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Abstract—An open research problem on malware analysis is
how to statically distinguish between packed and non-packed
executables. This has an impact on antivirus software and
malware analysis systems, which may need to apply different
heuristics or to resort to more costly code emulation solutions to
deal with the presence of potential packing routines. It can also
affect the results of many research studies in which the authors
adopt algorithms that are specifically designed for packed or
non-packed binaries. Therefore, a wrong answer to the question
“is this executable packed?” can make the difference between
malware evasion and detection.
It has long been known that packing and entropy are strongly
correlated, often leading to the wrong assumption that a low en-
tropy score implies that an executable is NOT packed. Exceptions
to this rule exist, but they have always been considered as one-
off cases, with a negligible impact on any large scale experiment.
However, if such an assumption might have been acceptable in
the past, our experiments show that this is not the case anymore
as an increasing and remarkable number of packed malware
samples implement proper schemes to keep their entropy low. In
this paper, we empirically investigate and measure this problem
by analyzing a dataset of 50K low-entropy Windows malware
samples. Our tests show that, despite all samples have a low
entropy value, over 30% of them adopt some form of runtime
packing. We then extended our analysis beyond the pure entropy,
by considering all static features that have been proposed so far
to identify packed code. Again, our tests show that even a state of
the art machine learning classifier is unable to conclude whether
a low-entropy sample is packed or not by relying only on features
extracted with static analysis.

I. INTRODUCTION

Both benign and malicious applications have valid reasons
to hide or disguise their internal behavior; the former to deter
attempts to reverse engineer their code and break software
protection mechanisms, and the latter to evade detection from
antivirus engines and security products. A wide range of anti-
reversing techniques exist that modify the binary code of a
program to make it difficult for humans to understand and

for computers to analyze. Among them, code obfuscation and
runtime packing are the most frequently adopted by both
malware and goodware authors.

On the one hand, Obfuscation aims at rewriting a program
in a way that preserves its semantic but complicates its form.
This can be done, for example, by flattening the control-
flow, inserting dead code or opaque predicates, or by adding
sequences of instructions that can confuse disassemblers ([27],
[12], [11], [30], [15], [38]). Obfuscation plugins are often
included in popular compiler toolchain infrastructures (e.g.,
Obfuscator-LLVM [21] and Proguard [23]).

On the other hand, Runtime Packing is a technique that
was originally introduced to save disk space by compress-
ing (at rest) and decompressing (at runtime) the code of
an application. More generally, the term is used today to
describe a class of techniques designed to store a compressed,
encrypted, or otherwise encoded copy of the original program
– thus preventing any static analysis of the code itself. Packed
samples rely on a short unpacking routine that allows them to
reconstruct the original application code in memory and then
execute it.

While the exact fraction of packed malware samples is
still unclear, in a recent study by Rahbarinia et al. [34], the
authors found that 58% of the malicious downloaded files are
packed with an off-the-shelf packer. However, their estimation
does not take into account the presence of custom packers
(35% of packed malware adopts custom packers, according
to [29]). Moreover, the authors rely on signature-based tools
that are known to generate many false positives – as we show
in more detail in Section V. In any case, the widespread
adoption of packing makes the problem of correctly and
efficiently answering the question “is an executable packed?”
fundamental in malware analysis. In fact, many classes of
techniques – such as static analysis, clustering, and similarity
among samples – do not work or provide poor results in the
presence of packed executables. This forces researchers to
pre-process packed samples by introducing a very costly and
time-consuming dynamic unpacking phase, or by completely
replacing static approaches with more resilient solutions based
on dynamic analysis.

A wrong classification of packed samples can also pollute
the datasets used in many malware analysis studies. For
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instance, researchers often rely on datasets that include both
packed and not packed samples, and errors in this separation
can lead to unreliable or difficult to reproduce experimental
results.

To solve these problems, the security community devel-
oped a number of efficient tests to assess the presence of
packing. Historically, the Shannon entropy of a program was
adopted for this purpose, as both encrypted and compressed
data are characterized by a very high entropy — which can
be easily distinguished from that of machine code. While
early studies (e.g., [26]) classified executables just according
to their average entropy, researchers quickly moved towards
entropy computations performed at a lower granularity, i.e., by
relying on sliding windows or by calculating the entropy of
individual sections. These more fine-grained techniques were
often described as very successful in identifying the presence
of packing. For instance, Han and Lee [19] reported 99% of
accuracy and precision by looking at the entropy of individual
sections. Another well-known approach to identify the pres-
ence of packing relies on the use of custom signatures, as
applied by popular tools like Detect It Easy [3], Manalyze [4],
and PEiD [7]. However, this solution is prone to errors, and
it is unable to identify previously-unknown packing routines –
as we show in more detail in Section V.

Since entropy became a discerning metric to discover
packed code, both researchers and malware authors experi-
mented with techniques to pack executables while maintaining
the entropy low. For instance, in 2010, Baig et al. [10]
discussed the possibility of using different encodings to reduce
the entropy and evade the checks performed by antivirus
software. However, the study was purely theoretical, and the
authors did not provide any evidence of the actual adoption of
such schemes in the wild. Two years later, Ugarte et al. [49]
found that samples belonging to the Zeus family contained
trivial countermeasures to tamper with entropy checks. In
this case, the malware authors padded the encrypted data
by inserting the same byte (or a subset of bytes) repeated
multiple times – in Section IV we inspect the details of how
this and the other schemes affects the entropy. Since then,
this phenomenon has been sporadically mentioned by malware
analysts, but it has never been discussed in detail, and its adop-
tion by malware authors has never been measured. Therefore,
even if the existence of low-entropy packing was known to
researchers, it was often dismissed as statistically irrelevant
and with a negligible impact on practical experiments. As
a result, researchers (such as in [26], [33], [39], [48], [34],
[47]) continued to resort to entropy-based metrics and static
signatures to identify the presence of packing. For instance, in
the extensive analysis and large-scale measurement of malware
packing performed to date [47], the authors selected their
samples from VirusTotal [8] by querying for files with an
entropy greater than seven.

Research questions

Even though security experts do not rely solely on entropy
to identify packed samples, there is no systematic study
that measured how prevalent low-entropy packing schemes
are in the wild and whether existing techniques are able to
correctly classify these samples. Moreover, there are popular
tools (discussed in Section V), academic papers (discussed in

Section VI), and even books ([44], [24]) that still adopt the
approximation packed ≈ high entropy. The goal of this paper is
to show that this simple approximation is not correct in a large
number of cases, and to improve our knowledge of low-entropy
packing by answering the following research questions:

1) Which tricks and which packing techniques are used by
real-world malware to lower their entropy?

2) How widespread are these techniques in the wild? Is
low entropy packing a significant trend that needs to be
considered when designing malware experiments?

To answer these questions, we assembled a dataset con-
taining 50,000 low-entropy malicious samples belonging to
multiple families. We then developed a dynamic analysis
tool to classify each sample and categorize the scheme and
transformations applied to the packed code. Our dynamic
analysis tool reported that over 30% of them adopt some form
of runtime packing.

For this reason, we decided to investigate if other features
can still be used to detect the presence of packing. In fact,
while some papers (e.g., [26], [33], [47]) and tools (e.g., [7],
[3]) consider only entropy to distinguish packed from non-
packed malware, state of the art solutions use a combina-
tion of different static features, often based on PE structural
properties. Therefore, we introduced two additional research
questions:

3) Are existing static solutions able to distinguish low-
entropy packing from unpacked samples?

4) If not, can we do that by combining all static features
that have been proposed to date in related works, or new
research is needed to solve this problem?

In Section V we show how the most popular and actively
maintained static tools available today perform on our dataset.
Finally, in Section VI, we collected all the static features that
have been proposed in previous studies as reliable indicators of
the presence of packing. We then trained several classifiers on
the union of these features and tested them on our dataset of
low-entropy malware (containing both packed and not packed
samples). It is important to note that our goal was not to
design a new classification scheme based on the combination
of all existing features but only to understand whether these
features can successfully classify samples in the presence of
low-entropy packers.

II. BACKGROUND

A. Packing and Scope of our Study

Over the years, anti-reversing techniques have evolved in
several directions, which include code obfuscation, compres-
sion, encryption, polymorphism, metamorphism, and runtime
packing. This process and the real-world adoption of these
techniques have been largely discussed in [50], [31], [36], [47].
Since packing, as used by today’s malware, does not have a
precise definition, it is essential to clarify which techniques we
cover, and which we do not, in the rest of the paper.

First of all, to draw a line between packing and other
forms of anti-reversing, we consider packing only when I) the
original code of the application is already present in the file
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but is NOT present in an executable form (i.e., it is encrypted,
compressed, or otherwise transformed), and II) the original
instructions are later recovered and executed at runtime. We
consider instead obfuscation when the code is present in the
binary and it retains the ability to be executed, even if it is hard
to understand (for humans and/or automated tools) or analyze
because it was re-written with the goal of hindering reverse
engineering. For the same reason, if a program encrypts all its
data but not its instructions, we do not consider that as a form
of packing in our study.

Dynamically-generated code (that also includes self-
modifying code) is a generic term that refers to techniques used
to generate or modify code at runtime dynamically. In a broad
sense, packing relies on these techniques, and it is, therefore, a
form of dynamically-generated code. However, not all forms of
dynamically generated code are packing – for instance in the
case of just-in-time compilers. To distinguish among the two,
in our study we measure the size of the unpacked code (see
Section IV) and use this information to separate the cases when
the actual application code is unpacked from the cases when
just a small snippet of code (e.g., a shellcode) is generated at
runtime.

Second, we limit our analysis to runtime packers that
recover and execute the original code at runtime. Droppers
that download a compressed archive from the Internet, unpack
them on disk and then run the contained application are outside
our scope (as both the dropper and the dropped files could be
independently statically analyzed).

Finally, we do not consider emulators (like those included
in the Themida packer) that transform the original instructions
into a new instruction set and then execute them by using a
custom emulator. In fact, in this case, the original code is never
recovered, but instead permanently replaced with an (often
randomized) instruction set.

B. Entropy of Executable Files

Entropy is a metric to measure the uncertainty in a series
of numbers (or bytes) or, in other words, to capture how
difficult it is to independently predict each number in the series.
The difficulty in predicting successive values can increase or
decrease depending on the amount of information the predictor
has about the function that generated the numbers, and any
information it retained about the prior numbers in the series.

In particular, the Shannon entropy H of a discrete random
event x tries to predict the number of bits required to encode
a piece of data, as given by the formula:

H(x) = −
n∑

i=1

P(xi) log2(P(xi))

where P(xi) is the probability of the ith unit of information
(such as a number) in event x’s series of n symbols. This
formula generates entropy scores between 0.0 and 8.0 when
considering that each symbol can have 256 values as it is the
case for binary data. Both lossless compression and encryption
functions typically generate high entropy data. In fact, lossless
compression functions start by generating a statistical model
for the input data, then use such a model to map input data to
bit sequences in a way that frequently encountered data will

produce a shorter output than infrequent ones; this removes
predictability, which increases the entropy. The same applies
to encryption functions, as they are specifically designed to
generate unpredictable data.

Since the generation of a packed executable often relies
on compression and/or encryption to disguise the application
code, packed files are usually characterized by having a high
entropy. As a consequence, entropy was the primary metric
used in the past to classify packed executables [26].

However, many file formats for executables, such as
Portable Executable (PE), Executable and Linkable Format
(ELF), and Mach Object (MO) divide the file into a number
of isolated sections. Obviously, this way of partitioning an
executable affects the distribution of its entropy. For instance,
machine instructions are often redundant, thus resulting in
middle-range (typically 5-to-7) entropy scores, while strings
of English text result in even lower entropy values (on average
4.7 [18]) due to the limited number of characters they employ.
To better discriminate among different areas of an executable,
researchers replaced file-level entropy scores with a more
fine-grained computation performed at the level of individual
sections [19] or by applying a (sliding) windows over the
program’s bytes [32], [48].

C. Entropy and XOR Encryption

Since packing usually encrypts code to hide it, we set up
an empirical experiment focused on PE x86 code encryption
to distinguish between average and high entropy values of
plain and encrypted code. On Windows 7, we installed the
top 10 applications from the Microsoft Store [28], including
top browsers and the Visual Studio IDE. We then randomly
selected 1, 000 PE executable files, both 64 and 32 bit, from
the Program File folder1. For each of them, we calculated
the entropy of their .text sections; then we XORed the
.text section with a randomly generated key, and we re-
calculated the entropy of this new encrypted data. We repeated
the experiment 128 times, changing the key length from 1 to
32 Bytes.

Figure 1 shows the evolution of the entropy for different
key lengths. The circle shows the mean of the 128 experiments,
the thick vertical line is the standard deviation, and the thin
vertical line shows the range between the maximum and
minimum value. As shown in the image, the entropy slowly
grows accordingly to the length of the key. When the key
length is only 1 Byte long, the entropy does not change as this
is just a substitution of the plain-text code and does not alter
the frequency of the symbols. Our test shows that the average
entropy of real-world plain x86 code is around 6.2±0.3, and by
using a 2-bytes key the entropy increases to 6.7±0.3. Figure 2
shows the difference between the means of the entropy of the
XORed code and the original code – emphasizing the rapid
effect that the key size has on the entropy of the data.

Finally, we observed that state-of-the-art approaches [47]
and frequently used tools (e.g., [3], [4], [6] – discussed in
Section V) adopt 7.0 as entropy threshold to separate packed
and not packed executables. According to our graphs, this

1We ensured that each file was not previously packed by using the tool we
presented in Section III.
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Fig. 1. .text section entropy w.r.t. XOR encryption

Fig. 2. Encrypted .text section – difference in entropy means

value is obtained on average by xor-ing the code with a key of
3 bytes. In the rest of our paper, we will use this threshold to
distinguish low entropy data (H < 7.0) from high entropy data
(H ≥ 7.0) and we use this value to construct our low-entropy
malware dataset.

III. PREVALENCE OF LOW-ENTROPY PACKING

A. Dataset

We built our dataset by downloading 50, 000 Portable Exe-
cutable (PE) files, (excluding libraries and .Net applications),
randomly selected among those submitted to VirusTotal [8] be-
tween 2013 and 2019. We only selected PE samples classified
as malicious by more than 20 antivirus engines, and such that
the entropy of each section, of the entire file, and of potential
overlay data2 were less than 7.0 (as motivated in Section II-C).
We adopted these conservative criteria to ensure that a sample

2The overlay is just appended data to the end of the executable file that is
ignored when loading an executable into memory because it is not covered
by the PE header. Anyway, opening the executable file in reading mode will
allow access to the entire file including the overlay portion.

is certainly malicious and contains neither compressed nor
encrypted data.

Furthermore, we collected a second smaller dataset contain-
ing 476 samples used in APT campaigns [1], which satisfies
the same low entropy constraints. From now on, we will refer
to this dataset as the APT dataset. The samples belonging to
the APT dataset were collected over a period spanning from
2015 to 2018.

B. Analysis

To carry out our first experiment, we designed and imple-
mented Packer Detector (hereafter, PD ), a dynamic analysis
tool built on top of the PANDA [17] analysis framework.
The goal of PD is to precisely trace unpacking behavior by
monitoring when a sample executes a memory area which it
previously modified. The analysis of a single sample produces
as output several text files that are subsequently analyzed to
reconstruct the behavior of the sample.

Since the original code of a packed sample is hidden,
the unpacking procedure must carry out some operations to
retrieve, restore, and store somewhere in memory the unpacked
code. For this reason, PD dynamically executes the target
sample on a virtual machine (Windows 7, 64 bit) by spawning
the corresponding process and monitoring its registers and
memory content. Each sample is executed until the main
process exits or until a maximum timeout of 40 minutes is
reached. The virtual machine gateway points to an INetSim3

instance, which provides fake HTTP/S and DNS responses
to deceive the sample under analysis into believing that it is
connected to the Internet. Despite INetSim delivers fake files
based on the file extension in the HTTP request (e.g., .html or
.exe), it is configured to avoid returning any executable code,
since we do not want to analyze malware which uses external
data because it can violate our low entropy constraints.

PD collects write accesses on the memory of the main
process and, if applicable, of its child processes, and stores
this information as a list [WL] (Writes List) of tuples.
The memory accesses are detected thanks to the PANDA
callback PANDA_CB_VIRT_MEM_AFTER_WRITE which is
raised every time a process performs a memory write. If the
PID matches with that one of the process under analysis
(or with one of his child ones), we store a tuple in the
list [WL]. Each tuple contains the Program Counter (PC)
register pointing to the instruction that triggered the write
operation and the target address AW (Address Written) of
the operation. This means that for the i-th write operation
to the address AWy performed by the instruction at address
PCx, we have a tuple 〈PCx, AWy〉i ∈ [WL]. If the write
operation involves more than one byte, the system stores them
separately. For instance, if a sample executes the instruction
“ mov WORD PTR [0x1000], 0x4142 ” at the address
0x1234, PD manages the size directive adding the tuples
[〈0x1234,0x1000〉, 〈0x1234,0x1001〉] ∈ [WL]. Further-
more, if the PC reaches a previously written address in the
tuple 〈PCx, AWy〉 ∈ [WL] (i.e., AWy points to instruction
that it is getting executed), it copies the tuple into another
list [WXL] (Written and eXecuted List); at the end of the
execution this list will contain all the written-then-executed

3https://www.inetsim.org/
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addresses and the PC values that triggered the write operation.
When the sample terminates, PD analyzes the [WXL] list:
if the sample is packed, the list is not empty and it encom-
passes some memory regions of consecutive addresses (modulo
the x86 length of instructions) that contained the unpacked
code. However, when a sample manually loads a Dynamically
Linked Library (DLL) and then executes one of its functions,
PD would detect this behavior as part of an unpacking routine.
To remove this noise, our tool further checks whether the
program counter points to code that belongs to a DLL, and
remove these cases from our analysis. We also use a threshold
of 800 bytes on the length of the [WXL] list to exclude
samples which simply decrypt a short shellcode, a behavior
that we do not consider a form of packing and that anyway
would likely not significantly affect the overall entropy.

The heuristic adopted by PD can also generate false
negatives (i.e., packed samples detected as not packed) if
the sample runs incorrectly because of an unexpected crash,
incorrect command-line arguments, missing dependencies, or
virtual environment evasion 4. To avoid the risk of polluting
our dataset with wrong labels, we decided to conservatively
discard the samples that did not exhibit a sufficient amount
of runtime behavior, and that therefore might have been
incorrectly executed. This includes samples that did not invoke
at least ten disk- or network-related syscalls as well as samples
whose executed instructions did not span at least five memory
pages. For this reason the PD hooks the disk/network-related
syscalls (for instance NtOpenFile or NtCreateFile) relying on
the syscall hooking interface offered by PANDA. We also keep
track of the code coverage of the sample, i.e., the number
of instructions executed compared to the total number of
instructions in the executable sections (typically .text). The
goal of these selection criteria is not to detect evasive malware,
which is still an open problem, but to remove from our dataset
those samples that could be incorrectly classified as not packed
simply because they failed to run. By applying these simple
heuristics, we removed a total of 3, 705 malware samples from
our dataset. Based on our conservative thresholds, it is safe to
assume that the remaining samples executed long enough to
at least unpack their code. For this reason, from now on, we
consider 46, 295 as the total number of samples over which
we compute our results.

C. Results

During our analysis, we run into a class of samples that,
while packed with a high-entropy scheme, evaded our set of
filters described in Section III-A. These samples contained
encrypted data, but the data was not stored in any of the section
nor the overlay area. For instance, a family of file infectors
adopted this technique to inject its encrypted code in an area
created between the PE header and the first section. While
this data belongs neither to the PE header nor to any section,
it is automatically loaded in the main memory at runtime
(unlike, for instance, the overlay data that needs to be manually
loaded by the program). Moreover, since the size of this
encrypted code is small with respect to the size of the entire file
(approximately 2.6%), it has little impact on the total entropy

4Virtual environment evasions are techniques aimed at detecting whether
an executable is running on bare-metal or a virtual machine (regardless of it
being emulated or based on a hypervisor).

Fig. 3. Dataset composition (cardinality = 46, 295)

of the file. In addition to the area between the PE header
and the first section, we have also discovered samples that
used the empty area (if present) among sections to store their
packed data. In total, 11.6% (5, 386/46, 295) of the samples
in our dataset adopted this interesting, and to the best of our
knowledge previously undocumented, scheme to store packed
code in a way that evades common entropy-based checks.
Among them, the two prevailing families were hematite (64%)
and hworld (35%). Since these samples successfully evaded
our entropy checks but without using a low-entropy scheme,
we decided to consider them as a separate category in our
dataset.

Over the remaining low-entropy samples, our tool discov-
ered that a stunning 31.5% (14, 583/46, 295) employed some
form of packing. This shows that entropy alone is a very poor
metric to select packed samples and that roughly one-third of
the samples with entropy lower than seven are still adopting
some form of runtime packing to prevent static analysis. This
percentage is even higher if we exclude the samples with
hidden high-entropy data. In other words, if we pick a random
malware sample that contains no information with entropy
higher than seven, according to our experiments there is a
35.6% probability (14, 583/40, 909) that it is packed with a
low-entropy scheme. The overall composition of our dataset is
summarized in Figure 3.

We also downloaded the VirusTotal report of every sample
in our dataset and using AVclass [40], a malware labeling tool,
and we have identified the family associated to each sample.
Table I reports a ranking of the top ten families in the packed
and not-packed categories.

Finally, in the APT dataset we did not find any sample
that has hidden high-entropy data, while low entropy packing
schemes were adopted by 15% of the samples. This shows
that low entropy schemes are a well-known practice for mal-
ware authors nowadays and the phenomenon is significantly
widespread in the wild, leading us to our next research
question: which packing techniques do malware authors adapt
to keep the entropy below the suspicious threshold?
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TABLE I. TOP 10 FAMILIES DISTRIBUTION IN OUR DATASET

Packed % Not packed %
sivis 28.0 lamer 10.4

unruy 11.6 daws 8.8
vobfus 9.5 vbclone 8.0
dealply 5.4 sivis 7.5
upatre 4.1 triusor 4.5
shipup 4.0 flystudio 4.0
gepys 3.5 zegost 3.9
vilsel 2.9 mailru 3.6
sality 2.3 high 2.9

hematite 2.0 nitol 2.4

TABLE II. LOW ENTROPY SCHEME

Scheme Effect on Entropy
Padding Decrease
Encoding Decrease
Mono-alphabetic Substitution Unchanged
Transposition Unchanged
Poly-alphabetic Substitution Slightly increase

IV. LOW ENTROPY PACKING SCHEMES

In this section, we describe the experiments we conducted
to enumerate and analyze the different techniques adopted by
malware authors to keep the entropy below detectable levels,
and measure the frequency in which they appear in our dataset.
We emphasize that we refer to low entropy packing schemes
regardless of their effect on the entropy (increasing, decreasing,
or unchanged), as long as such schemes produce low entropy
data according to our results in Section II-C. Moreover, it
is important to note that sophisticated packers often involve
several layers of unpacking routines, in which the first layer
unpacks the second one, which in turn unpacks the next layer
and so on until the original code is reconstructed. However, for
our purpose, we only need to study the first unpacking layer,
as it is the only visible from a static analysis point of view
and the only one that determines the entropy of the data. As
we will discuss later in this section, malware authors may also
decide to use stronger encryption in deeper layers as long as
they keep the entropy of the first layer low.

A. Schemes Taxonomy

We can divide the low entropy schemes observed in the
wild into five main categories, summarized in Table II. The
table also shows the effect that each scheme has on the final
entropy. While some techniques can be used to effectively
lower the entropy of data (and therefore ‘hide’ an already
packed sequence of bytes), others can only maintain (or
slightly increase) the current entropy, thus requiring to be
applied as standalone solutions on the original application
code.

Byte Padding includes all techniques in which additional low-
entropy data is added to the packed section to decrease the
overall entropy. This data typically consists of a single byte,
or a repetitive subset of bytes, that are either appended at the
end of the code or interleaved with the packed instructions.
The unpacking routine, accordingly, skips over the padding

while restoring the original instructions. Byte padding alone
is not a packing technique, and therefore it is often used in
combination with other encryption or compression schemes.

Encoding-based schemes decrease the overall entropy by
representing the packed information using a different number
of bits, thus encoding the same data with a different alphabet of
symbols. Although we observed some samples applying well-
known encoding schemes to pack their code, other malicious
samples often implement their custom encoding (during our
analysis we just observed 6-bit alphabets). As encoding-based
schemes can lower the entropy of high-entropy data, they can
be used to mask multi-layers approaches that also employ
traditional encryption packing.

Monoalphabetic Substitution-based approaches aim at re-
placing every single byte in the packed payload with a different
byte, computed either by using a simple algorithm (e.g., a
XOR with a 1-byte key) or by looking up each symbol in a
translation table.

Transposition is another technique that does not alter the byte
distribution and the entropy of the data. In this case, either
individual bytes or sequences of bytes are shuffled around
to recompose the original code. Sometimes the transposition
scheme is fixed, while in other cases the samples embed the
‘instructions’ to reassemble the bytes in the correct order in
the packed data itself.

Polyalphabetic Substitution schemes are simple crypto-
graphic techniques that extend simple byte substitution by
using multiple substitution alphabets. Common examples of
this approach are the classic Vigenère cipher or the XOR
encryption with a multi-byte key. While these techniques
usually result in an increased entropy score, the use of very
short keys (e.g., 2-4 bytes, as shown in Section II-C) do
not significantly modify the byte distribution, and therefore
it limits the increase of the entropy level.

B. Schemes in action

To give an idea of how such schemes work on a real
example, we have taken a benign file from the samples we
used in the experiment in Section II-C. In particular, we
have chosen a sample with the entropy of its .text section
corresponding to the average entropy we previously measured
in the same experiment. Then, we applied an example of each
of the different low-entropy scheme listed above on its .text
section. As shown in Figure 4, we implemented respectively:
padding – interleaving the byte 0x64 after each original
byte (thus doubling the size), encoding – base64, substitution
– XOR with a one-byte key, transposition – byte ordering
reversed, poly-alphabetic substitution – XOR with 4 Byte long
key. The graph shows for each byte [0, 255] (represented on
the x-axis) its frequency in the data (on the y-axis) plotted
on a logarithmic scale. In the padding plot, the 0x64 byte
is the most frequent; this scheme is noteworthy for the way
that it effectively decreases the entropy, with the downside of
increasing the original source size. The encoding plot contains
only the bytes belonging to the base64 scheme, decreasing the
entropy accordingly. Looking closely at the Substitution plot,
the reader can notice that the frequencies are shuffled w.r.t.
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the original distribution; for example, given that we used the
byte 0x32 as the key, the original 0x00 byte frequency has
been moved (0x32 ⊕ 0x00 = 0x32) to the 0x32 (50 in
decimal) frequency. Given that the frequency distribution does
not consider the order, the transposition and the original plot
are identical, including the entropy. Lastly, the poly-alphabetic
substitution is characterized by a more uniformly distributed
bytes frequency, and in fact it is the only one that increases
the entropy over the 7 threshold.

Fig. 4. Byte Frequency Distribution w.r.t. Schemes

Fig. 5. Architecture of our analysis tools

C. Scheme Classifier

Once Packer Detector identifies a sample as using some
form of runtime packing, a more refined analysis is needed
to detect to which of the previously introduced five categories
the low-entropy packing scheme belongs to. To accomplish
this second set of experiments, we developed another dynamic
analysis tool, also based on PANDA, that we call the Scheme
Classifier. This tool relies on the output of Packer Detector and
applies some heuristics based on the fact that every packing
scheme needs to follow the same steps: i) locate and access
the source buffer that contains the low entropy packed data, ii)
perform operations on such data, iii) write the unpacked data
in the destination buffer. We sketched the architecture of our
tools and how they are integrated together in Figure 5.

It is worth remembering that the output of Packer
Detector is a list of tuples, named [WXL]. Each tuple
〈PCx, AWXy〉 ∈ [WXL], contains the program counter PCx

of the instruction that triggered the write operation in memory,
and the target address AWXy where the information was
subsequently stored and executed. Accordingly, this informa-
tion defines the memory regions that contain the destination
buffer of the unpacking routine. Moreover, given that PANDA
supports the deterministic record and replay of a sample, the
tool performs its analysis by replaying the same trace that was
recorded by Packer Detector. For each unpacking operation,
the Scheme Classifier disassembles (using Capstone [2]) and
analyses the assembly instructions executed just before the
memory write to the destination buffer. It then parses the
assembly code and, by relying on the PANDA framework, it
reads the values contained in the registers and in the referred
memory addresses. The instructions and the values we obtain
are used for two reasons: first, the Scheme Classifier performs
a backward data-flow analysis to locate the source buffer (Sb) –
where the packed data is located. This corresponds to the iden-
tification of all the memory read operations which are supposed
to contain the packed code which is being unpacked. For this
purpose the Scheme Classifier relies on the PANDA callback
PANDA_CB_VIRT_MEM_AFTER_READ, which is triggered
every time a memory read operation is performed by the
process we are tracking (in our case the sample under observa-
tion). Second, the Scheme Classifier extracts all the mathemat-
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ical operations that are applied to the source bytes to generate
those in the destination buffer (Db). To achieve this second
step, the tool makes use of the PANDA_CB_INSN_EXEC
exported by PANDA, which allows us to analyse all the
instructions actually executed by the sample. Since we already
know the program counter values corresponding to interesting
memory writes (as Packer Detector provides such values in
the [WXL] list as mentioned before), we just need to track
these specific values and the previous mathematical instruc-
tions without taking care of the other instructions executed.
It then uses these two pieces of information to classify the
possible packing scheme adopted by a sample, by following
this sequence of rules:

1) The Scheme Classifier first applies some rules to iden-
tify the presence of known encoding schemes (base64,
base32, ...) in the source buffer Sb. If it recognizes
a standard encoding, the Scheme Classifier marks the
sample as encoding.

2) If the frequency of the bytes in the source and destination
buffers is the same, but bytes appear in a different order,
it classifies the scheme as a transposition.

3) If the byte distribution in the Db is shuffled with respect to
the Sb and the entropy is the same, the Scheme Classifier
reports it as mono-alphabetic substitution.

4) It then looks for arithmetic/logic operations (XOR, ADD,
...) that modify the Sb and write to the Db. If it finds an
interesting cryptographic operation, it tries to extract the
potential encryption key by analysing the disassembly and
reading the value stored in the registers and memory. For
example, if before a memory write, the target value was
previously XORed with a 2-bytes fixed value, this means
that the sample is using a XOR encryption with a 2-bytes
key. In this case, the unpacking scheme is classified as
poly-alphabetic (the mono-alphabetic case is captured in
the previous step).

5) If no interesting operations are detected, the Scheme
Classifier looks at the entropy of the input buffer. If it
is the same that would be obtained by applying a known
encoding to the output buffer, but the set of symbols is
different, it marks it as a potential custom encoding.

6) When Sb and Db match except for a subset of bytes that is
present with high frequency in Sb and with low frequency
in Db, the Scheme Classifier infers that byte padding is
being used.

7) When the Scheme Classifier cannot apply any of the
previous techniques, it marks the scheme as unknown,
and leave it for a further manual investigation.

D. Results

In Table III we report the result of the Scheme Classi-
fier; namely, the distribution of low-entropy schemes that we
observed in our fine-grained analysis performed over all the
14, 583 samples found by Packer Detector. When possible,
we also specify the specific type of transformation that is
employed. It is also worth noting that the heuristics applied
by the Scheme Classifier are extremely time-consuming: in
average, they require around 90 minutes per sample.

XOR-based encryption is by far the most prevalent tech-
nique in our dataset, accounting for more than 76.7% of
the analyzed samples. It is present both in its simplest form

TABLE III. SCHEME DISTRIBUTION

Scheme Type %
Padding - 8.0

Encoding standard 3.9
custom 0.5

Mono-alphabetic Substitution
XOR 29.8
ADD 5.2

ROL/ROR 0.5
Transposition - 0.3

Poly-alphabetic Substitution XOR 46.9
ADD 2.8

Unknown - 2.1

(xor with a single constant byte) in 29.8% of the cases,
as well as with multi-byte keys of various length. A basic
(base64) encoding was used in 3.9% of the samples, while
padding accounted for slightly more than 8%. In 97.9%
(14, 276/14, 583) of the cases the Scheme Classifier detected
a tangible unpacking scheme, so we are reasonably sure that
the vast majority of the samples discovered by the PD are
actually packed. The remaining 2.1% (307/14, 583) contains
either samples adopting unforeseen schemes that we could
detect with our tool, or possibly samples using other forms
of dynamically-generated code that were not removed by our
heuristics.

V. SIGNATURE AND RULE-BASED PACKER DETECTION

So far, we have discussed the nature and measured the
prevalence of different low-entropy packing schemes adopted
by real malware in the wild. Our experiments show that this
is a ubiquitous phenomenon and that entropy alone cannot
be used as a reliable indicator to identify the presence of
packing. However, beyond simple entropy, security researchers
also proposed other tools and techniques to identify packed
samples. In this second part of the paper, we measure to which
extent these alternative approaches allow us to distinguish
packed from non-packed samples in presence of low-entropy
schemes.

Signature-based solutions identify known packers by rely-
ing on a (typically manually curated) set of patterns that are
associated with known off-the-shelf packers. Existing engines
for pattern detection vary in complexity, from the ones that
work on raw bytes to those that recognize and reason about
the file structure. This difference consequently influences the
expressive power of the employed signatures.

For our experiments, we have chosen the most popular and
actively maintained tools available today that rely on open
signatures: Detect It Easy [3], Manalyze [4], and PEiD [7].

Detect It Easy (DIE) adopts an open architecture of signa-
tures, based on a scripting language similar to JavaScript. This
language provides great flexibility and expressive power that
allows DIE to declare complex and fine-grained signatures.

PEiD is another widely used tool for statically analyze PE files,
looking for most common packers, cryptors, and compilers.
PEiD signatures only contain low-level byte patterns, which
can be optionally matched either at the PE file’s entry point
or anywhere in the file.
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Manalyze is a static analyzer for PE files, composed of several
plugins. Its packer detection plugin adopts signatures based
on the name of the PE sections (for example the UPX packer
compresses all existing sections and renames them as UPX0,
UPX1, etc.) as well as several rule-based heuristics designed
to capture anomalies in the PE structure typically associated
with the presence of packing, including unusual section names,
sections both writable and executable, low number of imported
functions, resources bigger than the file itself, and sections with
entropy greater than 7.0 – that is the same threshold we used
for constructing our dataset.

DIE and PEiD also have a dedicated component for the
entropy. Even if they have different thresholds (DIE 7.0 by de-
fault, PEiD is not open source so we cannot report the precise
number), all of them classify an executable as packed when its
entropy is greater than a certain value. Also, the python module
pefile [6], often used to parse and edit PE headers, contains a
function that estimates if the input executable is packed, and
it is solely based on the entropy. This fact highlights how this
metric is still relevant nowadays and how popular tools still
support the correlation between high entropy and packing.

Signature scan results

Probably because of its finely tuned signatures, DIE detects
no well-known packer in our entire dataset. This is not a bad
result, as we expect the vast majority of samples in our dataset
to rely on custom packing routines. In fact, popular off-the-
shelf packers are widely known and easily recognizable, thus
making it more unlikely for them to ‘fly under the radar’,
which is the main advantage of adopting a custom low-entropy
scheme.

In contrast, both PEiD and Manalyze generated a large
number of alerts, as summarized in Table IV. The result of
both tools are comparable, but also quite surprising, as they
consistently detected the presence of packing more often in
not packed samples than in the packed group. For instance,
signature-based mechanisms recognized 1.7%-to-2.6% of sam-
ples in the packed group but misclassified 9.6%-to-13.1% of
the entries in the not packed dataset. For Manalyze this is due
to the presence of sections names that correspond to those used
by some off-the-shelf packers. We cannot say for sure why the
malware authors used those names. They could be fake clues
used on purpose to deceive automated tools into believing that
a sample is packed with a known packer and, consequently,
to trigger the use of unpacking routines that would invariably
fail on the program.

Table V shows the top five common packers detected by
these signature-based systems. Given that our dataset only
contains samples with low entropy, the presence of compressor
packers (UPX, UPolyX5, and ASPack) and a crypto packer
(Petite) immediately suggests that these are probably all false
positives. In any case, we run existing unpacking tools for
UPX, UPolyX, and ASPack and confirmed that all of them
failed and found no sign of packing. We also manually
inspected samples reported as PolyEnE and Petite (as no
tools are available for these packers) and again confirmed
that there were no traces of these packers. A closer look at

5UPolyX is basically a scrambler (thus, it does not affect entropy) that needs
a UPX packed input file to produce a number of different output files.

the matching PEiD signatures revealed that they were often
too general, or designed to match anti-disassembly tricks and
strings that could also be used in other contexts. The only case
we were able to confirm consisted of three samples recognized
as packed (also confirmed by our Packer Detector) with Beria.
Samples packed with Beria contains two types of byte, which
we call “original” and “metadata”. During the unpacking
routine, the metadata bytes are evaluated through an algorithm
that computes the correct offset where the original bytes need
to be written inside the destination buffer. This approach does
not increase the entropy as the original bytes appear unchanged
(just not in the correct order) and the metadata bytes follow a
strict and repetitive pattern.

Table IV also reports the alert generated by the Manalyze
heuristic component, which flagged 57% of the packed samples
and 23% of non-packed samples as likely packed. By inves-
tigating the internal logs, these misclassifications are mainly
due to the presence of unusual section names or of executable
permission on writable sections.

In conclusion, existing signature-based tools are well suited
to detect the presence of common off-the-shelf packers, but
unfortunately, generate a large number of false alerts on non-
packed samples. Even worse, these false positives are more
frequent on non-packed malware than on those packed by using
low-entropy schemes, which suggest that these samples are
difficult to classify statically.

VI. ML-BASED PACKING DETECTION

If the use of signatures or hard-coded heuristics failed to
detect the packed samples in our dataset, this does not rule
out the possibility to find other discriminatory features that
can help identify even the most elusive form of packing.

Therefore, in the following section we explore alternative
static analysis approaches proposed by other researchers. We
first survey the state of the art and gather all the features
that have been proposed in the past. In order to evaluate
the performance of these features, we implement a machine
learning classifier based on the union of all these features.
With this, we do not intend to propose a new classification
system, nor to compare existing approaches with respect to
each other. Instead, like in previous sections, our goal is simply
to evaluate whether these features are able to correctly classify
our low-entropy set of samples.

A. Feature Extraction

Lyda and Hamrock [26] were the first to take into con-
sideration entropy (computed initially over the entire file) as
a metric to classify packed malware. The basic idea was
then refined to calculate the entropy for each section of the
sample [19] or over small byte windows [49].

Researchers also investigated the use of machine learning
to train a classifier over a large number of static features.
To start with, many authors [14], [33], [42], [46], [16], [41]
proposed features that captured specific anomalies that packers
introduce in the PE file format. Even if such features could
identify off-the-shelf packers with a high level of accuracy,
samples making use of custom packers could successfully
evade all the checks based on the file structure alone. As a
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TABLE IV. SIGNATURE-BASED DETECTION RESULTS

Dataset Manalyze signatures Manalyze heuristics PEiD Manalyze Sig ∧ PEiD
Packed 242 (1.7%) 8,358 (57.3%) 386 (2.6%) 214 (1.5%)

Not Packed 2,518 (9.6%) 6,023 (22.9%) 3,438 (13.1%) 2,487 (9.4%)
Hidden H-E data 0 (0%) 14 (0.3%) 2 (0.1%) 0 (0%)

TABLE V. WELL-KNOWN PACKERS DETECTIONS

Packed Not Packed
Name % Name %
UPX 1.1 UPX 10.0
ASPack 0.5 ASPack 1.2
UPolyX 0.5 UPolyX 1.2
Petite 0.1 PolyEnE 0.7
PolyEnE 0.1 Petite 0.4

consequence of this, malware researchers extended the sets
of features to include some that would allow capturing the
presence of custom packing routines better. For instance, the
approaches proposed in [32], [9], [39] and [48] adopt a larger
collection of features that include structural PE attributes,
heuristic values, entropy-based metrics, byte n-grams, and
disassembly opcodes. Other heuristics includes the raw data
per virtual size ratio (computed over all the sections), the ratio
of the sections with virtual size higher than raw data or the
fact that the entry point is outside any section.

In 2010, Jacob et al. [20] extended the idea of n-grams
analysis by proposing a methodology for detecting the simi-
larity between packed samples, which takes into consideration
the n-grams fetched from the code sections and tunes them
according to the noise introduced by the different packers. In
2019 Lim et al. [25] proposed to analyze executable files as
a stream of bytes, and discuss several statistical properties to
determine the randomness level of each stream. Finally, we
considered some dynamic unpackers ([13], [43]) that rely on
static features to understand if the unpacking procedure is
correctly terminated. Unfortunately, while some of these works
included custom packers in their experiments, none of the
aforementioned proposals considered the presence of samples
packed with low-entropy schemes.

We are only aware of two exceptions to this rule. In
2012, Ugarte et al.[49] performed several experiments which
included some samples of the Zeus botnet, one of the first
families that adopted a low entropy packing scheme. However,
the approach proposed by the authors is tailored to the single
specific case documented in their paper and would fail to
address other common low-entropy techniques. Therefore, we
did not include this technique in our study.

Raphel et al. [35], instead, focused their study on the use
of XOR-based encoders. In this work, XOR encryption is
recognized as a form of obfuscation mainly used to encrypt
small parts of the code like shellcodes. The idea was to
refine the use of entropy to recognize samples that adopted a
XOR-based scheme. Mainly, their approach relies on 5 steps:
(i) extraction of fragments from files; (ii) computation of
entropy for each fragment; (iii) concatenation of fragments;
(iv) computation of entropy for each concatenated fragment;
and (v) construction of a similarity distance matrix based
on the previously computed values for each file pair in the

dataset. Like in the previous case, this solution targets a very
specific problem and is not directly applicable to the type
of packers we are studying because the authors designed it
with the purpose of detecting small portions of encrypted code
(essentially schellcodes). Anyway, we considered this approach
in our evaluation.

To summarize, we can group the proposed features in six
different families:

• PE Structure: values extracted from the PE headers.
• Heuristics: features produced as a result of common

knowledge about characteristics of packed PE files.
• Opcodes: sequences of assembly instructions extracted

from the executable sections.
• N-grams: sequences of N bytes extracted from the entire

file or some of its sections.
• Statistical features: evaluation of statistical properties

about the randomness of a sequence.
• Entropy features: features based on the computation of

entropy with respect to some areas of the file (sections,
overall file, sliding windows).

Table VI summarizes all the presented static analysis ap-
proaches and lists the categories of features as well as how the
authors constructed the dataset they used in their experiments.

B. Evaluation of Static Features on Low-entropy Packers

In this section, we evaluate the reliability of the previously
discussed static analysis techniques in detecting packed sam-
ples.

To assess this, we use our dataset of 40,909 samples
(i.e., all running programs minus the samples with hidden
high-entropy data, because those can be detected with proper
entropy analysis). For the same reason we also decided not
to include in the dataset any high-entropy packed samples,
i.e., those using traditional packing schemes such as UPX,
ASPack, and Armadillo. In summary, our dataset contained
14, 583 samples packed with low-entropy schemes and 26, 326
not packed samples. From now on we will refer to this subset
of samples as the ML dataset.

For each malware in the ML dataset, we extracted all
the features adopted by the 15 state-of-the-art approaches
discussed in the previous section, and summarized in Table VI.
We refer each approach through an index i, where 0 <=
i <= 14. The ith approach applies several ML algorithms
using an input vector of n features V (i) = [f0i , ..., fni ] where
fmi represents the mth feature of the i − th approach, with
fmi

∈ R. To simplify the experimental setup, we joined
the feature vectors V (i), for i = 0, .., 14, in a single vector
W = [V (0)|...|V (14)]. If two or more approaches rely on the
same feature, we considered it only once. We point out that
the vector W includes the entropy features as well. To verify
if entropy still plays a role as discerning metric, we define the

10



TABLE VI. OVERVIEW OF PREVIOUS APPROACHES

Paper Proposed approach Features Dataset construction

Lyda et al. [26] Entropy analysis Entropy Not Packed: benign executables
Packed: Packers manually applied to benign executables

Choi et al. [14] Machine learning PE Structure
Heuristics

Not Packed: benign executables and PE files from AV manually analysed
Packed: benign executables and PE files from AV vendors manually analysed

Perdisci et al. (1) [33] Machine learning
PE Structure
Heuristics
Entropy

Not Packed: benign executables
Packed: malware from MALFEASE project and
application of a set of packers benign executables

Perdisci et al. (2) [32] Machine learning Same as [33]
N-grams

Not Packed: malware from MALFEASE project
filtered with state-of-the-art unpackers ([37], [22])
Packed: malware from MALFEASE and benign executables

Santos et al. [39] Machine learning
PE Structure
Heuristics
Entropy

Not packed: benign executables and malware from VxHeavens
Packed: Variants of the ’Zeus’ family and application
of a set of packers to the benign executables

Ugarte-Pedrero et al. [48] Machine learning Same as [39]
N-grams

Not packed: benign and malicious executables filtered by PEid,
entropy analysis, IAT entries, imported dlls and ratio of standard sections
Packed: Application of a set of packers to the benign executables, malware
reported by PEid as not packed, malware from ’Zeus’ family

Devi et al. [16] Machine learning PE Structure
Entropy

Not packed: benign executables
Packed: Application of UPX to benign executables

Ugarte-Pedrero et al. [49] Entropy analysis Entropy

Not packed: benign executables and malicious samples
taken from VxHeavens and checked with PEid
Packed: application of a set of packers to benign samples and
malware from Zeus family

Shafiq et al. [41] Machine learning PE Structure
Not packed: Benign executables and malware from
VxHeavens/Malfease filtered by PEid
Packed: malware from VxHeavens/Malfease detected as packed by PEid

Raphel et al. [35] Entropy analysis Entropy
Statistical

Not packed: benign executables
Packed: Application of a set of packers/encoders to the benign executables

Lim et al. [25] Machine learning Entropy
Statistical

Not packed: benign executables and evaluation of
similarity for adding other binaries
Packed: Benign and malicious samples tested with [47]

Han et al. [19] Entropy analysis Entropy Not packed: benign executables
Packed: malicious samples from honeypot

Treadwell et al. [46] Machine learning PE Structure Not packed: Windows System files and malicious samples filtered by PEid
Packed: malicious samples filtered by PEid

Arora et al. [9] Machine learning PE Structure
Heuristics

Not packed: benign executables and malicious samples from honeypots
Packed: Malicious samples tested and emulated with [45]

Jacob et al. [20] Machine learning Opcodes
Not packed: Benign executables fetched from Windows
Installation and unpacked malware
Packed: Executables packed with the most popular off-the-shelf packers

vector W̃ as the feature vector containing all the features of
W except for all the entropy features.

We split the ML dataset into train set (TrS) and test set
(TeS) and we run the classifiers on different subsets of TrS
and TeS. TeS is composed by a subset TeSpacked of packed
samples, and a complementary subset TeSnotPacked of not
packed samples, s.t. TeSpacked ∪ TeSnotPacked = TeS.

We indicate FP and FN the sets of false positives and
false negatives samples, respectively. The set FP contains the
not packed samples which are classified as packed, while FN
contains the packed samples which have been classified as
not packed. In particular, we focus on the number of errors
the classifiers make respectively on packed and not packed
samples:

ErrnotPacked =
|FP |

|TeSnotPacked|
(1)

Errpacked =
|FN |

|TeSpacked|
(2)

We show our results in Table VII. For each classifier
we report the ratio between training and testing sets, and
the ErrnotPacked and Errpacked obtained by using the two
feature vectors W and W̃ (i.e., with and without entropy
features). Our experiments, summarized in Table VII, indicate
that none of the classifiers provide a high level of accuracy
– with the best model implementing MLP and achieving the
11.91% as false negatives rate but also the 6.89% as false
negatives rate. It is worth noting that in most of the cases,
the classifiers show a high Errpacked ratio, which means that
a significant number of packed binaries are classified as not
packed. This suggests low entropy schemes can effectively be
used by malware authors to bypass classifiers based on static
features alone. For instance, we noticed that several files have
PE headers appearing perfectly normal (sections named with
standard names, entry point correctly located inside .text, a
high number of entries in the IAT, etc.). While this somehow
decreases the level of obfuscation provided by traditional
packing schemes, it still succeed in protecting the application
code against automated static analysis routines.
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TABLE VII. RESULTS OF ML EXPERIMENTS

Classifier Training-Testing ErrnotPacked(W ) Errpacked(W ) ErrnotPacked(W̃ ) Errpacked(W̃ )

75%-25% 4.43% 25.01% 4.12% 24.57%
SVM 50%-50% 4.31% 28.41% 3.97% 26.20%

25%-75% 4.44% 32.01% 4.11% 29.85%
75%-25% 6.34% 12.70% 5.86% 12.15%

MLP 50%-50% 6.87% 16.14% 6.24% 14.73%
25%-75% 6.89% 11.91% 6.33% 12.93%
75%-25% 0.20% 32.77% 0.23% 31.54%

RF 50%-50% 0.18% 29.46% 0.20% 28.46%
25%-75% 0.21% 28.84% 0.20% 26.83%

With this we do not want to say that static features used in
previous studies are useless. In fact, they do much better than
entropy alone. However, in presence of low-entropy packed
samples all classifiers trained on these features perform quite
poorly, and certainly far worse than what was reported in
previous experiments. For instance the authors of [19] claim
to reach the 0.0% as false positive rate and 2.5% as false
negative rate by only relying over entropy metrics while in
works that employ ML features, the authors declare to obtain
a false positive rate of 0.8% ([39]).

VII. CASE STUDIES

In this section, we discuss in more details three malware
samples that implement low entropy packing techniques. We
also investigate why they are (or are not) detected by the
features introduced in the previous section. We hope that this
can help to understand better the internals of real-world low-
entropy packing schemes and the reason why malware writers
adopt them.

A. Case I: Simple XOR Encryption

For the first case study, we look at a sample6 that belongs
to the berbew family. By looking at the code located at the
application’s entry point, it is easy to identify a simple XOR
encryption algorithm that applies a fixed 4-bytes key to decrypt
in place the .text section. The hardcoded decryption key is
0x6d02676d. Since the first and last digits are the same,
the encryption only raises the overall entropy of the packed
code to 6.9; it is reasonable to believe that this repetition
was a conscious decision introduced to lower the entropy. The
malware author also padded the code of its .aciof section
with a large number of 0x90 bytes (corresponding to the nop
x86 instruction) – likely for the same purpose.

Although this sample can evade any entropy-based check,
it is easily detectable by using other static features. In fact,
this PE file contains several anomalous values – including the
RWX permissions of the .text section and the non-standard
name of the section .aciof.

While this scheme is relatively simple and not particularly
interesting from a research point of view, we decided to
include it in our case studies because it is representative of
the vast majority of low-entropy techniques we observed in our
dataset and because our Scheme Classifier could automatically
categorize it. Next, we are going to present two more complex
cases that required manual investigation to be classified.

6md5= 7186708dd7a1b0dbf9294909679ec30b

B. Case II: Transposition Scheme

Our second example is a sample7 that belongs to the arsenal
of a cyber-espionage group dubbed GreyEnergy [5]. Since
2015, this malware has been used as part of attacks against
energy companies and other high-value targets in Ukraine and
Poland. Most specifically, the binary is a loader, i.e., the code
in charge of stealthily loading the real malware into the target
system.

The sample hides the packed data in the .text sec-
tion, within the range [0x1000, 0x211ff], for a total of
0x21200 bytes. This packed data, PackedSrc from now
on, has an entropy of 6.59, and it contains, in a scattered
disposition, all the data that is necessary to create a valid PE
file. A simplified algorithm of the packing scheme is presented
in Algorithm 1 (the original technique also involved operations
between integers of different sizes that we omit for brevity).
The unpacker uses five memory regions dynamically allocated
(using the VirtualAlloc API) as reported in Table VIII.

TABLE VIII. GREYENERGY DYNAMICALLY ALLOCATED MEMORY
REGIONS

Name Size [Byte] Permissions
Mdst 0x20200 RW
Moffsets 0x808 RW
Mtmp1 0x200 RW
Mtmp2 0x200 RW
Mexe 0x24000 RWX

The first step is a call to init(Moffsets, n) to
initialize the Moffsets memory region (line 1 and 6), that
represents an array of integers. This array is initialized with n
integers s.t. Moffsets = {∀i = 0...n|0 ≤ Moffsets[i] <
n} and every number in range [0, n] is contained in the
Moffsets. Those properties allow the unpacker to later use
the Moffsets region as a lookup table that implements a
bijective function f : [0, n]→ [0, n].

The algorithm then splits the PackedSrc and Mdst in
514 chunks of 256 bytes each and it copies every chunk from
PackedSrc to Mdst (line 4), but not consecutively: it uses
the Moffsets table (initialized in line 1) for looking up the
proper offset in the destination buffer (line 3).

After that, it splits again Mdst in chunks (this time 257
chunks of 512 bytes) and each chunk is copied into Mtmp1
(line 8); then, one byte at a time, it is copied into Mtmp2

7md5= 7a7103a5fc1cf7c4b6eef1a6935554b7
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Fig. 6. Pattern stored inside the .rsrc section

by using the offsets specified in the re-initialized (in line 6)
Moffsets table (line 10). At the end, Mtmp2 is directly
copied into Mdst (lines 12-14) and in turn into the executable
region Mexe (line 16).

When the unpacking procedure is completed, the sample
parses the unpacked PE in the Mexe memory, and loads (using
the library function LoadLibraryA) every dll requested in
the Import Table. Then it modifies the Process Environment
Block structure’s ImageBaseAddress field 8, so that it
points at the very beginning of the unpacked PE file. Finally,
it jumps to the entry point of the unpacked PE9.

The remarkable achievement of this scheme is that the
byte distribution, and consequently the entropy, of the packed
and unpacked regions are identical. Moreover, from the static
analysis point of view, this sample is undetectable using both
signatures and ML techniques, among the ones described in
the previous sections.

1 init (Moffsets, 0x202);
2 for (i = 0, j = 0; i ¡ 0x202; i += 1, j += 0x100) do
3 offset = Moffsets [i] * 0x100;
4 memcpy (Mdst [offset], PackedSrc [j], 0x100);
5 end
6 init (Moffsets, 0x200);
7 for (i = 0; i ¡ 0x8080; i += 0x80) do
8 memcpy (Mtmp1, Mdst [i], 0x200);
9 for (j = 0; j ¡ 0x200; j += 1) do

10 Mtmp2 [Moffsets [j]] = Mtmp1 [j];
11 end
12 for (k = 0; k ¡ 0x200; k += 1) do
13 Mdst [i+k] = Mtmp2 [k];
14 end
15 end
16 memcpy (Mexe, Mdst, 0x20200);

Algorithm 1: GreyEnergy unpacking scheme

C. Case III: Custom Encoding

Our final sample10 uses two layers of packing. The second
(deepest) layer, relies on a traditional XOR encryption scheme
(with an 8-bytes key) and ROR/ROL loops that produced
packed data with high entropy. To mask this fact, the malware
authors added a first layer of packing that reduced the entropy
from 7.63 to 6.57 by adopting a custom encoding scheme.

8The ImageBaseAddress field contains the address where the legitimate
process executable is loaded.

9md5= ab8df9b7389ae890c3396a238bdc4606
10md5= c03bc642c5a49c55efb2d07a7272af2e

Fig. 7. The string 0x0300ba99 in .rdata section

1 i = 0;
2 res = 0;
3 for addr ← RSRC START to RSRC END do
4 offset = readByte(addr);
5 byte = readByte(RDATA STR + offset);
6 if byte != 0x42 then
7 res = res << 6;
8 res = res + byte;
9 i = i + 1;

10 end
11 if i == 4 then
12 writeToMemory(res);
13 res = 0;
14 i = 0;
15 end
16 addr = addr + 1
17 end

Algorithm 2: Pseudocode of the first layer

The first layer relies on the content of two sections: .rsrc
and .rdata. Figure 6 shows some bytes extracted from the
.rsrc section. It is clear that the data consists of sequences
of three bytes (highlighted by the green rectangles) within the
range [0x2b, 0x7a], separated by a single byte [0x00, 0x03]
(highlighted by the red rectangle in the image).

The .rdata section contains a buffer filled with some
characters without a particular meaning (mainly the “B”
character, 0x42 in hexadecimal). However, from the offset
0x2b to 0x7a (as shown in Figure 7), the buffer contains
bytes ranging from 0x00 to 0x3f.

Algorithm 2 summarizes the unpacking procedure in
pseudo-code. The code loops through all values in the .rsrc
Section (line 3) and uses each byte as offset to access the
string (lines 4-5). If the value of the read byte is 0x42, the
algorithm moves to the next byte (line 6), while others are
combined four at a time by adding each value to the previous
one shifted by six bits (lines 7-8). The result is finally written to
another memory region (line 12), before resetting the counter
and restarting the loop (lines 13-14).

The PE structure of this file does not contain any anomaly,
and the above-described custom scheme (that uses the same
symbols of the Base64 scheme) is able to hide the packed
code from n-grams and opcodes analysis; therefore this sample
evades all the previously described ML techniques.
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VIII. CONCLUSIONS

In this work, we conducted a set of experiments on real-
world malware to demonstrate that existing static approaches
fail to take into consideration the threat represented by low-
entropy packed malware and that this phenomenon is relevant
enough that cannot be ignored when designing malware ex-
periments. Although previous works [49], [35] have discussed
the existence of low-entropy packing schemes as case studies,
our work is the first to study this phenomenon in depth, and to
measure the prevalence of this technique over a large dataset.

While it might be true that high-entropy file are often
packed, our experiments show that the opposite is not correct –
i.e., the fact that the entropy is low is not sufficient to conclude
that the file is most likely not packed. This is important as
many studies and tools still use the entropy alone to classify
a sample as packed or not.

The results of our large scale dynamic analysis performed
on 46, 295 samples shows that 31.5% of low-entropy files
were packed, proving that this type of malware represents an
actual and widespread reality. As final proof of our results,
we have also analyzed a reduced set of 476 APT-linked
(Advanced Persistent Threat) malware that represent state of
the art for complex attacks. We found that in this context the
phenomenon of low-entropy packed malware occurs with a
frequency of the 15%. In Section IV we have categorized how
such schemes keep their entropy low and the frequency in
which this technique is adopted in the wild.

We then investigated why actual static analysis techniques
are unable to detect the presence of low-entropy packing.
We have studied two kinds of approaches: those based on
signature/heuristic in Section V, and those based on machine
learning in Section VI. On the one hand, signatures are just
well suited to detect the presence of common off-the-shelf
packers, while heuristics generate a large number of false alerts
on non-packed samples. On the other hand, we evaluated the
performance of static feature-based classifiers, when entropy
is no longer a reliable way to detect packers. Unfortunately,
our experiments show that this is not the case as even the
best classifier was able to detect only 70% of the packed
samples in our dataset. Our results show that the accuracy
of these classifiers degrades drastically in the presence of low
entropy packers, which means that the results reported in the
past relied significantly on the entropy to discern between
packed and not packed files, and that the datasets employed
may have not correctly represented the low-entropy packers
that we found in the wild. Moreover, the machine learning
experiments tell us that the static features proposed so far are
inadequate and needs to be extended to allow for a accurate
classification of packed samples. This does not mean that these
approaches, including simple entropy-based measurements,
must be abandoned. Instead, our work emphasizes the need for
new solutions to this open problem, and that the existence of
low-entropy packing must be considered in future experiments
conducted by researchers and practitioners.

Moreover, we share11 the hashes of the samples, labeled
with the corresponding category by Packer Detector (described
in Section III-A) in the hope that other researchers will use it
as a basis for further studies.

11http://www.s3.eurecom.fr/datasets/low entropy malware/LEM dataset.7z
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