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Abstract—The problem of optimally precoding over coopera-
tive MIMO channels when the transmitters are endowed with
different noisy channel state information is a long standing and
challenging open problem. Recently an information theoretic
result was obtained which characterized the common message
capacity of a channel with two transmitters and a single
receiver with such distributed channel state information (D-
CSIT) generated from different feedback links. While classical
MIMO precoding with centralized CSIT implies the transmission
of a number of spatial streams bounded by the number of
transmit and receiver antennas, the above result suggests that,
surprisingly, the transmission of additional streams may be
beneficial. In this work, we explore the operational implications
of the above intuition to optimally tackle the problem of ergodic
rate optimization under distributed feedback. In particular, we
propose a method for joint distributed precoding and feedback
design under asymmetric feedback rate constraints. In doing
so, we also optimize the number of spatial data streams under
practical complexity constraints. Finally, we provide numerical
simulations and illustrate the performance gains compared to
conventional precoder design.

Index Terms—Cooperative communication, MIMO, ergodic
rate, distributed CSIT, precoding.

I. INTRODUCTION

Wireless communication networks can substantially benefit
from transmitter (TX) cooperation, especially in interference
dominated scenarios. Traditionally, transmission schemes and
performance analysis have been mostly derived by assuming
perfect, or at least perfectly shared, i.e. centralized, channel
state information at the transmitters (CSIT) [1]-[3].

Recently, several practical scenarios have put the centralized
CSIT assumption under question, notably in high mobility
scenarios when the channel coherence time is short. In such
case any attempt to centralize CSIT via an information ex-
change mechanism among transmitters will induce additional
delays which in turn create transmitter-specific outdating of
the exchanged CSI elements. In fact, in scenarios where the
delay sensitivity of the data payloads is low or moderate
(e.g. popular data contents that are amenable to caching [4]),
it is reasonable to assume that data can be prestored at
multiple devices whereas timely exchange of highly time-
sensitive CSIT across such devices is difficult to achieve. In
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Fig. 1: Illustration of a cooperative MIMO channel with D-
CSIT obtained from different error-free feedback links.

this case, the devices (cooperating transmitters) are endowed
with different noisy versions of the same underlying CSIT,
a setting that is commonly referred to as a distributed CSIT
(D-CSIT) [5].

Both information theoretical limits and practical precoding
designs for cooperative networks with D-CSIT are still far
from being understood. Partial results on capacity analysis
have been derived e.g. in [6], [7] by focusing on the asymptotic
high-SNR regime, but very little is known for finite SNR.

In this paper, we consider the cooperative MIMO channel
illustrated in Fig. 1, where the TXs acquire the CSIT through
different feedback links of limited rate from the receiver (RX),
a setting we also refer to as “asymmetric feedback”. Each TX
is equipped with N antennas, while the RX is equipped with
M antennas. For a special case of this setup with N = 1
and M = 2, the ergodic capacity of the channel at hand was
characterized in a recent work [8] building on distributed linear
precoding over Gaussian codewords. Surprisingly, the proof
involves the unconventional choice of letting the number of
data streams d to grow large, and in particular larger than the
classical bound d < min(2N, M).

In this work, we make use of the above information the-
oretical insight to address the problem of optimal distributed
precoding design for the channel in Figure 1. This problem
has not been tackled by [8] due to the non-convexity of the



optimization problem involved in the original formulation.

Specifically, by recasting the ergodic rate optimization prob-
lem as an equivalent convex problem similarly to the recent
result given by [9] for the single TX antenna case, this paper
provides the following novel contributions:

o We propose a method for jointly designing a distributed
precoding and feedback strategy which maximizes the
ergodic rate under possibly asymmetric feedback rate
constraints. The key idea is a non-trivial adaptation of
the celebrated generalized Lloyd algorithm [10], [11]
for vector quantization to jointly optimized distributed
quantizers.

o The optimal precoding design considers dp.x spatial
streams, where dp,.x depends on the feedback rates. Since
the optimal d = dpax can be very large in theory,
we study how to constrain d to practical values while
minimizing the performance loss.

In Sect. II, we provide the system model and review existing
results on the considered problem. In Sect. III, we detail the
proposed algorithms. Finally, in Sect. IV we illustrate the
above results through numerical simulations, and we compare
the performance of the proposed algorithms with techniques
derived from traditional centralized design.

Notation: We use boldface to denote vectors and matrices,
and calligraphic uppercase to denote sets. (-)7 and (-)" denote
respectively the transpose and Hermitian transpose, and || - ||r
the Frobenius norm. The set of Hermitian positive-semidefinite
matrices of dimension n is denoted by S't. The shorthand
Al;.j k) denotes the sub-matrix of A corresponding to the
(i,...,4)-th rows and (k,...,l)-th columns. ® denotes the
Kronecker product. Probability mass/density functions and
expectations are denoted respectively by p(-) and E[].

II. SYSTEM MODEL AND PRELIMINARIES

We consider a flat-fading cooperative MIMO channel with
2 TXs equipped with N antennas and a single RX equipped
with M antennas, described by the following memoryless
input/output relation:

_ X1

where y € CM is the RX signal, H € CM*2¥ ig an arbitrarily
distributed matrix of fast-fading coefficients, x5 € CV is the
signal transmitted at the k-th TX, and where n ~ CN(0,1I,).
Furthermore, we assume perfect CSIR, and imperfect CSIT
obtained via error-free feedback links of limited and, most
importantly, possibly different rate. More precisely, we assume
the k-th TX to have access to an integer-valued signal s; €
Sy = {1,...,2%}, where 3}, denotes the number of feedback
bits per fading realization, given by
sk =qe(H), g :C"N =8, 2
where g, models for example a deterministic mapping from H
to the index of a codebook of quantized representations H,.
The joint probability distribution
p(H, s1,82) = 1[s1 = q1 (H)]1[s2 = ¢2(H)]p(H)  (3)

fully describes the given CSI structure, where 1[-] denotes an
indicator function. When ¢; = ¢», the system boils down to
a virtually centralized 2N x M MIMO channel, that can be
analyzed by using classical techniques [12]. On the other hand,
when ¢ # ¢o, we fall into what we call a distributed CSIT
(D-CSIT) configuration, i.e. when the TXs do not share the
same CSIT.

We finally assume that both TXs have access to a uniformly
distributed message W. In this work, we focus on the ergodic
rate of the considered channel, i.e. the rate R at which W can
be reliably transmitted by coding over multiple i.i.d. fading
realizations [13].

In what follows we briefly review existing approaches
and recent information theoretical results in the considered
scenario.

A. Distributed Linear Precoding

Inspired by classical centralized MIMO systems, where
linear precoding over Gaussian codewords is known to be
capacity achieving [12], a reasonable approach is to extend
this concept to the considered channel by letting

H
X = E;] = {gég;ﬂ u, u~CN(0,1,), 4)
where Gp(si) € C¥*N, k = 1,2, are distributed linear
precoding matrix of dimension d x IV, depending only on the
local CSIT s;, and where d denotes the number of independent
Gaussian streams over which W is encoded.

From classical arguments [12], [13], the scheme in (4) can

be shown to achieve the rate

R(G1,Gs) == E [logdet (I+HX(s1,s2)H")], (5
where ¥(s1,s0) € SV
matrix given by

Y (s1,892) :=E [xxH|81,52]
H
-G fee i

Clearly, such approach is optimal when q; = g2, i.e. when the
network behaves like a virtually centralized MIMO system.

In this work, we focus on the individual power constraint

Elllxxl?lsk] = Gi(si)llf < Pi, Vs € Sp. (D)

is the conditional input covariance

(6)

B. Ergodic Capacity

It has been recently shown in [8, Theorem 3] that, for N = 1
and M = 2, the distributed linear precoding scheme described
in Sect. II-A is indeed capacity achieving. More precisely, we
have the following result:

Theorem 1. For N = 1, M = 2, a given p(H, s, s2), and
power constraints (Py, Ps), the ergodic capacity is given by
C= R(le G2)7 (8)

max
G (sp)eC?>?
Gk (sk)lI5< P

where d < dpax := |S1| + |Sal.

Proof: The proof is given in [8, Sect. III], by trivially
adapting the average power constraint to (7). [ ]



The main characteristic of Theorem 1 is that the underly-
ing achievable scheme exploits the unconventional choice of
letting the number of precoded Gaussian streams d to grow
large, up to a given upper bound dyax.-

This surprising condition is in sharp contrast to the tra-
ditional design choice d < min(2N, M) = 2. Indeed, for
classical centralized 2 x 2 MIMO systems with CSIT s and
per-antenna power constraints, such choice is optimal, as the
capacity

max

=(s)est
Sk (s) <P
is always achievable by letting

x=G"(s)u, G(s) =273(s) € C*2,

Ccentralized =

E [logdet (I+HX(s)H")], (9)

u~ CN (07 12)
(10)
However, such an approach cannot be in general applied to
systems with D-CSIT, as taking any arbitrarily rotated matrix
square-root of 3(s1,s2) may generally violate the functional
dependencies (si,u) — xy at the distributed TXs.

Being an achievable scheme, the use of a number of data
streams d > 2 for approaching the ergodic capacity in (8)
is only a sufficient condition. However, this result is further
enhanced in [9], where it is shown that the use of d > 2 is
also necessary for some p(H, s1, s2).

In this work, we generalize the information theoretical
insight given by [8] to arbitrary number of antennas N and
M, by considering the following ergodic rate maximization
problem:

maximize  R(Gi, Gg)
G (si)€CIXN
subject to G1(s1)|2 < Py,

(11)
1G2(s2)[[f < P2,
d< dmax = N(‘Sll + |82|)
In the following sections we will see that by letting d = dax
is sufficient to exhaust the set of ergodic rates achievable via
distributed linear precoders. Note that, for the same reasons
explained above, for centralized systems a sufficient condition
for optimality is instead d = 2N.

Remark 1. By extending the proof in [8, Theorem 3], it
is not difficult to show that the optimum in (11) is indeed
the ergodic capacity, that is, distributed linear precoding is
capacity achieving for arbitrary N and M. However, the proof
of this statement is out of the scope of this work.

III. PRECODING DESIGN WITH ASYMMETRIC FEEDBACK
A. Optimal Distributed Precoders Design

The distributed linear precoding design problem (11) is an
instance of a well-known class of non-convex optimization
problems called static team decision problems [5], [14], for
which efficient optimal approaches are available only for very
particular cases.

However, by letting d = d,,x, Problem (8) can be recast
as an equivalent convex optimization problem. We point out
that, conversely, with the traditional choice d < 2N this was
instead not possible in general.

Proposition 1. Problem (11) is equivalent to the following
convex problem

maximize E [log det (I + HquHqu)]

Qesimax

subject to tr{Qn(i—1)+1:nq} < P,

12
tr{QNG—1)+1:nj1 ) < Po, a2)
i=1,...,|81],

j = (‘Sll + 1)7 ;dma)u
where we defined Hey := HE (51, 59) € CM>*dmax | gnd
o |ei @Iy 0 dmax X2N
E(i,j) = 0 ;@ In eC , (13)

where e; € {0,115 (resp. e; € {0,1}1%2]) is a standard
column selector, i.e. with the i-th (resp. j-th) element set to 1
and all the other elements set to 0.

Proof: The proof follows the one given by [9] for the
special case N =1, M = 2.

Let us consider a given choice of distributed linear precoders
[G1(s1) Ga(sz)] € CP2N collected in a codebook F €
C¥dmax ordered as follows

F=[Gi(1) ... Gi(Si]) Ga(l) ... Ga(S:])].
The first |Si| submatrices of F are the possible precoder
choices for TX 1, while the remaining |Sz| submatrices are for
TX 2. With these definitions, the distributed precoders matrix
G (sk) can be obtained from the codebook F as

[Gl(Sl) GQ(SQ)] = FE(Sl, 82),
where E(s1, s2) is defined in (13), and hence
Zs152) = | Ghion)| [G1(61) Galoa)
) GH(s2) 1(81 2(s2
= EM(s1, 50)FHFE(s1, 50)

= EH(Sl, SQ)QE(Sl, 82),
where Q := FHF ¢ S‘i‘“‘“‘ is a (fixed) positive semi-definite
matrix with rank d < dp.x. We can now rewrite the rate
achieved by G (sk) as
R(G1,Gs) =E [logdet (I+HX(s1,s2)H")]

=E [log det (I+ HeqQHY,)] =: Req(Q),

where we defined the equivalent channel

H,., := HE"(s1,50) = HE" (¢, (H), ¢2(H)) € CM*max,
By removing the rank constraint rank(Q) < d, i.e. by letting
d = dmax, the function R.q(Q) becomes convex in Q. The
proof is completed by writing the power constraints in terms
of linear constraints on Q. [ ]

We notice that Problem (12) corresponds to the capacity
of an equivalent dpyax X 2 MIMO channel with state H,,
perfect CSIR, no CSIT, and fixed transmit covariance Q. The
optimal distributed precoders for the original channel can be
then designed from the optimal Q* as follows

[Gl(sl) GQ(SQ)} = (Q*)%E(sl, 82) S CdmaxX2N. (15)
Note that, although the optimal Q* is unique because the
objective of (12) is strictly convex in the feasible set, the
optimal distributed precoders are not necessarily unique, as
one can equivalently consider any arbitrary rotation of (Q*) 3,

(14)



B. Joint Feedback and Precoders Design

In this section we show how problem (12) can be used to
design the quantizers (g1, g2) at the RX, given constraints S
on the feedback rates towards TX k.

More precisely, we are interested in solving the following
optimization problem:

R(G1, G2), (16)

max
G (sk)ECTma N |Gy (s2) [F< Py
qx (H)ESk, |Sk|=2°F
where the ergodic rate is maximized by optimizing both pre-
coders G (sy) under individual power constraints and vector
quantizer functions g (H) with feedback rate constraints.

To address the above problem, which is non-convex, we
propose a suboptimal approach based on the generalized Lloyd
algorithm [10] for vector quantization, similarly to [11] for
centralized MIMO channels.

In particular, similarly to the classical Lloyd algorithm, we
use a converging alternating optimization procedure composed
by the following two steps:

1) Quantizers update step:

(¢i(H),g5(H)) earg ~ max _ R(H,Q), (17)

(51,52)€ES1 xS2

2) Precoders update step:
Q" = arg max E[R(H, Q).
Qesimax
Qii <Py, i=1,...,|S1]

Qj;j <Pz, j=(|S1]|+1),....dmax

(18)

where we defined

R(H, Q) :=logdet (I+ H,,QHLY),
where Ho, = HE"(s1,2) is given by (12). Note that the
precoders update step corresponds to Problem (12), hence it
is a convex problem.

The two above steps are respectively similar to the quanti-
zation regions update rule and the centroid update rule given
by the Lloyd algorithm, under a modified distortion measure
—R(H, Q). However, there is a non-trivial differences be-
tween the proposed algorithm and the ones in [10], [11]. In
particular, because of the D-CSIT assumption, the centroids
must be jointly optimized in a unique step, and not disjointly
as in the classical Lloyd algorithm.

Similarly to [10], to coope with the expectation in the
precoders update step (or equivalently, the expectation in
problem (12)), we approximate p(H) by its empirical distri-
bution p(H) = + ZiLzl 1[H = H;] obtained from L training
samples {H;}Z | generated i.i.d. according to p(H). This
allows us to replace the expectation in (12) with a finite sum
of L convex functions.

Note that, for an arbitrary initialization, the above procedure
converges to a local optimum of (16). To avoid bad local
optima, classical multi-start methods (e.g. random sampling)
may be applied. However, in this work we omit this step.

Finally, we point out that although during the design phase
the quantizers are optimized over the samples H;, the quan-
tizers for arbitrary input H are simply given by (17).

C. Constrained Number of Data Streams

Although letting d = d,,ax is capacity achieving, practical
systems may be constrained to use d < dp,ax data streams. For
example, if the RX adopts a non-ideal successive interference
cancellation decoder, a lower d typically results in lower
decoding complexity and smaller error propagation.

A constraint d on the number of data streams can be
imposed by constraining the rank of Q in (12) (see (14)),
leading to the non-convex optimization problem

maximize [E [log det (I + HquHqu)]
Qesgmax

subject to  tr{Qn(i—1)+1:n4} < P1,

tr{Qn(—1)+1:nj} < Po, (19)
i=1,...,|81],

Jj= (‘81| + 1)7 ooy Amax,

rank(Q) < d

Finding a good solution for rank constrained problems similar
to (19) is an interesting open problem that is out of the scope of
this work. In what follows, we propose a simple yet effective
sub-optimal approach for solving (19) based on creating a
feasible solution from the optimal Q* of the unconstrained
problem (12).

Let Q, = argmingeco, ||Q—Q*||r be the projection of Q*
onto the set of rank constrained positive semidefinite matrices
Q, := {Q € S% | rank(Q) < r}. This can be readily
obtained by letting

Q, =V, A VI vV, cChmuxr A cCT,
where A, is a diagonal matrix containing the r largest eigen-
values of Q*, and the columns of V, are the corresponding
eigenvectors. Note that if Q* € Qg4, then Qg = Q” is clearly
also optimal for (19), and no particular processing is required.
In such case, the optimal precoders are simply given by

[Gl(sl) GQ(SQ)] = AEVSE(slaSZ) € (CdXQ.

On the other hand, if Q* ¢ Q, the suboptimal solution
Qg may incur some power loss. To handle this problem, we
consider instead Qg_on, and exploit the remaining power to
transmit 2N data streams, each of them available at one TX
only. More precisely, we let

(G} (51) Gh(s2)] = A,y VE,yE(s1, 55) € Cl2M72N,
and

Gi(s1) Ga(s2)
[G1(s1) Ga(s2)] = |G (s1) 0 e %2,
0 Gi(s2)

where G/(sr) € CN*N are two disjoint local precoders
(similar to Sect. IV-B). Note that the above precoders have the
desired dimension. Furthermore, after some manipulations it
can be shown that the resulting Q, defined as in (14), satisfies
E"(s1,52)QE(s1, 52) = E™(s1, 52)(Qa—2n + T)E(s1, 52),
where

I:.= blkdlag(Fl(l), NN 7:[‘1(|81D7 ].-‘2(].), .

Ty, (s1) = (GJ(s1)) "G (s1)-
Thus, the disjoint local precoders can be optimized by solving

- Ta(|S2])),



the following convex problem
maximize E [logdet (I + Heq(Qa-2n + HE)]
resjmax
subject to  tr{Tn(i—1)41:nq ) < P1 — IG ()17,
tr{Tin-n+uni} < P2 = 1G6 = ISR
i=1,...,|8],
Jj= (‘Sll + 1)7"-7dma><7
(20)
Note that the suboptimal scheme described cannot handle well
very low values of d, as it converges to a suboptimal disjoint
local precoding scheme for d = 2N. Furthermore, the above
scheme is not defined for d < 2N.
To conclude, we point out that the algorithm described in
this section can be applied as a final step of the method given
by Sect. III-B to obtain precoders of practical dimension.

IV. PERFORMANCE EVALUATION
A. Simulation Setup

We consider two different antenna configurations (N, M) =
(2,2) and (N,M) = (1,1), denoted respectively by dis-
tributed MIMO and distributed MISO. We consider i.i.d.
Rayleigh fading, i.e. we let the elements of H to be i.i.d.
distributed according to CA/(0, 1). For simplicity, we consider
equal power constraints P, = P, =: SNR.

The feedback links rates are constrained to (31, 82) = (4, 3)
for the cooperative MIMO case, and to (51,02) = (2,1)
for the cooperative MISO case. This implies that optimal
precoders are designed by using respectively up to dpyax = 48
and d,,x = 6 spatial streams for the two cases.

For all the optimization problems involved, we approximate
the statistical averages by their empirical averages obtained
from L = 100 i.i.d. training samples {H;}Z ;, as described
in Sect. III-B, and we use a numerical convex solver. The
performance are then evaluated over a different i.i.d. test set
of Liest = 10000 samples.

B. Precoding From Conventional Centralized Design

In this section we briefly review available suboptimal dis-
tributed precoding techniques derived from centralized design,
used here for performance comparison.

o Statistical precoding (no CSIT): by neglecting the feed-
back, solve
E [log det (I + HXH")],

max
zesiV
tr{Z.n, N <P
tr{E(Ny12N, N+12N] F < P2
and let [G1(s1) Ga(s2)] = Z2.

o Local precoding: each TX is treated disjointly, as if it is
the only TX in the system. Hence, for each TX k, we
run a centralized version of the alternating optimization
procedure in Sect III-B similar to [11], given by the

following two steps:
max E [bg det (I + H<k>2(sk)(H<k>)H)} ,
E(Sk)eSf
tr{E(sk)}ng,
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Fig. 2: Performance comparison vs SNR for (a) (81, 82) =
(4,3) and (b) (B1,52) = (2,1) feedback bits.

g, (H®) € argmax log det (I + H(k)E(sk)(H(k))H> ,
sRESK

where H®) e CN*N s the channel submatrix corre-
sponding to TX k, i.e. [H() H®)| =: H.
We then let G, (s;) = 32 (sp,).

e (Robust) Naive precoding [5]: each TX is optimized by
assuming that the other TX shares the same CSIT. Hence,
for each TX k, we run an instance of the alternating
optimization procedure given by the following two steps:

E [log det (I + HX(s;)H")]

max

zesiV
tr{3p.n,1:87(51) } <Py
tr{E(ny1on, Np1:28](52) <P

qr(H) € arg max log det (I + HX(s,)H").
sLESK

We then let Gy, (s;) = 7 (s;,)(er © Iy). Note that each
TX computes both precoders, but only the solution for
its own precoder is kept.

For a fair comparison, although for the design phase the local



1 1.} B £ £2 y 0.} 0. £ £
T )/LV O o4 O f0 O & G
V4
o
0.98 ;‘(/ .
2 g
Lol 1
)]
oS /
-~ I
R 094t 1
| —3- SNR=-5dB
! —>»- SNR = 0dB
0.92 SNR = 5dB |
C/ L | L L L ! ! L
4 5 6 7 8 9 10 11 12 13
d
(a) 4 x 2 Cooperative MIMO
1 R -
f
0.95 7 1
7
/. |
e 0.9 P
2 /)]
pg 0.85 //,
/
= 0.8p , 7 ]
/
075 ’, —~3> SNR=-5dB]| |
: / —>%- SNR = 0dB
07k SNR =5dB | |
2 3 4 5 6

d
(b) 2 x 1 Cooperative MISO

Fig. 3: Relative rate loss vs constraint d < d,,x on the number
of spatial streams, for (a) dyax = 48 and (b) dpyax = 6.

and the naive precoding algorithms assume the RX to adopt
a suboptimal feedback strategy, in the performance evaluation
phase we use the rate optimal strategy given by (17).

C. Simulation Results

In Fig. 2 we plot the performance comparison versus SNR
for the aforementioned setup, normalized by the rate Rpcsit
achieved by the proposed joint feedback and precoders design
given in Sect. III-B. Note that, for the cooperative MISO
case, the local precoding is omitted since it corresponds to
the disjoint optimization of two SISO links, where CSIT is
useless (we don’t consider power allocation over time, see
power constraint (7)).

We observe that, although designed over a training set of
relatively small size, the proposed precoding and feedback
strategy exhibits strictly better performance than the competing
approaches also over the test set. However, this comes at the
price of using d = dp,ax Spatial streams.

In Fig. 3 we plot instead the normalized performance loss of
the proposed algorithm for constraining the maximum number
of data streams given by Sect. III-C. We recall that the
proposed algorithm is suboptimal, especially for low values
of d. However, we observe that, for the considered setting,
it is able to reduce the number of data streams from the
theoretical upper bound d,»x down to respectively d = 6 and
d = 3 for the MIMO and for the MISO case, with negligible
performance loss.

V. CONCLUSION

Inspired by the recent information theoretical findings in
[8], we derived practical guidelines for precoding and feedback
design for cooperative MIMO channels with asymmetric feed-
back rates. The benefits of the proposed methods are assessed
via numerical simulations. Future works include the extension
of the ideas exploited in this paper to the more interesting

scenario of systems with multiple receivers.
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