that
adding edge devices could significantly drop the completion
time, when high accuracy of the local updates is required.
However, for less stringent requirements on accuracy, the
completion time does not remarkably change for increasing
number of edge devices.

V. CONCLUSION

In this work, we investigated the optimal number of edge
devices in a distributed edge learning system with over-the-air
model exchange. Accounting for the wireless channel char-
acteristics, the completion time minimization is formulated
and solved numerically. Although a large number of edge
devices could bring significant computational advantages, the
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Fig. 5. Completion time vs. number of devices for different accuracy values
of the local subproblem.

associated communication overhead may degrade the overall
performance. Furthermore, when wireless resources are scarce,
the number of edge devices should be carefully selected in
order to optimize the distributed edge learning performance
under latency constraints.
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