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ABSTRACT

This paper addresses the problem of bearing estimation
with partial knowledge on the array response. In a real life
scenario, it may seem fictitious to assume a closed-form
steering vector as a function of the direction of the received
signal. Indeed, an antenna array is subject to many per-
turbations, such as calibration errors, imperfect position-
ing of array sensors, mutual coupling, and so on. We in-
troduce a MUSIC estimator, hereby referred to as Robust-
MUSIC, that is capable of estimating AoAs of multiple sig-
nals, when the antenna array’s response is subject to un-
certainties, due to the aforementioned reasons. Simulation
results are also presented to demonstrate the robustness of
the proposed MUSIC estimator.

Index terms— Robust-MUSIC, Parameter Estimation,
Uncertainty, Calibration, Robustness

1. INTRODUCTION

The problem of estimating the directions of multiple sources
is addressed. In fact, this problem appears in a majority
of engineering applications such as navigation, tracking of
objects, radar, sonar, and wireless communications [1]. Fur-
thermore, numerous high-resolution and computationally ef-
ficient algorithms were implemented to solve this issue, such
as: MUSIC [1], ESPRIT [2], and many others.

DoA methods require full knowledge of the array steering
vector to yield reliable estimates. As a consequence, any de-
viation about the nominally assumed response would result
in dramatic performance degradation. For example, mutual
coupling causes inter-element interference in an array[5].
This leaves some uncertainty on the amplitude and phase
of an element relative to its neighboring ones. Moreover,
each receiver path associated with an antenna element may
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not be properly synchronized[6], hence leading to different
phase shifts between antenna elements. Antenna elements
are assumed to be perfectly placed relative to one another.
In reality, this could hardly be realized[7]. All these errors,
along with many others, make DoA estimation very chal-
lenging.

DoA estimation with ”miscalibrated” arrays has been
well studied, hence robust estimators are needed. Robust1

DoA estimation techniques are, therefore, very attractive
and motivating. Indeed, the class of robust DoA methods
could be seen as a generalization of classical ones, thanks to
their adaptability with a family of array responses. For ex-
ample, a robust minimum variance (RMV) beamformer [3]
could be viewed as a robust version of the traditional Capon
estimator. Roughly speaking, RMV finds the best minimum
variance DoA estimator, even when the array response is
far from the actual one. The RMV uses sophisticated con-
vex optimization theory [4] to derive the desired minimum
variance estimator.

In this paper, we derive a robust MUSIC estimator. Our first
contribution is the formulation of an optimization problem,
whose optimal value turns out to be the classical MUSIC
cost function. The second contribution is the derivation of
a robust version of the MUSIC algorithm, hereby termed as
Robust MUSIC. Said differently, we could generate MUSIC
estimates, under array response uncertainty.

This paper is organized as follows: Section 2 presents the
system model utilized throughout this paper. Section 3 de-
rives the Robust MUSIC method via sophisticated convex
optimization theory and appropriate problem formulation.
Section 4 presents some computer simulations to compare
the performance of the Robust MUSIC to other robust meth-

1Robust in a sense that one could reliably estimate AoAs, given some
sort of uncertainty on the array response.



ods. Finally, we conclude the paper in Section 5.

Notations: Upper-case and lower-case boldface letters de-
note matrices and vectors, respectively. (.)T and (.)H repre-
sent the transpose and transpose-conjugate operators. The
matrix III is the identity matrix of appropriate dimensions.
For any matrix XXX , we refer to the (i, j)th entry found in
the ith row and jth column as [AAA]i,j . The norm ‖‖ is the
Frobenius norm.

2. SYSTEM MODEL

Consider an array composed of N sensors with q narrow-
band sources, each at different bearings. Let θ1 . . . θq de-
note the Angles-of-Arrival (AoA) of each the sources, then
the received signal could be modelled as

xxx(t) =

q∑
k=1

aaa(θk)sk(t) +nnn(t) (1)

where aaa(θ) ∈ CN×1 represents the array response to a
source arriving at θ. Moreover, the kth transmit narrowband
signal is denoted as sk(t). The vector nnn(t) denotes back-
ground noise. The problem here is to estimate the θ1 . . . θq
given observations of the form of xxx(t) and uncertainty on
aaa(θ). Indeed, if aaa(θ) is perfectly known, then one could es-
timate the AoAs using MUSIC through peak finding of the
following cost

fMU(θ) =
1∥∥ÛUUH

naaa(θ)
∥∥2
2

(2)

where ÛUUn is the noise subspace extracted from the sample
covariance matrix

R̂RR =

M∑
m=1

xxx(tm)xxxH(tm) (3)

However, in many practical applications, it so happens that
one can not assume perfect knowledge of aaa(θ) due to im-
perfect antenna positioning, phase/gain mismatches per an-
tenna, mutual coupling, etc. The work in [3] derives a mini-
mum variance (Capon) beamformer under array uncertainty.
This work derives a MUSIC beamformer under the same ar-
ray uncertainty.

3. ROBUST MUSIC

Consider the following optimization problem

minimize
ωωω(θ)

‖ωωω(θ)− aaa(θ)‖2

subject to ÛUU
H

nωωω(θ) = 0

(4)

which is optimal at

ωωωMU(θ) = ÛUUsÛUU
H

saaa(θ) (5)

Plugging ωωωMU(θ) in the cost function of (4) gives the well-
known MUSIC cost function in equation (2).

It is important to stress that MUSIC could also be viewed
as a beamformer. Thanks to the optimal weighting vector
ωωωMU(θ), we could define a measure that reports robustness
of the associated beamformer against interferes. This mea-
sure is the signal-to-interference-noise ratio (SINR), given
by

SINR(θ) =

∣∣ωωωH(θ) aaa(θ)
∣∣2

ωωωH(θ)RRRi+n ωωω(θ)
(6)

where RRRi+n is the interference-plus-noise covariance ma-
trix. Roughly speaking, one would aim at maximizing the
numerator of (6), while fixing the denominator. Therefore,

the projection
∣∣ωωωH

MU(θ)aaa(θ)
∣∣2 = aaa(θ)ÛUUsÛUU

H

saaa(θ) reports the
output power of the MUSIC method.

In this work, we formulate a robust variation of (4), which
we will refer to as Robust MUSIC

minimize
ωωω(θ)

‖ωωω(θ)− aaa(θ)‖2

subject to ÛUU
H

nωωω(θ) = 0

aaa(θ) ∈ E(ccc(θ),PPP )

(7)

where E(ccc(θ),PPP ) is an ellipsoid centered at ccc(θ) and a sym-
metric positive semi-definite configuration matrix PPP , which
determines how far the ellipsoid extends in every direction
from ccc(θ) [4]. More specifically, the square root of the
eigenvalues of PPP are the lengths of the semi-axis of the el-
lipsoid E(ccc(θ),PPP ), defined as

E(ccc(θ),PPP ) =
{
ccc(θ) +PPP

1
2uuu | ‖uuu‖ ≤ 1

}
(8)

Thanks to this representation, we can alternatively express
(4) as

minimize
ωωω(θ),uuu

‖ωωω(θ)− ccc(θ)−PPP 1
2uuu‖2

subject to ÛUU
H

nωωω(θ) = 0

‖uuu‖2 ≤ 1

(9)

Furthermore, the Lagrangian function of the problem (9) is

L(ωωω(θ),uuu,λλλ, µ) = ‖ωωω(θ)− ccc(θ)−PPP 1
2uuu‖2 + λλλHÛUU

H

nωωω(θ)

+ µ(‖uuu‖2 − 1)

(10)



We differentiate L with respect to ωωω(θ),uuu,λλλ and µ. Setting
these partial derivatives equal to zero, we have, respectively,

2ωωω(θ)− 2(ccc(θ) +PPP
1
2uuu) + ÛUUnλλλ = 0 (11)

PPPuuu−PPP 1
2 (ωωω(θ)− ccc(θ)) + µuuu = 0 (12)

ÛUU
H

nωωω(θ) = 0 (13)

‖uuu‖2 − 1 = 0 (14)

Equation (12) gives us

uuuo = (PPP + µoIII)−1PPP
1
2 (ωωω(θ)− ccc(θ)) (15)

where µ could be computed at the boundaries of the con-
straint ‖uuu‖2 ≤ 1, that is∥∥∥(PPP + µIII

)−1
PPP

1
2

(
ωωω(θ)− ccc(θ)

)∥∥∥2
2

= 1 (16)

To facilitate the computation of µ, we use the eigenvalue
decomposition PPP = VVVΣΣΣVVV H, hence µ must satisfy

N∑
n=1

σn‖VVV H
(
ωωω(θ)− ccc(θ)

)
‖22

(σn + µ)2
= 1 (17)

Replacing (15) in (11), we get

ωωω(θ) = ccc(θ)− 1

2

(
III −PPP 1

2 (PPP + µIII)−1PPP
1
2

)−1
ÛUUnλλλ (18)

Using straightforward manipulations, we can re-write the
above as

ωωω(θ) = ccc(θ)− 1

2
PPP−1
µ ÛUUnλλλ (19)

where

PPPµ = III −PPP 1
2 (PPP + µIII)−1PPP

1
2 = VVVΣΣΣµVVV

H (20)

and ΣΣΣµ is a diagonal matrix given as[
ΣΣΣµ
]
k,k

=
µ

µ+ σk
(21)

Forcing the orthogonality constraint, one obtains

λλλ = 2
(
ÛUU

H

nPPP
−1
µ ÛUUn

)−1
ÛUU

H

nccc(θ) (22)

which when replaced back in (19) gives us

ωωω(θ) = ccc(θ)−PPP−1
µ ÛUUn

(
ÛUU

H

nPPP
−1
µ ÛUUn

)−1
ÛUU

H

nccc(θ) (23)

Replacing (23) and (15) in the cost function and observing
that

‖ωωω(θ)− ccc(θ)−PPP 1
2uuu‖2 = ‖PPPµ

(
ωωω(θ)− ccc(θ)

)
‖2 (24)

we arrive at the Robust MUSIC cost function, i.e.

fRMU(θ) =
1

‖ÛUUn
(
ÛUU

H

nPPP
−1
µ ÛUUn

)−1
ÛUU

H

nccc(θ)‖2
(25)

Notice the extreme case of perfect knowledge of the array
response, i.e. PPP = 000 or alternatively, PPPµ = 000, thus Robust
MUSIC boils down to the traditional MUSIC estimator, i.e.
fRMU(θ) = fMU(θ).

Figure 1: Direction-finding spectra of the Robust MUSIC
vs Robust Minimum Variance

Figure 2: Performance analysis of various beamformers un-
der ellipsoidal uncertainty



Figure 3: Output SINR of the Robust MUSIC as a function
of DoA

4. COMPUTER SIMULATIONS

In the first experiment, we intend to compare the perfor-
mance of the Robust minimum variance beamformer [3] and
the Robust MUSIC derived herein. The simulation was car-
ried out on an SNR of 10 dB. We assume sources that carry
equal power, hence the SNR is defined as

SNR =

∫ T
0
|s(t)|2 dt
σ2

(26)

In all experiments, we consider a uniform linear antenna
array composed of N = 3 elements, where its elements are
placed at half a wavelength, i.e. the nominal array response
takes a Vandermonde structure as

ccc(θ) =
[
1 e−jπ sin(θ) . . . e−jπ(N−1) sin(θ)

]T
(27)

In all experiments, the configuration matrixPPP is fixed to the
following

PPP =

 1 0.6 0.1
0.6 1 0.6
0.1 0.6 1

 (28)

This means that we randomly pick any steering vector
aaa(θ) in E(ccc(θ),PPP ) In the first experiment, the SNR was
fixed to 5 dB and two sources were generated each at dis-
tinct angles θ1 = 10◦ and θ2 = 50◦. We use Gaussian
sources s1(t) and s2(t) throughout this experiment. The
number of time samples collected from xxx(t) is T = 100,
which are further used to compute the sample covariance
matrix R̂RR. According to Fig. 1, which plots the spectra of
the Robust Minimum Variance derived in [3] and the Ro-
bust MUSIC derived herein, both seem to fully determine
the proper DoAs; however, the noise level behaviour of the

associated spectra behave differently. More specifically, the
RMV spectra shows spurious peaks in the vicinity of 10◦,
while the robust MUSIC seems to be ”noise-flat”. This is
indeed dangerous as one might be mislead to a third source
arriving at θ = 0◦, whereas no such source exists.

In the second experiment, we compare the normalized Mean-
Squared-Error of multiple methods in the presence of array
uncertainty. We run the simulations on 104 Monte Carlo
simulations. The MSE is computed as

MSE =

M∑
m=1

q∑
k=1

(θk − θ̂(m)
k )2

M
(29)

where θ̂(m)
k is themth DoA estimate of θk. As a benchmark,

we run an exhaustive search on all joint parameters, that
minimizes the deterministic likelihood probability density
function, given all parameters of interest. One can clearly
see the high performance of robust MUSIC when compared
to existing methods. For instance, there is a 3dB gain of
robust MUSIC when compared to RMV, when the target
normalized MSE level is -80dB and a 3dB loss compared to
the optimal exhaustive search bound.

In experiment three, we focus on SINR maximization ap-
plications. In other words, we aim at maximizing the out-
put of the Robust MUSIC beamformer, as in the look di-
rection, while keeping the interference-plus-noise level as
low as possible. For the sake of demonstration, we focus
on two sources with equal powers arriving at θ1 = 12◦ and
θ2 = 25◦. We plot the output power of the beamformer as
a function of DoA. The powers are normalized to the max-
imum power obtained by the spectrum. One could notice
that an increase in 50dB SNR ”pushes down” the noise level
of the output beamformer power around the same order of
SNR difference. However, in the region close to the look di-
rections 12 < θ < 25, we can see much higher noise, which
might be related to the configuration matrix PPP . The reason
is due to the particular drop at θ = 19◦ ( around −22dB
noise level).

5. CONCLUSIONS

In this paper, we have derived a robust version of the MU-
SIC method, through careful problem formulation, which
enables us to impose some uncertainty on the array response.
The Robust MUSIC could be argued to be computationally
heavy due to the matrix inversion that is needed at each
search point on the grid. On the other hand, computer simu-
lations demonstrate the high performance and robustness to
ellipsoidal noise about the nominal array response.
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