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ABSTRACT

The ability for a wireless network to precisely localize the
radio nodes composing it is a great tool towards system opti-
mization and is increasingly seen as a basic service require-
ment. In the past, model-free algorithms such as weighted
centroid localization (WCL) have proved popular, especially
in the context of sensor networks, due to their simplicity
and robustness to temporal changes in wireless propagation
properties. However, WCL algorithms are biased since they
implicitly require a uniform sensor distribution around the
source in all directions. In this paper, we demonstrate that
instead of employing all the sensors that result in a pos-
sibly unbalanced sensing pattern, it is better to reduce the
number of sensors such that the subset of selected sensors
symmetrically distributes around the source, which in princi-
ple would need to know the source location in advance. Here,
we develop a sensor selection algorithm which manages that
goal while blindly. Using less than half of the sensors, a
30% reduction in localization error is demonstrated from our
numerical experiments.

Index Terms— Sensor Selection, Source Localization,
Model-Free Localization, Weighted Centroid.

1. INTRODUCTION

In wireless communications, exploiting the location infor-
mation of transceivers often improves the capability of the
network, including enhanced multi-cell radio resource man-
agement, dynamic location-aware routing, and better spatio-
temporal sensing. In many cases, there is no handshake
between a target transceiver and the infrastructure. For in-
stance, in cellular communications, the network operator
usually does not have access to a legacy user GPS data. Such
a non-cooperative scenario hinders the use of conventional
localization techniques such as those based on time-of-arrival
(TOA) ranging [1, 2]. Here, the transceiver is treated as a
signal source and the infrastructure is treated as a set of sen-
sors, and the problem is referred to as a source localization
problem.

Related works: The source localization problem has
been studied extensively in different schemes. There are

many works on range-based methods, e.g., ToA, [1, 3–5],
range-free methods which require some parametric models,
e.g., direction-of-arrival (DoA), [6–8]. Although model-
based techniques offer better estimates, they require accurate
information about the source in order to tune the parame-
ters, that can be only achieved through a cooperation with
the source or a precise knowledge of the environment [9].
In contrast, the model-free methods [10–14] have the strong
advantage that they can operate with the sole received signal
strength information, yielding some highly desired robustness
properties with respect to model uncertainties. In particular,
most existing model-free methods can be viewed as taking
a weighted average of the sensor locations that measure the
source’s signal strength, where the intelligence of the algo-
rithm then lies in the design of the weights. One example
of these techniques is the WCL algorithm [9, 15]. WCL, in
essence, indirectly estimates the source location via comput-
ing the centroid of the sensors. Unfortunately, in this paper,
we point out that a significant bias exists in model-free ap-
proaches in some unfavorable source-sensor topologies, such
as one where most sensors locate on one side of the source.

In the example illustrated in Fig. 1, we consider 10 sen-
sors randomly distributed in a square region with a uniform
distribution. A non-centered source is assumed, i.e., in the
first quadrant. Fig. 1 presents the scenario and the results
of performing WCL for source localization. The estimation
error for this case is quite high because most of the sensors
are located on one side of the source. An improved ver-
sion of WCL to address the bias issue is the mean shift al-
gorithm [16, 17], where only a subset of sensors is weighted.
However the blind selection of a suitable subset of sensors
in an open problem. The algorithm [17] iteratively evaluates
different subsets till convergence. Generally, there also ex-
ists optimal trade-off in designing the sensor subset’s size, be-
tween suppressing observation noise, i.e., a larger subset pre-
ferred, and reducing bias, i.e., a smaller subset preferred, the
exploration of this trade-off is still an open problem. Further,
a recent non-parametric matrix-based source localization al-
gorithm is proposed in [18] which in contrast with the conven-
tional model-free methods, exploits the unimodality and sym-
metry properties of the observation matrix to localize sources.
However, the main drawbacks of the matrix-based algorithm
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Fig. 1: A sample source localization scenario. Colors of sen-
sors represent the level of their received power which is a
function of distance (a darker color means a stronger power).
The unbalanced density of sensor nodes around the source in-
duces a bias in the estimated location.

are the required conditions on the sensor networks, e.g., a
minimum distance among the sensors, and the high compu-
tational complexity as it needs to solve a matrix completion
problem which make the method impractical.

Contributions: In this paper, introducing two desired
properties of that selected sensors should retain, we propose
a sensor selection algorithm that alleviates the problem of
estimation bias. Specifically, the paper studies a model-free,
range-free source localization technique using low-cost mea-
surements from sensor networks. The data available to the
network is a set of received signal strengths associated with
their measurement locations. The algorithm extracts an op-
timized subset of sensors. The subset size is constrained in
advanced below a certain threshold (e.g. based on maximum
cost and/or energy considerations).

The contributions of this paper can be summarized as fol-
lows:

• We formulate two desired properties, namely closeness
and evenness, to select the best subset of sensors and
consequently reduce the bias of the WCL for source
localization.

• We develop a sequential algorithm to iteratively im-
prove the estimate of the source location from updating
the best subset of sensors.

• We carry numerical experiments to demonstrate that us-
ing the proposed sensor selection strategy, the perfor-
mance of the WCL can be improved with even fewer
sensors.

2. SYSTEM MODEL

2.1. Topology and Signal Model

Consider a network consists of N sensors located in a square
region with lengthD where the 2-D location of the nth sensor

is ln = [xn, yn]
T . There is a source in the region of interest

with location s = [xs, ys]
T and our aim is to obtain an esti-

mation of its location ŝ.
The following channel model for received signal strength

is adopted where the received power of the nth sensor node
from the source, Pn, is given by Pn = h(dn) + ξn, where
dn = ∣∣ln − s∣∣2 is the distance between source and nth sensor
with ∣∣.∣∣2 being l2 norm, h(.) represents the propagation loss
versus distance, and ξn is the noise term for sensor n that
might include thermal noise, shadowing effect, and error in
sensor location. The collection of noise terms are denoted as
ξ = [ξ1, ..., ξN ]T .

2.2. Conventional Model-Free Estimation Method

We aim to estimate the location of the source based on the
measured powers and information about the sensor locations
as ŝ = f(P,L), where f(.) is an estimation function, P =

[P1, ..., PN ]T and L = [l1, ..., lN ]T are measured powers and
location of sensors, respectively.

The WCL is a popular model-free estimation method that
takes the form ŝ =

∑N
n=1 wnln
∑N

n=1 wn
, with wn = Pn. Besides the

advantages of the WCL algorithm such as being computa-
tionally simple and non-parametric, as explained in Fig. 1,
it implicitly requires uniformly distributed sensors around the
source in all directions. It is challenging to tackle such a re-
striction if we do not know the signal propagation model. One
may want to put a significantly large weight to the sensor loca-
tion that observes the highest signal strength so as to mitigate
the bias due to non-uniform sensor distribution. For exam-
ple, to set the weight as the squared of the received signal
strength, the sensors with large measurement values will be
significantly emphasized. However, such a highly selective
weighting scheme may be vulnerable to noise, and therefore,
one may want a mild weighting scheme, such as being a lin-
ear function of the signal strength, for noise tolerance. Yet,
any logical design would require the parametric form of the
signal as well as the statistics of the noise.

In this study, it is found that integrating sensor selection
with WCL may improve the localization performance under
model-free scenarios as will be discussed in the following sec-
tions.

2.3. Why Sensor Selection is Essential?

2.3.1. Mitigating Estimation Bias

As discussed along with Fig. 1, if we have an initial guess
that the source, without loss of generality, is in the center of
the first quadrant of a bounded region, then a majority of mea-
surements in the second to the fourth quadrant may only con-
tribute to the estimation bias. In this case, even if we have
collected all the measurements, it may sometimes be better
not to use them to form the final estimation of the source lo-
cation.



2.3.2. Communication and Energy Constraints

Communication and energy constraints in a sensor network
further motivate to integrate sensor selection with source
localization. In many sensor networks, a node operates,
i.e., sensing, processing, and communication, on its limited
amount of battery energy [19]. On the other hand, in scenar-
ios with a significant number of sensors, if all the sensors are
used for source localization, there would be a huge commu-
nication load between sensors and the fusion center [20].

Consequently, we can only select K sensors for source
localization. Denoting sets of all and selected sensors by N
andK, respectively, the optimization problem to minimize the
estimation error can be formulated in the following form

min
ŝ,K⊂N

E{∣∣s − ŝ∣∣22}

subject to ∣K∣ ⩽K,
(1)

where ŝ is the estimated location of source obtained by apply-
ing WCL over the set of sensors K. Therefore, an essential
question is how to select the sensors.

3. SENSOR SELECTION: LESS IS MORE

3.1. Property of the Desired Subset of Sensors

In the most ideal case, one may want to select sensors that
surround the source in a uniform and balanced manner. In
other words, the weighted center of those sensors is expected
to coincide with the true source location. However, since the
source location (what we want to estimate) is unavailable, we
need to seek other properties for such a desire set of sensors.

The following two properties could serve as proxies to
describe characteristics of the desired set of sensors:

Closeness: If all sensors of a subset have very high mea-
surements, this could be a good indicator that these sensors
are close to the source. In a counter-scenario, if some sensors
observe high energy and some other sensors observe very low
energy, then those low-energy-observed sensors may locate
far away and contribute bias. Further, as the location of the
source is unknown, the signal strength measure can be equiv-
alently expressed as a closeness indicator. As a result, we
introduce normalized received powers as the closeness indi-
cator (the higher the closer):

P ′
n =

Pn

max
i∈N∖K

Pi
. (2)

Evenness in all direction: In an ideal situation, it is ex-
pected to have a few sensors that locate in the center of the
subset observing high values, and there are also sensors fill-
ing the boundary of the subset in all directions; the sensors
at the boundary observe relatively smaller value. Thus, we
define the evenness indicator in the following form:

αn =max
i∈K

< rn, ri >, (3)

where < ., . > is inner product operator and rn is the normal-
ized location vector of sensor n given by

rn =
ln − ŝ

∣∣ln − ŝ∣∣
. (4)

We normalize the evenness indicator to have the same
scale as the closeness indicator, i.e., between 0 and 1, as fol-
lows:

α′n =
αn + 1

2
, ∀n ∈ N ∖K, (5)

Thus, we have two indicators, namely evenness and close-
ness indicators. However, a scalar measure is required for the
objective of the optimization problem. Since for the evenness
indicator, the lower value is the better, while it is opposite
for closeness indicator, the following unified sensor selection
for source localization (S3L) scalar metric is introduced in a
multiplicative form including the negation of the normalized
evenness indicator (1 − α′n) and the closeness indicator as

βn = (1 − α′n)P
′
n, (6)

where the higher the βn, the better the sensor n is (in terms of
the introduced indicators).

3.2. Sensor Selection Algorithm

As the indicator (6) requires a prior estimate of the source lo-
cation, we need a sequential approach to first make an initial
guess, and then, step-by-step improve the estimation. Specif-
ically, the proposed algorithm consists of two stages:

• Initialization stage: Pick the center of the region of in-
terest as the initial estimate ŝ(0) of the source location.

• Sequential estimation stage: Sequentially localize the
source and improve the estimation accuracy as follows.
At the tth step, starting with an empty set of selected
sensors, i.e., K = ∅, select K sensors iteratively based
on the S3L metric (7) below, where ŝ(t−1) is used to
replace ŝ in (4).

n∗ = argmax
n∈N∖K

βn,

K ← K ∪ {n∗}.
(7)

We continue the procedure for T steps and update the
location estimation ŝ(t) at the end of each step.

The computational complexity of the proposed S3L algo-
rithm is O(TNK2) which is a linear function of the total
number of sensors N .

4. SIMULATIONS

In this section, we compare the mean shift based algorithm
in [17] and the conventional WCL algorithm with our pro-
posed algorithm. Since the WCL algorithm is not an iterative
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Fig. 2: A sample localization problem (a) trajectory of the
location estimation for different steps, (b) MSE versus step
number.

method, its estimation result is the same for all the steps. In
the following simulations, we consider a square region of in-
terest with dimension D = 100m and locations of the source
and sensors are selected randomly with a uniform distribu-
tion. Moreover, N = 100 is assumed. Further, we consider
noise with a Gaussian distribution, zero-mean, and variance
σ2
s .

Fig. 2 depicts the results for a sample sensor network
whereK = 10 sensors are selected. In Fig. 2(a), the estimated
locations of the source in different steps are presented. In Fig.
2(b), estimation MSE of the three algorithms versus the step
number is plotted. Both S3L and mean shift algorithms get
the final estimation in less than 10 steps.

For the second scenario, the simulations are implemented
for two different noise levels and the results are averaged over
1000 iterations to obtain plots in Fig. 3. In this scenario,
K = 20 sensors are selected. As shown in Fig. 3, the MSE
of the S3L increases drastically by increasing the noise level.
Furthermore, comparing the result of the mean shift and WCL
algorithms, it is clear that selecting a subset of closest sensors
does not necessarily improve the estimation accuracy, partic-
ularly, when the selected subset of sensors is not well dis-
tributed around the source.

Finally, Fig. 4 presents the MSE vs. the number of se-
lected sensors K where plots are displayed for three noise
levels. All the plots are for step 10 of both algorithms. The
WCL algorithm is not plotted in this figure because the result
of the WCL is exactly equal to the results of the other two
algorithms for K = 100, i.e., selecting all the sensors. Based
on the performance of the proposed S3L algorithm in Fig. 4,
for the noise-less case, increasing the number of selected sen-
sors K increases the MSE. This is due to the fact that with a
lower number of selected sensors, it is easier to reach a better
evenness indicator. However, increasing the noise level, there
would be a trade-off between the evenness and correctness of
the measurements. For instance, for the case with σs = 5, in-
creasing K, until some point (e.g., K = 40 sensors) the MSE
is reduced (the more sensors, the result is more robust against
the nuisance term), while after that, the MSE is increasing.
This trade-off is less evident for the case with σs = 10 be-
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Fig. 4: MSE error versus number of selected sensors K for
three different noise levels σs.

cause the noise term is too strong and we need more sensors
to obtain a good location estimation.

5. CONCLUSION

In the context of model-free source localization, we formu-
lated two desired indicators to select the best of sensors and
consequently improve the localization accuracy of the WCL
algorithm. We proposed a sequential algorithm with a com-
putational complexity that grows linearly with the number of
sensors and iteratively improves the estimate of the source
location form updating the best subset of sensors. Through
numerical experiments demonstrated the 30% reduction in lo-
calization error with less than half of the sensors.
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