Caching Policies for Delay Minimization in Small Cell Networks with Joint Transmissions

Guilherme I. Ricardo 1,2
Giovanni Neglia 2 Thrasyvoulos Spyropoulos 1

1EURECOM, Communication Systems Department

2Inria, Université Côte d’Azur
Agenda

1. Motivation
2. Single Server Caching
3. FemtoCaching Problem
4. Cooperative MultiPoint Systems
5. CoMP Caching Policies
6. Conclusion
Motivation

Content Distribution Networks

- **Scenario**: Increasing mobile and cellular data usage.
- **Question**: How to provide better QoS under such scenario?
- **Solution**: Content replication closer to final user - Caching!

Figure – CDN Multiserver Caching Strategy – Source

Guilherme Ricardo
Single Server Caching

Introduction

- Problem: What to cache?
- Performance metric: Hit Ratio
- Popularity is known: Store the most popular contents
- Popularity is unknown/dynamic: Caching algorithms (policies)
Single Server Caching

Policies Examples - Least Frequently Used (LFU)

Figure – LFU Caching Policy – Source
Single Server Caching
Policies Examples - Least Recently Used (LRU)

Variations:
- qLRU – probabilistic insertion, $0 \leq q \leq 1$
- kLRU – multilevel cache, $k = 1, 2, ...$
FemtoCaching Problem

5G Heterogeneous Networks Topology

Figure – Heterogeneous Network Topology – Source
FemtoCaching Problem

The Optimization Formulation

Let X be the allocation matrix such that $x_{hf} = 1$ if helper h caches content f and $x_{hf} = 0$ otherwise. The problem is:

$$\begin{align*}
\text{maximize} & \quad F(X) = \frac{1}{U} \sum_{f=1}^{F} p_f \sum_{u=1}^{U} \mathbb{1}\{k(u,f)>0\} \\
\text{subject to} & \quad \sum_{f=1}^{F} x_{hf} = C, \ h = 1, \ldots, H,
\end{align*}$$

where F is the catalog size, C is the cache capacity, U is the number of users, $k(u,f) \triangleq \sum_{h \in \mathcal{H}(u)} x_{hf}$, and $\mathcal{H}(u)$ is the set of helpers covering user u.
FemtoCaching Problem
The Offline Solution – Femto (2015)

- NP-Hard Problem (Combinatorial Nature)
- Greedy Algorithm:
 - $F(X)$ is monotone and submodular
 - Constraints form a matroid partition
 - $1/2$-Approximation ratio
- Drawbacks: Strong assumptions, e.g.,
 - Centralized intelligence
 - Network topology and popularities are static and known
FemtoCaching Problem

The Online Solutions – Caching Policies

- LRU-One and LRU-All – Giovanidis (2016)
- qLRU-Lazy – Neglia (2018)

qLRU-Lazy Policy Description

1. Only the helper that served the file can update its cache; and
2. It only does so if it is the only one able to actually serve it
Definition

The delay $d(u, f, X)$ for user u to download content f under allocation X is

$$
d(u, f, X) = \begin{cases}
 d_B + \frac{M}{W \log_2 (1 + \max_h g_{hu})}, & \text{if cache miss} \\
 \frac{M}{W \log_2 (1 + \sum_h g_{hu} x_{hf})}, & \text{if cache hit,}
\end{cases}
$$

where d_B is the backhaul delay, g_{hu} is the SNR from h to u, M is the file size, and W is the channel bandwidth.
Delay Minimization Problem

\[
\text{minimize } \quad F(X) = \frac{1}{U} \sum_{f=1}^{F} \sum_{u=1}^{U} p_f d(u, f, X) \\
\text{subject to } \quad \sum_{f=1}^{F} x_{hf} = C, \ h = 1, \ldots, H
\]

Remark

Submodularity Proof and Greedy Algorithm
Cooperative Multipoint Systems

Hit Ratio → Avg. Delay

Figure – Static allocation for different overlapping levels (full rep.)
Cooperative Multipoint Systems

Optimal Allocation: \(d_B \times \text{SNR Bounds} \)

Assumptions:
- Completely overlap
- Homogeneous SNR (\(\gamma \))

For a given \(\gamma \), if \(d_B \geq d_{B,\max} \) such that

\[
d_{B,\max}(C, H, \alpha, \gamma) \triangleq (HC)^\alpha \frac{M}{W} \left(\frac{1}{\log_2(1 + \gamma)} - \frac{1}{\log_2(1 + 2\gamma)} \right)
\]

then the optimal allocation is full diversity.

For a given \(\gamma \), if \(d_B \leq d_{B,\min} \) such that

\[
d_{B,\min}(C, H, \alpha, \gamma) \triangleq \left(\frac{C + 1}{C} \right)^\alpha \frac{M}{W} \left(\frac{1}{\log_2(1 + (H - 1)\gamma)} - \frac{1}{\log_2(1 + H\gamma)} \right)
\]

then the optimal allocation is full replication.
Cooperative Multipoint Systems

Optimal Allocation: $d_B \times$ SNR Bounds, Example

Tradeoff: Backhaul Delay x SNR

$F=1000000; C=100; T=10; \alpha=1.5$
CoMP Caching Algorithms

\textit{qLRU-\(\Delta d\) Policy Notation}

- Let \(I_u\) be the set of helpers covering user \(u\) and \(J_{u,f} \subseteq I_u\) be the subset of those helpers caching \(f\).
- The marginal gain for adding a copy of file \(f\) at helper \(h\) is defined as:
 \[
 \Delta d^{(h)}(u, f, X) \triangleq d(u, f, X \ominus e^{(h)}) - d(u, f, X)
 \]
- Normalizers:
 \[
 \beta \triangleq 1/(\max_{f,h,u,X} \Delta d^{(h)}(u, f, X))
 \]
 \[
 \gamma \triangleq 1/(\max_{f,h,u,X} \Delta d^{(h)}(u, f, X \oplus e^{(h)})).
 \]
CoMP Caching Algorithms

$qLRU-\Delta d$ Policy Introduction

$qLRU-\Delta d$ Policy General Description

At every request \((u, f)\), each \(h \in I_u\) updates its cache as follows:

- If \(h \in J_{u,f}\), reset \(f\)'s cache position with probability:
 \[
 \rho^{(h)}(u, f, X) = \beta \cdot \Delta d^{(h)}(u, f, X)
 \]

- If \(h \in I_u \setminus J_{u,f}\), store \(f\) to \(h\)'s cache with probability:
 \[
 q \cdot \sigma^{(h)}(u, f, X), \text{ where } q \in (0, 1] \text{ is fixed and}
 \]
 \[
 \sigma^{(h)}(u, f, X) = \gamma \cdot \Delta d^{(h)}(u, f, X \oplus e^{(h)})
 \]
CoMP Caching Algorithms

$qLRU-\Delta d$ Policy Introduction

$qLRU-\Delta d$ Policy Algorithmic Description

Input: I_u, $J_{u,f}$, and $g_{h',u}, \forall h' \in I_u$

for $h \in I_u$ **do**

 if $h \in J_{u,f}$ **then**

 Move f to the front with prob. $\rho^{(h)}$

 else

 Evict file in the cache’s last position;

 Insert f with prob. $q \cdot \sigma^{(h)}(u, X_f)$.

end

end
Remark – Ricardo (2020)

Under IRM, Che’s, and Exponentialization approximations, a network of $q_{LRU-\Delta d}$ caches converges to a locally-optimal caching configuration when $q \to 0$.

![Graph](image-url)
CoMP Caching Algorithms

2LRU-Δd Policy Notation

- IRM ≠ Real request process (Temporal locality)
- Each helper deploys a 2-levels cache: the physical cache storing the actual file and the virtual cache storing files’ metadata (i.e., ID)
- Let I_u be the set of helpers covering user u and let $J_{u,f}, \hat{J}_{u,f} \subseteq I_u$ be the subsets of those helpers storing f at the physical cache and at the virtual cache, respectively.
CoMP Caching Algorithms

2LRU-\(\Delta d\) Policy Introduction

2LRU-\(\Delta d\) Policy General Description

At every request \((u, f)\), each \(h \in I_u\) updates its cache as follows:

- If \(h \in \hat{J}_{u,f}\), move \(f\)'s ID to the front of \(h\)'s virtual cache and,
 - if \(h \in J_{u,f}\), move \(f\) to the front of \(h\)'s physical cache with prob. \(\rho^{(h)}(u, f, X)\);
 - else, evict the file in the physical cache’s last position and insert \(f\).

- If \(h \notin \hat{J}_{u,f}\), with prob. \(q \cdot \sigma^{(h)}(u, f, X)\), evict the ID in \(h\)'s virtual cache’s last position and insert \(f\)'s ID.
2LRU-Δd Policy Introduction

Input: \(I_u, J_{u,f}, \hat{J}_{u,f}, \) and \(g_{h',u}, \forall h' \in I_u \)

for \(h \in I_u \) do

if \(h \in \hat{J}_{u,f} \) then

Move \(f \)'s ID to the front of the virtual cache;

if \(h \in J_{u,f} \) then

Move \(f \) to the front of the physical cache with prob. \(\rho(h) \)

else

Evict file in physical cache’s last position;

Insert \(f \).

end

else

Evict file’s ID in virtual cache’s last position;

Insert \(f \)'s ID with prob. \(\sigma(h) \).

end

end
CoMP Caching Algorithms
Numerical Results – IRM, Homogeneous SNR
CoMP Caching Algorithms

Numerical Results – Real, Homogeneous SNR
CoMP Caching Algorithms
Numerical Results – Real, Heterogeneous SNR
Conclusion and Future Works

- Conclusions
 - Delay cost function under CoMP provides different allocation with potentially better download rates
 - qLRU-Δd Policy outperforms other Hit Ratio dynamic policies for synthetic requests

- Future Work
 - Finish Real Traces Experiments
 - Greedy Algorithm with pair of files
 - Finish Algorithm
Thank You!