
1

On extending ETSI MEC to support LoRa for
efficient IoT application deployment at the edge

Adlen Ksentini∗ and Pantelis A. Frangoudis‡
∗EURECOM, Sophia Antipolis, France

‡Distributed Systems Group, TU Wien, Vienna, Austria
Email: ∗adlen.ksentini@eurecom.fr, ‡pantelis.frangoudis@tuwien.ac.at

Abstract—The Internet of Things (IoT) undergoes a
rapid transformation this last decade, thanks to the ap-
pearance of Low Power Wide Area Network (LPWAN)
technologies, such as LoRa/LoRaWAN, SigFox and Narrow
band IoT (NB-IoT), which allow reducing the deployment
cost of sensors and other IoT devices. Many emerging
services such as smart city, industry 4.0, and autonomous
driving, are based on IoT devices and applications to
collect and analyse data and control end-devices (i.e.,
actuators). Among these services, several IoT applications,
such as data analytics ones, need to be deployed at the
edge to either reduce the latency to access data or treat
the high amount of generated data locally. However, in
the context of LoRa/LoRaWAN, most of the current IoT
service deployments run the applications at a central cloud
to ease the integration with existing Software as a Service
(SaaS) platforms, without exploiting the benefits of edge
computing. In this article, we propose a new framework
that leverages the ETSI Multi-access Edge Computing
(MEC) model to deploy LoRa-based IoT applications at
the edge. Particularly, the proposed model takes advantage
of the ETSI MEC features, such as dynamic deployment of
an IoT application at the edge and application Life Cycle
Management (LCM). In addition, the proposed framework
allows to run the IoT application as a 5G network slice at
the edge.

I. INTRODUCTION

Edge Computing is enabling a new generation of
services that operate close to end users aiming at reduc-
ing the end-to-end latency. Edge computing allows the
deployment of two types of services: (i) services that re-
quire low-latency access to user plane traffic; (ii) context-
aware services that adapt the delivered service according
to the users’ environment. Two main technological solu-
tions emerged to make Edge Computing a reality: Fog
computing and Multi-access Edge Computing (MEC).
The former is an architecture that adds computing ca-
pabilities to edge routers and end-user devices, while
the latter is an operator-oriented architecture. Indeed,
MEC adds computing capability in the vicinity of radio
base stations, and proposes an orchestration as well as a

management framework to handle the Life Cycle Man-
agement (LCM) of edge applications. Fog computing is
under development, where the OpenFog Alliance1 has
recently issued a reference architecture for fog com-
puting,2 while ETSI is providing specifications to MEC
via the MEC Industry Specification Group (ISG).3 The
latter published several documents aiming at describing
envisioned use-cases, a reference MEC architecture, a
MEC application model (descriptor), MEC services, a
MEC orchestration and management framework, etc.
Besides enabling applications at the edge, MEC provides
services, accessible via high-level Application Program-
ming Interfaces (API), which give information on mobile
user and cellular base station context, such as the radio
channel quality of users, user locations, etc. This allows
building context-aware applications.

At the same time, deploying Internet of Things (IoT)
applications at the edge, such as data analytics, Industry
4.0 and time-critical IoT services, represents one of the
main use cases being showcased by ETSI MEC, but
is also highly-relevant in the fog computing space [1],
[2]. Besides enabling low-latency access, placing IoT
services at the edge enables reducing the amount of IoT
traffic to carry to the remote server located at the central
cloud, which could significantly strain the core network
infrastructure given the massive amount of traffic that
can be generated by IoT devices.

Regarding the connectivity of the IoT devices to the
network, many technologies are in competition; on one
hand, narrowband-based technologies such as NB-IoT,
LTE-M, SigFox and on the other hand, low energy and
long range technologies such as LoRa/LoRaWAN. The
latter is gaining momentum due to its low complexity

1The OpenFog consortium merged with the Industrial Internet
Consortium on January 31, 2019.

2https://www.iiconsortium.org/pdf/OpenFog Reference Architecture
2 09 17.pdf

3https://www.etsi.org/technologies/multi-access-edge-computing



2

and reduced cost to deploy. Indeed, LoRa/LoRaWAN4

has many interesting features: (i) it uses free Industrial,
Scientific and Medical (ISM) bands; (ii) it relies on
an ALOHA-based MAC protocol, which reduces the
complexity of the devices, compared to other contention-
based mechanisms, such Carrier Sense Multiple Ac-
cess/Collision Avoidance (CSMA/CA); (iii) it uses a
novel physical layer (based on spread spectrum) that
allows to increase the range and reduce energy consump-
tion, hence reducing the deployment cost. To ensure reli-
able communication, LoRaWAN Gateways are deployed
(covering a large area) to forward any received packet
from the LoRaWAN devices to a LoRaWAN network
server, which will be in charge of deleting duplicate
packets and forwarding packets to an application server
hosted in the cloud. Existing LoRaWAN deployments
are either driven by commercial operators, which own
the LoRaWAN infrastructure (gateways and LoRaWAN
servers) and offer cloud services to recover data from
the devices provided by the consumers, or by initiatives
like The Things Network (TTN),5 where consumers
provide and connect their own LoRaWAN gateways and
devices, and use the TTN servers to process data in the
cloud. Although the LoRaWAN network of devices and
gateways is distributed, all the data are carried from
devices to the application servers in the cloud in both
configurations. Whilst these deployments are suitable
for time-tolerant IoT services, they cannot satisfy time-
sensitive or context-oriented IoT services that need to
be deployed at the edge. Furthermore, in 5G, it is
expected that the IoT provider (or vertical) expects to
deploy its LoRaWAN-based service as a Network Slice
[3][4] at the edge, taking advantage of the dynamicity
and flexibility provided by Network Slicing. Examples
include an IoT-based metering report service that may
require a temporary deployment, or a smart city service
where the city may use the Network Operator’s local
infrastructure (Edge Cloud and LoRaWAN Gateways and
Servers) to reduce setup and operational costs compared
with a full deployment, as is typically the case today.
Besides, the city can manage the generated data locally,
without the need to carry them to remote cloud servers,
hence reducing security threats and complying with
citizen privacy requirements.

In this article, we devise a novel framework that
enables executing IoT services in a MEC-ready environ-

4LoRa refers to the patented physical layer, while LoRaWAN
represents the higher layers of the system and is specified by the LoRa
Alliance (https://www.lora-alliance.org/). Throughout this article we
will use the terms LoRa and LoRaWAN interchangeably to designate
the same technology.

5https://www.thethingsnetwork.org/

ment, taking advantage of features provided by the ETSI
MEC model, including dynamic deployment of MEC
applications, orchestration and management of MEC IoT
applications, standard interfaces to expose and consume
native and third-party MEC services, etc. Our main
objective is to extend the current MEC model to include
LoRaWAN networks. Indeed, the current version of ETSI
MEC is built on top of 3GPP mobile networks, such as
LTE and 5G, ignoring other types of wireless networks.
The contributions of this work are the following.

• Extension of the southbound API of MEC to com-
municate with LoRaWAN gateways.

• Specification of a northbound API that allows IoT
applications to interact with a LoRaWAN Network
(devices, gateways and network server).

• Integration of a LoRaWAN server as a MEC ser-
vice.

• Use of the MEC Orchestrator to dynamically deploy
IoT applications relying on LoRaWAN, in the form
of a Network Slice, at the edge.

• Ensuring the isolation of the network slices at the
edge.

• Development of a proof of concept of the MEC
LoRa framework.

Our results can be of interest to the ETSI MEC stan-
darization community, particularly regarding its ongoing
(Phase 2) activities related with non-3GPP access and
the MEC IoT API (ETSI GS MEC 033). This article
is structured as follows: In Section II, we provide an
overview of the LoRaWAN architecture and deployment
options, with a focus on the role of edge computing,
as well as an overview of ETSI MEC. Our key contri-
butions around integrating LoRaWAN with ETSI MEC
are presented in detail in Sections III and IV, before we
conclude the article in Section V.

II. RELATED WORK

A. LoRaWAN and edge deployment

The key elements in a LoRaWAN architecture are the
gateways and the network server, whereas devices are
provided by a LoRaWAN device provider. An application
server is the external service subscribed/deployed by the
application/device provider to recover application data
sent from the devices, and format the data by using
a high level API. Usually, devices and the back-end
applications belong to the IoT service provider (i.e.,
vertical). Several commercial application servers using
central clouds exist in the market, such as Azure IoT,6

IBM Watson,7 etc. In LoRaWAN, the devices implement

6https://azure.microsoft.com
7https://www.ibm.com/cloud/watson-iot-platform/



3

a simple MAC protocol (ALOHA) to access the channel.
Each time a device has data to send, it uses the available
channel and broadcasts the message. The LoRa device
is not associated with a specific gateway. Rather, each
gateway receiving the signal (packet) forwards it to its
associated network server, which will delete the duplicate
messages, and send one message to the application
server located in the cloud, using HTTP (REST) or
publish/subscribe protocols such as Message Queuing
Telemetry Transport (MQTT). The network server is also
in charge of sending messages from the IoT applications
to the devices, by selecting the appropriate gateway, e.g.
to update the devices’ firmware.

So far, two types of deployments are observed: (i)
operator-based deployment, where a network operator
deploys a LoRaWAN network (mainly gateways and
a network server), while the IoT application provider
deploys its devices and uses the operator API to connect
to an end application server hosted in the cloud; (ii)
community-based solutions, such as TTN, which pro-
vides a network server, while the application provider
deploys both gateways and IoT devices, and connects
the gateways to the network server via specific APIs.
In addition, the IoT service provider needs to connect
its application to the TTN network server to obtain the
data from the devices. Accordingly, deploying LoRa-
based IoT services at the edge, close to the devices and
network server, is not well supported and studied in the
literature, even though such deployments are needed.
To the best of our knowledge, only few works have
considered the deployment of a LoRaWAN service at the
edge. In the work of Truong [5], the edge is used only
for computing, while in this work we rely on and extend
the well-defined ETSI MEC features to dynamically
deploy an IoT network slice at the edge, and ease the
deployment of IoT analytics and low-latency services
close to the end devices using LoRaWAN. On the other
hand, Sanchez-Iborra et al. [6] propose to deploy LoRa
RAN management, IPv6 header compression, storage
offloading, and context-aware services for device control
at the mobile edge, in a converged MEC-LoRaWAN
environment. Although they cast their work in a MEC
setting, convergence is not discussed in the context of
the ETSI MEC reference architecture and the use of its
standard interfaces (a major focus of our work).

B. ETSI MEC

Since its creation in 2013, the ETS MEC ISG has been
working on the development of standardization activities
around MEC. The first released document covers the
reference architecture [7]. A high-level representation of

Fig. 1. High-level representation of the MEC architecture (based
on [7]).

this architecture is shown in Fig. 1. It introduces three
main entities:

• The MEC host, which is the key element. It pro-
vides the virtualization environment to run MEC
applications, while it interacts with the mobile
network entities via the MEC platform (MEP) to
provide MEC services and data offload to MEC
applications. Generally, a MEC host corresponds to
the edge computing platform running a Virtualized
Infrastructure Manager (VIM) to handle the instan-
tiation of MEC applications as Virtual Machines
(VM) or containers.

• The MEC platform (MEP), which acts as an in-
terface between the mobile network and the MEC
applications. It provides the Mp1 interface for MEC
applications to expose and consume MEC services,
and interacts with the mobile network over the
Mp2 reference point. The latter is used to obtain
statistics from the RAN on UEs and eNBs, e.g.,
in order to provide the Radio Network Information
Service (RNIS) [8] and the Location Service [9],
and to appropriately steer user-plane traffic to MEC
applications.

• MEC applications that run on top of a virtualized
platform.

Another concept introduced by the MEC ETSI group
is the MEC service, which is either a service provided
natively by the MEC platform, such as the RNIS and
traffic control or a service provided by a MEC applica-
tion, e.g., video transcoding. A MEC service provided
by a third-party application should be registered with
the MEP and made available via the Mp1 interface. The
service may be discovered by other MEC applications
once registered by the MEP. This implies that in order to
take advantage of MEC features, third party applications
need to be architected with awareness of MEC platform
functions and APIs [10], including the ability to discover



4

the MEP (e.g., via DNS) and access its service endpoints.
Regarding the management plane, the ETSI MEC

group introduced the Mobile Edge Orchestrator (MEO),
which is in charge of the life cycle of MEC appli-
cations (instantiation, orchestration and management),
and acts as the interface between the MEC host and
the Operations Support System (OSS)/Business Support
System (BSS) [11]. Several interfaces (noted as Mmx)
have been specified for the management plane of MEC.
The Mm1 interface is used to communicate with the
OSS/BSS, allowing the latter to request the deployment
of a MEC application (e.g., an IoT application), which is
already available in the application catalogue or is first
onboarded by the OSS/BSS. The MEO uses Mm4 to
upload the image of the application to the edge VIM,
which is in charge of instantiating the application at
the MEC host. The MEP Manager (MEPM) element
is in charge of the life cycle management of the de-
ployed MEC applications, and the configuration of the
MEC platform via the Mm5 reference point, including
MEC application authorization, the type of the traffic
that needs to be offloaded to a MEC application, DNS
management, etc. The MEPM uses the Mm3 interface
to configure the MEC application and communicate with
the VIM, located at the MEC host, to obtain information
on the virtual resources used by a MEC application. This
information is used by the MEO to check the MEC
application resource status, and if deemed appropriate
to decide if more resources are needed for the MEC
applications. This information is also exposed to the
OSS/BSS through the Mm2 interface.

MEC has been envisioned to host a plethora of IoT
services, and it is typically assumed to interact only
with 3GPP-based mobile networks. In this environment,
Husain et al. [12] propose a design for integrating IoT
service layer components in network slices, with the
possibility of deploying such components at the mobile
edge when the service requirements, e.g., in terms of
latency, mandate it. As mentioned earlier, though, many
IoT deployments are using other types of networks, such
LoRaWAN and Sigfox. The requirements and necessary
extensions for ETSI MEC to support emerging IoT
services have not yet been well studied. We are only
aware of the work of Zanzi et al. [13], who introduce a
MEC IoT platform as a new element in the ETSI MEC
architecture. This builds on the concept of virtualized
IoT gateways, where upper-layer gateway functionality
is executed within the MEC IoT platform. However,
issues pertinent to the integration of different access
technologies, including southbound interfaces (Mp2),
and technical details on how MEC functional blocks and
interfaces are involved in IoT service deployment are not

discussed. In the following section, we will introduce
our new framework that enables the deployment of IoT
services at the MEC, using a LoRaWAN network.

III. MEC LORA SERVICE

The current version of ETSI MEC does not support
interaction with LoRaWAN networks, even though there
is a need to deploy IoT applications at the edge in a
dynamic way, and building on the features provided by
the ETSI MEC framework, such as LCM and low-latency
access to the user data plane. To enable MEC supporting
LoRaWAN-based IoT services at the edge, we introduce
a new MEC service, namely the MEC LoRa service. Like
other MEC services, such as the RNIS, traffic control,
DNS, etc., MEC LoRa is included in the MEP’s service
catalogue and announced to the MEC applications via
the MEC discovery service. The MEC LoRa service
will be provided by the network operator, within its
MEP. In addition, the MEC LoRa service can cover the
following two scenarios: (i) The gateway, IoT devices
and IoT MEC applications are provided and managed
by the vertical (or IoT service owner, such as a city).
In this case, the MEC LoRa service should expose via
the Mp1 interface the necessary APIs to register the
gateways to the LoRaWAN Network Server and the IoT
devices as well as the IoT applications. (ii) The IoT
devices as well as the IoT applications are provided
and managed by the vertical. In this case, the vertical
uses the LoRaWAN gateways deployed by the network
operator. Regarding the Mp1 interface, no changes with
the precedent case are envisioned, except for the API
related to the registration of the LoRaWAN gateways,
which need to be associated with the LoRa network
server.

It is worth recalling that the LoRaWAN Network
Server provides three key functions: authentication and
authorisation of devices, management and optimisation
of the network, and interfacing with the IoT application.
It receives messages from the IoT devices via the Lo-
RaWAN gateways, manages device authentication, routes
packets to the application, and manages gateways and
devices. Furthermore, the LoRaWAN network server dy-
namically selects the best gateway for device data routing
(in case of packets from the application to the devices),
as well as deduplicating packets and optimizing radio
resource use. To do so, in this framework, we leverage
the Mp1 interface by providing the necessary APIs that
allow to: (i) register the IoT application and devices
involved in the communication; (ii) use the callback
mechanism to redirect the data obtained from devices
to the application; (iii) send messages to the devices.
More details on Mp1 will be given in Section III-B.



5

Fig. 2. LoRaWAN integrated in the ETSI MEC architecture.

Fig. 2 shows the envisioned MEC system featuring the
MEC LoRa network service. In the proposed framework,
the MEP has a new service, i.e. the MEC LoRa service,
which is connected to the LoRaWAN gateways. As indi-
cated, the proposed framework supports two deployment
scenarios: (i) the gateways are owned by the network
operator; (ii) the gateways are owned by the vertical
and are connected to the MEC LoRa Service. For both
scenarios, we assume that the gateways cover a specific
region or area. The Mp2 interface, which is needed to
connect the MEP to the gateways, is based on the IP
protocol (no other specific protocol is need). Usually,
LoRa gateways use a packet forwarder layer that has
one interface connected to the LoRa network (radio
interface), and one interface to the IP network, and hence
to the LoRa network server. It is worth mentioning that
in MEC several MEPs are deployed to cover a specific
geographic location. The number of MEPs to deploy
depends from the type of the region to cover, e.g. rural
or urban area. For the former, we can assume that a
MEP covers a wide region, while in the latter, a MEP
covers a small one. In the following, we will describe
the different components involved to build an IoT slice
using a LoRa Network.

A. LCM of an IoT MEC application

As defined in ETSI MEC, a MEC application’s LCM
is handled by the MEO. If a vertical wishes to deploy

an IoT slice at the MEC, the first step is to onboard the
MEC application image (i.e., VM or container image)
at the MEO catalogue. The onboarding process consists
in providing metadata on the MEC application and the
location of the application image. These metadata are
described in a specific format, which is known as the Ap-
plication Descriptor (AppD) [11]. It includes information
on the location of the virtual image, security information,
and other fields related to the requirements of the MEC
application, such as its maximum tolerated latency, traffic
steering rules, and required MEC services. In the case
of an IoT MEC application, the AppD should include
the following fields: (i) the geographic location where
the MEC IoT application needs to be deployed, i.e.,
the location/region where the IoT devices are deployed;
(ii) the required MEC service, which corresponds to the
MEC LoRa service; (iii) the maximum tolerated latency
by the IoT application.

Since the MEC application image is onboarded, the
MEO creates an identifier for the MEC application,
which is communicated to the vertical, and used by the
latter to instantiate the MEC application. Following the
request of the vertical to instantiate the MEC application,
the MEO uses the AppD, and more specifically the three
fields described earlier, to select the appropriate MEP
that satisfies the combined requirements, and requests
the deployment of the MEC application to the VIM (at
the selected MEC host). Once the MEC application is up,
the next step consists in allowing the latter to discover
the MEP resources over the Mp1 reference point, and
therefore the API related to the MEC LoRa service. It
should be noted that since the MEC application is run-
ning in a sliced environment, the MEP should allow the
service discovery only to the LoRa service; other MEC
services will be hidden to the MEC IoT application.

B. MEC service Mp1 interface

The Mp1 interface will be used for two purposes: (i)
discover the services available at the MEP (in this case,
MEC LoRa service API endpoints); (ii) interact with the
MEC LoRa service. The service discovery is already a
function of the MEP, but it needs to be adapted to support
network slicing at the MEP. Indeed, to ensure isolation
and security as needed in a sliced environment, the
deployed applications should have access only to their
authorized MEC services. For this purpose, we propose
that the MEO, when instantiating the MEC application,
indicates to the MEP the authorised MEC services that
the MEC application should have access to. Therefore,
the MEP should identify the MEC application, when the
latter requests the MEC service catalogue available at



6

Fig. 3. MEC LoRa service discovery.

the MEP. Regarding the MEC LoRa service, the Mp1
API should provide the necessary functions to interact
with and configure it. The Mp1 API is divided in three
parts:

• Application Service, which allows to register and
remove the IoT applications. The registration pro-
cess allows the creation of APPEUI (Application
End-device Unique Identifier).

• Device Service, which allows to register the devices
by indicating the DEVEUI (device identifier), the
application where the device belongs to (APPEUI),
device latitude and longitude, device activation pa-
rameters (such as Over-the-Air Activation - OTAA
or Activating a device By Personalization - ABP,
the security keys in case of ABP, etc.). To recall,
OTAA and ABP are the two modes used to activate
IoT devices in LoRaWAN.

• Gateway Service, which allows to register gateways
with the network server. Mp1 should also allow to
register a gateway with the MEC LoRa service by
indicating the IP address of the gateway, its EUI
and other specific parameters (such as the power
and name). This service should also allow to get
statistics on the gateway state.

Fig. 3 illustrates how a deployed MEC application

discovers the Mp1 details, including the MEC LoRa
service API. Once the MEP application is on, it starts
by discovering the serving MEP. This information is
obtained from the local MEC host (or edge VIM) via
a DNS lookup. Indeed, the MEC host is assumed to run
a DNS server, which includes the information on the
local MEP. After the discovery process, the application
requests the MEC service catalogue available at the MEP.
The latter replies with only the MEC services that the
MEC application has the right to access; in this case, the
MEC LoRa service API. The MEC application uses the
Mp1 API to register the IoT application, devices and,
if needed, the gateways (depending on the scenario).
The MEC application indicates via a callback (i.e., an
IP address-port pair and a function endpoint) where to
receive the data sent by the IoT devices. The MEC
LoRa service uses a Publish/Subscribe mechanism to
redirect the received messages from the IoT devices to
the appropriate MEC application. For some reasons (e.g.,
firmware update), the IoT application may require to
send data to the device. This should also be supported
over the Mp1 interface.

IV. IMPLEMENTATION AND PRELIMINARY RESULTS

We have implemented the MEC LoRa service by ex-
tending our OAI-MEP implementation,8 which supports
most of the ETSI-specified services, such as RNIS, traffic
redirection, service discovery and service registration.
The MEC LoRa service is based on the open source
implementation of the LoRa Server.9 The MEC LoRa
service is illustrated in Fig. 4. It is composed of the
LoRa network server, a front office engine, a broker
to push data towards the registered applications, and
a database. The LoRa network server is in charge of
receiving/transmitting data from/to LoRa devices, via the
LoRa gateways. The front office is written in Python and
uses the Flask library.10 It is the interface between the
IoT MEC application (via Mp1) and the LoRa network
sever. It translates the Mp1 messages (such as device
configuration) to a LoRa Server configuration using the
API provided by the latter. The front office engine is
also in charge of the user account management and
authentication to ensure slice isolation. Finally, the front
office engine uses a broker to push data received from
LoRa Server to the registered MEC IoT application,
allowing an asynchronous communication. The broker

8A Python-based implementation of the ETSI MEP based on OAI
(http://openairinterface.org) for 4G connectivity.

9As of this writing, LoRa Server has been renamed to ChirpStack.
https://www.chirpstack.io/

10https://www.palletsprojects.com/p/flask/



7

Fig. 4. The MEC LoRa service components.

pushes the data to the MEC IoT application using the IP
and port specified in the callback information obtained
via Mp1. We deployed LoRa devices and LoRa gateways
on top of Rasperry Pi 3. To deploy and instantiate a
MEC application (IoT analytics), we use the MEO of
OAI-MEP that allows to on-board and instantiate MEC
applications on top of lxc containers,11 representing an
edge VIM infrastructure. To interact with the MEO,
we use a web proxy as described in [7]. The vertical
selects the AppD describing an IoT analytics application,
onboards the IoT MEC application, and instantiates it on
top of our lxd-based VIM. Once deployed, the instance’s
credentials are available to the vertical, which allows the
latter to have access to the deployed application via SSH.
After the deployment, the MEC application can discover
the MEP service and the Mp1 API endpoints to access
to the MEC LoRa service. In case of the LoRa Server
implementation, two types of interfaces are provided, a
REST API and a GUI, which allow to configure the
application, devices and gateway. We extended the API
by providing a callback registration mechanism, which
allows the application to specify the IP and port number
where to send the data pushed by the broker. The vertical
then starts the IoT analytics application, and begins
receiving the device messages. Fig. 5 shows an excerpt
of an Mp1 message used to register devices as well as the
application to the MEC LoRa Service when the vertical
is using the operator’s LoRa gateways. It is using a JSON
message format. Each device is described using its EUI,
as well as other security parameters, which allows to
activate the devices, e.g., ABP or OTAA. In case of
ABP, more information is needed, such as the devices’
addresses.

Finally, we evaluated the total time needed to deploy
an IoT application in the form of a network slice at
the edge, when using the developed platform. This time
duration is assumed from the moment that the vertical

11https://linuxcontainers.org/

Fig. 5. Excerpt of an Mp1 message.

TABLE I
TIME NEEDED TO DEPLOY A LORA IOT NETWORK SLICE

App. onboarding 116.4s
App. instantiation 58.5s

MEP discovery 25 ms
Service discovery 25 ms

Total 173.05s

requests the deployment of an application, until the time
when the application is registered with the MEP; it
includes the onboarding time, instantiation time, MEP
discovery time, and service discovery time. We chose to
run our experiments on a low-end compute environment:
Our MEC host (VIM platform) is an AMD FX-7500
Radeon R7, with 4 CPU cores at 2.1GHz (maximum
CPU frequency) and 8GB RAM, running Linux kernel
4.4.0-97.

Table I summarizes the obtained results. We clearly
observe that the time needed to onboard the application
image represents 68% of the total time. However, the
onboarding process is needed only once (i.e., the first
time the application package is made available), which
means that deploying another instance of the same
application will consider only the instantation time as
well as MEP discovery time, that is around 59 s.



8

V. CONCLUSION

In this article, we introduced a novel framework that
extends the ETSI MEC model to support the deploy-
ment of LoRa-based IoT applications at the edge. The
proposed framework allows an IoT vertical to deploy
an IoT network slice at the edge, taking advantage of a
low-latency and context-aware environment. We leverage
the Mp1 ETSI MEC interface to abstract the low level
configuration of end-devices, and ease the registration of
LoRa-based applications. Our preliminary results show
that the deployment of an IoT slice at the edge requires
less than a minute.

ACKNOWLEDGEMENT

This work was partially supported by the European
Union’s Horizon 2020 Research and Innovation Program
under the 5G!Drones project (Grant No. 857031).

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of
research opportunities,” IEEE Internet of Things Journal, vol. 3,
no. 6, pp. 854–864, 2016.

[2] J. An et al., “EiF: Toward an elastic IoT fog framework for AI
services,” IEEE Communications Magazine, vol. 57, no. 5, pp.
28–33, 2019.

[3] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck,
“Network slicing and softwarization: A survey on principles,
enabling technologies, and solutions,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 2429–2453, 2018.

[4] A. Ksentini, and P. Frangoudis, “Toward slicing-enabled multi-
access edge computing in 5G,” IEEE Network Magazine,,
vol. 34, no. 2, March, 2020.

[5] H.-L. Truong, “Enabling Edge Analytics of IoT Data: the Case
of LoRaWAN,” in Proc. 2018 Global Internet of Things Summit
(GIoTS), 2018.

[6] R. Sanchez-Iborra, J. Sanchez-Gomez, and A. F. Skarmeta,
“Evolving IoT networks by the confluence of MEC and LP-
WAN paradigms,” Future Generation Comp. Syst., vol. 88, pp.
199–208, 2018.

[7] Multi-access Edge Computing (MEC); Framework and Refer-
ence Architecture, ETSI Group Specification MEC 003, V2.1.1,
Jan. 2019.

[8] Mobile Edge Computing (MEC); Radio Network Information
API, ETSI Group Specification MEC 012, V1.1.1, Jul. 2017.

[9] Mobile Edge Computing (MEC); Location API, ETSI Group
Specification MEC 013, V1.1.1, Jul. 2017.

[10] D. Sabella et al., “Developing software for Multi-access Edge
Computing,” ETSI, White Paper 20, Feb. 2019.

[11] Mobile Edge Computing (MEC); Mobile Edge Management;
Part 2: Application lifecycle, rules and requirements manage-
ment, ETSI Group Specification MEC 010-2, V1.1.1, Jul. 2017.

[12] S. S. Husain, A. Kunz, A. Prasad, K. Samdanis, and J. Song,
“Mobile edge computing with network resource slicing for
Internet-of-Things,” in Proc. 4th IEEE World Forum on Internet
of Things (WF-IoT 2018), 2018.

[13] L. Zanzi et al., “Evolving Multi-Access Edge Computing to
Support Enhanced IoT Deployments,” IEEE Communications
Standards Magazine, vol. 3, no. 2, pp. 26–34, 2019.

Adlen Ksentini is an IEEE COMSOC distinguished lecturer. He
obtained his Ph.D. degree in computer science from the University
of Cergy-Pontoise in 2005. Since March 2016, he is a professor in
the Communication Systems Department of EURECOM. He has been
working on several EU projects on 5G, Network Slicing, and IoT.

Pantelis A. Frangoudis is a University Assistant at the Distributed
Systems Group, TU Wien, Austria. He has been a researcher at
INRIA/IRISA, Rennes, France (2012-2017), joining as an ERCIM
post-doctoral fellow, and at the Communication Systems Department,
EURECOM, France (2017-2019). He has a Ph.D. (2012) in Computer
Science from AUEB, Greece.


